You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2004 lines
65KB

  1. /*
  2. * MPEG Audio decoder
  3. * Copyright (c) 2001, 2002 Fabrice Bellard
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * MPEG Audio decoder
  24. */
  25. #include "libavutil/attributes.h"
  26. #include "libavutil/avassert.h"
  27. #include "libavutil/channel_layout.h"
  28. #include "libavutil/float_dsp.h"
  29. #include "libavutil/libm.h"
  30. #include "avcodec.h"
  31. #include "get_bits.h"
  32. #include "internal.h"
  33. #include "mathops.h"
  34. #include "mpegaudiodsp.h"
  35. /*
  36. * TODO:
  37. * - test lsf / mpeg25 extensively.
  38. */
  39. #include "mpegaudio.h"
  40. #include "mpegaudiodecheader.h"
  41. #define BACKSTEP_SIZE 512
  42. #define EXTRABYTES 24
  43. #define LAST_BUF_SIZE 2 * BACKSTEP_SIZE + EXTRABYTES
  44. /* layer 3 "granule" */
  45. typedef struct GranuleDef {
  46. uint8_t scfsi;
  47. int part2_3_length;
  48. int big_values;
  49. int global_gain;
  50. int scalefac_compress;
  51. uint8_t block_type;
  52. uint8_t switch_point;
  53. int table_select[3];
  54. int subblock_gain[3];
  55. uint8_t scalefac_scale;
  56. uint8_t count1table_select;
  57. int region_size[3]; /* number of huffman codes in each region */
  58. int preflag;
  59. int short_start, long_end; /* long/short band indexes */
  60. uint8_t scale_factors[40];
  61. DECLARE_ALIGNED(16, INTFLOAT, sb_hybrid)[SBLIMIT * 18]; /* 576 samples */
  62. } GranuleDef;
  63. typedef struct MPADecodeContext {
  64. MPA_DECODE_HEADER
  65. uint8_t last_buf[LAST_BUF_SIZE];
  66. int last_buf_size;
  67. /* next header (used in free format parsing) */
  68. uint32_t free_format_next_header;
  69. GetBitContext gb;
  70. GetBitContext in_gb;
  71. DECLARE_ALIGNED(32, MPA_INT, synth_buf)[MPA_MAX_CHANNELS][512 * 2];
  72. int synth_buf_offset[MPA_MAX_CHANNELS];
  73. DECLARE_ALIGNED(32, INTFLOAT, sb_samples)[MPA_MAX_CHANNELS][36][SBLIMIT];
  74. INTFLOAT mdct_buf[MPA_MAX_CHANNELS][SBLIMIT * 18]; /* previous samples, for layer 3 MDCT */
  75. GranuleDef granules[2][2]; /* Used in Layer 3 */
  76. int adu_mode; ///< 0 for standard mp3, 1 for adu formatted mp3
  77. int dither_state;
  78. int err_recognition;
  79. AVCodecContext* avctx;
  80. MPADSPContext mpadsp;
  81. AVFloatDSPContext *fdsp;
  82. AVFrame *frame;
  83. } MPADecodeContext;
  84. #define HEADER_SIZE 4
  85. #include "mpegaudiodata.h"
  86. #include "mpegaudiodectab.h"
  87. /* vlc structure for decoding layer 3 huffman tables */
  88. static VLC huff_vlc[16];
  89. static VLC_TYPE huff_vlc_tables[
  90. 0 + 128 + 128 + 128 + 130 + 128 + 154 + 166 +
  91. 142 + 204 + 190 + 170 + 542 + 460 + 662 + 414
  92. ][2];
  93. static const int huff_vlc_tables_sizes[16] = {
  94. 0, 128, 128, 128, 130, 128, 154, 166,
  95. 142, 204, 190, 170, 542, 460, 662, 414
  96. };
  97. static VLC huff_quad_vlc[2];
  98. static VLC_TYPE huff_quad_vlc_tables[128+16][2];
  99. static const int huff_quad_vlc_tables_sizes[2] = { 128, 16 };
  100. /* computed from band_size_long */
  101. static uint16_t band_index_long[9][23];
  102. #include "mpegaudio_tablegen.h"
  103. /* intensity stereo coef table */
  104. static INTFLOAT is_table[2][16];
  105. static INTFLOAT is_table_lsf[2][2][16];
  106. static INTFLOAT csa_table[8][4];
  107. static int16_t division_tab3[1<<6 ];
  108. static int16_t division_tab5[1<<8 ];
  109. static int16_t division_tab9[1<<11];
  110. static int16_t * const division_tabs[4] = {
  111. division_tab3, division_tab5, NULL, division_tab9
  112. };
  113. /* lower 2 bits: modulo 3, higher bits: shift */
  114. static uint16_t scale_factor_modshift[64];
  115. /* [i][j]: 2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */
  116. static int32_t scale_factor_mult[15][3];
  117. /* mult table for layer 2 group quantization */
  118. #define SCALE_GEN(v) \
  119. { FIXR_OLD(1.0 * (v)), FIXR_OLD(0.7937005259 * (v)), FIXR_OLD(0.6299605249 * (v)) }
  120. static const int32_t scale_factor_mult2[3][3] = {
  121. SCALE_GEN(4.0 / 3.0), /* 3 steps */
  122. SCALE_GEN(4.0 / 5.0), /* 5 steps */
  123. SCALE_GEN(4.0 / 9.0), /* 9 steps */
  124. };
  125. /**
  126. * Convert region offsets to region sizes and truncate
  127. * size to big_values.
  128. */
  129. static void region_offset2size(GranuleDef *g)
  130. {
  131. int i, k, j = 0;
  132. g->region_size[2] = 576 / 2;
  133. for (i = 0; i < 3; i++) {
  134. k = FFMIN(g->region_size[i], g->big_values);
  135. g->region_size[i] = k - j;
  136. j = k;
  137. }
  138. }
  139. static void init_short_region(MPADecodeContext *s, GranuleDef *g)
  140. {
  141. if (g->block_type == 2) {
  142. if (s->sample_rate_index != 8)
  143. g->region_size[0] = (36 / 2);
  144. else
  145. g->region_size[0] = (72 / 2);
  146. } else {
  147. if (s->sample_rate_index <= 2)
  148. g->region_size[0] = (36 / 2);
  149. else if (s->sample_rate_index != 8)
  150. g->region_size[0] = (54 / 2);
  151. else
  152. g->region_size[0] = (108 / 2);
  153. }
  154. g->region_size[1] = (576 / 2);
  155. }
  156. static void init_long_region(MPADecodeContext *s, GranuleDef *g,
  157. int ra1, int ra2)
  158. {
  159. int l;
  160. g->region_size[0] = band_index_long[s->sample_rate_index][ra1 + 1] >> 1;
  161. /* should not overflow */
  162. l = FFMIN(ra1 + ra2 + 2, 22);
  163. g->region_size[1] = band_index_long[s->sample_rate_index][ l] >> 1;
  164. }
  165. static void compute_band_indexes(MPADecodeContext *s, GranuleDef *g)
  166. {
  167. if (g->block_type == 2) {
  168. if (g->switch_point) {
  169. if(s->sample_rate_index == 8)
  170. avpriv_request_sample(s->avctx, "switch point in 8khz");
  171. /* if switched mode, we handle the 36 first samples as
  172. long blocks. For 8000Hz, we handle the 72 first
  173. exponents as long blocks */
  174. if (s->sample_rate_index <= 2)
  175. g->long_end = 8;
  176. else
  177. g->long_end = 6;
  178. g->short_start = 3;
  179. } else {
  180. g->long_end = 0;
  181. g->short_start = 0;
  182. }
  183. } else {
  184. g->short_start = 13;
  185. g->long_end = 22;
  186. }
  187. }
  188. /* layer 1 unscaling */
  189. /* n = number of bits of the mantissa minus 1 */
  190. static inline int l1_unscale(int n, int mant, int scale_factor)
  191. {
  192. int shift, mod;
  193. int64_t val;
  194. shift = scale_factor_modshift[scale_factor];
  195. mod = shift & 3;
  196. shift >>= 2;
  197. val = MUL64((int)(mant + (-1U << n) + 1), scale_factor_mult[n-1][mod]);
  198. shift += n;
  199. /* NOTE: at this point, 1 <= shift >= 21 + 15 */
  200. return (int)((val + (1LL << (shift - 1))) >> shift);
  201. }
  202. static inline int l2_unscale_group(int steps, int mant, int scale_factor)
  203. {
  204. int shift, mod, val;
  205. shift = scale_factor_modshift[scale_factor];
  206. mod = shift & 3;
  207. shift >>= 2;
  208. val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
  209. /* NOTE: at this point, 0 <= shift <= 21 */
  210. if (shift > 0)
  211. val = (val + (1 << (shift - 1))) >> shift;
  212. return val;
  213. }
  214. /* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */
  215. static inline int l3_unscale(int value, int exponent)
  216. {
  217. unsigned int m;
  218. int e;
  219. e = table_4_3_exp [4 * value + (exponent & 3)];
  220. m = table_4_3_value[4 * value + (exponent & 3)];
  221. e -= exponent >> 2;
  222. #ifdef DEBUG
  223. if(e < 1)
  224. av_log(NULL, AV_LOG_WARNING, "l3_unscale: e is %d\n", e);
  225. #endif
  226. if (e > 31)
  227. return 0;
  228. m = (m + (1 << (e - 1))) >> e;
  229. return m;
  230. }
  231. static av_cold void decode_init_static(void)
  232. {
  233. int i, j, k;
  234. int offset;
  235. /* scale factors table for layer 1/2 */
  236. for (i = 0; i < 64; i++) {
  237. int shift, mod;
  238. /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */
  239. shift = i / 3;
  240. mod = i % 3;
  241. scale_factor_modshift[i] = mod | (shift << 2);
  242. }
  243. /* scale factor multiply for layer 1 */
  244. for (i = 0; i < 15; i++) {
  245. int n, norm;
  246. n = i + 2;
  247. norm = ((INT64_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
  248. scale_factor_mult[i][0] = MULLx(norm, FIXR(1.0 * 2.0), FRAC_BITS);
  249. scale_factor_mult[i][1] = MULLx(norm, FIXR(0.7937005259 * 2.0), FRAC_BITS);
  250. scale_factor_mult[i][2] = MULLx(norm, FIXR(0.6299605249 * 2.0), FRAC_BITS);
  251. ff_dlog(NULL, "%d: norm=%x s=%x %x %x\n", i, norm,
  252. scale_factor_mult[i][0],
  253. scale_factor_mult[i][1],
  254. scale_factor_mult[i][2]);
  255. }
  256. RENAME(ff_mpa_synth_init)(RENAME(ff_mpa_synth_window));
  257. /* huffman decode tables */
  258. offset = 0;
  259. for (i = 1; i < 16; i++) {
  260. const HuffTable *h = &mpa_huff_tables[i];
  261. int xsize, x, y;
  262. uint8_t tmp_bits [512] = { 0 };
  263. uint16_t tmp_codes[512] = { 0 };
  264. xsize = h->xsize;
  265. j = 0;
  266. for (x = 0; x < xsize; x++) {
  267. for (y = 0; y < xsize; y++) {
  268. tmp_bits [(x << 5) | y | ((x&&y)<<4)]= h->bits [j ];
  269. tmp_codes[(x << 5) | y | ((x&&y)<<4)]= h->codes[j++];
  270. }
  271. }
  272. /* XXX: fail test */
  273. huff_vlc[i].table = huff_vlc_tables+offset;
  274. huff_vlc[i].table_allocated = huff_vlc_tables_sizes[i];
  275. init_vlc(&huff_vlc[i], 7, 512,
  276. tmp_bits, 1, 1, tmp_codes, 2, 2,
  277. INIT_VLC_USE_NEW_STATIC);
  278. offset += huff_vlc_tables_sizes[i];
  279. }
  280. av_assert0(offset == FF_ARRAY_ELEMS(huff_vlc_tables));
  281. offset = 0;
  282. for (i = 0; i < 2; i++) {
  283. huff_quad_vlc[i].table = huff_quad_vlc_tables+offset;
  284. huff_quad_vlc[i].table_allocated = huff_quad_vlc_tables_sizes[i];
  285. init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
  286. mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1,
  287. INIT_VLC_USE_NEW_STATIC);
  288. offset += huff_quad_vlc_tables_sizes[i];
  289. }
  290. av_assert0(offset == FF_ARRAY_ELEMS(huff_quad_vlc_tables));
  291. for (i = 0; i < 9; i++) {
  292. k = 0;
  293. for (j = 0; j < 22; j++) {
  294. band_index_long[i][j] = k;
  295. k += band_size_long[i][j];
  296. }
  297. band_index_long[i][22] = k;
  298. }
  299. /* compute n ^ (4/3) and store it in mantissa/exp format */
  300. mpegaudio_tableinit();
  301. for (i = 0; i < 4; i++) {
  302. if (ff_mpa_quant_bits[i] < 0) {
  303. for (j = 0; j < (1 << (-ff_mpa_quant_bits[i]+1)); j++) {
  304. int val1, val2, val3, steps;
  305. int val = j;
  306. steps = ff_mpa_quant_steps[i];
  307. val1 = val % steps;
  308. val /= steps;
  309. val2 = val % steps;
  310. val3 = val / steps;
  311. division_tabs[i][j] = val1 + (val2 << 4) + (val3 << 8);
  312. }
  313. }
  314. }
  315. for (i = 0; i < 7; i++) {
  316. float f;
  317. INTFLOAT v;
  318. if (i != 6) {
  319. f = tan((double)i * M_PI / 12.0);
  320. v = FIXR(f / (1.0 + f));
  321. } else {
  322. v = FIXR(1.0);
  323. }
  324. is_table[0][ i] = v;
  325. is_table[1][6 - i] = v;
  326. }
  327. /* invalid values */
  328. for (i = 7; i < 16; i++)
  329. is_table[0][i] = is_table[1][i] = 0.0;
  330. for (i = 0; i < 16; i++) {
  331. double f;
  332. int e, k;
  333. for (j = 0; j < 2; j++) {
  334. e = -(j + 1) * ((i + 1) >> 1);
  335. f = exp2(e / 4.0);
  336. k = i & 1;
  337. is_table_lsf[j][k ^ 1][i] = FIXR(f);
  338. is_table_lsf[j][k ][i] = FIXR(1.0);
  339. ff_dlog(NULL, "is_table_lsf %d %d: %f %f\n",
  340. i, j, (float) is_table_lsf[j][0][i],
  341. (float) is_table_lsf[j][1][i]);
  342. }
  343. }
  344. for (i = 0; i < 8; i++) {
  345. double ci, cs, ca;
  346. ci = ci_table[i];
  347. cs = 1.0 / sqrt(1.0 + ci * ci);
  348. ca = cs * ci;
  349. #if !USE_FLOATS
  350. csa_table[i][0] = FIXHR(cs/4);
  351. csa_table[i][1] = FIXHR(ca/4);
  352. csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4);
  353. csa_table[i][3] = FIXHR(ca/4) - FIXHR(cs/4);
  354. #else
  355. csa_table[i][0] = cs;
  356. csa_table[i][1] = ca;
  357. csa_table[i][2] = ca + cs;
  358. csa_table[i][3] = ca - cs;
  359. #endif
  360. }
  361. }
  362. #if USE_FLOATS
  363. static av_cold int decode_close(AVCodecContext * avctx)
  364. {
  365. MPADecodeContext *s = avctx->priv_data;
  366. av_freep(&s->fdsp);
  367. return 0;
  368. }
  369. #endif
  370. static av_cold int decode_init(AVCodecContext * avctx)
  371. {
  372. static int initialized_tables = 0;
  373. MPADecodeContext *s = avctx->priv_data;
  374. if (!initialized_tables) {
  375. decode_init_static();
  376. initialized_tables = 1;
  377. }
  378. s->avctx = avctx;
  379. #if USE_FLOATS
  380. s->fdsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT);
  381. if (!s->fdsp)
  382. return AVERROR(ENOMEM);
  383. #endif
  384. ff_mpadsp_init(&s->mpadsp);
  385. if (avctx->request_sample_fmt == OUT_FMT &&
  386. avctx->codec_id != AV_CODEC_ID_MP3ON4)
  387. avctx->sample_fmt = OUT_FMT;
  388. else
  389. avctx->sample_fmt = OUT_FMT_P;
  390. s->err_recognition = avctx->err_recognition;
  391. if (avctx->codec_id == AV_CODEC_ID_MP3ADU)
  392. s->adu_mode = 1;
  393. return 0;
  394. }
  395. #define C3 FIXHR(0.86602540378443864676/2)
  396. #define C4 FIXHR(0.70710678118654752439/2) //0.5 / cos(pi*(9)/36)
  397. #define C5 FIXHR(0.51763809020504152469/2) //0.5 / cos(pi*(5)/36)
  398. #define C6 FIXHR(1.93185165257813657349/4) //0.5 / cos(pi*(15)/36)
  399. /* 12 points IMDCT. We compute it "by hand" by factorizing obvious
  400. cases. */
  401. static void imdct12(INTFLOAT *out, INTFLOAT *in)
  402. {
  403. INTFLOAT in0, in1, in2, in3, in4, in5, t1, t2;
  404. in0 = in[0*3];
  405. in1 = in[1*3] + in[0*3];
  406. in2 = in[2*3] + in[1*3];
  407. in3 = in[3*3] + in[2*3];
  408. in4 = in[4*3] + in[3*3];
  409. in5 = in[5*3] + in[4*3];
  410. in5 += in3;
  411. in3 += in1;
  412. in2 = MULH3(in2, C3, 2);
  413. in3 = MULH3(in3, C3, 4);
  414. t1 = in0 - in4;
  415. t2 = MULH3(in1 - in5, C4, 2);
  416. out[ 7] =
  417. out[10] = t1 + t2;
  418. out[ 1] =
  419. out[ 4] = t1 - t2;
  420. in0 += SHR(in4, 1);
  421. in4 = in0 + in2;
  422. in5 += 2*in1;
  423. in1 = MULH3(in5 + in3, C5, 1);
  424. out[ 8] =
  425. out[ 9] = in4 + in1;
  426. out[ 2] =
  427. out[ 3] = in4 - in1;
  428. in0 -= in2;
  429. in5 = MULH3(in5 - in3, C6, 2);
  430. out[ 0] =
  431. out[ 5] = in0 - in5;
  432. out[ 6] =
  433. out[11] = in0 + in5;
  434. }
  435. /* return the number of decoded frames */
  436. static int mp_decode_layer1(MPADecodeContext *s)
  437. {
  438. int bound, i, v, n, ch, j, mant;
  439. uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT];
  440. uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
  441. if (s->mode == MPA_JSTEREO)
  442. bound = (s->mode_ext + 1) * 4;
  443. else
  444. bound = SBLIMIT;
  445. /* allocation bits */
  446. for (i = 0; i < bound; i++) {
  447. for (ch = 0; ch < s->nb_channels; ch++) {
  448. allocation[ch][i] = get_bits(&s->gb, 4);
  449. }
  450. }
  451. for (i = bound; i < SBLIMIT; i++)
  452. allocation[0][i] = get_bits(&s->gb, 4);
  453. /* scale factors */
  454. for (i = 0; i < bound; i++) {
  455. for (ch = 0; ch < s->nb_channels; ch++) {
  456. if (allocation[ch][i])
  457. scale_factors[ch][i] = get_bits(&s->gb, 6);
  458. }
  459. }
  460. for (i = bound; i < SBLIMIT; i++) {
  461. if (allocation[0][i]) {
  462. scale_factors[0][i] = get_bits(&s->gb, 6);
  463. scale_factors[1][i] = get_bits(&s->gb, 6);
  464. }
  465. }
  466. /* compute samples */
  467. for (j = 0; j < 12; j++) {
  468. for (i = 0; i < bound; i++) {
  469. for (ch = 0; ch < s->nb_channels; ch++) {
  470. n = allocation[ch][i];
  471. if (n) {
  472. mant = get_bits(&s->gb, n + 1);
  473. v = l1_unscale(n, mant, scale_factors[ch][i]);
  474. } else {
  475. v = 0;
  476. }
  477. s->sb_samples[ch][j][i] = v;
  478. }
  479. }
  480. for (i = bound; i < SBLIMIT; i++) {
  481. n = allocation[0][i];
  482. if (n) {
  483. mant = get_bits(&s->gb, n + 1);
  484. v = l1_unscale(n, mant, scale_factors[0][i]);
  485. s->sb_samples[0][j][i] = v;
  486. v = l1_unscale(n, mant, scale_factors[1][i]);
  487. s->sb_samples[1][j][i] = v;
  488. } else {
  489. s->sb_samples[0][j][i] = 0;
  490. s->sb_samples[1][j][i] = 0;
  491. }
  492. }
  493. }
  494. return 12;
  495. }
  496. static int mp_decode_layer2(MPADecodeContext *s)
  497. {
  498. int sblimit; /* number of used subbands */
  499. const unsigned char *alloc_table;
  500. int table, bit_alloc_bits, i, j, ch, bound, v;
  501. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
  502. unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
  503. unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
  504. int scale, qindex, bits, steps, k, l, m, b;
  505. /* select decoding table */
  506. table = ff_mpa_l2_select_table(s->bit_rate / 1000, s->nb_channels,
  507. s->sample_rate, s->lsf);
  508. sblimit = ff_mpa_sblimit_table[table];
  509. alloc_table = ff_mpa_alloc_tables[table];
  510. if (s->mode == MPA_JSTEREO)
  511. bound = (s->mode_ext + 1) * 4;
  512. else
  513. bound = sblimit;
  514. ff_dlog(s->avctx, "bound=%d sblimit=%d\n", bound, sblimit);
  515. /* sanity check */
  516. if (bound > sblimit)
  517. bound = sblimit;
  518. /* parse bit allocation */
  519. j = 0;
  520. for (i = 0; i < bound; i++) {
  521. bit_alloc_bits = alloc_table[j];
  522. for (ch = 0; ch < s->nb_channels; ch++)
  523. bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
  524. j += 1 << bit_alloc_bits;
  525. }
  526. for (i = bound; i < sblimit; i++) {
  527. bit_alloc_bits = alloc_table[j];
  528. v = get_bits(&s->gb, bit_alloc_bits);
  529. bit_alloc[0][i] = v;
  530. bit_alloc[1][i] = v;
  531. j += 1 << bit_alloc_bits;
  532. }
  533. /* scale codes */
  534. for (i = 0; i < sblimit; i++) {
  535. for (ch = 0; ch < s->nb_channels; ch++) {
  536. if (bit_alloc[ch][i])
  537. scale_code[ch][i] = get_bits(&s->gb, 2);
  538. }
  539. }
  540. /* scale factors */
  541. for (i = 0; i < sblimit; i++) {
  542. for (ch = 0; ch < s->nb_channels; ch++) {
  543. if (bit_alloc[ch][i]) {
  544. sf = scale_factors[ch][i];
  545. switch (scale_code[ch][i]) {
  546. default:
  547. case 0:
  548. sf[0] = get_bits(&s->gb, 6);
  549. sf[1] = get_bits(&s->gb, 6);
  550. sf[2] = get_bits(&s->gb, 6);
  551. break;
  552. case 2:
  553. sf[0] = get_bits(&s->gb, 6);
  554. sf[1] = sf[0];
  555. sf[2] = sf[0];
  556. break;
  557. case 1:
  558. sf[0] = get_bits(&s->gb, 6);
  559. sf[2] = get_bits(&s->gb, 6);
  560. sf[1] = sf[0];
  561. break;
  562. case 3:
  563. sf[0] = get_bits(&s->gb, 6);
  564. sf[2] = get_bits(&s->gb, 6);
  565. sf[1] = sf[2];
  566. break;
  567. }
  568. }
  569. }
  570. }
  571. /* samples */
  572. for (k = 0; k < 3; k++) {
  573. for (l = 0; l < 12; l += 3) {
  574. j = 0;
  575. for (i = 0; i < bound; i++) {
  576. bit_alloc_bits = alloc_table[j];
  577. for (ch = 0; ch < s->nb_channels; ch++) {
  578. b = bit_alloc[ch][i];
  579. if (b) {
  580. scale = scale_factors[ch][i][k];
  581. qindex = alloc_table[j+b];
  582. bits = ff_mpa_quant_bits[qindex];
  583. if (bits < 0) {
  584. int v2;
  585. /* 3 values at the same time */
  586. v = get_bits(&s->gb, -bits);
  587. v2 = division_tabs[qindex][v];
  588. steps = ff_mpa_quant_steps[qindex];
  589. s->sb_samples[ch][k * 12 + l + 0][i] =
  590. l2_unscale_group(steps, v2 & 15, scale);
  591. s->sb_samples[ch][k * 12 + l + 1][i] =
  592. l2_unscale_group(steps, (v2 >> 4) & 15, scale);
  593. s->sb_samples[ch][k * 12 + l + 2][i] =
  594. l2_unscale_group(steps, v2 >> 8 , scale);
  595. } else {
  596. for (m = 0; m < 3; m++) {
  597. v = get_bits(&s->gb, bits);
  598. v = l1_unscale(bits - 1, v, scale);
  599. s->sb_samples[ch][k * 12 + l + m][i] = v;
  600. }
  601. }
  602. } else {
  603. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  604. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  605. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  606. }
  607. }
  608. /* next subband in alloc table */
  609. j += 1 << bit_alloc_bits;
  610. }
  611. /* XXX: find a way to avoid this duplication of code */
  612. for (i = bound; i < sblimit; i++) {
  613. bit_alloc_bits = alloc_table[j];
  614. b = bit_alloc[0][i];
  615. if (b) {
  616. int mant, scale0, scale1;
  617. scale0 = scale_factors[0][i][k];
  618. scale1 = scale_factors[1][i][k];
  619. qindex = alloc_table[j+b];
  620. bits = ff_mpa_quant_bits[qindex];
  621. if (bits < 0) {
  622. /* 3 values at the same time */
  623. v = get_bits(&s->gb, -bits);
  624. steps = ff_mpa_quant_steps[qindex];
  625. mant = v % steps;
  626. v = v / steps;
  627. s->sb_samples[0][k * 12 + l + 0][i] =
  628. l2_unscale_group(steps, mant, scale0);
  629. s->sb_samples[1][k * 12 + l + 0][i] =
  630. l2_unscale_group(steps, mant, scale1);
  631. mant = v % steps;
  632. v = v / steps;
  633. s->sb_samples[0][k * 12 + l + 1][i] =
  634. l2_unscale_group(steps, mant, scale0);
  635. s->sb_samples[1][k * 12 + l + 1][i] =
  636. l2_unscale_group(steps, mant, scale1);
  637. s->sb_samples[0][k * 12 + l + 2][i] =
  638. l2_unscale_group(steps, v, scale0);
  639. s->sb_samples[1][k * 12 + l + 2][i] =
  640. l2_unscale_group(steps, v, scale1);
  641. } else {
  642. for (m = 0; m < 3; m++) {
  643. mant = get_bits(&s->gb, bits);
  644. s->sb_samples[0][k * 12 + l + m][i] =
  645. l1_unscale(bits - 1, mant, scale0);
  646. s->sb_samples[1][k * 12 + l + m][i] =
  647. l1_unscale(bits - 1, mant, scale1);
  648. }
  649. }
  650. } else {
  651. s->sb_samples[0][k * 12 + l + 0][i] = 0;
  652. s->sb_samples[0][k * 12 + l + 1][i] = 0;
  653. s->sb_samples[0][k * 12 + l + 2][i] = 0;
  654. s->sb_samples[1][k * 12 + l + 0][i] = 0;
  655. s->sb_samples[1][k * 12 + l + 1][i] = 0;
  656. s->sb_samples[1][k * 12 + l + 2][i] = 0;
  657. }
  658. /* next subband in alloc table */
  659. j += 1 << bit_alloc_bits;
  660. }
  661. /* fill remaining samples to zero */
  662. for (i = sblimit; i < SBLIMIT; i++) {
  663. for (ch = 0; ch < s->nb_channels; ch++) {
  664. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  665. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  666. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  667. }
  668. }
  669. }
  670. }
  671. return 3 * 12;
  672. }
  673. #define SPLIT(dst,sf,n) \
  674. if (n == 3) { \
  675. int m = (sf * 171) >> 9; \
  676. dst = sf - 3 * m; \
  677. sf = m; \
  678. } else if (n == 4) { \
  679. dst = sf & 3; \
  680. sf >>= 2; \
  681. } else if (n == 5) { \
  682. int m = (sf * 205) >> 10; \
  683. dst = sf - 5 * m; \
  684. sf = m; \
  685. } else if (n == 6) { \
  686. int m = (sf * 171) >> 10; \
  687. dst = sf - 6 * m; \
  688. sf = m; \
  689. } else { \
  690. dst = 0; \
  691. }
  692. static av_always_inline void lsf_sf_expand(int *slen, int sf, int n1, int n2,
  693. int n3)
  694. {
  695. SPLIT(slen[3], sf, n3)
  696. SPLIT(slen[2], sf, n2)
  697. SPLIT(slen[1], sf, n1)
  698. slen[0] = sf;
  699. }
  700. static void exponents_from_scale_factors(MPADecodeContext *s, GranuleDef *g,
  701. int16_t *exponents)
  702. {
  703. const uint8_t *bstab, *pretab;
  704. int len, i, j, k, l, v0, shift, gain, gains[3];
  705. int16_t *exp_ptr;
  706. exp_ptr = exponents;
  707. gain = g->global_gain - 210;
  708. shift = g->scalefac_scale + 1;
  709. bstab = band_size_long[s->sample_rate_index];
  710. pretab = mpa_pretab[g->preflag];
  711. for (i = 0; i < g->long_end; i++) {
  712. v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift) + 400;
  713. len = bstab[i];
  714. for (j = len; j > 0; j--)
  715. *exp_ptr++ = v0;
  716. }
  717. if (g->short_start < 13) {
  718. bstab = band_size_short[s->sample_rate_index];
  719. gains[0] = gain - (g->subblock_gain[0] << 3);
  720. gains[1] = gain - (g->subblock_gain[1] << 3);
  721. gains[2] = gain - (g->subblock_gain[2] << 3);
  722. k = g->long_end;
  723. for (i = g->short_start; i < 13; i++) {
  724. len = bstab[i];
  725. for (l = 0; l < 3; l++) {
  726. v0 = gains[l] - (g->scale_factors[k++] << shift) + 400;
  727. for (j = len; j > 0; j--)
  728. *exp_ptr++ = v0;
  729. }
  730. }
  731. }
  732. }
  733. /* handle n = 0 too */
  734. static inline int get_bitsz(GetBitContext *s, int n)
  735. {
  736. return n ? get_bits(s, n) : 0;
  737. }
  738. static void switch_buffer(MPADecodeContext *s, int *pos, int *end_pos,
  739. int *end_pos2)
  740. {
  741. if (s->in_gb.buffer && *pos >= s->gb.size_in_bits) {
  742. s->gb = s->in_gb;
  743. s->in_gb.buffer = NULL;
  744. av_assert2((get_bits_count(&s->gb) & 7) == 0);
  745. skip_bits_long(&s->gb, *pos - *end_pos);
  746. *end_pos2 =
  747. *end_pos = *end_pos2 + get_bits_count(&s->gb) - *pos;
  748. *pos = get_bits_count(&s->gb);
  749. }
  750. }
  751. /* Following is a optimized code for
  752. INTFLOAT v = *src
  753. if(get_bits1(&s->gb))
  754. v = -v;
  755. *dst = v;
  756. */
  757. #if USE_FLOATS
  758. #define READ_FLIP_SIGN(dst,src) \
  759. v = AV_RN32A(src) ^ (get_bits1(&s->gb) << 31); \
  760. AV_WN32A(dst, v);
  761. #else
  762. #define READ_FLIP_SIGN(dst,src) \
  763. v = -get_bits1(&s->gb); \
  764. *(dst) = (*(src) ^ v) - v;
  765. #endif
  766. static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
  767. int16_t *exponents, int end_pos2)
  768. {
  769. int s_index;
  770. int i;
  771. int last_pos, bits_left;
  772. VLC *vlc;
  773. int end_pos = FFMIN(end_pos2, s->gb.size_in_bits);
  774. /* low frequencies (called big values) */
  775. s_index = 0;
  776. for (i = 0; i < 3; i++) {
  777. int j, k, l, linbits;
  778. j = g->region_size[i];
  779. if (j == 0)
  780. continue;
  781. /* select vlc table */
  782. k = g->table_select[i];
  783. l = mpa_huff_data[k][0];
  784. linbits = mpa_huff_data[k][1];
  785. vlc = &huff_vlc[l];
  786. if (!l) {
  787. memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid) * 2 * j);
  788. s_index += 2 * j;
  789. continue;
  790. }
  791. /* read huffcode and compute each couple */
  792. for (; j > 0; j--) {
  793. int exponent, x, y;
  794. int v;
  795. int pos = get_bits_count(&s->gb);
  796. if (pos >= end_pos){
  797. switch_buffer(s, &pos, &end_pos, &end_pos2);
  798. if (pos >= end_pos)
  799. break;
  800. }
  801. y = get_vlc2(&s->gb, vlc->table, 7, 3);
  802. if (!y) {
  803. g->sb_hybrid[s_index ] =
  804. g->sb_hybrid[s_index+1] = 0;
  805. s_index += 2;
  806. continue;
  807. }
  808. exponent= exponents[s_index];
  809. ff_dlog(s->avctx, "region=%d n=%d x=%d y=%d exp=%d\n",
  810. i, g->region_size[i] - j, x, y, exponent);
  811. if (y & 16) {
  812. x = y >> 5;
  813. y = y & 0x0f;
  814. if (x < 15) {
  815. READ_FLIP_SIGN(g->sb_hybrid + s_index, RENAME(expval_table)[exponent] + x)
  816. } else {
  817. x += get_bitsz(&s->gb, linbits);
  818. v = l3_unscale(x, exponent);
  819. if (get_bits1(&s->gb))
  820. v = -v;
  821. g->sb_hybrid[s_index] = v;
  822. }
  823. if (y < 15) {
  824. READ_FLIP_SIGN(g->sb_hybrid + s_index + 1, RENAME(expval_table)[exponent] + y)
  825. } else {
  826. y += get_bitsz(&s->gb, linbits);
  827. v = l3_unscale(y, exponent);
  828. if (get_bits1(&s->gb))
  829. v = -v;
  830. g->sb_hybrid[s_index+1] = v;
  831. }
  832. } else {
  833. x = y >> 5;
  834. y = y & 0x0f;
  835. x += y;
  836. if (x < 15) {
  837. READ_FLIP_SIGN(g->sb_hybrid + s_index + !!y, RENAME(expval_table)[exponent] + x)
  838. } else {
  839. x += get_bitsz(&s->gb, linbits);
  840. v = l3_unscale(x, exponent);
  841. if (get_bits1(&s->gb))
  842. v = -v;
  843. g->sb_hybrid[s_index+!!y] = v;
  844. }
  845. g->sb_hybrid[s_index + !y] = 0;
  846. }
  847. s_index += 2;
  848. }
  849. }
  850. /* high frequencies */
  851. vlc = &huff_quad_vlc[g->count1table_select];
  852. last_pos = 0;
  853. while (s_index <= 572) {
  854. int pos, code;
  855. pos = get_bits_count(&s->gb);
  856. if (pos >= end_pos) {
  857. if (pos > end_pos2 && last_pos) {
  858. /* some encoders generate an incorrect size for this
  859. part. We must go back into the data */
  860. s_index -= 4;
  861. skip_bits_long(&s->gb, last_pos - pos);
  862. av_log(s->avctx, AV_LOG_INFO, "overread, skip %d enddists: %d %d\n", last_pos - pos, end_pos-pos, end_pos2-pos);
  863. if(s->err_recognition & (AV_EF_BITSTREAM|AV_EF_COMPLIANT))
  864. s_index=0;
  865. break;
  866. }
  867. switch_buffer(s, &pos, &end_pos, &end_pos2);
  868. if (pos >= end_pos)
  869. break;
  870. }
  871. last_pos = pos;
  872. code = get_vlc2(&s->gb, vlc->table, vlc->bits, 1);
  873. ff_dlog(s->avctx, "t=%d code=%d\n", g->count1table_select, code);
  874. g->sb_hybrid[s_index+0] =
  875. g->sb_hybrid[s_index+1] =
  876. g->sb_hybrid[s_index+2] =
  877. g->sb_hybrid[s_index+3] = 0;
  878. while (code) {
  879. static const int idxtab[16] = { 3,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0 };
  880. int v;
  881. int pos = s_index + idxtab[code];
  882. code ^= 8 >> idxtab[code];
  883. READ_FLIP_SIGN(g->sb_hybrid + pos, RENAME(exp_table)+exponents[pos])
  884. }
  885. s_index += 4;
  886. }
  887. /* skip extension bits */
  888. bits_left = end_pos2 - get_bits_count(&s->gb);
  889. if (bits_left < 0 && (s->err_recognition & (AV_EF_BUFFER|AV_EF_COMPLIANT))) {
  890. av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
  891. s_index=0;
  892. } else if (bits_left > 0 && (s->err_recognition & (AV_EF_BUFFER|AV_EF_AGGRESSIVE))) {
  893. av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
  894. s_index = 0;
  895. }
  896. memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid) * (576 - s_index));
  897. skip_bits_long(&s->gb, bits_left);
  898. i = get_bits_count(&s->gb);
  899. switch_buffer(s, &i, &end_pos, &end_pos2);
  900. return 0;
  901. }
  902. /* Reorder short blocks from bitstream order to interleaved order. It
  903. would be faster to do it in parsing, but the code would be far more
  904. complicated */
  905. static void reorder_block(MPADecodeContext *s, GranuleDef *g)
  906. {
  907. int i, j, len;
  908. INTFLOAT *ptr, *dst, *ptr1;
  909. INTFLOAT tmp[576];
  910. if (g->block_type != 2)
  911. return;
  912. if (g->switch_point) {
  913. if (s->sample_rate_index != 8)
  914. ptr = g->sb_hybrid + 36;
  915. else
  916. ptr = g->sb_hybrid + 72;
  917. } else {
  918. ptr = g->sb_hybrid;
  919. }
  920. for (i = g->short_start; i < 13; i++) {
  921. len = band_size_short[s->sample_rate_index][i];
  922. ptr1 = ptr;
  923. dst = tmp;
  924. for (j = len; j > 0; j--) {
  925. *dst++ = ptr[0*len];
  926. *dst++ = ptr[1*len];
  927. *dst++ = ptr[2*len];
  928. ptr++;
  929. }
  930. ptr += 2 * len;
  931. memcpy(ptr1, tmp, len * 3 * sizeof(*ptr1));
  932. }
  933. }
  934. #define ISQRT2 FIXR(0.70710678118654752440)
  935. static void compute_stereo(MPADecodeContext *s, GranuleDef *g0, GranuleDef *g1)
  936. {
  937. int i, j, k, l;
  938. int sf_max, sf, len, non_zero_found;
  939. INTFLOAT (*is_tab)[16], *tab0, *tab1, tmp0, tmp1, v1, v2;
  940. int non_zero_found_short[3];
  941. /* intensity stereo */
  942. if (s->mode_ext & MODE_EXT_I_STEREO) {
  943. if (!s->lsf) {
  944. is_tab = is_table;
  945. sf_max = 7;
  946. } else {
  947. is_tab = is_table_lsf[g1->scalefac_compress & 1];
  948. sf_max = 16;
  949. }
  950. tab0 = g0->sb_hybrid + 576;
  951. tab1 = g1->sb_hybrid + 576;
  952. non_zero_found_short[0] = 0;
  953. non_zero_found_short[1] = 0;
  954. non_zero_found_short[2] = 0;
  955. k = (13 - g1->short_start) * 3 + g1->long_end - 3;
  956. for (i = 12; i >= g1->short_start; i--) {
  957. /* for last band, use previous scale factor */
  958. if (i != 11)
  959. k -= 3;
  960. len = band_size_short[s->sample_rate_index][i];
  961. for (l = 2; l >= 0; l--) {
  962. tab0 -= len;
  963. tab1 -= len;
  964. if (!non_zero_found_short[l]) {
  965. /* test if non zero band. if so, stop doing i-stereo */
  966. for (j = 0; j < len; j++) {
  967. if (tab1[j] != 0) {
  968. non_zero_found_short[l] = 1;
  969. goto found1;
  970. }
  971. }
  972. sf = g1->scale_factors[k + l];
  973. if (sf >= sf_max)
  974. goto found1;
  975. v1 = is_tab[0][sf];
  976. v2 = is_tab[1][sf];
  977. for (j = 0; j < len; j++) {
  978. tmp0 = tab0[j];
  979. tab0[j] = MULLx(tmp0, v1, FRAC_BITS);
  980. tab1[j] = MULLx(tmp0, v2, FRAC_BITS);
  981. }
  982. } else {
  983. found1:
  984. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  985. /* lower part of the spectrum : do ms stereo
  986. if enabled */
  987. for (j = 0; j < len; j++) {
  988. tmp0 = tab0[j];
  989. tmp1 = tab1[j];
  990. tab0[j] = MULLx(tmp0 + tmp1, ISQRT2, FRAC_BITS);
  991. tab1[j] = MULLx(tmp0 - tmp1, ISQRT2, FRAC_BITS);
  992. }
  993. }
  994. }
  995. }
  996. }
  997. non_zero_found = non_zero_found_short[0] |
  998. non_zero_found_short[1] |
  999. non_zero_found_short[2];
  1000. for (i = g1->long_end - 1;i >= 0;i--) {
  1001. len = band_size_long[s->sample_rate_index][i];
  1002. tab0 -= len;
  1003. tab1 -= len;
  1004. /* test if non zero band. if so, stop doing i-stereo */
  1005. if (!non_zero_found) {
  1006. for (j = 0; j < len; j++) {
  1007. if (tab1[j] != 0) {
  1008. non_zero_found = 1;
  1009. goto found2;
  1010. }
  1011. }
  1012. /* for last band, use previous scale factor */
  1013. k = (i == 21) ? 20 : i;
  1014. sf = g1->scale_factors[k];
  1015. if (sf >= sf_max)
  1016. goto found2;
  1017. v1 = is_tab[0][sf];
  1018. v2 = is_tab[1][sf];
  1019. for (j = 0; j < len; j++) {
  1020. tmp0 = tab0[j];
  1021. tab0[j] = MULLx(tmp0, v1, FRAC_BITS);
  1022. tab1[j] = MULLx(tmp0, v2, FRAC_BITS);
  1023. }
  1024. } else {
  1025. found2:
  1026. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1027. /* lower part of the spectrum : do ms stereo
  1028. if enabled */
  1029. for (j = 0; j < len; j++) {
  1030. tmp0 = tab0[j];
  1031. tmp1 = tab1[j];
  1032. tab0[j] = MULLx(tmp0 + tmp1, ISQRT2, FRAC_BITS);
  1033. tab1[j] = MULLx(tmp0 - tmp1, ISQRT2, FRAC_BITS);
  1034. }
  1035. }
  1036. }
  1037. }
  1038. } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1039. /* ms stereo ONLY */
  1040. /* NOTE: the 1/sqrt(2) normalization factor is included in the
  1041. global gain */
  1042. #if USE_FLOATS
  1043. s->fdsp->butterflies_float(g0->sb_hybrid, g1->sb_hybrid, 576);
  1044. #else
  1045. tab0 = g0->sb_hybrid;
  1046. tab1 = g1->sb_hybrid;
  1047. for (i = 0; i < 576; i++) {
  1048. tmp0 = tab0[i];
  1049. tmp1 = tab1[i];
  1050. tab0[i] = tmp0 + tmp1;
  1051. tab1[i] = tmp0 - tmp1;
  1052. }
  1053. #endif
  1054. }
  1055. }
  1056. #if USE_FLOATS
  1057. #if HAVE_MIPSFPU
  1058. # include "mips/compute_antialias_float.h"
  1059. #endif /* HAVE_MIPSFPU */
  1060. #else
  1061. #if HAVE_MIPSDSPR1
  1062. # include "mips/compute_antialias_fixed.h"
  1063. #endif /* HAVE_MIPSDSPR1 */
  1064. #endif /* USE_FLOATS */
  1065. #ifndef compute_antialias
  1066. #if USE_FLOATS
  1067. #define AA(j) do { \
  1068. float tmp0 = ptr[-1-j]; \
  1069. float tmp1 = ptr[ j]; \
  1070. ptr[-1-j] = tmp0 * csa_table[j][0] - tmp1 * csa_table[j][1]; \
  1071. ptr[ j] = tmp0 * csa_table[j][1] + tmp1 * csa_table[j][0]; \
  1072. } while (0)
  1073. #else
  1074. #define AA(j) do { \
  1075. int tmp0 = ptr[-1-j]; \
  1076. int tmp1 = ptr[ j]; \
  1077. int tmp2 = MULH(tmp0 + tmp1, csa_table[j][0]); \
  1078. ptr[-1-j] = 4 * (tmp2 - MULH(tmp1, csa_table[j][2])); \
  1079. ptr[ j] = 4 * (tmp2 + MULH(tmp0, csa_table[j][3])); \
  1080. } while (0)
  1081. #endif
  1082. static void compute_antialias(MPADecodeContext *s, GranuleDef *g)
  1083. {
  1084. INTFLOAT *ptr;
  1085. int n, i;
  1086. /* we antialias only "long" bands */
  1087. if (g->block_type == 2) {
  1088. if (!g->switch_point)
  1089. return;
  1090. /* XXX: check this for 8000Hz case */
  1091. n = 1;
  1092. } else {
  1093. n = SBLIMIT - 1;
  1094. }
  1095. ptr = g->sb_hybrid + 18;
  1096. for (i = n; i > 0; i--) {
  1097. AA(0);
  1098. AA(1);
  1099. AA(2);
  1100. AA(3);
  1101. AA(4);
  1102. AA(5);
  1103. AA(6);
  1104. AA(7);
  1105. ptr += 18;
  1106. }
  1107. }
  1108. #endif /* compute_antialias */
  1109. static void compute_imdct(MPADecodeContext *s, GranuleDef *g,
  1110. INTFLOAT *sb_samples, INTFLOAT *mdct_buf)
  1111. {
  1112. INTFLOAT *win, *out_ptr, *ptr, *buf, *ptr1;
  1113. INTFLOAT out2[12];
  1114. int i, j, mdct_long_end, sblimit;
  1115. /* find last non zero block */
  1116. ptr = g->sb_hybrid + 576;
  1117. ptr1 = g->sb_hybrid + 2 * 18;
  1118. while (ptr >= ptr1) {
  1119. int32_t *p;
  1120. ptr -= 6;
  1121. p = (int32_t*)ptr;
  1122. if (p[0] | p[1] | p[2] | p[3] | p[4] | p[5])
  1123. break;
  1124. }
  1125. sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
  1126. if (g->block_type == 2) {
  1127. /* XXX: check for 8000 Hz */
  1128. if (g->switch_point)
  1129. mdct_long_end = 2;
  1130. else
  1131. mdct_long_end = 0;
  1132. } else {
  1133. mdct_long_end = sblimit;
  1134. }
  1135. s->mpadsp.RENAME(imdct36_blocks)(sb_samples, mdct_buf, g->sb_hybrid,
  1136. mdct_long_end, g->switch_point,
  1137. g->block_type);
  1138. buf = mdct_buf + 4*18*(mdct_long_end >> 2) + (mdct_long_end & 3);
  1139. ptr = g->sb_hybrid + 18 * mdct_long_end;
  1140. for (j = mdct_long_end; j < sblimit; j++) {
  1141. /* select frequency inversion */
  1142. win = RENAME(ff_mdct_win)[2 + (4 & -(j & 1))];
  1143. out_ptr = sb_samples + j;
  1144. for (i = 0; i < 6; i++) {
  1145. *out_ptr = buf[4*i];
  1146. out_ptr += SBLIMIT;
  1147. }
  1148. imdct12(out2, ptr + 0);
  1149. for (i = 0; i < 6; i++) {
  1150. *out_ptr = MULH3(out2[i ], win[i ], 1) + buf[4*(i + 6*1)];
  1151. buf[4*(i + 6*2)] = MULH3(out2[i + 6], win[i + 6], 1);
  1152. out_ptr += SBLIMIT;
  1153. }
  1154. imdct12(out2, ptr + 1);
  1155. for (i = 0; i < 6; i++) {
  1156. *out_ptr = MULH3(out2[i ], win[i ], 1) + buf[4*(i + 6*2)];
  1157. buf[4*(i + 6*0)] = MULH3(out2[i + 6], win[i + 6], 1);
  1158. out_ptr += SBLIMIT;
  1159. }
  1160. imdct12(out2, ptr + 2);
  1161. for (i = 0; i < 6; i++) {
  1162. buf[4*(i + 6*0)] = MULH3(out2[i ], win[i ], 1) + buf[4*(i + 6*0)];
  1163. buf[4*(i + 6*1)] = MULH3(out2[i + 6], win[i + 6], 1);
  1164. buf[4*(i + 6*2)] = 0;
  1165. }
  1166. ptr += 18;
  1167. buf += (j&3) != 3 ? 1 : (4*18-3);
  1168. }
  1169. /* zero bands */
  1170. for (j = sblimit; j < SBLIMIT; j++) {
  1171. /* overlap */
  1172. out_ptr = sb_samples + j;
  1173. for (i = 0; i < 18; i++) {
  1174. *out_ptr = buf[4*i];
  1175. buf[4*i] = 0;
  1176. out_ptr += SBLIMIT;
  1177. }
  1178. buf += (j&3) != 3 ? 1 : (4*18-3);
  1179. }
  1180. }
  1181. /* main layer3 decoding function */
  1182. static int mp_decode_layer3(MPADecodeContext *s)
  1183. {
  1184. int nb_granules, main_data_begin;
  1185. int gr, ch, blocksplit_flag, i, j, k, n, bits_pos;
  1186. GranuleDef *g;
  1187. int16_t exponents[576]; //FIXME try INTFLOAT
  1188. /* read side info */
  1189. if (s->lsf) {
  1190. main_data_begin = get_bits(&s->gb, 8);
  1191. skip_bits(&s->gb, s->nb_channels);
  1192. nb_granules = 1;
  1193. } else {
  1194. main_data_begin = get_bits(&s->gb, 9);
  1195. if (s->nb_channels == 2)
  1196. skip_bits(&s->gb, 3);
  1197. else
  1198. skip_bits(&s->gb, 5);
  1199. nb_granules = 2;
  1200. for (ch = 0; ch < s->nb_channels; ch++) {
  1201. s->granules[ch][0].scfsi = 0;/* all scale factors are transmitted */
  1202. s->granules[ch][1].scfsi = get_bits(&s->gb, 4);
  1203. }
  1204. }
  1205. for (gr = 0; gr < nb_granules; gr++) {
  1206. for (ch = 0; ch < s->nb_channels; ch++) {
  1207. ff_dlog(s->avctx, "gr=%d ch=%d: side_info\n", gr, ch);
  1208. g = &s->granules[ch][gr];
  1209. g->part2_3_length = get_bits(&s->gb, 12);
  1210. g->big_values = get_bits(&s->gb, 9);
  1211. if (g->big_values > 288) {
  1212. av_log(s->avctx, AV_LOG_ERROR, "big_values too big\n");
  1213. return AVERROR_INVALIDDATA;
  1214. }
  1215. g->global_gain = get_bits(&s->gb, 8);
  1216. /* if MS stereo only is selected, we precompute the
  1217. 1/sqrt(2) renormalization factor */
  1218. if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
  1219. MODE_EXT_MS_STEREO)
  1220. g->global_gain -= 2;
  1221. if (s->lsf)
  1222. g->scalefac_compress = get_bits(&s->gb, 9);
  1223. else
  1224. g->scalefac_compress = get_bits(&s->gb, 4);
  1225. blocksplit_flag = get_bits1(&s->gb);
  1226. if (blocksplit_flag) {
  1227. g->block_type = get_bits(&s->gb, 2);
  1228. if (g->block_type == 0) {
  1229. av_log(s->avctx, AV_LOG_ERROR, "invalid block type\n");
  1230. return AVERROR_INVALIDDATA;
  1231. }
  1232. g->switch_point = get_bits1(&s->gb);
  1233. for (i = 0; i < 2; i++)
  1234. g->table_select[i] = get_bits(&s->gb, 5);
  1235. for (i = 0; i < 3; i++)
  1236. g->subblock_gain[i] = get_bits(&s->gb, 3);
  1237. init_short_region(s, g);
  1238. } else {
  1239. int region_address1, region_address2;
  1240. g->block_type = 0;
  1241. g->switch_point = 0;
  1242. for (i = 0; i < 3; i++)
  1243. g->table_select[i] = get_bits(&s->gb, 5);
  1244. /* compute huffman coded region sizes */
  1245. region_address1 = get_bits(&s->gb, 4);
  1246. region_address2 = get_bits(&s->gb, 3);
  1247. ff_dlog(s->avctx, "region1=%d region2=%d\n",
  1248. region_address1, region_address2);
  1249. init_long_region(s, g, region_address1, region_address2);
  1250. }
  1251. region_offset2size(g);
  1252. compute_band_indexes(s, g);
  1253. g->preflag = 0;
  1254. if (!s->lsf)
  1255. g->preflag = get_bits1(&s->gb);
  1256. g->scalefac_scale = get_bits1(&s->gb);
  1257. g->count1table_select = get_bits1(&s->gb);
  1258. ff_dlog(s->avctx, "block_type=%d switch_point=%d\n",
  1259. g->block_type, g->switch_point);
  1260. }
  1261. }
  1262. if (!s->adu_mode) {
  1263. int skip;
  1264. const uint8_t *ptr = s->gb.buffer + (get_bits_count(&s->gb)>>3);
  1265. int extrasize = av_clip(get_bits_left(&s->gb) >> 3, 0, EXTRABYTES);
  1266. av_assert1((get_bits_count(&s->gb) & 7) == 0);
  1267. /* now we get bits from the main_data_begin offset */
  1268. ff_dlog(s->avctx, "seekback:%d, lastbuf:%d\n",
  1269. main_data_begin, s->last_buf_size);
  1270. memcpy(s->last_buf + s->last_buf_size, ptr, extrasize);
  1271. s->in_gb = s->gb;
  1272. init_get_bits(&s->gb, s->last_buf, s->last_buf_size*8);
  1273. #if !UNCHECKED_BITSTREAM_READER
  1274. s->gb.size_in_bits_plus8 += FFMAX(extrasize, LAST_BUF_SIZE - s->last_buf_size) * 8;
  1275. #endif
  1276. s->last_buf_size <<= 3;
  1277. for (gr = 0; gr < nb_granules && (s->last_buf_size >> 3) < main_data_begin; gr++) {
  1278. for (ch = 0; ch < s->nb_channels; ch++) {
  1279. g = &s->granules[ch][gr];
  1280. s->last_buf_size += g->part2_3_length;
  1281. memset(g->sb_hybrid, 0, sizeof(g->sb_hybrid));
  1282. compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
  1283. }
  1284. }
  1285. skip = s->last_buf_size - 8 * main_data_begin;
  1286. if (skip >= s->gb.size_in_bits && s->in_gb.buffer) {
  1287. skip_bits_long(&s->in_gb, skip - s->gb.size_in_bits);
  1288. s->gb = s->in_gb;
  1289. s->in_gb.buffer = NULL;
  1290. } else {
  1291. skip_bits_long(&s->gb, skip);
  1292. }
  1293. } else {
  1294. gr = 0;
  1295. }
  1296. for (; gr < nb_granules; gr++) {
  1297. for (ch = 0; ch < s->nb_channels; ch++) {
  1298. g = &s->granules[ch][gr];
  1299. bits_pos = get_bits_count(&s->gb);
  1300. if (!s->lsf) {
  1301. uint8_t *sc;
  1302. int slen, slen1, slen2;
  1303. /* MPEG1 scale factors */
  1304. slen1 = slen_table[0][g->scalefac_compress];
  1305. slen2 = slen_table[1][g->scalefac_compress];
  1306. ff_dlog(s->avctx, "slen1=%d slen2=%d\n", slen1, slen2);
  1307. if (g->block_type == 2) {
  1308. n = g->switch_point ? 17 : 18;
  1309. j = 0;
  1310. if (slen1) {
  1311. for (i = 0; i < n; i++)
  1312. g->scale_factors[j++] = get_bits(&s->gb, slen1);
  1313. } else {
  1314. for (i = 0; i < n; i++)
  1315. g->scale_factors[j++] = 0;
  1316. }
  1317. if (slen2) {
  1318. for (i = 0; i < 18; i++)
  1319. g->scale_factors[j++] = get_bits(&s->gb, slen2);
  1320. for (i = 0; i < 3; i++)
  1321. g->scale_factors[j++] = 0;
  1322. } else {
  1323. for (i = 0; i < 21; i++)
  1324. g->scale_factors[j++] = 0;
  1325. }
  1326. } else {
  1327. sc = s->granules[ch][0].scale_factors;
  1328. j = 0;
  1329. for (k = 0; k < 4; k++) {
  1330. n = k == 0 ? 6 : 5;
  1331. if ((g->scfsi & (0x8 >> k)) == 0) {
  1332. slen = (k < 2) ? slen1 : slen2;
  1333. if (slen) {
  1334. for (i = 0; i < n; i++)
  1335. g->scale_factors[j++] = get_bits(&s->gb, slen);
  1336. } else {
  1337. for (i = 0; i < n; i++)
  1338. g->scale_factors[j++] = 0;
  1339. }
  1340. } else {
  1341. /* simply copy from last granule */
  1342. for (i = 0; i < n; i++) {
  1343. g->scale_factors[j] = sc[j];
  1344. j++;
  1345. }
  1346. }
  1347. }
  1348. g->scale_factors[j++] = 0;
  1349. }
  1350. } else {
  1351. int tindex, tindex2, slen[4], sl, sf;
  1352. /* LSF scale factors */
  1353. if (g->block_type == 2)
  1354. tindex = g->switch_point ? 2 : 1;
  1355. else
  1356. tindex = 0;
  1357. sf = g->scalefac_compress;
  1358. if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
  1359. /* intensity stereo case */
  1360. sf >>= 1;
  1361. if (sf < 180) {
  1362. lsf_sf_expand(slen, sf, 6, 6, 0);
  1363. tindex2 = 3;
  1364. } else if (sf < 244) {
  1365. lsf_sf_expand(slen, sf - 180, 4, 4, 0);
  1366. tindex2 = 4;
  1367. } else {
  1368. lsf_sf_expand(slen, sf - 244, 3, 0, 0);
  1369. tindex2 = 5;
  1370. }
  1371. } else {
  1372. /* normal case */
  1373. if (sf < 400) {
  1374. lsf_sf_expand(slen, sf, 5, 4, 4);
  1375. tindex2 = 0;
  1376. } else if (sf < 500) {
  1377. lsf_sf_expand(slen, sf - 400, 5, 4, 0);
  1378. tindex2 = 1;
  1379. } else {
  1380. lsf_sf_expand(slen, sf - 500, 3, 0, 0);
  1381. tindex2 = 2;
  1382. g->preflag = 1;
  1383. }
  1384. }
  1385. j = 0;
  1386. for (k = 0; k < 4; k++) {
  1387. n = lsf_nsf_table[tindex2][tindex][k];
  1388. sl = slen[k];
  1389. if (sl) {
  1390. for (i = 0; i < n; i++)
  1391. g->scale_factors[j++] = get_bits(&s->gb, sl);
  1392. } else {
  1393. for (i = 0; i < n; i++)
  1394. g->scale_factors[j++] = 0;
  1395. }
  1396. }
  1397. /* XXX: should compute exact size */
  1398. for (; j < 40; j++)
  1399. g->scale_factors[j] = 0;
  1400. }
  1401. exponents_from_scale_factors(s, g, exponents);
  1402. /* read Huffman coded residue */
  1403. huffman_decode(s, g, exponents, bits_pos + g->part2_3_length);
  1404. } /* ch */
  1405. if (s->mode == MPA_JSTEREO)
  1406. compute_stereo(s, &s->granules[0][gr], &s->granules[1][gr]);
  1407. for (ch = 0; ch < s->nb_channels; ch++) {
  1408. g = &s->granules[ch][gr];
  1409. reorder_block(s, g);
  1410. compute_antialias(s, g);
  1411. compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
  1412. }
  1413. } /* gr */
  1414. if (get_bits_count(&s->gb) < 0)
  1415. skip_bits_long(&s->gb, -get_bits_count(&s->gb));
  1416. return nb_granules * 18;
  1417. }
  1418. static int mp_decode_frame(MPADecodeContext *s, OUT_INT **samples,
  1419. const uint8_t *buf, int buf_size)
  1420. {
  1421. int i, nb_frames, ch, ret;
  1422. OUT_INT *samples_ptr;
  1423. init_get_bits(&s->gb, buf + HEADER_SIZE, (buf_size - HEADER_SIZE) * 8);
  1424. /* skip error protection field */
  1425. if (s->error_protection)
  1426. skip_bits(&s->gb, 16);
  1427. switch(s->layer) {
  1428. case 1:
  1429. s->avctx->frame_size = 384;
  1430. nb_frames = mp_decode_layer1(s);
  1431. break;
  1432. case 2:
  1433. s->avctx->frame_size = 1152;
  1434. nb_frames = mp_decode_layer2(s);
  1435. break;
  1436. case 3:
  1437. s->avctx->frame_size = s->lsf ? 576 : 1152;
  1438. default:
  1439. nb_frames = mp_decode_layer3(s);
  1440. s->last_buf_size=0;
  1441. if (s->in_gb.buffer) {
  1442. align_get_bits(&s->gb);
  1443. i = get_bits_left(&s->gb)>>3;
  1444. if (i >= 0 && i <= BACKSTEP_SIZE) {
  1445. memmove(s->last_buf, s->gb.buffer + (get_bits_count(&s->gb)>>3), i);
  1446. s->last_buf_size=i;
  1447. } else
  1448. av_log(s->avctx, AV_LOG_ERROR, "invalid old backstep %d\n", i);
  1449. s->gb = s->in_gb;
  1450. s->in_gb.buffer = NULL;
  1451. }
  1452. align_get_bits(&s->gb);
  1453. av_assert1((get_bits_count(&s->gb) & 7) == 0);
  1454. i = get_bits_left(&s->gb) >> 3;
  1455. if (i < 0 || i > BACKSTEP_SIZE || nb_frames < 0) {
  1456. if (i < 0)
  1457. av_log(s->avctx, AV_LOG_ERROR, "invalid new backstep %d\n", i);
  1458. i = FFMIN(BACKSTEP_SIZE, buf_size - HEADER_SIZE);
  1459. }
  1460. av_assert1(i <= buf_size - HEADER_SIZE && i >= 0);
  1461. memcpy(s->last_buf + s->last_buf_size, s->gb.buffer + buf_size - HEADER_SIZE - i, i);
  1462. s->last_buf_size += i;
  1463. }
  1464. if(nb_frames < 0)
  1465. return nb_frames;
  1466. /* get output buffer */
  1467. if (!samples) {
  1468. av_assert0(s->frame);
  1469. s->frame->nb_samples = s->avctx->frame_size;
  1470. if ((ret = ff_get_buffer(s->avctx, s->frame, 0)) < 0)
  1471. return ret;
  1472. samples = (OUT_INT **)s->frame->extended_data;
  1473. }
  1474. /* apply the synthesis filter */
  1475. for (ch = 0; ch < s->nb_channels; ch++) {
  1476. int sample_stride;
  1477. if (s->avctx->sample_fmt == OUT_FMT_P) {
  1478. samples_ptr = samples[ch];
  1479. sample_stride = 1;
  1480. } else {
  1481. samples_ptr = samples[0] + ch;
  1482. sample_stride = s->nb_channels;
  1483. }
  1484. for (i = 0; i < nb_frames; i++) {
  1485. RENAME(ff_mpa_synth_filter)(&s->mpadsp, s->synth_buf[ch],
  1486. &(s->synth_buf_offset[ch]),
  1487. RENAME(ff_mpa_synth_window),
  1488. &s->dither_state, samples_ptr,
  1489. sample_stride, s->sb_samples[ch][i]);
  1490. samples_ptr += 32 * sample_stride;
  1491. }
  1492. }
  1493. return nb_frames * 32 * sizeof(OUT_INT) * s->nb_channels;
  1494. }
  1495. static int decode_frame(AVCodecContext * avctx, void *data, int *got_frame_ptr,
  1496. AVPacket *avpkt)
  1497. {
  1498. const uint8_t *buf = avpkt->data;
  1499. int buf_size = avpkt->size;
  1500. MPADecodeContext *s = avctx->priv_data;
  1501. uint32_t header;
  1502. int ret;
  1503. int skipped = 0;
  1504. while(buf_size && !*buf){
  1505. buf++;
  1506. buf_size--;
  1507. skipped++;
  1508. }
  1509. if (buf_size < HEADER_SIZE)
  1510. return AVERROR_INVALIDDATA;
  1511. header = AV_RB32(buf);
  1512. if (header>>8 == AV_RB32("TAG")>>8) {
  1513. av_log(avctx, AV_LOG_DEBUG, "discarding ID3 tag\n");
  1514. return buf_size;
  1515. }
  1516. if (ff_mpa_check_header(header) < 0) {
  1517. av_log(avctx, AV_LOG_ERROR, "Header missing\n");
  1518. return AVERROR_INVALIDDATA;
  1519. }
  1520. if (avpriv_mpegaudio_decode_header((MPADecodeHeader *)s, header) == 1) {
  1521. /* free format: prepare to compute frame size */
  1522. s->frame_size = -1;
  1523. return AVERROR_INVALIDDATA;
  1524. }
  1525. /* update codec info */
  1526. avctx->channels = s->nb_channels;
  1527. avctx->channel_layout = s->nb_channels == 1 ? AV_CH_LAYOUT_MONO : AV_CH_LAYOUT_STEREO;
  1528. if (!avctx->bit_rate)
  1529. avctx->bit_rate = s->bit_rate;
  1530. if (s->frame_size <= 0) {
  1531. av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
  1532. return AVERROR_INVALIDDATA;
  1533. } else if (s->frame_size < buf_size) {
  1534. av_log(avctx, AV_LOG_DEBUG, "incorrect frame size - multiple frames in buffer?\n");
  1535. buf_size= s->frame_size;
  1536. }
  1537. s->frame = data;
  1538. ret = mp_decode_frame(s, NULL, buf, buf_size);
  1539. if (ret >= 0) {
  1540. s->frame->nb_samples = avctx->frame_size;
  1541. *got_frame_ptr = 1;
  1542. avctx->sample_rate = s->sample_rate;
  1543. //FIXME maybe move the other codec info stuff from above here too
  1544. } else {
  1545. av_log(avctx, AV_LOG_ERROR, "Error while decoding MPEG audio frame.\n");
  1546. /* Only return an error if the bad frame makes up the whole packet or
  1547. * the error is related to buffer management.
  1548. * If there is more data in the packet, just consume the bad frame
  1549. * instead of returning an error, which would discard the whole
  1550. * packet. */
  1551. *got_frame_ptr = 0;
  1552. if (buf_size == avpkt->size || ret != AVERROR_INVALIDDATA)
  1553. return ret;
  1554. }
  1555. s->frame_size = 0;
  1556. return buf_size + skipped;
  1557. }
  1558. static void mp_flush(MPADecodeContext *ctx)
  1559. {
  1560. memset(ctx->synth_buf, 0, sizeof(ctx->synth_buf));
  1561. memset(ctx->mdct_buf, 0, sizeof(ctx->mdct_buf));
  1562. ctx->last_buf_size = 0;
  1563. ctx->dither_state = 0;
  1564. }
  1565. static void flush(AVCodecContext *avctx)
  1566. {
  1567. mp_flush(avctx->priv_data);
  1568. }
  1569. #if CONFIG_MP3ADU_DECODER || CONFIG_MP3ADUFLOAT_DECODER
  1570. static int decode_frame_adu(AVCodecContext *avctx, void *data,
  1571. int *got_frame_ptr, AVPacket *avpkt)
  1572. {
  1573. const uint8_t *buf = avpkt->data;
  1574. int buf_size = avpkt->size;
  1575. MPADecodeContext *s = avctx->priv_data;
  1576. uint32_t header;
  1577. int len, ret;
  1578. int av_unused out_size;
  1579. len = buf_size;
  1580. // Discard too short frames
  1581. if (buf_size < HEADER_SIZE) {
  1582. av_log(avctx, AV_LOG_ERROR, "Packet is too small\n");
  1583. return AVERROR_INVALIDDATA;
  1584. }
  1585. if (len > MPA_MAX_CODED_FRAME_SIZE)
  1586. len = MPA_MAX_CODED_FRAME_SIZE;
  1587. // Get header and restore sync word
  1588. header = AV_RB32(buf) | 0xffe00000;
  1589. if (ff_mpa_check_header(header) < 0) { // Bad header, discard frame
  1590. av_log(avctx, AV_LOG_ERROR, "Invalid frame header\n");
  1591. return AVERROR_INVALIDDATA;
  1592. }
  1593. avpriv_mpegaudio_decode_header((MPADecodeHeader *)s, header);
  1594. /* update codec info */
  1595. avctx->sample_rate = s->sample_rate;
  1596. avctx->channels = s->nb_channels;
  1597. avctx->channel_layout = s->nb_channels == 1 ? AV_CH_LAYOUT_MONO : AV_CH_LAYOUT_STEREO;
  1598. if (!avctx->bit_rate)
  1599. avctx->bit_rate = s->bit_rate;
  1600. s->frame_size = len;
  1601. s->frame = data;
  1602. ret = mp_decode_frame(s, NULL, buf, buf_size);
  1603. if (ret < 0) {
  1604. av_log(avctx, AV_LOG_ERROR, "Error while decoding MPEG audio frame.\n");
  1605. return ret;
  1606. }
  1607. *got_frame_ptr = 1;
  1608. return buf_size;
  1609. }
  1610. #endif /* CONFIG_MP3ADU_DECODER || CONFIG_MP3ADUFLOAT_DECODER */
  1611. #if CONFIG_MP3ON4_DECODER || CONFIG_MP3ON4FLOAT_DECODER
  1612. /**
  1613. * Context for MP3On4 decoder
  1614. */
  1615. typedef struct MP3On4DecodeContext {
  1616. int frames; ///< number of mp3 frames per block (number of mp3 decoder instances)
  1617. int syncword; ///< syncword patch
  1618. const uint8_t *coff; ///< channel offsets in output buffer
  1619. MPADecodeContext *mp3decctx[5]; ///< MPADecodeContext for every decoder instance
  1620. } MP3On4DecodeContext;
  1621. #include "mpeg4audio.h"
  1622. /* Next 3 arrays are indexed by channel config number (passed via codecdata) */
  1623. /* number of mp3 decoder instances */
  1624. static const uint8_t mp3Frames[8] = { 0, 1, 1, 2, 3, 3, 4, 5 };
  1625. /* offsets into output buffer, assume output order is FL FR C LFE BL BR SL SR */
  1626. static const uint8_t chan_offset[8][5] = {
  1627. { 0 },
  1628. { 0 }, // C
  1629. { 0 }, // FLR
  1630. { 2, 0 }, // C FLR
  1631. { 2, 0, 3 }, // C FLR BS
  1632. { 2, 0, 3 }, // C FLR BLRS
  1633. { 2, 0, 4, 3 }, // C FLR BLRS LFE
  1634. { 2, 0, 6, 4, 3 }, // C FLR BLRS BLR LFE
  1635. };
  1636. /* mp3on4 channel layouts */
  1637. static const int16_t chan_layout[8] = {
  1638. 0,
  1639. AV_CH_LAYOUT_MONO,
  1640. AV_CH_LAYOUT_STEREO,
  1641. AV_CH_LAYOUT_SURROUND,
  1642. AV_CH_LAYOUT_4POINT0,
  1643. AV_CH_LAYOUT_5POINT0,
  1644. AV_CH_LAYOUT_5POINT1,
  1645. AV_CH_LAYOUT_7POINT1
  1646. };
  1647. static av_cold int decode_close_mp3on4(AVCodecContext * avctx)
  1648. {
  1649. MP3On4DecodeContext *s = avctx->priv_data;
  1650. int i;
  1651. for (i = 0; i < s->frames; i++)
  1652. av_freep(&s->mp3decctx[i]);
  1653. return 0;
  1654. }
  1655. static av_cold int decode_init_mp3on4(AVCodecContext * avctx)
  1656. {
  1657. MP3On4DecodeContext *s = avctx->priv_data;
  1658. MPEG4AudioConfig cfg;
  1659. int i;
  1660. if ((avctx->extradata_size < 2) || !avctx->extradata) {
  1661. av_log(avctx, AV_LOG_ERROR, "Codec extradata missing or too short.\n");
  1662. return AVERROR_INVALIDDATA;
  1663. }
  1664. avpriv_mpeg4audio_get_config(&cfg, avctx->extradata,
  1665. avctx->extradata_size * 8, 1);
  1666. if (!cfg.chan_config || cfg.chan_config > 7) {
  1667. av_log(avctx, AV_LOG_ERROR, "Invalid channel config number.\n");
  1668. return AVERROR_INVALIDDATA;
  1669. }
  1670. s->frames = mp3Frames[cfg.chan_config];
  1671. s->coff = chan_offset[cfg.chan_config];
  1672. avctx->channels = ff_mpeg4audio_channels[cfg.chan_config];
  1673. avctx->channel_layout = chan_layout[cfg.chan_config];
  1674. if (cfg.sample_rate < 16000)
  1675. s->syncword = 0xffe00000;
  1676. else
  1677. s->syncword = 0xfff00000;
  1678. /* Init the first mp3 decoder in standard way, so that all tables get builded
  1679. * We replace avctx->priv_data with the context of the first decoder so that
  1680. * decode_init() does not have to be changed.
  1681. * Other decoders will be initialized here copying data from the first context
  1682. */
  1683. // Allocate zeroed memory for the first decoder context
  1684. s->mp3decctx[0] = av_mallocz(sizeof(MPADecodeContext));
  1685. if (!s->mp3decctx[0])
  1686. goto alloc_fail;
  1687. // Put decoder context in place to make init_decode() happy
  1688. avctx->priv_data = s->mp3decctx[0];
  1689. decode_init(avctx);
  1690. // Restore mp3on4 context pointer
  1691. avctx->priv_data = s;
  1692. s->mp3decctx[0]->adu_mode = 1; // Set adu mode
  1693. /* Create a separate codec/context for each frame (first is already ok).
  1694. * Each frame is 1 or 2 channels - up to 5 frames allowed
  1695. */
  1696. for (i = 1; i < s->frames; i++) {
  1697. s->mp3decctx[i] = av_mallocz(sizeof(MPADecodeContext));
  1698. if (!s->mp3decctx[i])
  1699. goto alloc_fail;
  1700. s->mp3decctx[i]->adu_mode = 1;
  1701. s->mp3decctx[i]->avctx = avctx;
  1702. s->mp3decctx[i]->mpadsp = s->mp3decctx[0]->mpadsp;
  1703. s->mp3decctx[i]->fdsp = s->mp3decctx[0]->fdsp;
  1704. }
  1705. return 0;
  1706. alloc_fail:
  1707. decode_close_mp3on4(avctx);
  1708. return AVERROR(ENOMEM);
  1709. }
  1710. static void flush_mp3on4(AVCodecContext *avctx)
  1711. {
  1712. int i;
  1713. MP3On4DecodeContext *s = avctx->priv_data;
  1714. for (i = 0; i < s->frames; i++)
  1715. mp_flush(s->mp3decctx[i]);
  1716. }
  1717. static int decode_frame_mp3on4(AVCodecContext *avctx, void *data,
  1718. int *got_frame_ptr, AVPacket *avpkt)
  1719. {
  1720. AVFrame *frame = data;
  1721. const uint8_t *buf = avpkt->data;
  1722. int buf_size = avpkt->size;
  1723. MP3On4DecodeContext *s = avctx->priv_data;
  1724. MPADecodeContext *m;
  1725. int fsize, len = buf_size, out_size = 0;
  1726. uint32_t header;
  1727. OUT_INT **out_samples;
  1728. OUT_INT *outptr[2];
  1729. int fr, ch, ret;
  1730. /* get output buffer */
  1731. frame->nb_samples = MPA_FRAME_SIZE;
  1732. if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
  1733. return ret;
  1734. out_samples = (OUT_INT **)frame->extended_data;
  1735. // Discard too short frames
  1736. if (buf_size < HEADER_SIZE)
  1737. return AVERROR_INVALIDDATA;
  1738. avctx->bit_rate = 0;
  1739. ch = 0;
  1740. for (fr = 0; fr < s->frames; fr++) {
  1741. fsize = AV_RB16(buf) >> 4;
  1742. fsize = FFMIN3(fsize, len, MPA_MAX_CODED_FRAME_SIZE);
  1743. m = s->mp3decctx[fr];
  1744. av_assert1(m);
  1745. if (fsize < HEADER_SIZE) {
  1746. av_log(avctx, AV_LOG_ERROR, "Frame size smaller than header size\n");
  1747. return AVERROR_INVALIDDATA;
  1748. }
  1749. header = (AV_RB32(buf) & 0x000fffff) | s->syncword; // patch header
  1750. if (ff_mpa_check_header(header) < 0) {
  1751. av_log(avctx, AV_LOG_ERROR, "Bad header, discard block\n");
  1752. return AVERROR_INVALIDDATA;
  1753. }
  1754. avpriv_mpegaudio_decode_header((MPADecodeHeader *)m, header);
  1755. if (ch + m->nb_channels > avctx->channels ||
  1756. s->coff[fr] + m->nb_channels > avctx->channels) {
  1757. av_log(avctx, AV_LOG_ERROR, "frame channel count exceeds codec "
  1758. "channel count\n");
  1759. return AVERROR_INVALIDDATA;
  1760. }
  1761. ch += m->nb_channels;
  1762. outptr[0] = out_samples[s->coff[fr]];
  1763. if (m->nb_channels > 1)
  1764. outptr[1] = out_samples[s->coff[fr] + 1];
  1765. if ((ret = mp_decode_frame(m, outptr, buf, fsize)) < 0) {
  1766. av_log(avctx, AV_LOG_ERROR, "failed to decode channel %d\n", ch);
  1767. memset(outptr[0], 0, MPA_FRAME_SIZE*sizeof(OUT_INT));
  1768. if (m->nb_channels > 1)
  1769. memset(outptr[1], 0, MPA_FRAME_SIZE*sizeof(OUT_INT));
  1770. ret = m->nb_channels * MPA_FRAME_SIZE*sizeof(OUT_INT);
  1771. }
  1772. out_size += ret;
  1773. buf += fsize;
  1774. len -= fsize;
  1775. avctx->bit_rate += m->bit_rate;
  1776. }
  1777. if (ch != avctx->channels) {
  1778. av_log(avctx, AV_LOG_ERROR, "failed to decode all channels\n");
  1779. return AVERROR_INVALIDDATA;
  1780. }
  1781. /* update codec info */
  1782. avctx->sample_rate = s->mp3decctx[0]->sample_rate;
  1783. frame->nb_samples = out_size / (avctx->channels * sizeof(OUT_INT));
  1784. *got_frame_ptr = 1;
  1785. return buf_size;
  1786. }
  1787. #endif /* CONFIG_MP3ON4_DECODER || CONFIG_MP3ON4FLOAT_DECODER */