You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2534 lines
89KB

  1. /*
  2. * AAC decoder
  3. * Copyright (c) 2005-2006 Oded Shimon ( ods15 ods15 dyndns org )
  4. * Copyright (c) 2006-2007 Maxim Gavrilov ( maxim.gavrilov gmail com )
  5. *
  6. * AAC LATM decoder
  7. * Copyright (c) 2008-2010 Paul Kendall <paul@kcbbs.gen.nz>
  8. * Copyright (c) 2010 Janne Grunau <janne-ffmpeg@jannau.net>
  9. *
  10. * This file is part of FFmpeg.
  11. *
  12. * FFmpeg is free software; you can redistribute it and/or
  13. * modify it under the terms of the GNU Lesser General Public
  14. * License as published by the Free Software Foundation; either
  15. * version 2.1 of the License, or (at your option) any later version.
  16. *
  17. * FFmpeg is distributed in the hope that it will be useful,
  18. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  19. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  20. * Lesser General Public License for more details.
  21. *
  22. * You should have received a copy of the GNU Lesser General Public
  23. * License along with FFmpeg; if not, write to the Free Software
  24. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  25. */
  26. /**
  27. * @file
  28. * AAC decoder
  29. * @author Oded Shimon ( ods15 ods15 dyndns org )
  30. * @author Maxim Gavrilov ( maxim.gavrilov gmail com )
  31. */
  32. /*
  33. * supported tools
  34. *
  35. * Support? Name
  36. * N (code in SoC repo) gain control
  37. * Y block switching
  38. * Y window shapes - standard
  39. * N window shapes - Low Delay
  40. * Y filterbank - standard
  41. * N (code in SoC repo) filterbank - Scalable Sample Rate
  42. * Y Temporal Noise Shaping
  43. * Y Long Term Prediction
  44. * Y intensity stereo
  45. * Y channel coupling
  46. * Y frequency domain prediction
  47. * Y Perceptual Noise Substitution
  48. * Y Mid/Side stereo
  49. * N Scalable Inverse AAC Quantization
  50. * N Frequency Selective Switch
  51. * N upsampling filter
  52. * Y quantization & coding - AAC
  53. * N quantization & coding - TwinVQ
  54. * N quantization & coding - BSAC
  55. * N AAC Error Resilience tools
  56. * N Error Resilience payload syntax
  57. * N Error Protection tool
  58. * N CELP
  59. * N Silence Compression
  60. * N HVXC
  61. * N HVXC 4kbits/s VR
  62. * N Structured Audio tools
  63. * N Structured Audio Sample Bank Format
  64. * N MIDI
  65. * N Harmonic and Individual Lines plus Noise
  66. * N Text-To-Speech Interface
  67. * Y Spectral Band Replication
  68. * Y (not in this code) Layer-1
  69. * Y (not in this code) Layer-2
  70. * Y (not in this code) Layer-3
  71. * N SinuSoidal Coding (Transient, Sinusoid, Noise)
  72. * Y Parametric Stereo
  73. * N Direct Stream Transfer
  74. *
  75. * Note: - HE AAC v1 comprises LC AAC with Spectral Band Replication.
  76. * - HE AAC v2 comprises LC AAC with Spectral Band Replication and
  77. Parametric Stereo.
  78. */
  79. #include "avcodec.h"
  80. #include "internal.h"
  81. #include "get_bits.h"
  82. #include "dsputil.h"
  83. #include "fft.h"
  84. #include "fmtconvert.h"
  85. #include "lpc.h"
  86. #include "kbdwin.h"
  87. #include "sinewin.h"
  88. #include "aac.h"
  89. #include "aactab.h"
  90. #include "aacdectab.h"
  91. #include "cbrt_tablegen.h"
  92. #include "sbr.h"
  93. #include "aacsbr.h"
  94. #include "mpeg4audio.h"
  95. #include "aacadtsdec.h"
  96. #include <assert.h>
  97. #include <errno.h>
  98. #include <math.h>
  99. #include <string.h>
  100. #if ARCH_ARM
  101. # include "arm/aac.h"
  102. #endif
  103. union float754 {
  104. float f;
  105. uint32_t i;
  106. };
  107. static VLC vlc_scalefactors;
  108. static VLC vlc_spectral[11];
  109. static const char overread_err[] = "Input buffer exhausted before END element found\n";
  110. static ChannelElement *get_che(AACContext *ac, int type, int elem_id)
  111. {
  112. // For PCE based channel configurations map the channels solely based on tags.
  113. if (!ac->m4ac.chan_config) {
  114. return ac->tag_che_map[type][elem_id];
  115. }
  116. // For indexed channel configurations map the channels solely based on position.
  117. switch (ac->m4ac.chan_config) {
  118. case 7:
  119. if (ac->tags_mapped == 3 && type == TYPE_CPE) {
  120. ac->tags_mapped++;
  121. return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][2];
  122. }
  123. case 6:
  124. /* Some streams incorrectly code 5.1 audio as SCE[0] CPE[0] CPE[1] SCE[1]
  125. instead of SCE[0] CPE[0] CPE[1] LFE[0]. If we seem to have
  126. encountered such a stream, transfer the LFE[0] element to the SCE[1]'s mapping */
  127. if (ac->tags_mapped == tags_per_config[ac->m4ac.chan_config] - 1 && (type == TYPE_LFE || type == TYPE_SCE)) {
  128. ac->tags_mapped++;
  129. return ac->tag_che_map[type][elem_id] = ac->che[TYPE_LFE][0];
  130. }
  131. case 5:
  132. if (ac->tags_mapped == 2 && type == TYPE_CPE) {
  133. ac->tags_mapped++;
  134. return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][1];
  135. }
  136. case 4:
  137. if (ac->tags_mapped == 2 && ac->m4ac.chan_config == 4 && type == TYPE_SCE) {
  138. ac->tags_mapped++;
  139. return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][1];
  140. }
  141. case 3:
  142. case 2:
  143. if (ac->tags_mapped == (ac->m4ac.chan_config != 2) && type == TYPE_CPE) {
  144. ac->tags_mapped++;
  145. return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][0];
  146. } else if (ac->m4ac.chan_config == 2) {
  147. return NULL;
  148. }
  149. case 1:
  150. if (!ac->tags_mapped && type == TYPE_SCE) {
  151. ac->tags_mapped++;
  152. return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][0];
  153. }
  154. default:
  155. return NULL;
  156. }
  157. }
  158. /**
  159. * Check for the channel element in the current channel position configuration.
  160. * If it exists, make sure the appropriate element is allocated and map the
  161. * channel order to match the internal FFmpeg channel layout.
  162. *
  163. * @param che_pos current channel position configuration
  164. * @param type channel element type
  165. * @param id channel element id
  166. * @param channels count of the number of channels in the configuration
  167. *
  168. * @return Returns error status. 0 - OK, !0 - error
  169. */
  170. static av_cold int che_configure(AACContext *ac,
  171. enum ChannelPosition che_pos[4][MAX_ELEM_ID],
  172. int type, int id, int *channels)
  173. {
  174. if (che_pos[type][id]) {
  175. if (!ac->che[type][id] && !(ac->che[type][id] = av_mallocz(sizeof(ChannelElement))))
  176. return AVERROR(ENOMEM);
  177. ff_aac_sbr_ctx_init(&ac->che[type][id]->sbr);
  178. if (type != TYPE_CCE) {
  179. ac->output_data[(*channels)++] = ac->che[type][id]->ch[0].ret;
  180. if (type == TYPE_CPE ||
  181. (type == TYPE_SCE && ac->m4ac.ps == 1)) {
  182. ac->output_data[(*channels)++] = ac->che[type][id]->ch[1].ret;
  183. }
  184. }
  185. } else {
  186. if (ac->che[type][id])
  187. ff_aac_sbr_ctx_close(&ac->che[type][id]->sbr);
  188. av_freep(&ac->che[type][id]);
  189. }
  190. return 0;
  191. }
  192. /**
  193. * Configure output channel order based on the current program configuration element.
  194. *
  195. * @param che_pos current channel position configuration
  196. * @param new_che_pos New channel position configuration - we only do something if it differs from the current one.
  197. *
  198. * @return Returns error status. 0 - OK, !0 - error
  199. */
  200. static av_cold int output_configure(AACContext *ac,
  201. enum ChannelPosition che_pos[4][MAX_ELEM_ID],
  202. enum ChannelPosition new_che_pos[4][MAX_ELEM_ID],
  203. int channel_config, enum OCStatus oc_type)
  204. {
  205. AVCodecContext *avctx = ac->avctx;
  206. int i, type, channels = 0, ret;
  207. if (new_che_pos != che_pos)
  208. memcpy(che_pos, new_che_pos, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
  209. if (channel_config) {
  210. for (i = 0; i < tags_per_config[channel_config]; i++) {
  211. if ((ret = che_configure(ac, che_pos,
  212. aac_channel_layout_map[channel_config - 1][i][0],
  213. aac_channel_layout_map[channel_config - 1][i][1],
  214. &channels)))
  215. return ret;
  216. }
  217. memset(ac->tag_che_map, 0, 4 * MAX_ELEM_ID * sizeof(ac->che[0][0]));
  218. avctx->channel_layout = aac_channel_layout[channel_config - 1];
  219. } else {
  220. /* Allocate or free elements depending on if they are in the
  221. * current program configuration.
  222. *
  223. * Set up default 1:1 output mapping.
  224. *
  225. * For a 5.1 stream the output order will be:
  226. * [ Center ] [ Front Left ] [ Front Right ] [ LFE ] [ Surround Left ] [ Surround Right ]
  227. */
  228. for (i = 0; i < MAX_ELEM_ID; i++) {
  229. for (type = 0; type < 4; type++) {
  230. if ((ret = che_configure(ac, che_pos, type, i, &channels)))
  231. return ret;
  232. }
  233. }
  234. memcpy(ac->tag_che_map, ac->che, 4 * MAX_ELEM_ID * sizeof(ac->che[0][0]));
  235. avctx->channel_layout = 0;
  236. }
  237. avctx->channels = channels;
  238. ac->output_configured = oc_type;
  239. return 0;
  240. }
  241. /**
  242. * Decode an array of 4 bit element IDs, optionally interleaved with a stereo/mono switching bit.
  243. *
  244. * @param cpe_map Stereo (Channel Pair Element) map, NULL if stereo bit is not present.
  245. * @param sce_map mono (Single Channel Element) map
  246. * @param type speaker type/position for these channels
  247. */
  248. static void decode_channel_map(enum ChannelPosition *cpe_map,
  249. enum ChannelPosition *sce_map,
  250. enum ChannelPosition type,
  251. GetBitContext *gb, int n)
  252. {
  253. while (n--) {
  254. enum ChannelPosition *map = cpe_map && get_bits1(gb) ? cpe_map : sce_map; // stereo or mono map
  255. map[get_bits(gb, 4)] = type;
  256. }
  257. }
  258. /**
  259. * Decode program configuration element; reference: table 4.2.
  260. *
  261. * @param new_che_pos New channel position configuration - we only do something if it differs from the current one.
  262. *
  263. * @return Returns error status. 0 - OK, !0 - error
  264. */
  265. static int decode_pce(AVCodecContext *avctx, MPEG4AudioConfig *m4ac,
  266. enum ChannelPosition new_che_pos[4][MAX_ELEM_ID],
  267. GetBitContext *gb)
  268. {
  269. int num_front, num_side, num_back, num_lfe, num_assoc_data, num_cc, sampling_index;
  270. int comment_len;
  271. skip_bits(gb, 2); // object_type
  272. sampling_index = get_bits(gb, 4);
  273. if (m4ac->sampling_index != sampling_index)
  274. av_log(avctx, AV_LOG_WARNING, "Sample rate index in program config element does not match the sample rate index configured by the container.\n");
  275. num_front = get_bits(gb, 4);
  276. num_side = get_bits(gb, 4);
  277. num_back = get_bits(gb, 4);
  278. num_lfe = get_bits(gb, 2);
  279. num_assoc_data = get_bits(gb, 3);
  280. num_cc = get_bits(gb, 4);
  281. if (get_bits1(gb))
  282. skip_bits(gb, 4); // mono_mixdown_tag
  283. if (get_bits1(gb))
  284. skip_bits(gb, 4); // stereo_mixdown_tag
  285. if (get_bits1(gb))
  286. skip_bits(gb, 3); // mixdown_coeff_index and pseudo_surround
  287. if (get_bits_left(gb) < 4 * (num_front + num_side + num_back + num_lfe + num_assoc_data + num_cc)) {
  288. av_log(avctx, AV_LOG_ERROR, overread_err);
  289. return -1;
  290. }
  291. decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_FRONT, gb, num_front);
  292. decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_SIDE, gb, num_side );
  293. decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_BACK, gb, num_back );
  294. decode_channel_map(NULL, new_che_pos[TYPE_LFE], AAC_CHANNEL_LFE, gb, num_lfe );
  295. skip_bits_long(gb, 4 * num_assoc_data);
  296. decode_channel_map(new_che_pos[TYPE_CCE], new_che_pos[TYPE_CCE], AAC_CHANNEL_CC, gb, num_cc );
  297. align_get_bits(gb);
  298. /* comment field, first byte is length */
  299. comment_len = get_bits(gb, 8) * 8;
  300. if (get_bits_left(gb) < comment_len) {
  301. av_log(avctx, AV_LOG_ERROR, overread_err);
  302. return -1;
  303. }
  304. skip_bits_long(gb, comment_len);
  305. return 0;
  306. }
  307. /**
  308. * Set up channel positions based on a default channel configuration
  309. * as specified in table 1.17.
  310. *
  311. * @param new_che_pos New channel position configuration - we only do something if it differs from the current one.
  312. *
  313. * @return Returns error status. 0 - OK, !0 - error
  314. */
  315. static av_cold int set_default_channel_config(AVCodecContext *avctx,
  316. enum ChannelPosition new_che_pos[4][MAX_ELEM_ID],
  317. int channel_config)
  318. {
  319. if (channel_config < 1 || channel_config > 7) {
  320. av_log(avctx, AV_LOG_ERROR, "invalid default channel configuration (%d)\n",
  321. channel_config);
  322. return -1;
  323. }
  324. /* default channel configurations:
  325. *
  326. * 1ch : front center (mono)
  327. * 2ch : L + R (stereo)
  328. * 3ch : front center + L + R
  329. * 4ch : front center + L + R + back center
  330. * 5ch : front center + L + R + back stereo
  331. * 6ch : front center + L + R + back stereo + LFE
  332. * 7ch : front center + L + R + outer front left + outer front right + back stereo + LFE
  333. */
  334. if (channel_config != 2)
  335. new_che_pos[TYPE_SCE][0] = AAC_CHANNEL_FRONT; // front center (or mono)
  336. if (channel_config > 1)
  337. new_che_pos[TYPE_CPE][0] = AAC_CHANNEL_FRONT; // L + R (or stereo)
  338. if (channel_config == 4)
  339. new_che_pos[TYPE_SCE][1] = AAC_CHANNEL_BACK; // back center
  340. if (channel_config > 4)
  341. new_che_pos[TYPE_CPE][(channel_config == 7) + 1]
  342. = AAC_CHANNEL_BACK; // back stereo
  343. if (channel_config > 5)
  344. new_che_pos[TYPE_LFE][0] = AAC_CHANNEL_LFE; // LFE
  345. if (channel_config == 7)
  346. new_che_pos[TYPE_CPE][1] = AAC_CHANNEL_FRONT; // outer front left + outer front right
  347. return 0;
  348. }
  349. /**
  350. * Decode GA "General Audio" specific configuration; reference: table 4.1.
  351. *
  352. * @param ac pointer to AACContext, may be null
  353. * @param avctx pointer to AVCCodecContext, used for logging
  354. *
  355. * @return Returns error status. 0 - OK, !0 - error
  356. */
  357. static int decode_ga_specific_config(AACContext *ac, AVCodecContext *avctx,
  358. GetBitContext *gb,
  359. MPEG4AudioConfig *m4ac,
  360. int channel_config)
  361. {
  362. enum ChannelPosition new_che_pos[4][MAX_ELEM_ID];
  363. int extension_flag, ret;
  364. if (get_bits1(gb)) { // frameLengthFlag
  365. av_log_missing_feature(avctx, "960/120 MDCT window is", 1);
  366. return -1;
  367. }
  368. if (get_bits1(gb)) // dependsOnCoreCoder
  369. skip_bits(gb, 14); // coreCoderDelay
  370. extension_flag = get_bits1(gb);
  371. if (m4ac->object_type == AOT_AAC_SCALABLE ||
  372. m4ac->object_type == AOT_ER_AAC_SCALABLE)
  373. skip_bits(gb, 3); // layerNr
  374. memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
  375. if (channel_config == 0) {
  376. skip_bits(gb, 4); // element_instance_tag
  377. if ((ret = decode_pce(avctx, m4ac, new_che_pos, gb)))
  378. return ret;
  379. } else {
  380. if ((ret = set_default_channel_config(avctx, new_che_pos, channel_config)))
  381. return ret;
  382. }
  383. if (ac && (ret = output_configure(ac, ac->che_pos, new_che_pos, channel_config, OC_GLOBAL_HDR)))
  384. return ret;
  385. if (extension_flag) {
  386. switch (m4ac->object_type) {
  387. case AOT_ER_BSAC:
  388. skip_bits(gb, 5); // numOfSubFrame
  389. skip_bits(gb, 11); // layer_length
  390. break;
  391. case AOT_ER_AAC_LC:
  392. case AOT_ER_AAC_LTP:
  393. case AOT_ER_AAC_SCALABLE:
  394. case AOT_ER_AAC_LD:
  395. skip_bits(gb, 3); /* aacSectionDataResilienceFlag
  396. * aacScalefactorDataResilienceFlag
  397. * aacSpectralDataResilienceFlag
  398. */
  399. break;
  400. }
  401. skip_bits1(gb); // extensionFlag3 (TBD in version 3)
  402. }
  403. return 0;
  404. }
  405. /**
  406. * Decode audio specific configuration; reference: table 1.13.
  407. *
  408. * @param ac pointer to AACContext, may be null
  409. * @param avctx pointer to AVCCodecContext, used for logging
  410. * @param m4ac pointer to MPEG4AudioConfig, used for parsing
  411. * @param data pointer to AVCodecContext extradata
  412. * @param data_size size of AVCCodecContext extradata
  413. *
  414. * @return Returns error status or number of consumed bits. <0 - error
  415. */
  416. static int decode_audio_specific_config(AACContext *ac,
  417. AVCodecContext *avctx,
  418. MPEG4AudioConfig *m4ac,
  419. const uint8_t *data, int data_size)
  420. {
  421. GetBitContext gb;
  422. int i;
  423. av_dlog(avctx, "extradata size %d\n", avctx->extradata_size);
  424. for (i = 0; i < avctx->extradata_size; i++)
  425. av_dlog(avctx, "%02x ", avctx->extradata[i]);
  426. av_dlog(avctx, "\n");
  427. init_get_bits(&gb, data, data_size * 8);
  428. if ((i = ff_mpeg4audio_get_config(m4ac, data, data_size)) < 0)
  429. return -1;
  430. if (m4ac->sampling_index > 12) {
  431. av_log(avctx, AV_LOG_ERROR, "invalid sampling rate index %d\n", m4ac->sampling_index);
  432. return -1;
  433. }
  434. if (m4ac->sbr == 1 && m4ac->ps == -1)
  435. m4ac->ps = 1;
  436. skip_bits_long(&gb, i);
  437. switch (m4ac->object_type) {
  438. case AOT_AAC_MAIN:
  439. case AOT_AAC_LC:
  440. case AOT_AAC_LTP:
  441. if (decode_ga_specific_config(ac, avctx, &gb, m4ac, m4ac->chan_config))
  442. return -1;
  443. break;
  444. default:
  445. av_log(avctx, AV_LOG_ERROR, "Audio object type %s%d is not supported.\n",
  446. m4ac->sbr == 1? "SBR+" : "", m4ac->object_type);
  447. return -1;
  448. }
  449. av_dlog(avctx, "AOT %d chan config %d sampling index %d (%d) SBR %d PS %d\n",
  450. m4ac->object_type, m4ac->chan_config, m4ac->sampling_index,
  451. m4ac->sample_rate, m4ac->sbr, m4ac->ps);
  452. return get_bits_count(&gb);
  453. }
  454. /**
  455. * linear congruential pseudorandom number generator
  456. *
  457. * @param previous_val pointer to the current state of the generator
  458. *
  459. * @return Returns a 32-bit pseudorandom integer
  460. */
  461. static av_always_inline int lcg_random(int previous_val)
  462. {
  463. return previous_val * 1664525 + 1013904223;
  464. }
  465. static av_always_inline void reset_predict_state(PredictorState *ps)
  466. {
  467. ps->r0 = 0.0f;
  468. ps->r1 = 0.0f;
  469. ps->cor0 = 0.0f;
  470. ps->cor1 = 0.0f;
  471. ps->var0 = 1.0f;
  472. ps->var1 = 1.0f;
  473. }
  474. static void reset_all_predictors(PredictorState *ps)
  475. {
  476. int i;
  477. for (i = 0; i < MAX_PREDICTORS; i++)
  478. reset_predict_state(&ps[i]);
  479. }
  480. static void reset_predictor_group(PredictorState *ps, int group_num)
  481. {
  482. int i;
  483. for (i = group_num - 1; i < MAX_PREDICTORS; i += 30)
  484. reset_predict_state(&ps[i]);
  485. }
  486. #define AAC_INIT_VLC_STATIC(num, size) \
  487. INIT_VLC_STATIC(&vlc_spectral[num], 8, ff_aac_spectral_sizes[num], \
  488. ff_aac_spectral_bits[num], sizeof( ff_aac_spectral_bits[num][0]), sizeof( ff_aac_spectral_bits[num][0]), \
  489. ff_aac_spectral_codes[num], sizeof(ff_aac_spectral_codes[num][0]), sizeof(ff_aac_spectral_codes[num][0]), \
  490. size);
  491. static av_cold int aac_decode_init(AVCodecContext *avctx)
  492. {
  493. AACContext *ac = avctx->priv_data;
  494. ac->avctx = avctx;
  495. ac->m4ac.sample_rate = avctx->sample_rate;
  496. if (avctx->extradata_size > 0) {
  497. if (decode_audio_specific_config(ac, ac->avctx, &ac->m4ac,
  498. avctx->extradata,
  499. avctx->extradata_size) < 0)
  500. return -1;
  501. }
  502. avctx->sample_fmt = avctx->request_sample_fmt == AV_SAMPLE_FMT_FLT ?
  503. AV_SAMPLE_FMT_FLT : AV_SAMPLE_FMT_S16;
  504. AAC_INIT_VLC_STATIC( 0, 304);
  505. AAC_INIT_VLC_STATIC( 1, 270);
  506. AAC_INIT_VLC_STATIC( 2, 550);
  507. AAC_INIT_VLC_STATIC( 3, 300);
  508. AAC_INIT_VLC_STATIC( 4, 328);
  509. AAC_INIT_VLC_STATIC( 5, 294);
  510. AAC_INIT_VLC_STATIC( 6, 306);
  511. AAC_INIT_VLC_STATIC( 7, 268);
  512. AAC_INIT_VLC_STATIC( 8, 510);
  513. AAC_INIT_VLC_STATIC( 9, 366);
  514. AAC_INIT_VLC_STATIC(10, 462);
  515. ff_aac_sbr_init();
  516. dsputil_init(&ac->dsp, avctx);
  517. ff_fmt_convert_init(&ac->fmt_conv, avctx);
  518. ac->random_state = 0x1f2e3d4c;
  519. ff_aac_tableinit();
  520. INIT_VLC_STATIC(&vlc_scalefactors,7,FF_ARRAY_ELEMS(ff_aac_scalefactor_code),
  521. ff_aac_scalefactor_bits, sizeof(ff_aac_scalefactor_bits[0]), sizeof(ff_aac_scalefactor_bits[0]),
  522. ff_aac_scalefactor_code, sizeof(ff_aac_scalefactor_code[0]), sizeof(ff_aac_scalefactor_code[0]),
  523. 352);
  524. ff_mdct_init(&ac->mdct, 11, 1, 1.0/1024.0);
  525. ff_mdct_init(&ac->mdct_small, 8, 1, 1.0/128.0);
  526. ff_mdct_init(&ac->mdct_ltp, 11, 0, -2.0);
  527. // window initialization
  528. ff_kbd_window_init(ff_aac_kbd_long_1024, 4.0, 1024);
  529. ff_kbd_window_init(ff_aac_kbd_short_128, 6.0, 128);
  530. ff_init_ff_sine_windows(10);
  531. ff_init_ff_sine_windows( 7);
  532. cbrt_tableinit();
  533. return 0;
  534. }
  535. /**
  536. * Skip data_stream_element; reference: table 4.10.
  537. */
  538. static int skip_data_stream_element(AACContext *ac, GetBitContext *gb)
  539. {
  540. int byte_align = get_bits1(gb);
  541. int count = get_bits(gb, 8);
  542. if (count == 255)
  543. count += get_bits(gb, 8);
  544. if (byte_align)
  545. align_get_bits(gb);
  546. if (get_bits_left(gb) < 8 * count) {
  547. av_log(ac->avctx, AV_LOG_ERROR, overread_err);
  548. return -1;
  549. }
  550. skip_bits_long(gb, 8 * count);
  551. return 0;
  552. }
  553. static int decode_prediction(AACContext *ac, IndividualChannelStream *ics,
  554. GetBitContext *gb)
  555. {
  556. int sfb;
  557. if (get_bits1(gb)) {
  558. ics->predictor_reset_group = get_bits(gb, 5);
  559. if (ics->predictor_reset_group == 0 || ics->predictor_reset_group > 30) {
  560. av_log(ac->avctx, AV_LOG_ERROR, "Invalid Predictor Reset Group.\n");
  561. return -1;
  562. }
  563. }
  564. for (sfb = 0; sfb < FFMIN(ics->max_sfb, ff_aac_pred_sfb_max[ac->m4ac.sampling_index]); sfb++) {
  565. ics->prediction_used[sfb] = get_bits1(gb);
  566. }
  567. return 0;
  568. }
  569. /**
  570. * Decode Long Term Prediction data; reference: table 4.xx.
  571. */
  572. static void decode_ltp(AACContext *ac, LongTermPrediction *ltp,
  573. GetBitContext *gb, uint8_t max_sfb)
  574. {
  575. int sfb;
  576. ltp->lag = get_bits(gb, 11);
  577. ltp->coef = ltp_coef[get_bits(gb, 3)];
  578. for (sfb = 0; sfb < FFMIN(max_sfb, MAX_LTP_LONG_SFB); sfb++)
  579. ltp->used[sfb] = get_bits1(gb);
  580. }
  581. /**
  582. * Decode Individual Channel Stream info; reference: table 4.6.
  583. *
  584. * @param common_window Channels have independent [0], or shared [1], Individual Channel Stream information.
  585. */
  586. static int decode_ics_info(AACContext *ac, IndividualChannelStream *ics,
  587. GetBitContext *gb, int common_window)
  588. {
  589. if (get_bits1(gb)) {
  590. av_log(ac->avctx, AV_LOG_ERROR, "Reserved bit set.\n");
  591. memset(ics, 0, sizeof(IndividualChannelStream));
  592. return -1;
  593. }
  594. ics->window_sequence[1] = ics->window_sequence[0];
  595. ics->window_sequence[0] = get_bits(gb, 2);
  596. ics->use_kb_window[1] = ics->use_kb_window[0];
  597. ics->use_kb_window[0] = get_bits1(gb);
  598. ics->num_window_groups = 1;
  599. ics->group_len[0] = 1;
  600. if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
  601. int i;
  602. ics->max_sfb = get_bits(gb, 4);
  603. for (i = 0; i < 7; i++) {
  604. if (get_bits1(gb)) {
  605. ics->group_len[ics->num_window_groups - 1]++;
  606. } else {
  607. ics->num_window_groups++;
  608. ics->group_len[ics->num_window_groups - 1] = 1;
  609. }
  610. }
  611. ics->num_windows = 8;
  612. ics->swb_offset = ff_swb_offset_128[ac->m4ac.sampling_index];
  613. ics->num_swb = ff_aac_num_swb_128[ac->m4ac.sampling_index];
  614. ics->tns_max_bands = ff_tns_max_bands_128[ac->m4ac.sampling_index];
  615. ics->predictor_present = 0;
  616. } else {
  617. ics->max_sfb = get_bits(gb, 6);
  618. ics->num_windows = 1;
  619. ics->swb_offset = ff_swb_offset_1024[ac->m4ac.sampling_index];
  620. ics->num_swb = ff_aac_num_swb_1024[ac->m4ac.sampling_index];
  621. ics->tns_max_bands = ff_tns_max_bands_1024[ac->m4ac.sampling_index];
  622. ics->predictor_present = get_bits1(gb);
  623. ics->predictor_reset_group = 0;
  624. if (ics->predictor_present) {
  625. if (ac->m4ac.object_type == AOT_AAC_MAIN) {
  626. if (decode_prediction(ac, ics, gb)) {
  627. memset(ics, 0, sizeof(IndividualChannelStream));
  628. return -1;
  629. }
  630. } else if (ac->m4ac.object_type == AOT_AAC_LC) {
  631. av_log(ac->avctx, AV_LOG_ERROR, "Prediction is not allowed in AAC-LC.\n");
  632. memset(ics, 0, sizeof(IndividualChannelStream));
  633. return -1;
  634. } else {
  635. if ((ics->ltp.present = get_bits(gb, 1)))
  636. decode_ltp(ac, &ics->ltp, gb, ics->max_sfb);
  637. }
  638. }
  639. }
  640. if (ics->max_sfb > ics->num_swb) {
  641. av_log(ac->avctx, AV_LOG_ERROR,
  642. "Number of scalefactor bands in group (%d) exceeds limit (%d).\n",
  643. ics->max_sfb, ics->num_swb);
  644. memset(ics, 0, sizeof(IndividualChannelStream));
  645. return -1;
  646. }
  647. return 0;
  648. }
  649. /**
  650. * Decode band types (section_data payload); reference: table 4.46.
  651. *
  652. * @param band_type array of the used band type
  653. * @param band_type_run_end array of the last scalefactor band of a band type run
  654. *
  655. * @return Returns error status. 0 - OK, !0 - error
  656. */
  657. static int decode_band_types(AACContext *ac, enum BandType band_type[120],
  658. int band_type_run_end[120], GetBitContext *gb,
  659. IndividualChannelStream *ics)
  660. {
  661. int g, idx = 0;
  662. const int bits = (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) ? 3 : 5;
  663. for (g = 0; g < ics->num_window_groups; g++) {
  664. int k = 0;
  665. while (k < ics->max_sfb) {
  666. uint8_t sect_end = k;
  667. int sect_len_incr;
  668. int sect_band_type = get_bits(gb, 4);
  669. if (sect_band_type == 12) {
  670. av_log(ac->avctx, AV_LOG_ERROR, "invalid band type\n");
  671. return -1;
  672. }
  673. while ((sect_len_incr = get_bits(gb, bits)) == (1 << bits) - 1)
  674. sect_end += sect_len_incr;
  675. sect_end += sect_len_incr;
  676. if (get_bits_left(gb) < 0) {
  677. av_log(ac->avctx, AV_LOG_ERROR, overread_err);
  678. return -1;
  679. }
  680. if (sect_end > ics->max_sfb) {
  681. av_log(ac->avctx, AV_LOG_ERROR,
  682. "Number of bands (%d) exceeds limit (%d).\n",
  683. sect_end, ics->max_sfb);
  684. return -1;
  685. }
  686. for (; k < sect_end; k++) {
  687. band_type [idx] = sect_band_type;
  688. band_type_run_end[idx++] = sect_end;
  689. }
  690. }
  691. }
  692. return 0;
  693. }
  694. /**
  695. * Decode scalefactors; reference: table 4.47.
  696. *
  697. * @param global_gain first scalefactor value as scalefactors are differentially coded
  698. * @param band_type array of the used band type
  699. * @param band_type_run_end array of the last scalefactor band of a band type run
  700. * @param sf array of scalefactors or intensity stereo positions
  701. *
  702. * @return Returns error status. 0 - OK, !0 - error
  703. */
  704. static int decode_scalefactors(AACContext *ac, float sf[120], GetBitContext *gb,
  705. unsigned int global_gain,
  706. IndividualChannelStream *ics,
  707. enum BandType band_type[120],
  708. int band_type_run_end[120])
  709. {
  710. int g, i, idx = 0;
  711. int offset[3] = { global_gain, global_gain - 90, 0 };
  712. int clipped_offset;
  713. int noise_flag = 1;
  714. static const char *sf_str[3] = { "Global gain", "Noise gain", "Intensity stereo position" };
  715. for (g = 0; g < ics->num_window_groups; g++) {
  716. for (i = 0; i < ics->max_sfb;) {
  717. int run_end = band_type_run_end[idx];
  718. if (band_type[idx] == ZERO_BT) {
  719. for (; i < run_end; i++, idx++)
  720. sf[idx] = 0.;
  721. } else if ((band_type[idx] == INTENSITY_BT) || (band_type[idx] == INTENSITY_BT2)) {
  722. for (; i < run_end; i++, idx++) {
  723. offset[2] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
  724. clipped_offset = av_clip(offset[2], -155, 100);
  725. if (offset[2] != clipped_offset) {
  726. av_log_ask_for_sample(ac->avctx, "Intensity stereo "
  727. "position clipped (%d -> %d).\nIf you heard an "
  728. "audible artifact, there may be a bug in the "
  729. "decoder. ", offset[2], clipped_offset);
  730. }
  731. sf[idx] = ff_aac_pow2sf_tab[-clipped_offset + POW_SF2_ZERO];
  732. }
  733. } else if (band_type[idx] == NOISE_BT) {
  734. for (; i < run_end; i++, idx++) {
  735. if (noise_flag-- > 0)
  736. offset[1] += get_bits(gb, 9) - 256;
  737. else
  738. offset[1] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
  739. clipped_offset = av_clip(offset[1], -100, 155);
  740. if (offset[2] != clipped_offset) {
  741. av_log_ask_for_sample(ac->avctx, "Noise gain clipped "
  742. "(%d -> %d).\nIf you heard an audible "
  743. "artifact, there may be a bug in the decoder. ",
  744. offset[1], clipped_offset);
  745. }
  746. sf[idx] = -ff_aac_pow2sf_tab[clipped_offset + POW_SF2_ZERO];
  747. }
  748. } else {
  749. for (; i < run_end; i++, idx++) {
  750. offset[0] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
  751. if (offset[0] > 255U) {
  752. av_log(ac->avctx, AV_LOG_ERROR,
  753. "%s (%d) out of range.\n", sf_str[0], offset[0]);
  754. return -1;
  755. }
  756. sf[idx] = -ff_aac_pow2sf_tab[offset[0] - 100 + POW_SF2_ZERO];
  757. }
  758. }
  759. }
  760. }
  761. return 0;
  762. }
  763. /**
  764. * Decode pulse data; reference: table 4.7.
  765. */
  766. static int decode_pulses(Pulse *pulse, GetBitContext *gb,
  767. const uint16_t *swb_offset, int num_swb)
  768. {
  769. int i, pulse_swb;
  770. pulse->num_pulse = get_bits(gb, 2) + 1;
  771. pulse_swb = get_bits(gb, 6);
  772. if (pulse_swb >= num_swb)
  773. return -1;
  774. pulse->pos[0] = swb_offset[pulse_swb];
  775. pulse->pos[0] += get_bits(gb, 5);
  776. if (pulse->pos[0] > 1023)
  777. return -1;
  778. pulse->amp[0] = get_bits(gb, 4);
  779. for (i = 1; i < pulse->num_pulse; i++) {
  780. pulse->pos[i] = get_bits(gb, 5) + pulse->pos[i - 1];
  781. if (pulse->pos[i] > 1023)
  782. return -1;
  783. pulse->amp[i] = get_bits(gb, 4);
  784. }
  785. return 0;
  786. }
  787. /**
  788. * Decode Temporal Noise Shaping data; reference: table 4.48.
  789. *
  790. * @return Returns error status. 0 - OK, !0 - error
  791. */
  792. static int decode_tns(AACContext *ac, TemporalNoiseShaping *tns,
  793. GetBitContext *gb, const IndividualChannelStream *ics)
  794. {
  795. int w, filt, i, coef_len, coef_res, coef_compress;
  796. const int is8 = ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE;
  797. const int tns_max_order = is8 ? 7 : ac->m4ac.object_type == AOT_AAC_MAIN ? 20 : 12;
  798. for (w = 0; w < ics->num_windows; w++) {
  799. if ((tns->n_filt[w] = get_bits(gb, 2 - is8))) {
  800. coef_res = get_bits1(gb);
  801. for (filt = 0; filt < tns->n_filt[w]; filt++) {
  802. int tmp2_idx;
  803. tns->length[w][filt] = get_bits(gb, 6 - 2 * is8);
  804. if ((tns->order[w][filt] = get_bits(gb, 5 - 2 * is8)) > tns_max_order) {
  805. av_log(ac->avctx, AV_LOG_ERROR, "TNS filter order %d is greater than maximum %d.\n",
  806. tns->order[w][filt], tns_max_order);
  807. tns->order[w][filt] = 0;
  808. return -1;
  809. }
  810. if (tns->order[w][filt]) {
  811. tns->direction[w][filt] = get_bits1(gb);
  812. coef_compress = get_bits1(gb);
  813. coef_len = coef_res + 3 - coef_compress;
  814. tmp2_idx = 2 * coef_compress + coef_res;
  815. for (i = 0; i < tns->order[w][filt]; i++)
  816. tns->coef[w][filt][i] = tns_tmp2_map[tmp2_idx][get_bits(gb, coef_len)];
  817. }
  818. }
  819. }
  820. }
  821. return 0;
  822. }
  823. /**
  824. * Decode Mid/Side data; reference: table 4.54.
  825. *
  826. * @param ms_present Indicates mid/side stereo presence. [0] mask is all 0s;
  827. * [1] mask is decoded from bitstream; [2] mask is all 1s;
  828. * [3] reserved for scalable AAC
  829. */
  830. static void decode_mid_side_stereo(ChannelElement *cpe, GetBitContext *gb,
  831. int ms_present)
  832. {
  833. int idx;
  834. if (ms_present == 1) {
  835. for (idx = 0; idx < cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb; idx++)
  836. cpe->ms_mask[idx] = get_bits1(gb);
  837. } else if (ms_present == 2) {
  838. memset(cpe->ms_mask, 1, cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb * sizeof(cpe->ms_mask[0]));
  839. }
  840. }
  841. #ifndef VMUL2
  842. static inline float *VMUL2(float *dst, const float *v, unsigned idx,
  843. const float *scale)
  844. {
  845. float s = *scale;
  846. *dst++ = v[idx & 15] * s;
  847. *dst++ = v[idx>>4 & 15] * s;
  848. return dst;
  849. }
  850. #endif
  851. #ifndef VMUL4
  852. static inline float *VMUL4(float *dst, const float *v, unsigned idx,
  853. const float *scale)
  854. {
  855. float s = *scale;
  856. *dst++ = v[idx & 3] * s;
  857. *dst++ = v[idx>>2 & 3] * s;
  858. *dst++ = v[idx>>4 & 3] * s;
  859. *dst++ = v[idx>>6 & 3] * s;
  860. return dst;
  861. }
  862. #endif
  863. #ifndef VMUL2S
  864. static inline float *VMUL2S(float *dst, const float *v, unsigned idx,
  865. unsigned sign, const float *scale)
  866. {
  867. union float754 s0, s1;
  868. s0.f = s1.f = *scale;
  869. s0.i ^= sign >> 1 << 31;
  870. s1.i ^= sign << 31;
  871. *dst++ = v[idx & 15] * s0.f;
  872. *dst++ = v[idx>>4 & 15] * s1.f;
  873. return dst;
  874. }
  875. #endif
  876. #ifndef VMUL4S
  877. static inline float *VMUL4S(float *dst, const float *v, unsigned idx,
  878. unsigned sign, const float *scale)
  879. {
  880. unsigned nz = idx >> 12;
  881. union float754 s = { .f = *scale };
  882. union float754 t;
  883. t.i = s.i ^ (sign & 1U<<31);
  884. *dst++ = v[idx & 3] * t.f;
  885. sign <<= nz & 1; nz >>= 1;
  886. t.i = s.i ^ (sign & 1U<<31);
  887. *dst++ = v[idx>>2 & 3] * t.f;
  888. sign <<= nz & 1; nz >>= 1;
  889. t.i = s.i ^ (sign & 1U<<31);
  890. *dst++ = v[idx>>4 & 3] * t.f;
  891. sign <<= nz & 1; nz >>= 1;
  892. t.i = s.i ^ (sign & 1U<<31);
  893. *dst++ = v[idx>>6 & 3] * t.f;
  894. return dst;
  895. }
  896. #endif
  897. /**
  898. * Decode spectral data; reference: table 4.50.
  899. * Dequantize and scale spectral data; reference: 4.6.3.3.
  900. *
  901. * @param coef array of dequantized, scaled spectral data
  902. * @param sf array of scalefactors or intensity stereo positions
  903. * @param pulse_present set if pulses are present
  904. * @param pulse pointer to pulse data struct
  905. * @param band_type array of the used band type
  906. *
  907. * @return Returns error status. 0 - OK, !0 - error
  908. */
  909. static int decode_spectrum_and_dequant(AACContext *ac, float coef[1024],
  910. GetBitContext *gb, const float sf[120],
  911. int pulse_present, const Pulse *pulse,
  912. const IndividualChannelStream *ics,
  913. enum BandType band_type[120])
  914. {
  915. int i, k, g, idx = 0;
  916. const int c = 1024 / ics->num_windows;
  917. const uint16_t *offsets = ics->swb_offset;
  918. float *coef_base = coef;
  919. for (g = 0; g < ics->num_windows; g++)
  920. memset(coef + g * 128 + offsets[ics->max_sfb], 0, sizeof(float) * (c - offsets[ics->max_sfb]));
  921. for (g = 0; g < ics->num_window_groups; g++) {
  922. unsigned g_len = ics->group_len[g];
  923. for (i = 0; i < ics->max_sfb; i++, idx++) {
  924. const unsigned cbt_m1 = band_type[idx] - 1;
  925. float *cfo = coef + offsets[i];
  926. int off_len = offsets[i + 1] - offsets[i];
  927. int group;
  928. if (cbt_m1 >= INTENSITY_BT2 - 1) {
  929. for (group = 0; group < g_len; group++, cfo+=128) {
  930. memset(cfo, 0, off_len * sizeof(float));
  931. }
  932. } else if (cbt_m1 == NOISE_BT - 1) {
  933. for (group = 0; group < g_len; group++, cfo+=128) {
  934. float scale;
  935. float band_energy;
  936. for (k = 0; k < off_len; k++) {
  937. ac->random_state = lcg_random(ac->random_state);
  938. cfo[k] = ac->random_state;
  939. }
  940. band_energy = ac->dsp.scalarproduct_float(cfo, cfo, off_len);
  941. scale = sf[idx] / sqrtf(band_energy);
  942. ac->dsp.vector_fmul_scalar(cfo, cfo, scale, off_len);
  943. }
  944. } else {
  945. const float *vq = ff_aac_codebook_vector_vals[cbt_m1];
  946. const uint16_t *cb_vector_idx = ff_aac_codebook_vector_idx[cbt_m1];
  947. VLC_TYPE (*vlc_tab)[2] = vlc_spectral[cbt_m1].table;
  948. OPEN_READER(re, gb);
  949. switch (cbt_m1 >> 1) {
  950. case 0:
  951. for (group = 0; group < g_len; group++, cfo+=128) {
  952. float *cf = cfo;
  953. int len = off_len;
  954. do {
  955. int code;
  956. unsigned cb_idx;
  957. UPDATE_CACHE(re, gb);
  958. GET_VLC(code, re, gb, vlc_tab, 8, 2);
  959. cb_idx = cb_vector_idx[code];
  960. cf = VMUL4(cf, vq, cb_idx, sf + idx);
  961. } while (len -= 4);
  962. }
  963. break;
  964. case 1:
  965. for (group = 0; group < g_len; group++, cfo+=128) {
  966. float *cf = cfo;
  967. int len = off_len;
  968. do {
  969. int code;
  970. unsigned nnz;
  971. unsigned cb_idx;
  972. uint32_t bits;
  973. UPDATE_CACHE(re, gb);
  974. GET_VLC(code, re, gb, vlc_tab, 8, 2);
  975. cb_idx = cb_vector_idx[code];
  976. nnz = cb_idx >> 8 & 15;
  977. bits = SHOW_UBITS(re, gb, nnz) << (32-nnz);
  978. LAST_SKIP_BITS(re, gb, nnz);
  979. cf = VMUL4S(cf, vq, cb_idx, bits, sf + idx);
  980. } while (len -= 4);
  981. }
  982. break;
  983. case 2:
  984. for (group = 0; group < g_len; group++, cfo+=128) {
  985. float *cf = cfo;
  986. int len = off_len;
  987. do {
  988. int code;
  989. unsigned cb_idx;
  990. UPDATE_CACHE(re, gb);
  991. GET_VLC(code, re, gb, vlc_tab, 8, 2);
  992. cb_idx = cb_vector_idx[code];
  993. cf = VMUL2(cf, vq, cb_idx, sf + idx);
  994. } while (len -= 2);
  995. }
  996. break;
  997. case 3:
  998. case 4:
  999. for (group = 0; group < g_len; group++, cfo+=128) {
  1000. float *cf = cfo;
  1001. int len = off_len;
  1002. do {
  1003. int code;
  1004. unsigned nnz;
  1005. unsigned cb_idx;
  1006. unsigned sign;
  1007. UPDATE_CACHE(re, gb);
  1008. GET_VLC(code, re, gb, vlc_tab, 8, 2);
  1009. cb_idx = cb_vector_idx[code];
  1010. nnz = cb_idx >> 8 & 15;
  1011. sign = SHOW_UBITS(re, gb, nnz) << (cb_idx >> 12);
  1012. LAST_SKIP_BITS(re, gb, nnz);
  1013. cf = VMUL2S(cf, vq, cb_idx, sign, sf + idx);
  1014. } while (len -= 2);
  1015. }
  1016. break;
  1017. default:
  1018. for (group = 0; group < g_len; group++, cfo+=128) {
  1019. float *cf = cfo;
  1020. uint32_t *icf = (uint32_t *) cf;
  1021. int len = off_len;
  1022. do {
  1023. int code;
  1024. unsigned nzt, nnz;
  1025. unsigned cb_idx;
  1026. uint32_t bits;
  1027. int j;
  1028. UPDATE_CACHE(re, gb);
  1029. GET_VLC(code, re, gb, vlc_tab, 8, 2);
  1030. if (!code) {
  1031. *icf++ = 0;
  1032. *icf++ = 0;
  1033. continue;
  1034. }
  1035. cb_idx = cb_vector_idx[code];
  1036. nnz = cb_idx >> 12;
  1037. nzt = cb_idx >> 8;
  1038. bits = SHOW_UBITS(re, gb, nnz) << (32-nnz);
  1039. LAST_SKIP_BITS(re, gb, nnz);
  1040. for (j = 0; j < 2; j++) {
  1041. if (nzt & 1<<j) {
  1042. uint32_t b;
  1043. int n;
  1044. /* The total length of escape_sequence must be < 22 bits according
  1045. to the specification (i.e. max is 111111110xxxxxxxxxxxx). */
  1046. UPDATE_CACHE(re, gb);
  1047. b = GET_CACHE(re, gb);
  1048. b = 31 - av_log2(~b);
  1049. if (b > 8) {
  1050. av_log(ac->avctx, AV_LOG_ERROR, "error in spectral data, ESC overflow\n");
  1051. return -1;
  1052. }
  1053. SKIP_BITS(re, gb, b + 1);
  1054. b += 4;
  1055. n = (1 << b) + SHOW_UBITS(re, gb, b);
  1056. LAST_SKIP_BITS(re, gb, b);
  1057. *icf++ = cbrt_tab[n] | (bits & 1U<<31);
  1058. bits <<= 1;
  1059. } else {
  1060. unsigned v = ((const uint32_t*)vq)[cb_idx & 15];
  1061. *icf++ = (bits & 1U<<31) | v;
  1062. bits <<= !!v;
  1063. }
  1064. cb_idx >>= 4;
  1065. }
  1066. } while (len -= 2);
  1067. ac->dsp.vector_fmul_scalar(cfo, cfo, sf[idx], off_len);
  1068. }
  1069. }
  1070. CLOSE_READER(re, gb);
  1071. }
  1072. }
  1073. coef += g_len << 7;
  1074. }
  1075. if (pulse_present) {
  1076. idx = 0;
  1077. for (i = 0; i < pulse->num_pulse; i++) {
  1078. float co = coef_base[ pulse->pos[i] ];
  1079. while (offsets[idx + 1] <= pulse->pos[i])
  1080. idx++;
  1081. if (band_type[idx] != NOISE_BT && sf[idx]) {
  1082. float ico = -pulse->amp[i];
  1083. if (co) {
  1084. co /= sf[idx];
  1085. ico = co / sqrtf(sqrtf(fabsf(co))) + (co > 0 ? -ico : ico);
  1086. }
  1087. coef_base[ pulse->pos[i] ] = cbrtf(fabsf(ico)) * ico * sf[idx];
  1088. }
  1089. }
  1090. }
  1091. return 0;
  1092. }
  1093. static av_always_inline float flt16_round(float pf)
  1094. {
  1095. union float754 tmp;
  1096. tmp.f = pf;
  1097. tmp.i = (tmp.i + 0x00008000U) & 0xFFFF0000U;
  1098. return tmp.f;
  1099. }
  1100. static av_always_inline float flt16_even(float pf)
  1101. {
  1102. union float754 tmp;
  1103. tmp.f = pf;
  1104. tmp.i = (tmp.i + 0x00007FFFU + (tmp.i & 0x00010000U >> 16)) & 0xFFFF0000U;
  1105. return tmp.f;
  1106. }
  1107. static av_always_inline float flt16_trunc(float pf)
  1108. {
  1109. union float754 pun;
  1110. pun.f = pf;
  1111. pun.i &= 0xFFFF0000U;
  1112. return pun.f;
  1113. }
  1114. static av_always_inline void predict(PredictorState *ps, float *coef,
  1115. int output_enable)
  1116. {
  1117. const float a = 0.953125; // 61.0 / 64
  1118. const float alpha = 0.90625; // 29.0 / 32
  1119. float e0, e1;
  1120. float pv;
  1121. float k1, k2;
  1122. float r0 = ps->r0, r1 = ps->r1;
  1123. float cor0 = ps->cor0, cor1 = ps->cor1;
  1124. float var0 = ps->var0, var1 = ps->var1;
  1125. k1 = var0 > 1 ? cor0 * flt16_even(a / var0) : 0;
  1126. k2 = var1 > 1 ? cor1 * flt16_even(a / var1) : 0;
  1127. pv = flt16_round(k1 * r0 + k2 * r1);
  1128. if (output_enable)
  1129. *coef += pv;
  1130. e0 = *coef;
  1131. e1 = e0 - k1 * r0;
  1132. ps->cor1 = flt16_trunc(alpha * cor1 + r1 * e1);
  1133. ps->var1 = flt16_trunc(alpha * var1 + 0.5f * (r1 * r1 + e1 * e1));
  1134. ps->cor0 = flt16_trunc(alpha * cor0 + r0 * e0);
  1135. ps->var0 = flt16_trunc(alpha * var0 + 0.5f * (r0 * r0 + e0 * e0));
  1136. ps->r1 = flt16_trunc(a * (r0 - k1 * e0));
  1137. ps->r0 = flt16_trunc(a * e0);
  1138. }
  1139. /**
  1140. * Apply AAC-Main style frequency domain prediction.
  1141. */
  1142. static void apply_prediction(AACContext *ac, SingleChannelElement *sce)
  1143. {
  1144. int sfb, k;
  1145. if (!sce->ics.predictor_initialized) {
  1146. reset_all_predictors(sce->predictor_state);
  1147. sce->ics.predictor_initialized = 1;
  1148. }
  1149. if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE) {
  1150. for (sfb = 0; sfb < ff_aac_pred_sfb_max[ac->m4ac.sampling_index]; sfb++) {
  1151. for (k = sce->ics.swb_offset[sfb]; k < sce->ics.swb_offset[sfb + 1]; k++) {
  1152. predict(&sce->predictor_state[k], &sce->coeffs[k],
  1153. sce->ics.predictor_present && sce->ics.prediction_used[sfb]);
  1154. }
  1155. }
  1156. if (sce->ics.predictor_reset_group)
  1157. reset_predictor_group(sce->predictor_state, sce->ics.predictor_reset_group);
  1158. } else
  1159. reset_all_predictors(sce->predictor_state);
  1160. }
  1161. /**
  1162. * Decode an individual_channel_stream payload; reference: table 4.44.
  1163. *
  1164. * @param common_window Channels have independent [0], or shared [1], Individual Channel Stream information.
  1165. * @param scale_flag scalable [1] or non-scalable [0] AAC (Unused until scalable AAC is implemented.)
  1166. *
  1167. * @return Returns error status. 0 - OK, !0 - error
  1168. */
  1169. static int decode_ics(AACContext *ac, SingleChannelElement *sce,
  1170. GetBitContext *gb, int common_window, int scale_flag)
  1171. {
  1172. Pulse pulse;
  1173. TemporalNoiseShaping *tns = &sce->tns;
  1174. IndividualChannelStream *ics = &sce->ics;
  1175. float *out = sce->coeffs;
  1176. int global_gain, pulse_present = 0;
  1177. /* This assignment is to silence a GCC warning about the variable being used
  1178. * uninitialized when in fact it always is.
  1179. */
  1180. pulse.num_pulse = 0;
  1181. global_gain = get_bits(gb, 8);
  1182. if (!common_window && !scale_flag) {
  1183. if (decode_ics_info(ac, ics, gb, 0) < 0)
  1184. return -1;
  1185. }
  1186. if (decode_band_types(ac, sce->band_type, sce->band_type_run_end, gb, ics) < 0)
  1187. return -1;
  1188. if (decode_scalefactors(ac, sce->sf, gb, global_gain, ics, sce->band_type, sce->band_type_run_end) < 0)
  1189. return -1;
  1190. pulse_present = 0;
  1191. if (!scale_flag) {
  1192. if ((pulse_present = get_bits1(gb))) {
  1193. if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
  1194. av_log(ac->avctx, AV_LOG_ERROR, "Pulse tool not allowed in eight short sequence.\n");
  1195. return -1;
  1196. }
  1197. if (decode_pulses(&pulse, gb, ics->swb_offset, ics->num_swb)) {
  1198. av_log(ac->avctx, AV_LOG_ERROR, "Pulse data corrupt or invalid.\n");
  1199. return -1;
  1200. }
  1201. }
  1202. if ((tns->present = get_bits1(gb)) && decode_tns(ac, tns, gb, ics))
  1203. return -1;
  1204. if (get_bits1(gb)) {
  1205. av_log_missing_feature(ac->avctx, "SSR", 1);
  1206. return -1;
  1207. }
  1208. }
  1209. if (decode_spectrum_and_dequant(ac, out, gb, sce->sf, pulse_present, &pulse, ics, sce->band_type) < 0)
  1210. return -1;
  1211. if (ac->m4ac.object_type == AOT_AAC_MAIN && !common_window)
  1212. apply_prediction(ac, sce);
  1213. return 0;
  1214. }
  1215. /**
  1216. * Mid/Side stereo decoding; reference: 4.6.8.1.3.
  1217. */
  1218. static void apply_mid_side_stereo(AACContext *ac, ChannelElement *cpe)
  1219. {
  1220. const IndividualChannelStream *ics = &cpe->ch[0].ics;
  1221. float *ch0 = cpe->ch[0].coeffs;
  1222. float *ch1 = cpe->ch[1].coeffs;
  1223. int g, i, group, idx = 0;
  1224. const uint16_t *offsets = ics->swb_offset;
  1225. for (g = 0; g < ics->num_window_groups; g++) {
  1226. for (i = 0; i < ics->max_sfb; i++, idx++) {
  1227. if (cpe->ms_mask[idx] &&
  1228. cpe->ch[0].band_type[idx] < NOISE_BT && cpe->ch[1].band_type[idx] < NOISE_BT) {
  1229. for (group = 0; group < ics->group_len[g]; group++) {
  1230. ac->dsp.butterflies_float(ch0 + group * 128 + offsets[i],
  1231. ch1 + group * 128 + offsets[i],
  1232. offsets[i+1] - offsets[i]);
  1233. }
  1234. }
  1235. }
  1236. ch0 += ics->group_len[g] * 128;
  1237. ch1 += ics->group_len[g] * 128;
  1238. }
  1239. }
  1240. /**
  1241. * intensity stereo decoding; reference: 4.6.8.2.3
  1242. *
  1243. * @param ms_present Indicates mid/side stereo presence. [0] mask is all 0s;
  1244. * [1] mask is decoded from bitstream; [2] mask is all 1s;
  1245. * [3] reserved for scalable AAC
  1246. */
  1247. static void apply_intensity_stereo(AACContext *ac, ChannelElement *cpe, int ms_present)
  1248. {
  1249. const IndividualChannelStream *ics = &cpe->ch[1].ics;
  1250. SingleChannelElement *sce1 = &cpe->ch[1];
  1251. float *coef0 = cpe->ch[0].coeffs, *coef1 = cpe->ch[1].coeffs;
  1252. const uint16_t *offsets = ics->swb_offset;
  1253. int g, group, i, idx = 0;
  1254. int c;
  1255. float scale;
  1256. for (g = 0; g < ics->num_window_groups; g++) {
  1257. for (i = 0; i < ics->max_sfb;) {
  1258. if (sce1->band_type[idx] == INTENSITY_BT || sce1->band_type[idx] == INTENSITY_BT2) {
  1259. const int bt_run_end = sce1->band_type_run_end[idx];
  1260. for (; i < bt_run_end; i++, idx++) {
  1261. c = -1 + 2 * (sce1->band_type[idx] - 14);
  1262. if (ms_present)
  1263. c *= 1 - 2 * cpe->ms_mask[idx];
  1264. scale = c * sce1->sf[idx];
  1265. for (group = 0; group < ics->group_len[g]; group++)
  1266. ac->dsp.vector_fmul_scalar(coef1 + group * 128 + offsets[i],
  1267. coef0 + group * 128 + offsets[i],
  1268. scale,
  1269. offsets[i + 1] - offsets[i]);
  1270. }
  1271. } else {
  1272. int bt_run_end = sce1->band_type_run_end[idx];
  1273. idx += bt_run_end - i;
  1274. i = bt_run_end;
  1275. }
  1276. }
  1277. coef0 += ics->group_len[g] * 128;
  1278. coef1 += ics->group_len[g] * 128;
  1279. }
  1280. }
  1281. /**
  1282. * Decode a channel_pair_element; reference: table 4.4.
  1283. *
  1284. * @return Returns error status. 0 - OK, !0 - error
  1285. */
  1286. static int decode_cpe(AACContext *ac, GetBitContext *gb, ChannelElement *cpe)
  1287. {
  1288. int i, ret, common_window, ms_present = 0;
  1289. common_window = get_bits1(gb);
  1290. if (common_window) {
  1291. if (decode_ics_info(ac, &cpe->ch[0].ics, gb, 1))
  1292. return -1;
  1293. i = cpe->ch[1].ics.use_kb_window[0];
  1294. cpe->ch[1].ics = cpe->ch[0].ics;
  1295. cpe->ch[1].ics.use_kb_window[1] = i;
  1296. if (cpe->ch[1].ics.predictor_present && (ac->m4ac.object_type != AOT_AAC_MAIN))
  1297. if ((cpe->ch[1].ics.ltp.present = get_bits(gb, 1)))
  1298. decode_ltp(ac, &cpe->ch[1].ics.ltp, gb, cpe->ch[1].ics.max_sfb);
  1299. ms_present = get_bits(gb, 2);
  1300. if (ms_present == 3) {
  1301. av_log(ac->avctx, AV_LOG_ERROR, "ms_present = 3 is reserved.\n");
  1302. return -1;
  1303. } else if (ms_present)
  1304. decode_mid_side_stereo(cpe, gb, ms_present);
  1305. }
  1306. if ((ret = decode_ics(ac, &cpe->ch[0], gb, common_window, 0)))
  1307. return ret;
  1308. if ((ret = decode_ics(ac, &cpe->ch[1], gb, common_window, 0)))
  1309. return ret;
  1310. if (common_window) {
  1311. if (ms_present)
  1312. apply_mid_side_stereo(ac, cpe);
  1313. if (ac->m4ac.object_type == AOT_AAC_MAIN) {
  1314. apply_prediction(ac, &cpe->ch[0]);
  1315. apply_prediction(ac, &cpe->ch[1]);
  1316. }
  1317. }
  1318. apply_intensity_stereo(ac, cpe, ms_present);
  1319. return 0;
  1320. }
  1321. static const float cce_scale[] = {
  1322. 1.09050773266525765921, //2^(1/8)
  1323. 1.18920711500272106672, //2^(1/4)
  1324. M_SQRT2,
  1325. 2,
  1326. };
  1327. /**
  1328. * Decode coupling_channel_element; reference: table 4.8.
  1329. *
  1330. * @return Returns error status. 0 - OK, !0 - error
  1331. */
  1332. static int decode_cce(AACContext *ac, GetBitContext *gb, ChannelElement *che)
  1333. {
  1334. int num_gain = 0;
  1335. int c, g, sfb, ret;
  1336. int sign;
  1337. float scale;
  1338. SingleChannelElement *sce = &che->ch[0];
  1339. ChannelCoupling *coup = &che->coup;
  1340. coup->coupling_point = 2 * get_bits1(gb);
  1341. coup->num_coupled = get_bits(gb, 3);
  1342. for (c = 0; c <= coup->num_coupled; c++) {
  1343. num_gain++;
  1344. coup->type[c] = get_bits1(gb) ? TYPE_CPE : TYPE_SCE;
  1345. coup->id_select[c] = get_bits(gb, 4);
  1346. if (coup->type[c] == TYPE_CPE) {
  1347. coup->ch_select[c] = get_bits(gb, 2);
  1348. if (coup->ch_select[c] == 3)
  1349. num_gain++;
  1350. } else
  1351. coup->ch_select[c] = 2;
  1352. }
  1353. coup->coupling_point += get_bits1(gb) || (coup->coupling_point >> 1);
  1354. sign = get_bits(gb, 1);
  1355. scale = cce_scale[get_bits(gb, 2)];
  1356. if ((ret = decode_ics(ac, sce, gb, 0, 0)))
  1357. return ret;
  1358. for (c = 0; c < num_gain; c++) {
  1359. int idx = 0;
  1360. int cge = 1;
  1361. int gain = 0;
  1362. float gain_cache = 1.;
  1363. if (c) {
  1364. cge = coup->coupling_point == AFTER_IMDCT ? 1 : get_bits1(gb);
  1365. gain = cge ? get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60: 0;
  1366. gain_cache = powf(scale, -gain);
  1367. }
  1368. if (coup->coupling_point == AFTER_IMDCT) {
  1369. coup->gain[c][0] = gain_cache;
  1370. } else {
  1371. for (g = 0; g < sce->ics.num_window_groups; g++) {
  1372. for (sfb = 0; sfb < sce->ics.max_sfb; sfb++, idx++) {
  1373. if (sce->band_type[idx] != ZERO_BT) {
  1374. if (!cge) {
  1375. int t = get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
  1376. if (t) {
  1377. int s = 1;
  1378. t = gain += t;
  1379. if (sign) {
  1380. s -= 2 * (t & 0x1);
  1381. t >>= 1;
  1382. }
  1383. gain_cache = powf(scale, -t) * s;
  1384. }
  1385. }
  1386. coup->gain[c][idx] = gain_cache;
  1387. }
  1388. }
  1389. }
  1390. }
  1391. }
  1392. return 0;
  1393. }
  1394. /**
  1395. * Parse whether channels are to be excluded from Dynamic Range Compression; reference: table 4.53.
  1396. *
  1397. * @return Returns number of bytes consumed.
  1398. */
  1399. static int decode_drc_channel_exclusions(DynamicRangeControl *che_drc,
  1400. GetBitContext *gb)
  1401. {
  1402. int i;
  1403. int num_excl_chan = 0;
  1404. do {
  1405. for (i = 0; i < 7; i++)
  1406. che_drc->exclude_mask[num_excl_chan++] = get_bits1(gb);
  1407. } while (num_excl_chan < MAX_CHANNELS - 7 && get_bits1(gb));
  1408. return num_excl_chan / 7;
  1409. }
  1410. /**
  1411. * Decode dynamic range information; reference: table 4.52.
  1412. *
  1413. * @param cnt length of TYPE_FIL syntactic element in bytes
  1414. *
  1415. * @return Returns number of bytes consumed.
  1416. */
  1417. static int decode_dynamic_range(DynamicRangeControl *che_drc,
  1418. GetBitContext *gb, int cnt)
  1419. {
  1420. int n = 1;
  1421. int drc_num_bands = 1;
  1422. int i;
  1423. /* pce_tag_present? */
  1424. if (get_bits1(gb)) {
  1425. che_drc->pce_instance_tag = get_bits(gb, 4);
  1426. skip_bits(gb, 4); // tag_reserved_bits
  1427. n++;
  1428. }
  1429. /* excluded_chns_present? */
  1430. if (get_bits1(gb)) {
  1431. n += decode_drc_channel_exclusions(che_drc, gb);
  1432. }
  1433. /* drc_bands_present? */
  1434. if (get_bits1(gb)) {
  1435. che_drc->band_incr = get_bits(gb, 4);
  1436. che_drc->interpolation_scheme = get_bits(gb, 4);
  1437. n++;
  1438. drc_num_bands += che_drc->band_incr;
  1439. for (i = 0; i < drc_num_bands; i++) {
  1440. che_drc->band_top[i] = get_bits(gb, 8);
  1441. n++;
  1442. }
  1443. }
  1444. /* prog_ref_level_present? */
  1445. if (get_bits1(gb)) {
  1446. che_drc->prog_ref_level = get_bits(gb, 7);
  1447. skip_bits1(gb); // prog_ref_level_reserved_bits
  1448. n++;
  1449. }
  1450. for (i = 0; i < drc_num_bands; i++) {
  1451. che_drc->dyn_rng_sgn[i] = get_bits1(gb);
  1452. che_drc->dyn_rng_ctl[i] = get_bits(gb, 7);
  1453. n++;
  1454. }
  1455. return n;
  1456. }
  1457. /**
  1458. * Decode extension data (incomplete); reference: table 4.51.
  1459. *
  1460. * @param cnt length of TYPE_FIL syntactic element in bytes
  1461. *
  1462. * @return Returns number of bytes consumed
  1463. */
  1464. static int decode_extension_payload(AACContext *ac, GetBitContext *gb, int cnt,
  1465. ChannelElement *che, enum RawDataBlockType elem_type)
  1466. {
  1467. int crc_flag = 0;
  1468. int res = cnt;
  1469. switch (get_bits(gb, 4)) { // extension type
  1470. case EXT_SBR_DATA_CRC:
  1471. crc_flag++;
  1472. case EXT_SBR_DATA:
  1473. if (!che) {
  1474. av_log(ac->avctx, AV_LOG_ERROR, "SBR was found before the first channel element.\n");
  1475. return res;
  1476. } else if (!ac->m4ac.sbr) {
  1477. av_log(ac->avctx, AV_LOG_ERROR, "SBR signaled to be not-present but was found in the bitstream.\n");
  1478. skip_bits_long(gb, 8 * cnt - 4);
  1479. return res;
  1480. } else if (ac->m4ac.sbr == -1 && ac->output_configured == OC_LOCKED) {
  1481. av_log(ac->avctx, AV_LOG_ERROR, "Implicit SBR was found with a first occurrence after the first frame.\n");
  1482. skip_bits_long(gb, 8 * cnt - 4);
  1483. return res;
  1484. } else if (ac->m4ac.ps == -1 && ac->output_configured < OC_LOCKED && ac->avctx->channels == 1) {
  1485. ac->m4ac.sbr = 1;
  1486. ac->m4ac.ps = 1;
  1487. output_configure(ac, ac->che_pos, ac->che_pos, ac->m4ac.chan_config, ac->output_configured);
  1488. } else {
  1489. ac->m4ac.sbr = 1;
  1490. }
  1491. res = ff_decode_sbr_extension(ac, &che->sbr, gb, crc_flag, cnt, elem_type);
  1492. break;
  1493. case EXT_DYNAMIC_RANGE:
  1494. res = decode_dynamic_range(&ac->che_drc, gb, cnt);
  1495. break;
  1496. case EXT_FILL:
  1497. case EXT_FILL_DATA:
  1498. case EXT_DATA_ELEMENT:
  1499. default:
  1500. skip_bits_long(gb, 8 * cnt - 4);
  1501. break;
  1502. };
  1503. return res;
  1504. }
  1505. /**
  1506. * Decode Temporal Noise Shaping filter coefficients and apply all-pole filters; reference: 4.6.9.3.
  1507. *
  1508. * @param decode 1 if tool is used normally, 0 if tool is used in LTP.
  1509. * @param coef spectral coefficients
  1510. */
  1511. static void apply_tns(float coef[1024], TemporalNoiseShaping *tns,
  1512. IndividualChannelStream *ics, int decode)
  1513. {
  1514. const int mmm = FFMIN(ics->tns_max_bands, ics->max_sfb);
  1515. int w, filt, m, i;
  1516. int bottom, top, order, start, end, size, inc;
  1517. float lpc[TNS_MAX_ORDER];
  1518. float tmp[TNS_MAX_ORDER];
  1519. for (w = 0; w < ics->num_windows; w++) {
  1520. bottom = ics->num_swb;
  1521. for (filt = 0; filt < tns->n_filt[w]; filt++) {
  1522. top = bottom;
  1523. bottom = FFMAX(0, top - tns->length[w][filt]);
  1524. order = tns->order[w][filt];
  1525. if (order == 0)
  1526. continue;
  1527. // tns_decode_coef
  1528. compute_lpc_coefs(tns->coef[w][filt], order, lpc, 0, 0, 0);
  1529. start = ics->swb_offset[FFMIN(bottom, mmm)];
  1530. end = ics->swb_offset[FFMIN( top, mmm)];
  1531. if ((size = end - start) <= 0)
  1532. continue;
  1533. if (tns->direction[w][filt]) {
  1534. inc = -1;
  1535. start = end - 1;
  1536. } else {
  1537. inc = 1;
  1538. }
  1539. start += w * 128;
  1540. if (decode) {
  1541. // ar filter
  1542. for (m = 0; m < size; m++, start += inc)
  1543. for (i = 1; i <= FFMIN(m, order); i++)
  1544. coef[start] -= coef[start - i * inc] * lpc[i - 1];
  1545. } else {
  1546. // ma filter
  1547. for (m = 0; m < size; m++, start += inc) {
  1548. tmp[0] = coef[start];
  1549. for (i = 1; i <= FFMIN(m, order); i++)
  1550. coef[start] += tmp[i] * lpc[i - 1];
  1551. for (i = order; i > 0; i--)
  1552. tmp[i] = tmp[i - 1];
  1553. }
  1554. }
  1555. }
  1556. }
  1557. }
  1558. /**
  1559. * Apply windowing and MDCT to obtain the spectral
  1560. * coefficient from the predicted sample by LTP.
  1561. */
  1562. static void windowing_and_mdct_ltp(AACContext *ac, float *out,
  1563. float *in, IndividualChannelStream *ics)
  1564. {
  1565. const float *lwindow = ics->use_kb_window[0] ? ff_aac_kbd_long_1024 : ff_sine_1024;
  1566. const float *swindow = ics->use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128;
  1567. const float *lwindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_long_1024 : ff_sine_1024;
  1568. const float *swindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_short_128 : ff_sine_128;
  1569. if (ics->window_sequence[0] != LONG_STOP_SEQUENCE) {
  1570. ac->dsp.vector_fmul(in, in, lwindow_prev, 1024);
  1571. } else {
  1572. memset(in, 0, 448 * sizeof(float));
  1573. ac->dsp.vector_fmul(in + 448, in + 448, swindow_prev, 128);
  1574. memcpy(in + 576, in + 576, 448 * sizeof(float));
  1575. }
  1576. if (ics->window_sequence[0] != LONG_START_SEQUENCE) {
  1577. ac->dsp.vector_fmul_reverse(in + 1024, in + 1024, lwindow, 1024);
  1578. } else {
  1579. memcpy(in + 1024, in + 1024, 448 * sizeof(float));
  1580. ac->dsp.vector_fmul_reverse(in + 1024 + 448, in + 1024 + 448, swindow, 128);
  1581. memset(in + 1024 + 576, 0, 448 * sizeof(float));
  1582. }
  1583. ac->mdct_ltp.mdct_calc(&ac->mdct_ltp, out, in);
  1584. }
  1585. /**
  1586. * Apply the long term prediction
  1587. */
  1588. static void apply_ltp(AACContext *ac, SingleChannelElement *sce)
  1589. {
  1590. const LongTermPrediction *ltp = &sce->ics.ltp;
  1591. const uint16_t *offsets = sce->ics.swb_offset;
  1592. int i, sfb;
  1593. if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE) {
  1594. float *predTime = sce->ret;
  1595. float *predFreq = ac->buf_mdct;
  1596. int16_t num_samples = 2048;
  1597. if (ltp->lag < 1024)
  1598. num_samples = ltp->lag + 1024;
  1599. for (i = 0; i < num_samples; i++)
  1600. predTime[i] = sce->ltp_state[i + 2048 - ltp->lag] * ltp->coef;
  1601. memset(&predTime[i], 0, (2048 - i) * sizeof(float));
  1602. windowing_and_mdct_ltp(ac, predFreq, predTime, &sce->ics);
  1603. if (sce->tns.present)
  1604. apply_tns(predFreq, &sce->tns, &sce->ics, 0);
  1605. for (sfb = 0; sfb < FFMIN(sce->ics.max_sfb, MAX_LTP_LONG_SFB); sfb++)
  1606. if (ltp->used[sfb])
  1607. for (i = offsets[sfb]; i < offsets[sfb + 1]; i++)
  1608. sce->coeffs[i] += predFreq[i];
  1609. }
  1610. }
  1611. /**
  1612. * Update the LTP buffer for next frame
  1613. */
  1614. static void update_ltp(AACContext *ac, SingleChannelElement *sce)
  1615. {
  1616. IndividualChannelStream *ics = &sce->ics;
  1617. float *saved = sce->saved;
  1618. float *saved_ltp = sce->coeffs;
  1619. const float *lwindow = ics->use_kb_window[0] ? ff_aac_kbd_long_1024 : ff_sine_1024;
  1620. const float *swindow = ics->use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128;
  1621. int i;
  1622. if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
  1623. memcpy(saved_ltp, saved, 512 * sizeof(float));
  1624. memset(saved_ltp + 576, 0, 448 * sizeof(float));
  1625. ac->dsp.vector_fmul_reverse(saved_ltp + 448, ac->buf_mdct + 960, &swindow[64], 64);
  1626. for (i = 0; i < 64; i++)
  1627. saved_ltp[i + 512] = ac->buf_mdct[1023 - i] * swindow[63 - i];
  1628. } else if (ics->window_sequence[0] == LONG_START_SEQUENCE) {
  1629. memcpy(saved_ltp, ac->buf_mdct + 512, 448 * sizeof(float));
  1630. memset(saved_ltp + 576, 0, 448 * sizeof(float));
  1631. ac->dsp.vector_fmul_reverse(saved_ltp + 448, ac->buf_mdct + 960, &swindow[64], 64);
  1632. for (i = 0; i < 64; i++)
  1633. saved_ltp[i + 512] = ac->buf_mdct[1023 - i] * swindow[63 - i];
  1634. } else { // LONG_STOP or ONLY_LONG
  1635. ac->dsp.vector_fmul_reverse(saved_ltp, ac->buf_mdct + 512, &lwindow[512], 512);
  1636. for (i = 0; i < 512; i++)
  1637. saved_ltp[i + 512] = ac->buf_mdct[1023 - i] * lwindow[511 - i];
  1638. }
  1639. memcpy(sce->ltp_state, sce->ltp_state+1024, 1024 * sizeof(*sce->ltp_state));
  1640. memcpy(sce->ltp_state+1024, sce->ret, 1024 * sizeof(*sce->ltp_state));
  1641. memcpy(sce->ltp_state+2048, saved_ltp, 1024 * sizeof(*sce->ltp_state));
  1642. }
  1643. /**
  1644. * Conduct IMDCT and windowing.
  1645. */
  1646. static void imdct_and_windowing(AACContext *ac, SingleChannelElement *sce)
  1647. {
  1648. IndividualChannelStream *ics = &sce->ics;
  1649. float *in = sce->coeffs;
  1650. float *out = sce->ret;
  1651. float *saved = sce->saved;
  1652. const float *swindow = ics->use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128;
  1653. const float *lwindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_long_1024 : ff_sine_1024;
  1654. const float *swindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_short_128 : ff_sine_128;
  1655. float *buf = ac->buf_mdct;
  1656. float *temp = ac->temp;
  1657. int i;
  1658. // imdct
  1659. if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
  1660. for (i = 0; i < 1024; i += 128)
  1661. ac->mdct_small.imdct_half(&ac->mdct_small, buf + i, in + i);
  1662. } else
  1663. ac->mdct.imdct_half(&ac->mdct, buf, in);
  1664. /* window overlapping
  1665. * NOTE: To simplify the overlapping code, all 'meaningless' short to long
  1666. * and long to short transitions are considered to be short to short
  1667. * transitions. This leaves just two cases (long to long and short to short)
  1668. * with a little special sauce for EIGHT_SHORT_SEQUENCE.
  1669. */
  1670. if ((ics->window_sequence[1] == ONLY_LONG_SEQUENCE || ics->window_sequence[1] == LONG_STOP_SEQUENCE) &&
  1671. (ics->window_sequence[0] == ONLY_LONG_SEQUENCE || ics->window_sequence[0] == LONG_START_SEQUENCE)) {
  1672. ac->dsp.vector_fmul_window( out, saved, buf, lwindow_prev, 512);
  1673. } else {
  1674. memcpy( out, saved, 448 * sizeof(float));
  1675. if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
  1676. ac->dsp.vector_fmul_window(out + 448 + 0*128, saved + 448, buf + 0*128, swindow_prev, 64);
  1677. ac->dsp.vector_fmul_window(out + 448 + 1*128, buf + 0*128 + 64, buf + 1*128, swindow, 64);
  1678. ac->dsp.vector_fmul_window(out + 448 + 2*128, buf + 1*128 + 64, buf + 2*128, swindow, 64);
  1679. ac->dsp.vector_fmul_window(out + 448 + 3*128, buf + 2*128 + 64, buf + 3*128, swindow, 64);
  1680. ac->dsp.vector_fmul_window(temp, buf + 3*128 + 64, buf + 4*128, swindow, 64);
  1681. memcpy( out + 448 + 4*128, temp, 64 * sizeof(float));
  1682. } else {
  1683. ac->dsp.vector_fmul_window(out + 448, saved + 448, buf, swindow_prev, 64);
  1684. memcpy( out + 576, buf + 64, 448 * sizeof(float));
  1685. }
  1686. }
  1687. // buffer update
  1688. if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
  1689. memcpy( saved, temp + 64, 64 * sizeof(float));
  1690. ac->dsp.vector_fmul_window(saved + 64, buf + 4*128 + 64, buf + 5*128, swindow, 64);
  1691. ac->dsp.vector_fmul_window(saved + 192, buf + 5*128 + 64, buf + 6*128, swindow, 64);
  1692. ac->dsp.vector_fmul_window(saved + 320, buf + 6*128 + 64, buf + 7*128, swindow, 64);
  1693. memcpy( saved + 448, buf + 7*128 + 64, 64 * sizeof(float));
  1694. } else if (ics->window_sequence[0] == LONG_START_SEQUENCE) {
  1695. memcpy( saved, buf + 512, 448 * sizeof(float));
  1696. memcpy( saved + 448, buf + 7*128 + 64, 64 * sizeof(float));
  1697. } else { // LONG_STOP or ONLY_LONG
  1698. memcpy( saved, buf + 512, 512 * sizeof(float));
  1699. }
  1700. }
  1701. /**
  1702. * Apply dependent channel coupling (applied before IMDCT).
  1703. *
  1704. * @param index index into coupling gain array
  1705. */
  1706. static void apply_dependent_coupling(AACContext *ac,
  1707. SingleChannelElement *target,
  1708. ChannelElement *cce, int index)
  1709. {
  1710. IndividualChannelStream *ics = &cce->ch[0].ics;
  1711. const uint16_t *offsets = ics->swb_offset;
  1712. float *dest = target->coeffs;
  1713. const float *src = cce->ch[0].coeffs;
  1714. int g, i, group, k, idx = 0;
  1715. if (ac->m4ac.object_type == AOT_AAC_LTP) {
  1716. av_log(ac->avctx, AV_LOG_ERROR,
  1717. "Dependent coupling is not supported together with LTP\n");
  1718. return;
  1719. }
  1720. for (g = 0; g < ics->num_window_groups; g++) {
  1721. for (i = 0; i < ics->max_sfb; i++, idx++) {
  1722. if (cce->ch[0].band_type[idx] != ZERO_BT) {
  1723. const float gain = cce->coup.gain[index][idx];
  1724. for (group = 0; group < ics->group_len[g]; group++) {
  1725. for (k = offsets[i]; k < offsets[i + 1]; k++) {
  1726. // XXX dsputil-ize
  1727. dest[group * 128 + k] += gain * src[group * 128 + k];
  1728. }
  1729. }
  1730. }
  1731. }
  1732. dest += ics->group_len[g] * 128;
  1733. src += ics->group_len[g] * 128;
  1734. }
  1735. }
  1736. /**
  1737. * Apply independent channel coupling (applied after IMDCT).
  1738. *
  1739. * @param index index into coupling gain array
  1740. */
  1741. static void apply_independent_coupling(AACContext *ac,
  1742. SingleChannelElement *target,
  1743. ChannelElement *cce, int index)
  1744. {
  1745. int i;
  1746. const float gain = cce->coup.gain[index][0];
  1747. const float *src = cce->ch[0].ret;
  1748. float *dest = target->ret;
  1749. const int len = 1024 << (ac->m4ac.sbr == 1);
  1750. for (i = 0; i < len; i++)
  1751. dest[i] += gain * src[i];
  1752. }
  1753. /**
  1754. * channel coupling transformation interface
  1755. *
  1756. * @param apply_coupling_method pointer to (in)dependent coupling function
  1757. */
  1758. static void apply_channel_coupling(AACContext *ac, ChannelElement *cc,
  1759. enum RawDataBlockType type, int elem_id,
  1760. enum CouplingPoint coupling_point,
  1761. void (*apply_coupling_method)(AACContext *ac, SingleChannelElement *target, ChannelElement *cce, int index))
  1762. {
  1763. int i, c;
  1764. for (i = 0; i < MAX_ELEM_ID; i++) {
  1765. ChannelElement *cce = ac->che[TYPE_CCE][i];
  1766. int index = 0;
  1767. if (cce && cce->coup.coupling_point == coupling_point) {
  1768. ChannelCoupling *coup = &cce->coup;
  1769. for (c = 0; c <= coup->num_coupled; c++) {
  1770. if (coup->type[c] == type && coup->id_select[c] == elem_id) {
  1771. if (coup->ch_select[c] != 1) {
  1772. apply_coupling_method(ac, &cc->ch[0], cce, index);
  1773. if (coup->ch_select[c] != 0)
  1774. index++;
  1775. }
  1776. if (coup->ch_select[c] != 2)
  1777. apply_coupling_method(ac, &cc->ch[1], cce, index++);
  1778. } else
  1779. index += 1 + (coup->ch_select[c] == 3);
  1780. }
  1781. }
  1782. }
  1783. }
  1784. /**
  1785. * Convert spectral data to float samples, applying all supported tools as appropriate.
  1786. */
  1787. static void spectral_to_sample(AACContext *ac)
  1788. {
  1789. int i, type;
  1790. for (type = 3; type >= 0; type--) {
  1791. for (i = 0; i < MAX_ELEM_ID; i++) {
  1792. ChannelElement *che = ac->che[type][i];
  1793. if (che) {
  1794. if (type <= TYPE_CPE)
  1795. apply_channel_coupling(ac, che, type, i, BEFORE_TNS, apply_dependent_coupling);
  1796. if (ac->m4ac.object_type == AOT_AAC_LTP) {
  1797. if (che->ch[0].ics.predictor_present) {
  1798. if (che->ch[0].ics.ltp.present)
  1799. apply_ltp(ac, &che->ch[0]);
  1800. if (che->ch[1].ics.ltp.present && type == TYPE_CPE)
  1801. apply_ltp(ac, &che->ch[1]);
  1802. }
  1803. }
  1804. if (che->ch[0].tns.present)
  1805. apply_tns(che->ch[0].coeffs, &che->ch[0].tns, &che->ch[0].ics, 1);
  1806. if (che->ch[1].tns.present)
  1807. apply_tns(che->ch[1].coeffs, &che->ch[1].tns, &che->ch[1].ics, 1);
  1808. if (type <= TYPE_CPE)
  1809. apply_channel_coupling(ac, che, type, i, BETWEEN_TNS_AND_IMDCT, apply_dependent_coupling);
  1810. if (type != TYPE_CCE || che->coup.coupling_point == AFTER_IMDCT) {
  1811. imdct_and_windowing(ac, &che->ch[0]);
  1812. if (ac->m4ac.object_type == AOT_AAC_LTP)
  1813. update_ltp(ac, &che->ch[0]);
  1814. if (type == TYPE_CPE) {
  1815. imdct_and_windowing(ac, &che->ch[1]);
  1816. if (ac->m4ac.object_type == AOT_AAC_LTP)
  1817. update_ltp(ac, &che->ch[1]);
  1818. }
  1819. if (ac->m4ac.sbr > 0) {
  1820. ff_sbr_apply(ac, &che->sbr, type, che->ch[0].ret, che->ch[1].ret);
  1821. }
  1822. }
  1823. if (type <= TYPE_CCE)
  1824. apply_channel_coupling(ac, che, type, i, AFTER_IMDCT, apply_independent_coupling);
  1825. }
  1826. }
  1827. }
  1828. }
  1829. static int parse_adts_frame_header(AACContext *ac, GetBitContext *gb)
  1830. {
  1831. int size;
  1832. AACADTSHeaderInfo hdr_info;
  1833. size = ff_aac_parse_header(gb, &hdr_info);
  1834. if (size > 0) {
  1835. if (ac->output_configured != OC_LOCKED && hdr_info.chan_config) {
  1836. enum ChannelPosition new_che_pos[4][MAX_ELEM_ID];
  1837. memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
  1838. ac->m4ac.chan_config = hdr_info.chan_config;
  1839. if (set_default_channel_config(ac->avctx, new_che_pos, hdr_info.chan_config))
  1840. return -7;
  1841. if (output_configure(ac, ac->che_pos, new_che_pos, hdr_info.chan_config, OC_TRIAL_FRAME))
  1842. return -7;
  1843. } else if (ac->output_configured != OC_LOCKED) {
  1844. ac->output_configured = OC_NONE;
  1845. }
  1846. if (ac->output_configured != OC_LOCKED) {
  1847. ac->m4ac.sbr = -1;
  1848. ac->m4ac.ps = -1;
  1849. }
  1850. ac->m4ac.sample_rate = hdr_info.sample_rate;
  1851. ac->m4ac.sampling_index = hdr_info.sampling_index;
  1852. ac->m4ac.object_type = hdr_info.object_type;
  1853. if (!ac->avctx->sample_rate)
  1854. ac->avctx->sample_rate = hdr_info.sample_rate;
  1855. if (hdr_info.num_aac_frames == 1) {
  1856. if (!hdr_info.crc_absent)
  1857. skip_bits(gb, 16);
  1858. } else {
  1859. av_log_missing_feature(ac->avctx, "More than one AAC RDB per ADTS frame is", 0);
  1860. return -1;
  1861. }
  1862. }
  1863. return size;
  1864. }
  1865. static int aac_decode_frame_int(AVCodecContext *avctx, void *data,
  1866. int *data_size, GetBitContext *gb)
  1867. {
  1868. AACContext *ac = avctx->priv_data;
  1869. ChannelElement *che = NULL, *che_prev = NULL;
  1870. enum RawDataBlockType elem_type, elem_type_prev = TYPE_END;
  1871. int err, elem_id, data_size_tmp;
  1872. int samples = 0, multiplier;
  1873. if (show_bits(gb, 12) == 0xfff) {
  1874. if (parse_adts_frame_header(ac, gb) < 0) {
  1875. av_log(avctx, AV_LOG_ERROR, "Error decoding AAC frame header.\n");
  1876. return -1;
  1877. }
  1878. if (ac->m4ac.sampling_index > 12) {
  1879. av_log(ac->avctx, AV_LOG_ERROR, "invalid sampling rate index %d\n", ac->m4ac.sampling_index);
  1880. return -1;
  1881. }
  1882. }
  1883. ac->tags_mapped = 0;
  1884. // parse
  1885. while ((elem_type = get_bits(gb, 3)) != TYPE_END) {
  1886. elem_id = get_bits(gb, 4);
  1887. if (elem_type < TYPE_DSE) {
  1888. if (!(che=get_che(ac, elem_type, elem_id))) {
  1889. av_log(ac->avctx, AV_LOG_ERROR, "channel element %d.%d is not allocated\n",
  1890. elem_type, elem_id);
  1891. return -1;
  1892. }
  1893. samples = 1024;
  1894. }
  1895. switch (elem_type) {
  1896. case TYPE_SCE:
  1897. err = decode_ics(ac, &che->ch[0], gb, 0, 0);
  1898. break;
  1899. case TYPE_CPE:
  1900. err = decode_cpe(ac, gb, che);
  1901. break;
  1902. case TYPE_CCE:
  1903. err = decode_cce(ac, gb, che);
  1904. break;
  1905. case TYPE_LFE:
  1906. err = decode_ics(ac, &che->ch[0], gb, 0, 0);
  1907. break;
  1908. case TYPE_DSE:
  1909. err = skip_data_stream_element(ac, gb);
  1910. break;
  1911. case TYPE_PCE: {
  1912. enum ChannelPosition new_che_pos[4][MAX_ELEM_ID];
  1913. memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
  1914. if ((err = decode_pce(avctx, &ac->m4ac, new_che_pos, gb)))
  1915. break;
  1916. if (ac->output_configured > OC_TRIAL_PCE)
  1917. av_log(avctx, AV_LOG_ERROR,
  1918. "Not evaluating a further program_config_element as this construct is dubious at best.\n");
  1919. else
  1920. err = output_configure(ac, ac->che_pos, new_che_pos, 0, OC_TRIAL_PCE);
  1921. break;
  1922. }
  1923. case TYPE_FIL:
  1924. if (elem_id == 15)
  1925. elem_id += get_bits(gb, 8) - 1;
  1926. if (get_bits_left(gb) < 8 * elem_id) {
  1927. av_log(avctx, AV_LOG_ERROR, overread_err);
  1928. return -1;
  1929. }
  1930. while (elem_id > 0)
  1931. elem_id -= decode_extension_payload(ac, gb, elem_id, che_prev, elem_type_prev);
  1932. err = 0; /* FIXME */
  1933. break;
  1934. default:
  1935. err = -1; /* should not happen, but keeps compiler happy */
  1936. break;
  1937. }
  1938. che_prev = che;
  1939. elem_type_prev = elem_type;
  1940. if (err)
  1941. return err;
  1942. if (get_bits_left(gb) < 3) {
  1943. av_log(avctx, AV_LOG_ERROR, overread_err);
  1944. return -1;
  1945. }
  1946. }
  1947. spectral_to_sample(ac);
  1948. multiplier = (ac->m4ac.sbr == 1) ? ac->m4ac.ext_sample_rate > ac->m4ac.sample_rate : 0;
  1949. samples <<= multiplier;
  1950. if (ac->output_configured < OC_LOCKED) {
  1951. avctx->sample_rate = ac->m4ac.sample_rate << multiplier;
  1952. avctx->frame_size = samples;
  1953. }
  1954. data_size_tmp = samples * avctx->channels;
  1955. data_size_tmp *= avctx->sample_fmt == AV_SAMPLE_FMT_FLT ? sizeof(float) : sizeof(int16_t);
  1956. if (*data_size < data_size_tmp) {
  1957. av_log(avctx, AV_LOG_ERROR,
  1958. "Output buffer too small (%d) or trying to output too many samples (%d) for this frame.\n",
  1959. *data_size, data_size_tmp);
  1960. return -1;
  1961. }
  1962. *data_size = data_size_tmp;
  1963. if (samples) {
  1964. if (avctx->sample_fmt == AV_SAMPLE_FMT_FLT) {
  1965. float_interleave(data, (const float **)ac->output_data, samples, avctx->channels);
  1966. } else
  1967. ac->fmt_conv.float_to_int16_interleave(data, (const float **)ac->output_data, samples, avctx->channels);
  1968. }
  1969. if (ac->output_configured)
  1970. ac->output_configured = OC_LOCKED;
  1971. return 0;
  1972. }
  1973. static int aac_decode_frame(AVCodecContext *avctx, void *data,
  1974. int *data_size, AVPacket *avpkt)
  1975. {
  1976. const uint8_t *buf = avpkt->data;
  1977. int buf_size = avpkt->size;
  1978. GetBitContext gb;
  1979. int buf_consumed;
  1980. int buf_offset;
  1981. int err;
  1982. init_get_bits(&gb, buf, buf_size * 8);
  1983. if ((err = aac_decode_frame_int(avctx, data, data_size, &gb)) < 0)
  1984. return err;
  1985. buf_consumed = (get_bits_count(&gb) + 7) >> 3;
  1986. for (buf_offset = buf_consumed; buf_offset < buf_size; buf_offset++)
  1987. if (buf[buf_offset])
  1988. break;
  1989. return buf_size > buf_offset ? buf_consumed : buf_size;
  1990. }
  1991. static av_cold int aac_decode_close(AVCodecContext *avctx)
  1992. {
  1993. AACContext *ac = avctx->priv_data;
  1994. int i, type;
  1995. for (i = 0; i < MAX_ELEM_ID; i++) {
  1996. for (type = 0; type < 4; type++) {
  1997. if (ac->che[type][i])
  1998. ff_aac_sbr_ctx_close(&ac->che[type][i]->sbr);
  1999. av_freep(&ac->che[type][i]);
  2000. }
  2001. }
  2002. ff_mdct_end(&ac->mdct);
  2003. ff_mdct_end(&ac->mdct_small);
  2004. ff_mdct_end(&ac->mdct_ltp);
  2005. return 0;
  2006. }
  2007. #define LOAS_SYNC_WORD 0x2b7 ///< 11 bits LOAS sync word
  2008. struct LATMContext {
  2009. AACContext aac_ctx; ///< containing AACContext
  2010. int initialized; ///< initilized after a valid extradata was seen
  2011. // parser data
  2012. int audio_mux_version_A; ///< LATM syntax version
  2013. int frame_length_type; ///< 0/1 variable/fixed frame length
  2014. int frame_length; ///< frame length for fixed frame length
  2015. };
  2016. static inline uint32_t latm_get_value(GetBitContext *b)
  2017. {
  2018. int length = get_bits(b, 2);
  2019. return get_bits_long(b, (length+1)*8);
  2020. }
  2021. static int latm_decode_audio_specific_config(struct LATMContext *latmctx,
  2022. GetBitContext *gb)
  2023. {
  2024. AVCodecContext *avctx = latmctx->aac_ctx.avctx;
  2025. MPEG4AudioConfig m4ac;
  2026. int config_start_bit = get_bits_count(gb);
  2027. int bits_consumed, esize;
  2028. if (config_start_bit % 8) {
  2029. av_log_missing_feature(latmctx->aac_ctx.avctx, "audio specific "
  2030. "config not byte aligned.\n", 1);
  2031. return AVERROR_INVALIDDATA;
  2032. } else {
  2033. bits_consumed =
  2034. decode_audio_specific_config(NULL, avctx, &m4ac,
  2035. gb->buffer + (config_start_bit / 8),
  2036. get_bits_left(gb) / 8);
  2037. if (bits_consumed < 0)
  2038. return AVERROR_INVALIDDATA;
  2039. esize = (bits_consumed+7) / 8;
  2040. if (avctx->extradata_size <= esize) {
  2041. av_free(avctx->extradata);
  2042. avctx->extradata = av_malloc(esize + FF_INPUT_BUFFER_PADDING_SIZE);
  2043. if (!avctx->extradata)
  2044. return AVERROR(ENOMEM);
  2045. }
  2046. avctx->extradata_size = esize;
  2047. memcpy(avctx->extradata, gb->buffer + (config_start_bit/8), esize);
  2048. memset(avctx->extradata+esize, 0, FF_INPUT_BUFFER_PADDING_SIZE);
  2049. skip_bits_long(gb, bits_consumed);
  2050. }
  2051. return bits_consumed;
  2052. }
  2053. static int read_stream_mux_config(struct LATMContext *latmctx,
  2054. GetBitContext *gb)
  2055. {
  2056. int ret, audio_mux_version = get_bits(gb, 1);
  2057. latmctx->audio_mux_version_A = 0;
  2058. if (audio_mux_version)
  2059. latmctx->audio_mux_version_A = get_bits(gb, 1);
  2060. if (!latmctx->audio_mux_version_A) {
  2061. if (audio_mux_version)
  2062. latm_get_value(gb); // taraFullness
  2063. skip_bits(gb, 1); // allStreamSameTimeFraming
  2064. skip_bits(gb, 6); // numSubFrames
  2065. // numPrograms
  2066. if (get_bits(gb, 4)) { // numPrograms
  2067. av_log_missing_feature(latmctx->aac_ctx.avctx,
  2068. "multiple programs are not supported\n", 1);
  2069. return AVERROR_PATCHWELCOME;
  2070. }
  2071. // for each program (which there is only on in DVB)
  2072. // for each layer (which there is only on in DVB)
  2073. if (get_bits(gb, 3)) { // numLayer
  2074. av_log_missing_feature(latmctx->aac_ctx.avctx,
  2075. "multiple layers are not supported\n", 1);
  2076. return AVERROR_PATCHWELCOME;
  2077. }
  2078. // for all but first stream: use_same_config = get_bits(gb, 1);
  2079. if (!audio_mux_version) {
  2080. if ((ret = latm_decode_audio_specific_config(latmctx, gb)) < 0)
  2081. return ret;
  2082. } else {
  2083. int ascLen = latm_get_value(gb);
  2084. if ((ret = latm_decode_audio_specific_config(latmctx, gb)) < 0)
  2085. return ret;
  2086. ascLen -= ret;
  2087. skip_bits_long(gb, ascLen);
  2088. }
  2089. latmctx->frame_length_type = get_bits(gb, 3);
  2090. switch (latmctx->frame_length_type) {
  2091. case 0:
  2092. skip_bits(gb, 8); // latmBufferFullness
  2093. break;
  2094. case 1:
  2095. latmctx->frame_length = get_bits(gb, 9);
  2096. break;
  2097. case 3:
  2098. case 4:
  2099. case 5:
  2100. skip_bits(gb, 6); // CELP frame length table index
  2101. break;
  2102. case 6:
  2103. case 7:
  2104. skip_bits(gb, 1); // HVXC frame length table index
  2105. break;
  2106. }
  2107. if (get_bits(gb, 1)) { // other data
  2108. if (audio_mux_version) {
  2109. latm_get_value(gb); // other_data_bits
  2110. } else {
  2111. int esc;
  2112. do {
  2113. esc = get_bits(gb, 1);
  2114. skip_bits(gb, 8);
  2115. } while (esc);
  2116. }
  2117. }
  2118. if (get_bits(gb, 1)) // crc present
  2119. skip_bits(gb, 8); // config_crc
  2120. }
  2121. return 0;
  2122. }
  2123. static int read_payload_length_info(struct LATMContext *ctx, GetBitContext *gb)
  2124. {
  2125. uint8_t tmp;
  2126. if (ctx->frame_length_type == 0) {
  2127. int mux_slot_length = 0;
  2128. do {
  2129. tmp = get_bits(gb, 8);
  2130. mux_slot_length += tmp;
  2131. } while (tmp == 255);
  2132. return mux_slot_length;
  2133. } else if (ctx->frame_length_type == 1) {
  2134. return ctx->frame_length;
  2135. } else if (ctx->frame_length_type == 3 ||
  2136. ctx->frame_length_type == 5 ||
  2137. ctx->frame_length_type == 7) {
  2138. skip_bits(gb, 2); // mux_slot_length_coded
  2139. }
  2140. return 0;
  2141. }
  2142. static int read_audio_mux_element(struct LATMContext *latmctx,
  2143. GetBitContext *gb)
  2144. {
  2145. int err;
  2146. uint8_t use_same_mux = get_bits(gb, 1);
  2147. if (!use_same_mux) {
  2148. if ((err = read_stream_mux_config(latmctx, gb)) < 0)
  2149. return err;
  2150. } else if (!latmctx->aac_ctx.avctx->extradata) {
  2151. av_log(latmctx->aac_ctx.avctx, AV_LOG_DEBUG,
  2152. "no decoder config found\n");
  2153. return AVERROR(EAGAIN);
  2154. }
  2155. if (latmctx->audio_mux_version_A == 0) {
  2156. int mux_slot_length_bytes = read_payload_length_info(latmctx, gb);
  2157. if (mux_slot_length_bytes * 8 > get_bits_left(gb)) {
  2158. av_log(latmctx->aac_ctx.avctx, AV_LOG_ERROR, "incomplete frame\n");
  2159. return AVERROR_INVALIDDATA;
  2160. } else if (mux_slot_length_bytes * 8 + 256 < get_bits_left(gb)) {
  2161. av_log(latmctx->aac_ctx.avctx, AV_LOG_ERROR,
  2162. "frame length mismatch %d << %d\n",
  2163. mux_slot_length_bytes * 8, get_bits_left(gb));
  2164. return AVERROR_INVALIDDATA;
  2165. }
  2166. }
  2167. return 0;
  2168. }
  2169. static int latm_decode_frame(AVCodecContext *avctx, void *out, int *out_size,
  2170. AVPacket *avpkt)
  2171. {
  2172. struct LATMContext *latmctx = avctx->priv_data;
  2173. int muxlength, err;
  2174. GetBitContext gb;
  2175. if (avpkt->size == 0)
  2176. return 0;
  2177. init_get_bits(&gb, avpkt->data, avpkt->size * 8);
  2178. // check for LOAS sync word
  2179. if (get_bits(&gb, 11) != LOAS_SYNC_WORD)
  2180. return AVERROR_INVALIDDATA;
  2181. muxlength = get_bits(&gb, 13) + 3;
  2182. // not enough data, the parser should have sorted this
  2183. if (muxlength > avpkt->size)
  2184. return AVERROR_INVALIDDATA;
  2185. if ((err = read_audio_mux_element(latmctx, &gb)) < 0)
  2186. return err;
  2187. if (!latmctx->initialized) {
  2188. if (!avctx->extradata) {
  2189. *out_size = 0;
  2190. return avpkt->size;
  2191. } else {
  2192. if ((err = aac_decode_init(avctx)) < 0)
  2193. return err;
  2194. latmctx->initialized = 1;
  2195. }
  2196. }
  2197. if (show_bits(&gb, 12) == 0xfff) {
  2198. av_log(latmctx->aac_ctx.avctx, AV_LOG_ERROR,
  2199. "ADTS header detected, probably as result of configuration "
  2200. "misparsing\n");
  2201. return AVERROR_INVALIDDATA;
  2202. }
  2203. if ((err = aac_decode_frame_int(avctx, out, out_size, &gb)) < 0)
  2204. return err;
  2205. return muxlength;
  2206. }
  2207. av_cold static int latm_decode_init(AVCodecContext *avctx)
  2208. {
  2209. struct LATMContext *latmctx = avctx->priv_data;
  2210. int ret;
  2211. ret = aac_decode_init(avctx);
  2212. if (avctx->extradata_size > 0) {
  2213. latmctx->initialized = !ret;
  2214. } else {
  2215. latmctx->initialized = 0;
  2216. }
  2217. return ret;
  2218. }
  2219. AVCodec ff_aac_decoder = {
  2220. "aac",
  2221. AVMEDIA_TYPE_AUDIO,
  2222. CODEC_ID_AAC,
  2223. sizeof(AACContext),
  2224. aac_decode_init,
  2225. NULL,
  2226. aac_decode_close,
  2227. aac_decode_frame,
  2228. .long_name = NULL_IF_CONFIG_SMALL("Advanced Audio Coding"),
  2229. .sample_fmts = (const enum AVSampleFormat[]) {
  2230. AV_SAMPLE_FMT_S16,AV_SAMPLE_FMT_FLT,AV_SAMPLE_FMT_NONE
  2231. },
  2232. .channel_layouts = aac_channel_layout,
  2233. };
  2234. /*
  2235. Note: This decoder filter is intended to decode LATM streams transferred
  2236. in MPEG transport streams which only contain one program.
  2237. To do a more complex LATM demuxing a separate LATM demuxer should be used.
  2238. */
  2239. AVCodec ff_aac_latm_decoder = {
  2240. .name = "aac_latm",
  2241. .type = AVMEDIA_TYPE_AUDIO,
  2242. .id = CODEC_ID_AAC_LATM,
  2243. .priv_data_size = sizeof(struct LATMContext),
  2244. .init = latm_decode_init,
  2245. .close = aac_decode_close,
  2246. .decode = latm_decode_frame,
  2247. .long_name = NULL_IF_CONFIG_SMALL("AAC LATM (Advanced Audio Codec LATM syntax)"),
  2248. .sample_fmts = (const enum AVSampleFormat[]) {
  2249. AV_SAMPLE_FMT_S16,AV_SAMPLE_FMT_FLT,AV_SAMPLE_FMT_NONE
  2250. },
  2251. .channel_layouts = aac_channel_layout,
  2252. };