You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

4369 lines
173KB

  1. /*
  2. * VP9 compatible video decoder
  3. *
  4. * Copyright (C) 2013 Ronald S. Bultje <rsbultje gmail com>
  5. * Copyright (C) 2013 Clément Bœsch <u pkh me>
  6. *
  7. * This file is part of FFmpeg.
  8. *
  9. * FFmpeg is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * FFmpeg is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with FFmpeg; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. #include "avcodec.h"
  24. #include "get_bits.h"
  25. #include "internal.h"
  26. #include "thread.h"
  27. #include "videodsp.h"
  28. #include "vp56.h"
  29. #include "vp9.h"
  30. #include "vp9data.h"
  31. #include "vp9dsp.h"
  32. #include "libavutil/avassert.h"
  33. #include "libavutil/pixdesc.h"
  34. #define VP9_SYNCCODE 0x498342
  35. enum CompPredMode {
  36. PRED_SINGLEREF,
  37. PRED_COMPREF,
  38. PRED_SWITCHABLE,
  39. };
  40. enum BlockLevel {
  41. BL_64X64,
  42. BL_32X32,
  43. BL_16X16,
  44. BL_8X8,
  45. };
  46. enum BlockSize {
  47. BS_64x64,
  48. BS_64x32,
  49. BS_32x64,
  50. BS_32x32,
  51. BS_32x16,
  52. BS_16x32,
  53. BS_16x16,
  54. BS_16x8,
  55. BS_8x16,
  56. BS_8x8,
  57. BS_8x4,
  58. BS_4x8,
  59. BS_4x4,
  60. N_BS_SIZES,
  61. };
  62. struct VP9mvrefPair {
  63. VP56mv mv[2];
  64. int8_t ref[2];
  65. };
  66. typedef struct VP9Frame {
  67. ThreadFrame tf;
  68. AVBufferRef *extradata;
  69. uint8_t *segmentation_map;
  70. struct VP9mvrefPair *mv;
  71. int uses_2pass;
  72. } VP9Frame;
  73. struct VP9Filter {
  74. uint8_t level[8 * 8];
  75. uint8_t /* bit=col */ mask[2 /* 0=y, 1=uv */][2 /* 0=col, 1=row */]
  76. [8 /* rows */][4 /* 0=16, 1=8, 2=4, 3=inner4 */];
  77. };
  78. typedef struct VP9Block {
  79. uint8_t seg_id, intra, comp, ref[2], mode[4], uvmode, skip;
  80. enum FilterMode filter;
  81. VP56mv mv[4 /* b_idx */][2 /* ref */];
  82. enum BlockSize bs;
  83. enum TxfmMode tx, uvtx;
  84. enum BlockLevel bl;
  85. enum BlockPartition bp;
  86. } VP9Block;
  87. typedef struct VP9Context {
  88. VP9DSPContext dsp;
  89. VideoDSPContext vdsp;
  90. GetBitContext gb;
  91. VP56RangeCoder c;
  92. VP56RangeCoder *c_b;
  93. unsigned c_b_size;
  94. VP9Block *b_base, *b;
  95. int pass;
  96. int row, row7, col, col7;
  97. uint8_t *dst[3];
  98. ptrdiff_t y_stride, uv_stride;
  99. // bitstream header
  100. uint8_t keyframe, last_keyframe;
  101. uint8_t last_bpp, bpp, bpp_index, bytesperpixel;
  102. uint8_t invisible;
  103. uint8_t use_last_frame_mvs;
  104. uint8_t errorres;
  105. uint8_t ss_h, ss_v;
  106. uint8_t intraonly;
  107. uint8_t resetctx;
  108. uint8_t refreshrefmask;
  109. uint8_t highprecisionmvs;
  110. enum FilterMode filtermode;
  111. uint8_t allowcompinter;
  112. uint8_t fixcompref;
  113. uint8_t refreshctx;
  114. uint8_t parallelmode;
  115. uint8_t framectxid;
  116. uint8_t refidx[3];
  117. uint8_t signbias[3];
  118. uint8_t varcompref[2];
  119. ThreadFrame refs[8], next_refs[8];
  120. #define CUR_FRAME 0
  121. #define REF_FRAME_MVPAIR 1
  122. #define REF_FRAME_SEGMAP 2
  123. VP9Frame frames[3];
  124. struct {
  125. uint8_t level;
  126. int8_t sharpness;
  127. uint8_t lim_lut[64];
  128. uint8_t mblim_lut[64];
  129. } filter;
  130. struct {
  131. uint8_t enabled;
  132. int8_t mode[2];
  133. int8_t ref[4];
  134. } lf_delta;
  135. uint8_t yac_qi;
  136. int8_t ydc_qdelta, uvdc_qdelta, uvac_qdelta;
  137. uint8_t lossless;
  138. #define MAX_SEGMENT 8
  139. struct {
  140. uint8_t enabled;
  141. uint8_t temporal;
  142. uint8_t absolute_vals;
  143. uint8_t update_map;
  144. uint8_t ignore_refmap;
  145. struct {
  146. uint8_t q_enabled;
  147. uint8_t lf_enabled;
  148. uint8_t ref_enabled;
  149. uint8_t skip_enabled;
  150. uint8_t ref_val;
  151. int16_t q_val;
  152. int8_t lf_val;
  153. int16_t qmul[2][2];
  154. uint8_t lflvl[4][2];
  155. } feat[MAX_SEGMENT];
  156. } segmentation;
  157. struct {
  158. unsigned log2_tile_cols, log2_tile_rows;
  159. unsigned tile_cols, tile_rows;
  160. unsigned tile_row_start, tile_row_end, tile_col_start, tile_col_end;
  161. } tiling;
  162. unsigned sb_cols, sb_rows, rows, cols;
  163. struct {
  164. prob_context p;
  165. uint8_t coef[4][2][2][6][6][3];
  166. } prob_ctx[4];
  167. struct {
  168. prob_context p;
  169. uint8_t coef[4][2][2][6][6][11];
  170. uint8_t seg[7];
  171. uint8_t segpred[3];
  172. } prob;
  173. struct {
  174. unsigned y_mode[4][10];
  175. unsigned uv_mode[10][10];
  176. unsigned filter[4][3];
  177. unsigned mv_mode[7][4];
  178. unsigned intra[4][2];
  179. unsigned comp[5][2];
  180. unsigned single_ref[5][2][2];
  181. unsigned comp_ref[5][2];
  182. unsigned tx32p[2][4];
  183. unsigned tx16p[2][3];
  184. unsigned tx8p[2][2];
  185. unsigned skip[3][2];
  186. unsigned mv_joint[4];
  187. struct {
  188. unsigned sign[2];
  189. unsigned classes[11];
  190. unsigned class0[2];
  191. unsigned bits[10][2];
  192. unsigned class0_fp[2][4];
  193. unsigned fp[4];
  194. unsigned class0_hp[2];
  195. unsigned hp[2];
  196. } mv_comp[2];
  197. unsigned partition[4][4][4];
  198. unsigned coef[4][2][2][6][6][3];
  199. unsigned eob[4][2][2][6][6][2];
  200. } counts;
  201. enum TxfmMode txfmmode;
  202. enum CompPredMode comppredmode;
  203. // contextual (left/above) cache
  204. DECLARE_ALIGNED(16, uint8_t, left_y_nnz_ctx)[16];
  205. DECLARE_ALIGNED(16, uint8_t, left_mode_ctx)[16];
  206. DECLARE_ALIGNED(16, VP56mv, left_mv_ctx)[16][2];
  207. DECLARE_ALIGNED(16, uint8_t, left_uv_nnz_ctx)[2][16];
  208. DECLARE_ALIGNED(8, uint8_t, left_partition_ctx)[8];
  209. DECLARE_ALIGNED(8, uint8_t, left_skip_ctx)[8];
  210. DECLARE_ALIGNED(8, uint8_t, left_txfm_ctx)[8];
  211. DECLARE_ALIGNED(8, uint8_t, left_segpred_ctx)[8];
  212. DECLARE_ALIGNED(8, uint8_t, left_intra_ctx)[8];
  213. DECLARE_ALIGNED(8, uint8_t, left_comp_ctx)[8];
  214. DECLARE_ALIGNED(8, uint8_t, left_ref_ctx)[8];
  215. DECLARE_ALIGNED(8, uint8_t, left_filter_ctx)[8];
  216. uint8_t *above_partition_ctx;
  217. uint8_t *above_mode_ctx;
  218. // FIXME maybe merge some of the below in a flags field?
  219. uint8_t *above_y_nnz_ctx;
  220. uint8_t *above_uv_nnz_ctx[2];
  221. uint8_t *above_skip_ctx; // 1bit
  222. uint8_t *above_txfm_ctx; // 2bit
  223. uint8_t *above_segpred_ctx; // 1bit
  224. uint8_t *above_intra_ctx; // 1bit
  225. uint8_t *above_comp_ctx; // 1bit
  226. uint8_t *above_ref_ctx; // 2bit
  227. uint8_t *above_filter_ctx;
  228. VP56mv (*above_mv_ctx)[2];
  229. // whole-frame cache
  230. uint8_t *intra_pred_data[3];
  231. struct VP9Filter *lflvl;
  232. DECLARE_ALIGNED(32, uint8_t, edge_emu_buffer)[135 * 144 * 2];
  233. // block reconstruction intermediates
  234. int block_alloc_using_2pass;
  235. int16_t *block_base, *block, *uvblock_base[2], *uvblock[2];
  236. uint8_t *eob_base, *uveob_base[2], *eob, *uveob[2];
  237. struct { int x, y; } min_mv, max_mv;
  238. DECLARE_ALIGNED(32, uint8_t, tmp_y)[64 * 64 * 2];
  239. DECLARE_ALIGNED(32, uint8_t, tmp_uv)[2][64 * 64 * 2];
  240. uint16_t mvscale[3][2];
  241. uint8_t mvstep[3][2];
  242. } VP9Context;
  243. static const uint8_t bwh_tab[2][N_BS_SIZES][2] = {
  244. {
  245. { 16, 16 }, { 16, 8 }, { 8, 16 }, { 8, 8 }, { 8, 4 }, { 4, 8 },
  246. { 4, 4 }, { 4, 2 }, { 2, 4 }, { 2, 2 }, { 2, 1 }, { 1, 2 }, { 1, 1 },
  247. }, {
  248. { 8, 8 }, { 8, 4 }, { 4, 8 }, { 4, 4 }, { 4, 2 }, { 2, 4 },
  249. { 2, 2 }, { 2, 1 }, { 1, 2 }, { 1, 1 }, { 1, 1 }, { 1, 1 }, { 1, 1 },
  250. }
  251. };
  252. static int vp9_alloc_frame(AVCodecContext *ctx, VP9Frame *f)
  253. {
  254. VP9Context *s = ctx->priv_data;
  255. int ret, sz;
  256. if ((ret = ff_thread_get_buffer(ctx, &f->tf, AV_GET_BUFFER_FLAG_REF)) < 0)
  257. return ret;
  258. sz = 64 * s->sb_cols * s->sb_rows;
  259. if (!(f->extradata = av_buffer_allocz(sz * (1 + sizeof(struct VP9mvrefPair))))) {
  260. ff_thread_release_buffer(ctx, &f->tf);
  261. return AVERROR(ENOMEM);
  262. }
  263. f->segmentation_map = f->extradata->data;
  264. f->mv = (struct VP9mvrefPair *) (f->extradata->data + sz);
  265. return 0;
  266. }
  267. static void vp9_unref_frame(AVCodecContext *ctx, VP9Frame *f)
  268. {
  269. ff_thread_release_buffer(ctx, &f->tf);
  270. av_buffer_unref(&f->extradata);
  271. }
  272. static int vp9_ref_frame(AVCodecContext *ctx, VP9Frame *dst, VP9Frame *src)
  273. {
  274. int res;
  275. if ((res = ff_thread_ref_frame(&dst->tf, &src->tf)) < 0) {
  276. return res;
  277. } else if (!(dst->extradata = av_buffer_ref(src->extradata))) {
  278. vp9_unref_frame(ctx, dst);
  279. return AVERROR(ENOMEM);
  280. }
  281. dst->segmentation_map = src->segmentation_map;
  282. dst->mv = src->mv;
  283. dst->uses_2pass = src->uses_2pass;
  284. return 0;
  285. }
  286. static int update_size(AVCodecContext *ctx, int w, int h, enum AVPixelFormat fmt)
  287. {
  288. VP9Context *s = ctx->priv_data;
  289. uint8_t *p;
  290. int bytesperpixel = s->bytesperpixel;
  291. av_assert0(w > 0 && h > 0);
  292. if (s->intra_pred_data[0] && w == ctx->width && h == ctx->height && ctx->pix_fmt == fmt)
  293. return 0;
  294. ctx->width = w;
  295. ctx->height = h;
  296. ctx->pix_fmt = fmt;
  297. s->sb_cols = (w + 63) >> 6;
  298. s->sb_rows = (h + 63) >> 6;
  299. s->cols = (w + 7) >> 3;
  300. s->rows = (h + 7) >> 3;
  301. #define assign(var, type, n) var = (type) p; p += s->sb_cols * (n) * sizeof(*var)
  302. av_freep(&s->intra_pred_data[0]);
  303. // FIXME we slightly over-allocate here for subsampled chroma, but a little
  304. // bit of padding shouldn't affect performance...
  305. p = av_malloc(s->sb_cols * (128 + 192 * bytesperpixel +
  306. sizeof(*s->lflvl) + 16 * sizeof(*s->above_mv_ctx)));
  307. if (!p)
  308. return AVERROR(ENOMEM);
  309. assign(s->intra_pred_data[0], uint8_t *, 64 * bytesperpixel);
  310. assign(s->intra_pred_data[1], uint8_t *, 64 * bytesperpixel);
  311. assign(s->intra_pred_data[2], uint8_t *, 64 * bytesperpixel);
  312. assign(s->above_y_nnz_ctx, uint8_t *, 16);
  313. assign(s->above_mode_ctx, uint8_t *, 16);
  314. assign(s->above_mv_ctx, VP56mv(*)[2], 16);
  315. assign(s->above_uv_nnz_ctx[0], uint8_t *, 16);
  316. assign(s->above_uv_nnz_ctx[1], uint8_t *, 16);
  317. assign(s->above_partition_ctx, uint8_t *, 8);
  318. assign(s->above_skip_ctx, uint8_t *, 8);
  319. assign(s->above_txfm_ctx, uint8_t *, 8);
  320. assign(s->above_segpred_ctx, uint8_t *, 8);
  321. assign(s->above_intra_ctx, uint8_t *, 8);
  322. assign(s->above_comp_ctx, uint8_t *, 8);
  323. assign(s->above_ref_ctx, uint8_t *, 8);
  324. assign(s->above_filter_ctx, uint8_t *, 8);
  325. assign(s->lflvl, struct VP9Filter *, 1);
  326. #undef assign
  327. // these will be re-allocated a little later
  328. av_freep(&s->b_base);
  329. av_freep(&s->block_base);
  330. if (s->bpp != s->last_bpp) {
  331. ff_vp9dsp_init(&s->dsp, s->bpp);
  332. ff_videodsp_init(&s->vdsp, s->bpp);
  333. s->last_bpp = s->bpp;
  334. }
  335. return 0;
  336. }
  337. static int update_block_buffers(AVCodecContext *ctx)
  338. {
  339. VP9Context *s = ctx->priv_data;
  340. int chroma_blocks, chroma_eobs, bytesperpixel = s->bytesperpixel;
  341. if (s->b_base && s->block_base && s->block_alloc_using_2pass == s->frames[CUR_FRAME].uses_2pass)
  342. return 0;
  343. av_free(s->b_base);
  344. av_free(s->block_base);
  345. chroma_blocks = 64 * 64 >> (s->ss_h + s->ss_v);
  346. chroma_eobs = 16 * 16 >> (s->ss_h + s->ss_v);
  347. if (s->frames[CUR_FRAME].uses_2pass) {
  348. int sbs = s->sb_cols * s->sb_rows;
  349. s->b_base = av_malloc_array(s->cols * s->rows, sizeof(VP9Block));
  350. s->block_base = av_mallocz(((64 * 64 + 2 * chroma_blocks) * bytesperpixel * sizeof(int16_t) +
  351. 16 * 16 + 2 * chroma_eobs) * sbs);
  352. if (!s->b_base || !s->block_base)
  353. return AVERROR(ENOMEM);
  354. s->uvblock_base[0] = s->block_base + sbs * 64 * 64 * bytesperpixel;
  355. s->uvblock_base[1] = s->uvblock_base[0] + sbs * chroma_blocks * bytesperpixel;
  356. s->eob_base = (uint8_t *) (s->uvblock_base[1] + sbs * chroma_blocks * bytesperpixel);
  357. s->uveob_base[0] = s->eob_base + 16 * 16 * sbs;
  358. s->uveob_base[1] = s->uveob_base[0] + chroma_eobs * sbs;
  359. } else {
  360. s->b_base = av_malloc(sizeof(VP9Block));
  361. s->block_base = av_mallocz((64 * 64 + 2 * chroma_blocks) * bytesperpixel * sizeof(int16_t) +
  362. 16 * 16 + 2 * chroma_eobs);
  363. if (!s->b_base || !s->block_base)
  364. return AVERROR(ENOMEM);
  365. s->uvblock_base[0] = s->block_base + 64 * 64 * bytesperpixel;
  366. s->uvblock_base[1] = s->uvblock_base[0] + chroma_blocks * bytesperpixel;
  367. s->eob_base = (uint8_t *) (s->uvblock_base[1] + chroma_blocks * bytesperpixel);
  368. s->uveob_base[0] = s->eob_base + 16 * 16;
  369. s->uveob_base[1] = s->uveob_base[0] + chroma_eobs;
  370. }
  371. s->block_alloc_using_2pass = s->frames[CUR_FRAME].uses_2pass;
  372. return 0;
  373. }
  374. // for some reason the sign bit is at the end, not the start, of a bit sequence
  375. static av_always_inline int get_sbits_inv(GetBitContext *gb, int n)
  376. {
  377. int v = get_bits(gb, n);
  378. return get_bits1(gb) ? -v : v;
  379. }
  380. static av_always_inline int inv_recenter_nonneg(int v, int m)
  381. {
  382. return v > 2 * m ? v : v & 1 ? m - ((v + 1) >> 1) : m + (v >> 1);
  383. }
  384. // differential forward probability updates
  385. static int update_prob(VP56RangeCoder *c, int p)
  386. {
  387. static const int inv_map_table[255] = {
  388. 7, 20, 33, 46, 59, 72, 85, 98, 111, 124, 137, 150, 163, 176,
  389. 189, 202, 215, 228, 241, 254, 1, 2, 3, 4, 5, 6, 8, 9,
  390. 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24,
  391. 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39,
  392. 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54,
  393. 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
  394. 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84,
  395. 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100,
  396. 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 112, 113, 114, 115,
  397. 116, 117, 118, 119, 120, 121, 122, 123, 125, 126, 127, 128, 129, 130,
  398. 131, 132, 133, 134, 135, 136, 138, 139, 140, 141, 142, 143, 144, 145,
  399. 146, 147, 148, 149, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160,
  400. 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175,
  401. 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 190, 191,
  402. 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 203, 204, 205, 206,
  403. 207, 208, 209, 210, 211, 212, 213, 214, 216, 217, 218, 219, 220, 221,
  404. 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 234, 235, 236,
  405. 237, 238, 239, 240, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251,
  406. 252, 253, 253,
  407. };
  408. int d;
  409. /* This code is trying to do a differential probability update. For a
  410. * current probability A in the range [1, 255], the difference to a new
  411. * probability of any value can be expressed differentially as 1-A,255-A
  412. * where some part of this (absolute range) exists both in positive as
  413. * well as the negative part, whereas another part only exists in one
  414. * half. We're trying to code this shared part differentially, i.e.
  415. * times two where the value of the lowest bit specifies the sign, and
  416. * the single part is then coded on top of this. This absolute difference
  417. * then again has a value of [0,254], but a bigger value in this range
  418. * indicates that we're further away from the original value A, so we
  419. * can code this as a VLC code, since higher values are increasingly
  420. * unlikely. The first 20 values in inv_map_table[] allow 'cheap, rough'
  421. * updates vs. the 'fine, exact' updates further down the range, which
  422. * adds one extra dimension to this differential update model. */
  423. if (!vp8_rac_get(c)) {
  424. d = vp8_rac_get_uint(c, 4) + 0;
  425. } else if (!vp8_rac_get(c)) {
  426. d = vp8_rac_get_uint(c, 4) + 16;
  427. } else if (!vp8_rac_get(c)) {
  428. d = vp8_rac_get_uint(c, 5) + 32;
  429. } else {
  430. d = vp8_rac_get_uint(c, 7);
  431. if (d >= 65)
  432. d = (d << 1) - 65 + vp8_rac_get(c);
  433. d += 64;
  434. av_assert2(d < FF_ARRAY_ELEMS(inv_map_table));
  435. }
  436. return p <= 128 ? 1 + inv_recenter_nonneg(inv_map_table[d], p - 1) :
  437. 255 - inv_recenter_nonneg(inv_map_table[d], 255 - p);
  438. }
  439. static enum AVPixelFormat read_colorspace_details(AVCodecContext *ctx)
  440. {
  441. static const enum AVColorSpace colorspaces[8] = {
  442. AVCOL_SPC_UNSPECIFIED, AVCOL_SPC_BT470BG, AVCOL_SPC_BT709, AVCOL_SPC_SMPTE170M,
  443. AVCOL_SPC_SMPTE240M, AVCOL_SPC_BT2020_NCL, AVCOL_SPC_RESERVED, AVCOL_SPC_RGB,
  444. };
  445. VP9Context *s = ctx->priv_data;
  446. enum AVPixelFormat res;
  447. int bits = ctx->profile <= 1 ? 0 : 1 + get_bits1(&s->gb); // 0:8, 1:10, 2:12
  448. s->bpp_index = bits;
  449. s->bpp = 8 + bits * 2;
  450. s->bytesperpixel = (7 + s->bpp) >> 3;
  451. ctx->colorspace = colorspaces[get_bits(&s->gb, 3)];
  452. if (ctx->colorspace == AVCOL_SPC_RGB) { // RGB = profile 1
  453. static const enum AVPixelFormat pix_fmt_rgb[3] = {
  454. AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRP10, AV_PIX_FMT_GBRP12
  455. };
  456. if (ctx->profile & 1) {
  457. s->ss_h = s->ss_v = 1;
  458. res = pix_fmt_rgb[bits];
  459. ctx->color_range = AVCOL_RANGE_JPEG;
  460. } else {
  461. av_log(ctx, AV_LOG_ERROR, "RGB not supported in profile %d\n",
  462. ctx->profile);
  463. return AVERROR_INVALIDDATA;
  464. }
  465. } else {
  466. static const enum AVPixelFormat pix_fmt_for_ss[3][2 /* v */][2 /* h */] = {
  467. { { AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV422P },
  468. { AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV420P } },
  469. { { AV_PIX_FMT_YUV444P10, AV_PIX_FMT_YUV422P10 },
  470. { AV_PIX_FMT_YUV440P10, AV_PIX_FMT_YUV420P10 } },
  471. { { AV_PIX_FMT_YUV444P12, AV_PIX_FMT_YUV422P12 },
  472. { AV_PIX_FMT_YUV440P12, AV_PIX_FMT_YUV420P12 } }
  473. };
  474. ctx->color_range = get_bits1(&s->gb) ? AVCOL_RANGE_JPEG : AVCOL_RANGE_MPEG;
  475. if (ctx->profile & 1) {
  476. s->ss_h = get_bits1(&s->gb);
  477. s->ss_v = get_bits1(&s->gb);
  478. if ((res = pix_fmt_for_ss[bits][s->ss_v][s->ss_h]) == AV_PIX_FMT_YUV420P) {
  479. av_log(ctx, AV_LOG_ERROR, "YUV 4:2:0 not supported in profile %d\n",
  480. ctx->profile);
  481. return AVERROR_INVALIDDATA;
  482. } else if (get_bits1(&s->gb)) {
  483. av_log(ctx, AV_LOG_ERROR, "Profile %d color details reserved bit set\n",
  484. ctx->profile);
  485. return AVERROR_INVALIDDATA;
  486. }
  487. } else {
  488. s->ss_h = s->ss_v = 1;
  489. res = pix_fmt_for_ss[bits][1][1];
  490. }
  491. }
  492. return res;
  493. }
  494. static int decode_frame_header(AVCodecContext *ctx,
  495. const uint8_t *data, int size, int *ref)
  496. {
  497. VP9Context *s = ctx->priv_data;
  498. int c, i, j, k, l, m, n, w, h, max, size2, res, sharp;
  499. enum AVPixelFormat fmt = ctx->pix_fmt;
  500. int last_invisible;
  501. const uint8_t *data2;
  502. /* general header */
  503. if ((res = init_get_bits8(&s->gb, data, size)) < 0) {
  504. av_log(ctx, AV_LOG_ERROR, "Failed to initialize bitstream reader\n");
  505. return res;
  506. }
  507. if (get_bits(&s->gb, 2) != 0x2) { // frame marker
  508. av_log(ctx, AV_LOG_ERROR, "Invalid frame marker\n");
  509. return AVERROR_INVALIDDATA;
  510. }
  511. ctx->profile = get_bits1(&s->gb);
  512. ctx->profile |= get_bits1(&s->gb) << 1;
  513. if (ctx->profile == 3) ctx->profile += get_bits1(&s->gb);
  514. if (ctx->profile > 3) {
  515. av_log(ctx, AV_LOG_ERROR, "Profile %d is not yet supported\n", ctx->profile);
  516. return AVERROR_INVALIDDATA;
  517. }
  518. if (get_bits1(&s->gb)) {
  519. *ref = get_bits(&s->gb, 3);
  520. return 0;
  521. }
  522. s->last_keyframe = s->keyframe;
  523. s->keyframe = !get_bits1(&s->gb);
  524. last_invisible = s->invisible;
  525. s->invisible = !get_bits1(&s->gb);
  526. s->errorres = get_bits1(&s->gb);
  527. s->use_last_frame_mvs = !s->errorres && !last_invisible;
  528. if (s->keyframe) {
  529. if (get_bits_long(&s->gb, 24) != VP9_SYNCCODE) { // synccode
  530. av_log(ctx, AV_LOG_ERROR, "Invalid sync code\n");
  531. return AVERROR_INVALIDDATA;
  532. }
  533. if ((fmt = read_colorspace_details(ctx)) < 0)
  534. return fmt;
  535. // for profile 1, here follows the subsampling bits
  536. s->refreshrefmask = 0xff;
  537. w = get_bits(&s->gb, 16) + 1;
  538. h = get_bits(&s->gb, 16) + 1;
  539. if (get_bits1(&s->gb)) // display size
  540. skip_bits(&s->gb, 32);
  541. } else {
  542. s->intraonly = s->invisible ? get_bits1(&s->gb) : 0;
  543. s->resetctx = s->errorres ? 0 : get_bits(&s->gb, 2);
  544. if (s->intraonly) {
  545. if (get_bits_long(&s->gb, 24) != VP9_SYNCCODE) { // synccode
  546. av_log(ctx, AV_LOG_ERROR, "Invalid sync code\n");
  547. return AVERROR_INVALIDDATA;
  548. }
  549. if (ctx->profile >= 1) {
  550. if ((fmt = read_colorspace_details(ctx)) < 0)
  551. return fmt;
  552. } else {
  553. s->ss_h = s->ss_v = 1;
  554. s->bpp = 8;
  555. s->bpp_index = 0;
  556. s->bytesperpixel = 1;
  557. fmt = AV_PIX_FMT_YUV420P;
  558. ctx->colorspace = AVCOL_SPC_BT470BG;
  559. ctx->color_range = AVCOL_RANGE_JPEG;
  560. }
  561. s->refreshrefmask = get_bits(&s->gb, 8);
  562. w = get_bits(&s->gb, 16) + 1;
  563. h = get_bits(&s->gb, 16) + 1;
  564. if (get_bits1(&s->gb)) // display size
  565. skip_bits(&s->gb, 32);
  566. } else {
  567. s->refreshrefmask = get_bits(&s->gb, 8);
  568. s->refidx[0] = get_bits(&s->gb, 3);
  569. s->signbias[0] = get_bits1(&s->gb) && !s->errorres;
  570. s->refidx[1] = get_bits(&s->gb, 3);
  571. s->signbias[1] = get_bits1(&s->gb) && !s->errorres;
  572. s->refidx[2] = get_bits(&s->gb, 3);
  573. s->signbias[2] = get_bits1(&s->gb) && !s->errorres;
  574. if (!s->refs[s->refidx[0]].f->data[0] ||
  575. !s->refs[s->refidx[1]].f->data[0] ||
  576. !s->refs[s->refidx[2]].f->data[0]) {
  577. av_log(ctx, AV_LOG_ERROR, "Not all references are available\n");
  578. return AVERROR_INVALIDDATA;
  579. }
  580. if (get_bits1(&s->gb)) {
  581. w = s->refs[s->refidx[0]].f->width;
  582. h = s->refs[s->refidx[0]].f->height;
  583. } else if (get_bits1(&s->gb)) {
  584. w = s->refs[s->refidx[1]].f->width;
  585. h = s->refs[s->refidx[1]].f->height;
  586. } else if (get_bits1(&s->gb)) {
  587. w = s->refs[s->refidx[2]].f->width;
  588. h = s->refs[s->refidx[2]].f->height;
  589. } else {
  590. w = get_bits(&s->gb, 16) + 1;
  591. h = get_bits(&s->gb, 16) + 1;
  592. }
  593. // Note that in this code, "CUR_FRAME" is actually before we
  594. // have formally allocated a frame, and thus actually represents
  595. // the _last_ frame
  596. s->use_last_frame_mvs &= s->frames[CUR_FRAME].tf.f->width == w &&
  597. s->frames[CUR_FRAME].tf.f->height == h;
  598. if (get_bits1(&s->gb)) // display size
  599. skip_bits(&s->gb, 32);
  600. s->highprecisionmvs = get_bits1(&s->gb);
  601. s->filtermode = get_bits1(&s->gb) ? FILTER_SWITCHABLE :
  602. get_bits(&s->gb, 2);
  603. s->allowcompinter = (s->signbias[0] != s->signbias[1] ||
  604. s->signbias[0] != s->signbias[2]);
  605. if (s->allowcompinter) {
  606. if (s->signbias[0] == s->signbias[1]) {
  607. s->fixcompref = 2;
  608. s->varcompref[0] = 0;
  609. s->varcompref[1] = 1;
  610. } else if (s->signbias[0] == s->signbias[2]) {
  611. s->fixcompref = 1;
  612. s->varcompref[0] = 0;
  613. s->varcompref[1] = 2;
  614. } else {
  615. s->fixcompref = 0;
  616. s->varcompref[0] = 1;
  617. s->varcompref[1] = 2;
  618. }
  619. }
  620. for (i = 0; i < 3; i++) {
  621. AVFrame *ref = s->refs[s->refidx[i]].f;
  622. int refw = ref->width, refh = ref->height;
  623. if (ref->format != fmt) {
  624. av_log(ctx, AV_LOG_ERROR,
  625. "Ref pixfmt (%s) did not match current frame (%s)",
  626. av_get_pix_fmt_name(ref->format),
  627. av_get_pix_fmt_name(fmt));
  628. return AVERROR_INVALIDDATA;
  629. } else if (refw == w && refh == h) {
  630. s->mvscale[i][0] = s->mvscale[i][1] = 0;
  631. } else {
  632. if (w * 2 < refw || h * 2 < refh || w > 16 * refw || h > 16 * refh) {
  633. av_log(ctx, AV_LOG_ERROR,
  634. "Invalid ref frame dimensions %dx%d for frame size %dx%d\n",
  635. refw, refh, w, h);
  636. return AVERROR_INVALIDDATA;
  637. }
  638. s->mvscale[i][0] = (refw << 14) / w;
  639. s->mvscale[i][1] = (refh << 14) / h;
  640. s->mvstep[i][0] = 16 * s->mvscale[i][0] >> 14;
  641. s->mvstep[i][1] = 16 * s->mvscale[i][1] >> 14;
  642. }
  643. }
  644. }
  645. }
  646. s->refreshctx = s->errorres ? 0 : get_bits1(&s->gb);
  647. s->parallelmode = s->errorres ? 1 : get_bits1(&s->gb);
  648. s->framectxid = c = get_bits(&s->gb, 2);
  649. /* loopfilter header data */
  650. if (s->keyframe || s->errorres || s->intraonly) {
  651. // reset loopfilter defaults
  652. s->lf_delta.ref[0] = 1;
  653. s->lf_delta.ref[1] = 0;
  654. s->lf_delta.ref[2] = -1;
  655. s->lf_delta.ref[3] = -1;
  656. s->lf_delta.mode[0] = 0;
  657. s->lf_delta.mode[1] = 0;
  658. memset(s->segmentation.feat, 0, sizeof(s->segmentation.feat));
  659. }
  660. s->filter.level = get_bits(&s->gb, 6);
  661. sharp = get_bits(&s->gb, 3);
  662. // if sharpness changed, reinit lim/mblim LUTs. if it didn't change, keep
  663. // the old cache values since they are still valid
  664. if (s->filter.sharpness != sharp)
  665. memset(s->filter.lim_lut, 0, sizeof(s->filter.lim_lut));
  666. s->filter.sharpness = sharp;
  667. if ((s->lf_delta.enabled = get_bits1(&s->gb))) {
  668. if (get_bits1(&s->gb)) {
  669. for (i = 0; i < 4; i++)
  670. if (get_bits1(&s->gb))
  671. s->lf_delta.ref[i] = get_sbits_inv(&s->gb, 6);
  672. for (i = 0; i < 2; i++)
  673. if (get_bits1(&s->gb))
  674. s->lf_delta.mode[i] = get_sbits_inv(&s->gb, 6);
  675. }
  676. }
  677. /* quantization header data */
  678. s->yac_qi = get_bits(&s->gb, 8);
  679. s->ydc_qdelta = get_bits1(&s->gb) ? get_sbits_inv(&s->gb, 4) : 0;
  680. s->uvdc_qdelta = get_bits1(&s->gb) ? get_sbits_inv(&s->gb, 4) : 0;
  681. s->uvac_qdelta = get_bits1(&s->gb) ? get_sbits_inv(&s->gb, 4) : 0;
  682. s->lossless = s->yac_qi == 0 && s->ydc_qdelta == 0 &&
  683. s->uvdc_qdelta == 0 && s->uvac_qdelta == 0;
  684. if (s->lossless)
  685. ctx->properties |= FF_CODEC_PROPERTY_LOSSLESS;
  686. /* segmentation header info */
  687. s->segmentation.ignore_refmap = 0;
  688. if ((s->segmentation.enabled = get_bits1(&s->gb))) {
  689. if ((s->segmentation.update_map = get_bits1(&s->gb))) {
  690. for (i = 0; i < 7; i++)
  691. s->prob.seg[i] = get_bits1(&s->gb) ?
  692. get_bits(&s->gb, 8) : 255;
  693. if ((s->segmentation.temporal = get_bits1(&s->gb))) {
  694. for (i = 0; i < 3; i++)
  695. s->prob.segpred[i] = get_bits1(&s->gb) ?
  696. get_bits(&s->gb, 8) : 255;
  697. }
  698. }
  699. if ((!s->segmentation.update_map || s->segmentation.temporal) &&
  700. (w != s->frames[CUR_FRAME].tf.f->width ||
  701. h != s->frames[CUR_FRAME].tf.f->height)) {
  702. av_log(ctx, AV_LOG_WARNING,
  703. "Reference segmap (temp=%d,update=%d) enabled on size-change!\n",
  704. s->segmentation.temporal, s->segmentation.update_map);
  705. s->segmentation.ignore_refmap = 1;
  706. //return AVERROR_INVALIDDATA;
  707. }
  708. if (get_bits1(&s->gb)) {
  709. s->segmentation.absolute_vals = get_bits1(&s->gb);
  710. for (i = 0; i < 8; i++) {
  711. if ((s->segmentation.feat[i].q_enabled = get_bits1(&s->gb)))
  712. s->segmentation.feat[i].q_val = get_sbits_inv(&s->gb, 8);
  713. if ((s->segmentation.feat[i].lf_enabled = get_bits1(&s->gb)))
  714. s->segmentation.feat[i].lf_val = get_sbits_inv(&s->gb, 6);
  715. if ((s->segmentation.feat[i].ref_enabled = get_bits1(&s->gb)))
  716. s->segmentation.feat[i].ref_val = get_bits(&s->gb, 2);
  717. s->segmentation.feat[i].skip_enabled = get_bits1(&s->gb);
  718. }
  719. }
  720. } else {
  721. s->segmentation.feat[0].q_enabled = 0;
  722. s->segmentation.feat[0].lf_enabled = 0;
  723. s->segmentation.feat[0].skip_enabled = 0;
  724. s->segmentation.feat[0].ref_enabled = 0;
  725. }
  726. // set qmul[] based on Y/UV, AC/DC and segmentation Q idx deltas
  727. for (i = 0; i < (s->segmentation.enabled ? 8 : 1); i++) {
  728. int qyac, qydc, quvac, quvdc, lflvl, sh;
  729. if (s->segmentation.feat[i].q_enabled) {
  730. if (s->segmentation.absolute_vals)
  731. qyac = s->segmentation.feat[i].q_val;
  732. else
  733. qyac = s->yac_qi + s->segmentation.feat[i].q_val;
  734. } else {
  735. qyac = s->yac_qi;
  736. }
  737. qydc = av_clip_uintp2(qyac + s->ydc_qdelta, 8);
  738. quvdc = av_clip_uintp2(qyac + s->uvdc_qdelta, 8);
  739. quvac = av_clip_uintp2(qyac + s->uvac_qdelta, 8);
  740. qyac = av_clip_uintp2(qyac, 8);
  741. s->segmentation.feat[i].qmul[0][0] = vp9_dc_qlookup[s->bpp_index][qydc];
  742. s->segmentation.feat[i].qmul[0][1] = vp9_ac_qlookup[s->bpp_index][qyac];
  743. s->segmentation.feat[i].qmul[1][0] = vp9_dc_qlookup[s->bpp_index][quvdc];
  744. s->segmentation.feat[i].qmul[1][1] = vp9_ac_qlookup[s->bpp_index][quvac];
  745. sh = s->filter.level >= 32;
  746. if (s->segmentation.feat[i].lf_enabled) {
  747. if (s->segmentation.absolute_vals)
  748. lflvl = av_clip_uintp2(s->segmentation.feat[i].lf_val, 6);
  749. else
  750. lflvl = av_clip_uintp2(s->filter.level + s->segmentation.feat[i].lf_val, 6);
  751. } else {
  752. lflvl = s->filter.level;
  753. }
  754. if (s->lf_delta.enabled) {
  755. s->segmentation.feat[i].lflvl[0][0] =
  756. s->segmentation.feat[i].lflvl[0][1] =
  757. av_clip_uintp2(lflvl + (s->lf_delta.ref[0] << sh), 6);
  758. for (j = 1; j < 4; j++) {
  759. s->segmentation.feat[i].lflvl[j][0] =
  760. av_clip_uintp2(lflvl + ((s->lf_delta.ref[j] +
  761. s->lf_delta.mode[0]) * (1 << sh)), 6);
  762. s->segmentation.feat[i].lflvl[j][1] =
  763. av_clip_uintp2(lflvl + ((s->lf_delta.ref[j] +
  764. s->lf_delta.mode[1]) * (1 << sh)), 6);
  765. }
  766. } else {
  767. memset(s->segmentation.feat[i].lflvl, lflvl,
  768. sizeof(s->segmentation.feat[i].lflvl));
  769. }
  770. }
  771. /* tiling info */
  772. if ((res = update_size(ctx, w, h, fmt)) < 0) {
  773. av_log(ctx, AV_LOG_ERROR, "Failed to initialize decoder for %dx%d @ %d\n", w, h, fmt);
  774. return res;
  775. }
  776. for (s->tiling.log2_tile_cols = 0;
  777. (s->sb_cols >> s->tiling.log2_tile_cols) > 64;
  778. s->tiling.log2_tile_cols++) ;
  779. for (max = 0; (s->sb_cols >> max) >= 4; max++) ;
  780. max = FFMAX(0, max - 1);
  781. while (max > s->tiling.log2_tile_cols) {
  782. if (get_bits1(&s->gb))
  783. s->tiling.log2_tile_cols++;
  784. else
  785. break;
  786. }
  787. s->tiling.log2_tile_rows = decode012(&s->gb);
  788. s->tiling.tile_rows = 1 << s->tiling.log2_tile_rows;
  789. if (s->tiling.tile_cols != (1 << s->tiling.log2_tile_cols)) {
  790. s->tiling.tile_cols = 1 << s->tiling.log2_tile_cols;
  791. s->c_b = av_fast_realloc(s->c_b, &s->c_b_size,
  792. sizeof(VP56RangeCoder) * s->tiling.tile_cols);
  793. if (!s->c_b) {
  794. av_log(ctx, AV_LOG_ERROR, "Ran out of memory during range coder init\n");
  795. return AVERROR(ENOMEM);
  796. }
  797. }
  798. if (s->keyframe || s->errorres || s->intraonly) {
  799. s->prob_ctx[0].p = s->prob_ctx[1].p = s->prob_ctx[2].p =
  800. s->prob_ctx[3].p = vp9_default_probs;
  801. memcpy(s->prob_ctx[0].coef, vp9_default_coef_probs,
  802. sizeof(vp9_default_coef_probs));
  803. memcpy(s->prob_ctx[1].coef, vp9_default_coef_probs,
  804. sizeof(vp9_default_coef_probs));
  805. memcpy(s->prob_ctx[2].coef, vp9_default_coef_probs,
  806. sizeof(vp9_default_coef_probs));
  807. memcpy(s->prob_ctx[3].coef, vp9_default_coef_probs,
  808. sizeof(vp9_default_coef_probs));
  809. }
  810. // next 16 bits is size of the rest of the header (arith-coded)
  811. size2 = get_bits(&s->gb, 16);
  812. data2 = align_get_bits(&s->gb);
  813. if (size2 > size - (data2 - data)) {
  814. av_log(ctx, AV_LOG_ERROR, "Invalid compressed header size\n");
  815. return AVERROR_INVALIDDATA;
  816. }
  817. ff_vp56_init_range_decoder(&s->c, data2, size2);
  818. if (vp56_rac_get_prob_branchy(&s->c, 128)) { // marker bit
  819. av_log(ctx, AV_LOG_ERROR, "Marker bit was set\n");
  820. return AVERROR_INVALIDDATA;
  821. }
  822. if (s->keyframe || s->intraonly) {
  823. memset(s->counts.coef, 0, sizeof(s->counts.coef));
  824. memset(s->counts.eob, 0, sizeof(s->counts.eob));
  825. } else {
  826. memset(&s->counts, 0, sizeof(s->counts));
  827. }
  828. // FIXME is it faster to not copy here, but do it down in the fw updates
  829. // as explicit copies if the fw update is missing (and skip the copy upon
  830. // fw update)?
  831. s->prob.p = s->prob_ctx[c].p;
  832. // txfm updates
  833. if (s->lossless) {
  834. s->txfmmode = TX_4X4;
  835. } else {
  836. s->txfmmode = vp8_rac_get_uint(&s->c, 2);
  837. if (s->txfmmode == 3)
  838. s->txfmmode += vp8_rac_get(&s->c);
  839. if (s->txfmmode == TX_SWITCHABLE) {
  840. for (i = 0; i < 2; i++)
  841. if (vp56_rac_get_prob_branchy(&s->c, 252))
  842. s->prob.p.tx8p[i] = update_prob(&s->c, s->prob.p.tx8p[i]);
  843. for (i = 0; i < 2; i++)
  844. for (j = 0; j < 2; j++)
  845. if (vp56_rac_get_prob_branchy(&s->c, 252))
  846. s->prob.p.tx16p[i][j] =
  847. update_prob(&s->c, s->prob.p.tx16p[i][j]);
  848. for (i = 0; i < 2; i++)
  849. for (j = 0; j < 3; j++)
  850. if (vp56_rac_get_prob_branchy(&s->c, 252))
  851. s->prob.p.tx32p[i][j] =
  852. update_prob(&s->c, s->prob.p.tx32p[i][j]);
  853. }
  854. }
  855. // coef updates
  856. for (i = 0; i < 4; i++) {
  857. uint8_t (*ref)[2][6][6][3] = s->prob_ctx[c].coef[i];
  858. if (vp8_rac_get(&s->c)) {
  859. for (j = 0; j < 2; j++)
  860. for (k = 0; k < 2; k++)
  861. for (l = 0; l < 6; l++)
  862. for (m = 0; m < 6; m++) {
  863. uint8_t *p = s->prob.coef[i][j][k][l][m];
  864. uint8_t *r = ref[j][k][l][m];
  865. if (m >= 3 && l == 0) // dc only has 3 pt
  866. break;
  867. for (n = 0; n < 3; n++) {
  868. if (vp56_rac_get_prob_branchy(&s->c, 252)) {
  869. p[n] = update_prob(&s->c, r[n]);
  870. } else {
  871. p[n] = r[n];
  872. }
  873. }
  874. p[3] = 0;
  875. }
  876. } else {
  877. for (j = 0; j < 2; j++)
  878. for (k = 0; k < 2; k++)
  879. for (l = 0; l < 6; l++)
  880. for (m = 0; m < 6; m++) {
  881. uint8_t *p = s->prob.coef[i][j][k][l][m];
  882. uint8_t *r = ref[j][k][l][m];
  883. if (m > 3 && l == 0) // dc only has 3 pt
  884. break;
  885. memcpy(p, r, 3);
  886. p[3] = 0;
  887. }
  888. }
  889. if (s->txfmmode == i)
  890. break;
  891. }
  892. // mode updates
  893. for (i = 0; i < 3; i++)
  894. if (vp56_rac_get_prob_branchy(&s->c, 252))
  895. s->prob.p.skip[i] = update_prob(&s->c, s->prob.p.skip[i]);
  896. if (!s->keyframe && !s->intraonly) {
  897. for (i = 0; i < 7; i++)
  898. for (j = 0; j < 3; j++)
  899. if (vp56_rac_get_prob_branchy(&s->c, 252))
  900. s->prob.p.mv_mode[i][j] =
  901. update_prob(&s->c, s->prob.p.mv_mode[i][j]);
  902. if (s->filtermode == FILTER_SWITCHABLE)
  903. for (i = 0; i < 4; i++)
  904. for (j = 0; j < 2; j++)
  905. if (vp56_rac_get_prob_branchy(&s->c, 252))
  906. s->prob.p.filter[i][j] =
  907. update_prob(&s->c, s->prob.p.filter[i][j]);
  908. for (i = 0; i < 4; i++)
  909. if (vp56_rac_get_prob_branchy(&s->c, 252))
  910. s->prob.p.intra[i] = update_prob(&s->c, s->prob.p.intra[i]);
  911. if (s->allowcompinter) {
  912. s->comppredmode = vp8_rac_get(&s->c);
  913. if (s->comppredmode)
  914. s->comppredmode += vp8_rac_get(&s->c);
  915. if (s->comppredmode == PRED_SWITCHABLE)
  916. for (i = 0; i < 5; i++)
  917. if (vp56_rac_get_prob_branchy(&s->c, 252))
  918. s->prob.p.comp[i] =
  919. update_prob(&s->c, s->prob.p.comp[i]);
  920. } else {
  921. s->comppredmode = PRED_SINGLEREF;
  922. }
  923. if (s->comppredmode != PRED_COMPREF) {
  924. for (i = 0; i < 5; i++) {
  925. if (vp56_rac_get_prob_branchy(&s->c, 252))
  926. s->prob.p.single_ref[i][0] =
  927. update_prob(&s->c, s->prob.p.single_ref[i][0]);
  928. if (vp56_rac_get_prob_branchy(&s->c, 252))
  929. s->prob.p.single_ref[i][1] =
  930. update_prob(&s->c, s->prob.p.single_ref[i][1]);
  931. }
  932. }
  933. if (s->comppredmode != PRED_SINGLEREF) {
  934. for (i = 0; i < 5; i++)
  935. if (vp56_rac_get_prob_branchy(&s->c, 252))
  936. s->prob.p.comp_ref[i] =
  937. update_prob(&s->c, s->prob.p.comp_ref[i]);
  938. }
  939. for (i = 0; i < 4; i++)
  940. for (j = 0; j < 9; j++)
  941. if (vp56_rac_get_prob_branchy(&s->c, 252))
  942. s->prob.p.y_mode[i][j] =
  943. update_prob(&s->c, s->prob.p.y_mode[i][j]);
  944. for (i = 0; i < 4; i++)
  945. for (j = 0; j < 4; j++)
  946. for (k = 0; k < 3; k++)
  947. if (vp56_rac_get_prob_branchy(&s->c, 252))
  948. s->prob.p.partition[3 - i][j][k] =
  949. update_prob(&s->c, s->prob.p.partition[3 - i][j][k]);
  950. // mv fields don't use the update_prob subexp model for some reason
  951. for (i = 0; i < 3; i++)
  952. if (vp56_rac_get_prob_branchy(&s->c, 252))
  953. s->prob.p.mv_joint[i] = (vp8_rac_get_uint(&s->c, 7) << 1) | 1;
  954. for (i = 0; i < 2; i++) {
  955. if (vp56_rac_get_prob_branchy(&s->c, 252))
  956. s->prob.p.mv_comp[i].sign = (vp8_rac_get_uint(&s->c, 7) << 1) | 1;
  957. for (j = 0; j < 10; j++)
  958. if (vp56_rac_get_prob_branchy(&s->c, 252))
  959. s->prob.p.mv_comp[i].classes[j] =
  960. (vp8_rac_get_uint(&s->c, 7) << 1) | 1;
  961. if (vp56_rac_get_prob_branchy(&s->c, 252))
  962. s->prob.p.mv_comp[i].class0 = (vp8_rac_get_uint(&s->c, 7) << 1) | 1;
  963. for (j = 0; j < 10; j++)
  964. if (vp56_rac_get_prob_branchy(&s->c, 252))
  965. s->prob.p.mv_comp[i].bits[j] =
  966. (vp8_rac_get_uint(&s->c, 7) << 1) | 1;
  967. }
  968. for (i = 0; i < 2; i++) {
  969. for (j = 0; j < 2; j++)
  970. for (k = 0; k < 3; k++)
  971. if (vp56_rac_get_prob_branchy(&s->c, 252))
  972. s->prob.p.mv_comp[i].class0_fp[j][k] =
  973. (vp8_rac_get_uint(&s->c, 7) << 1) | 1;
  974. for (j = 0; j < 3; j++)
  975. if (vp56_rac_get_prob_branchy(&s->c, 252))
  976. s->prob.p.mv_comp[i].fp[j] =
  977. (vp8_rac_get_uint(&s->c, 7) << 1) | 1;
  978. }
  979. if (s->highprecisionmvs) {
  980. for (i = 0; i < 2; i++) {
  981. if (vp56_rac_get_prob_branchy(&s->c, 252))
  982. s->prob.p.mv_comp[i].class0_hp =
  983. (vp8_rac_get_uint(&s->c, 7) << 1) | 1;
  984. if (vp56_rac_get_prob_branchy(&s->c, 252))
  985. s->prob.p.mv_comp[i].hp =
  986. (vp8_rac_get_uint(&s->c, 7) << 1) | 1;
  987. }
  988. }
  989. }
  990. return (data2 - data) + size2;
  991. }
  992. static av_always_inline void clamp_mv(VP56mv *dst, const VP56mv *src,
  993. VP9Context *s)
  994. {
  995. dst->x = av_clip(src->x, s->min_mv.x, s->max_mv.x);
  996. dst->y = av_clip(src->y, s->min_mv.y, s->max_mv.y);
  997. }
  998. static void find_ref_mvs(VP9Context *s,
  999. VP56mv *pmv, int ref, int z, int idx, int sb)
  1000. {
  1001. static const int8_t mv_ref_blk_off[N_BS_SIZES][8][2] = {
  1002. [BS_64x64] = {{ 3, -1 }, { -1, 3 }, { 4, -1 }, { -1, 4 },
  1003. { -1, -1 }, { 0, -1 }, { -1, 0 }, { 6, -1 }},
  1004. [BS_64x32] = {{ 0, -1 }, { -1, 0 }, { 4, -1 }, { -1, 2 },
  1005. { -1, -1 }, { 0, -3 }, { -3, 0 }, { 2, -1 }},
  1006. [BS_32x64] = {{ -1, 0 }, { 0, -1 }, { -1, 4 }, { 2, -1 },
  1007. { -1, -1 }, { -3, 0 }, { 0, -3 }, { -1, 2 }},
  1008. [BS_32x32] = {{ 1, -1 }, { -1, 1 }, { 2, -1 }, { -1, 2 },
  1009. { -1, -1 }, { 0, -3 }, { -3, 0 }, { -3, -3 }},
  1010. [BS_32x16] = {{ 0, -1 }, { -1, 0 }, { 2, -1 }, { -1, -1 },
  1011. { -1, 1 }, { 0, -3 }, { -3, 0 }, { -3, -3 }},
  1012. [BS_16x32] = {{ -1, 0 }, { 0, -1 }, { -1, 2 }, { -1, -1 },
  1013. { 1, -1 }, { -3, 0 }, { 0, -3 }, { -3, -3 }},
  1014. [BS_16x16] = {{ 0, -1 }, { -1, 0 }, { 1, -1 }, { -1, 1 },
  1015. { -1, -1 }, { 0, -3 }, { -3, 0 }, { -3, -3 }},
  1016. [BS_16x8] = {{ 0, -1 }, { -1, 0 }, { 1, -1 }, { -1, -1 },
  1017. { 0, -2 }, { -2, 0 }, { -2, -1 }, { -1, -2 }},
  1018. [BS_8x16] = {{ -1, 0 }, { 0, -1 }, { -1, 1 }, { -1, -1 },
  1019. { -2, 0 }, { 0, -2 }, { -1, -2 }, { -2, -1 }},
  1020. [BS_8x8] = {{ 0, -1 }, { -1, 0 }, { -1, -1 }, { 0, -2 },
  1021. { -2, 0 }, { -1, -2 }, { -2, -1 }, { -2, -2 }},
  1022. [BS_8x4] = {{ 0, -1 }, { -1, 0 }, { -1, -1 }, { 0, -2 },
  1023. { -2, 0 }, { -1, -2 }, { -2, -1 }, { -2, -2 }},
  1024. [BS_4x8] = {{ 0, -1 }, { -1, 0 }, { -1, -1 }, { 0, -2 },
  1025. { -2, 0 }, { -1, -2 }, { -2, -1 }, { -2, -2 }},
  1026. [BS_4x4] = {{ 0, -1 }, { -1, 0 }, { -1, -1 }, { 0, -2 },
  1027. { -2, 0 }, { -1, -2 }, { -2, -1 }, { -2, -2 }},
  1028. };
  1029. VP9Block *b = s->b;
  1030. int row = s->row, col = s->col, row7 = s->row7;
  1031. const int8_t (*p)[2] = mv_ref_blk_off[b->bs];
  1032. #define INVALID_MV 0x80008000U
  1033. uint32_t mem = INVALID_MV, mem_sub8x8 = INVALID_MV;
  1034. int i;
  1035. #define RETURN_DIRECT_MV(mv) \
  1036. do { \
  1037. uint32_t m = AV_RN32A(&mv); \
  1038. if (!idx) { \
  1039. AV_WN32A(pmv, m); \
  1040. return; \
  1041. } else if (mem == INVALID_MV) { \
  1042. mem = m; \
  1043. } else if (m != mem) { \
  1044. AV_WN32A(pmv, m); \
  1045. return; \
  1046. } \
  1047. } while (0)
  1048. if (sb >= 0) {
  1049. if (sb == 2 || sb == 1) {
  1050. RETURN_DIRECT_MV(b->mv[0][z]);
  1051. } else if (sb == 3) {
  1052. RETURN_DIRECT_MV(b->mv[2][z]);
  1053. RETURN_DIRECT_MV(b->mv[1][z]);
  1054. RETURN_DIRECT_MV(b->mv[0][z]);
  1055. }
  1056. #define RETURN_MV(mv) \
  1057. do { \
  1058. if (sb > 0) { \
  1059. VP56mv tmp; \
  1060. uint32_t m; \
  1061. av_assert2(idx == 1); \
  1062. av_assert2(mem != INVALID_MV); \
  1063. if (mem_sub8x8 == INVALID_MV) { \
  1064. clamp_mv(&tmp, &mv, s); \
  1065. m = AV_RN32A(&tmp); \
  1066. if (m != mem) { \
  1067. AV_WN32A(pmv, m); \
  1068. return; \
  1069. } \
  1070. mem_sub8x8 = AV_RN32A(&mv); \
  1071. } else if (mem_sub8x8 != AV_RN32A(&mv)) { \
  1072. clamp_mv(&tmp, &mv, s); \
  1073. m = AV_RN32A(&tmp); \
  1074. if (m != mem) { \
  1075. AV_WN32A(pmv, m); \
  1076. } else { \
  1077. /* BUG I'm pretty sure this isn't the intention */ \
  1078. AV_WN32A(pmv, 0); \
  1079. } \
  1080. return; \
  1081. } \
  1082. } else { \
  1083. uint32_t m = AV_RN32A(&mv); \
  1084. if (!idx) { \
  1085. clamp_mv(pmv, &mv, s); \
  1086. return; \
  1087. } else if (mem == INVALID_MV) { \
  1088. mem = m; \
  1089. } else if (m != mem) { \
  1090. clamp_mv(pmv, &mv, s); \
  1091. return; \
  1092. } \
  1093. } \
  1094. } while (0)
  1095. if (row > 0) {
  1096. struct VP9mvrefPair *mv = &s->frames[CUR_FRAME].mv[(row - 1) * s->sb_cols * 8 + col];
  1097. if (mv->ref[0] == ref) {
  1098. RETURN_MV(s->above_mv_ctx[2 * col + (sb & 1)][0]);
  1099. } else if (mv->ref[1] == ref) {
  1100. RETURN_MV(s->above_mv_ctx[2 * col + (sb & 1)][1]);
  1101. }
  1102. }
  1103. if (col > s->tiling.tile_col_start) {
  1104. struct VP9mvrefPair *mv = &s->frames[CUR_FRAME].mv[row * s->sb_cols * 8 + col - 1];
  1105. if (mv->ref[0] == ref) {
  1106. RETURN_MV(s->left_mv_ctx[2 * row7 + (sb >> 1)][0]);
  1107. } else if (mv->ref[1] == ref) {
  1108. RETURN_MV(s->left_mv_ctx[2 * row7 + (sb >> 1)][1]);
  1109. }
  1110. }
  1111. i = 2;
  1112. } else {
  1113. i = 0;
  1114. }
  1115. // previously coded MVs in this neighbourhood, using same reference frame
  1116. for (; i < 8; i++) {
  1117. int c = p[i][0] + col, r = p[i][1] + row;
  1118. if (c >= s->tiling.tile_col_start && c < s->cols && r >= 0 && r < s->rows) {
  1119. struct VP9mvrefPair *mv = &s->frames[CUR_FRAME].mv[r * s->sb_cols * 8 + c];
  1120. if (mv->ref[0] == ref) {
  1121. RETURN_MV(mv->mv[0]);
  1122. } else if (mv->ref[1] == ref) {
  1123. RETURN_MV(mv->mv[1]);
  1124. }
  1125. }
  1126. }
  1127. // MV at this position in previous frame, using same reference frame
  1128. if (s->use_last_frame_mvs) {
  1129. struct VP9mvrefPair *mv = &s->frames[REF_FRAME_MVPAIR].mv[row * s->sb_cols * 8 + col];
  1130. if (!s->frames[REF_FRAME_MVPAIR].uses_2pass)
  1131. ff_thread_await_progress(&s->frames[REF_FRAME_MVPAIR].tf, row >> 3, 0);
  1132. if (mv->ref[0] == ref) {
  1133. RETURN_MV(mv->mv[0]);
  1134. } else if (mv->ref[1] == ref) {
  1135. RETURN_MV(mv->mv[1]);
  1136. }
  1137. }
  1138. #define RETURN_SCALE_MV(mv, scale) \
  1139. do { \
  1140. if (scale) { \
  1141. VP56mv mv_temp = { -mv.x, -mv.y }; \
  1142. RETURN_MV(mv_temp); \
  1143. } else { \
  1144. RETURN_MV(mv); \
  1145. } \
  1146. } while (0)
  1147. // previously coded MVs in this neighbourhood, using different reference frame
  1148. for (i = 0; i < 8; i++) {
  1149. int c = p[i][0] + col, r = p[i][1] + row;
  1150. if (c >= s->tiling.tile_col_start && c < s->cols && r >= 0 && r < s->rows) {
  1151. struct VP9mvrefPair *mv = &s->frames[CUR_FRAME].mv[r * s->sb_cols * 8 + c];
  1152. if (mv->ref[0] != ref && mv->ref[0] >= 0) {
  1153. RETURN_SCALE_MV(mv->mv[0], s->signbias[mv->ref[0]] != s->signbias[ref]);
  1154. }
  1155. if (mv->ref[1] != ref && mv->ref[1] >= 0 &&
  1156. // BUG - libvpx has this condition regardless of whether
  1157. // we used the first ref MV and pre-scaling
  1158. AV_RN32A(&mv->mv[0]) != AV_RN32A(&mv->mv[1])) {
  1159. RETURN_SCALE_MV(mv->mv[1], s->signbias[mv->ref[1]] != s->signbias[ref]);
  1160. }
  1161. }
  1162. }
  1163. // MV at this position in previous frame, using different reference frame
  1164. if (s->use_last_frame_mvs) {
  1165. struct VP9mvrefPair *mv = &s->frames[REF_FRAME_MVPAIR].mv[row * s->sb_cols * 8 + col];
  1166. // no need to await_progress, because we already did that above
  1167. if (mv->ref[0] != ref && mv->ref[0] >= 0) {
  1168. RETURN_SCALE_MV(mv->mv[0], s->signbias[mv->ref[0]] != s->signbias[ref]);
  1169. }
  1170. if (mv->ref[1] != ref && mv->ref[1] >= 0 &&
  1171. // BUG - libvpx has this condition regardless of whether
  1172. // we used the first ref MV and pre-scaling
  1173. AV_RN32A(&mv->mv[0]) != AV_RN32A(&mv->mv[1])) {
  1174. RETURN_SCALE_MV(mv->mv[1], s->signbias[mv->ref[1]] != s->signbias[ref]);
  1175. }
  1176. }
  1177. AV_ZERO32(pmv);
  1178. clamp_mv(pmv, pmv, s);
  1179. #undef INVALID_MV
  1180. #undef RETURN_MV
  1181. #undef RETURN_SCALE_MV
  1182. }
  1183. static av_always_inline int read_mv_component(VP9Context *s, int idx, int hp)
  1184. {
  1185. int bit, sign = vp56_rac_get_prob(&s->c, s->prob.p.mv_comp[idx].sign);
  1186. int n, c = vp8_rac_get_tree(&s->c, vp9_mv_class_tree,
  1187. s->prob.p.mv_comp[idx].classes);
  1188. s->counts.mv_comp[idx].sign[sign]++;
  1189. s->counts.mv_comp[idx].classes[c]++;
  1190. if (c) {
  1191. int m;
  1192. for (n = 0, m = 0; m < c; m++) {
  1193. bit = vp56_rac_get_prob(&s->c, s->prob.p.mv_comp[idx].bits[m]);
  1194. n |= bit << m;
  1195. s->counts.mv_comp[idx].bits[m][bit]++;
  1196. }
  1197. n <<= 3;
  1198. bit = vp8_rac_get_tree(&s->c, vp9_mv_fp_tree, s->prob.p.mv_comp[idx].fp);
  1199. n |= bit << 1;
  1200. s->counts.mv_comp[idx].fp[bit]++;
  1201. if (hp) {
  1202. bit = vp56_rac_get_prob(&s->c, s->prob.p.mv_comp[idx].hp);
  1203. s->counts.mv_comp[idx].hp[bit]++;
  1204. n |= bit;
  1205. } else {
  1206. n |= 1;
  1207. // bug in libvpx - we count for bw entropy purposes even if the
  1208. // bit wasn't coded
  1209. s->counts.mv_comp[idx].hp[1]++;
  1210. }
  1211. n += 8 << c;
  1212. } else {
  1213. n = vp56_rac_get_prob(&s->c, s->prob.p.mv_comp[idx].class0);
  1214. s->counts.mv_comp[idx].class0[n]++;
  1215. bit = vp8_rac_get_tree(&s->c, vp9_mv_fp_tree,
  1216. s->prob.p.mv_comp[idx].class0_fp[n]);
  1217. s->counts.mv_comp[idx].class0_fp[n][bit]++;
  1218. n = (n << 3) | (bit << 1);
  1219. if (hp) {
  1220. bit = vp56_rac_get_prob(&s->c, s->prob.p.mv_comp[idx].class0_hp);
  1221. s->counts.mv_comp[idx].class0_hp[bit]++;
  1222. n |= bit;
  1223. } else {
  1224. n |= 1;
  1225. // bug in libvpx - we count for bw entropy purposes even if the
  1226. // bit wasn't coded
  1227. s->counts.mv_comp[idx].class0_hp[1]++;
  1228. }
  1229. }
  1230. return sign ? -(n + 1) : (n + 1);
  1231. }
  1232. static void fill_mv(VP9Context *s,
  1233. VP56mv *mv, int mode, int sb)
  1234. {
  1235. VP9Block *b = s->b;
  1236. if (mode == ZEROMV) {
  1237. AV_ZERO64(mv);
  1238. } else {
  1239. int hp;
  1240. // FIXME cache this value and reuse for other subblocks
  1241. find_ref_mvs(s, &mv[0], b->ref[0], 0, mode == NEARMV,
  1242. mode == NEWMV ? -1 : sb);
  1243. // FIXME maybe move this code into find_ref_mvs()
  1244. if ((mode == NEWMV || sb == -1) &&
  1245. !(hp = s->highprecisionmvs && abs(mv[0].x) < 64 && abs(mv[0].y) < 64)) {
  1246. if (mv[0].y & 1) {
  1247. if (mv[0].y < 0)
  1248. mv[0].y++;
  1249. else
  1250. mv[0].y--;
  1251. }
  1252. if (mv[0].x & 1) {
  1253. if (mv[0].x < 0)
  1254. mv[0].x++;
  1255. else
  1256. mv[0].x--;
  1257. }
  1258. }
  1259. if (mode == NEWMV) {
  1260. enum MVJoint j = vp8_rac_get_tree(&s->c, vp9_mv_joint_tree,
  1261. s->prob.p.mv_joint);
  1262. s->counts.mv_joint[j]++;
  1263. if (j >= MV_JOINT_V)
  1264. mv[0].y += read_mv_component(s, 0, hp);
  1265. if (j & 1)
  1266. mv[0].x += read_mv_component(s, 1, hp);
  1267. }
  1268. if (b->comp) {
  1269. // FIXME cache this value and reuse for other subblocks
  1270. find_ref_mvs(s, &mv[1], b->ref[1], 1, mode == NEARMV,
  1271. mode == NEWMV ? -1 : sb);
  1272. if ((mode == NEWMV || sb == -1) &&
  1273. !(hp = s->highprecisionmvs && abs(mv[1].x) < 64 && abs(mv[1].y) < 64)) {
  1274. if (mv[1].y & 1) {
  1275. if (mv[1].y < 0)
  1276. mv[1].y++;
  1277. else
  1278. mv[1].y--;
  1279. }
  1280. if (mv[1].x & 1) {
  1281. if (mv[1].x < 0)
  1282. mv[1].x++;
  1283. else
  1284. mv[1].x--;
  1285. }
  1286. }
  1287. if (mode == NEWMV) {
  1288. enum MVJoint j = vp8_rac_get_tree(&s->c, vp9_mv_joint_tree,
  1289. s->prob.p.mv_joint);
  1290. s->counts.mv_joint[j]++;
  1291. if (j >= MV_JOINT_V)
  1292. mv[1].y += read_mv_component(s, 0, hp);
  1293. if (j & 1)
  1294. mv[1].x += read_mv_component(s, 1, hp);
  1295. }
  1296. }
  1297. }
  1298. }
  1299. static av_always_inline void setctx_2d(uint8_t *ptr, int w, int h,
  1300. ptrdiff_t stride, int v)
  1301. {
  1302. switch (w) {
  1303. case 1:
  1304. do {
  1305. *ptr = v;
  1306. ptr += stride;
  1307. } while (--h);
  1308. break;
  1309. case 2: {
  1310. int v16 = v * 0x0101;
  1311. do {
  1312. AV_WN16A(ptr, v16);
  1313. ptr += stride;
  1314. } while (--h);
  1315. break;
  1316. }
  1317. case 4: {
  1318. uint32_t v32 = v * 0x01010101;
  1319. do {
  1320. AV_WN32A(ptr, v32);
  1321. ptr += stride;
  1322. } while (--h);
  1323. break;
  1324. }
  1325. case 8: {
  1326. #if HAVE_FAST_64BIT
  1327. uint64_t v64 = v * 0x0101010101010101ULL;
  1328. do {
  1329. AV_WN64A(ptr, v64);
  1330. ptr += stride;
  1331. } while (--h);
  1332. #else
  1333. uint32_t v32 = v * 0x01010101;
  1334. do {
  1335. AV_WN32A(ptr, v32);
  1336. AV_WN32A(ptr + 4, v32);
  1337. ptr += stride;
  1338. } while (--h);
  1339. #endif
  1340. break;
  1341. }
  1342. }
  1343. }
  1344. static void decode_mode(AVCodecContext *ctx)
  1345. {
  1346. static const uint8_t left_ctx[N_BS_SIZES] = {
  1347. 0x0, 0x8, 0x0, 0x8, 0xc, 0x8, 0xc, 0xe, 0xc, 0xe, 0xf, 0xe, 0xf
  1348. };
  1349. static const uint8_t above_ctx[N_BS_SIZES] = {
  1350. 0x0, 0x0, 0x8, 0x8, 0x8, 0xc, 0xc, 0xc, 0xe, 0xe, 0xe, 0xf, 0xf
  1351. };
  1352. static const uint8_t max_tx_for_bl_bp[N_BS_SIZES] = {
  1353. TX_32X32, TX_32X32, TX_32X32, TX_32X32, TX_16X16, TX_16X16,
  1354. TX_16X16, TX_8X8, TX_8X8, TX_8X8, TX_4X4, TX_4X4, TX_4X4
  1355. };
  1356. VP9Context *s = ctx->priv_data;
  1357. VP9Block *b = s->b;
  1358. int row = s->row, col = s->col, row7 = s->row7;
  1359. enum TxfmMode max_tx = max_tx_for_bl_bp[b->bs];
  1360. int bw4 = bwh_tab[1][b->bs][0], w4 = FFMIN(s->cols - col, bw4);
  1361. int bh4 = bwh_tab[1][b->bs][1], h4 = FFMIN(s->rows - row, bh4), y;
  1362. int have_a = row > 0, have_l = col > s->tiling.tile_col_start;
  1363. int vref, filter_id;
  1364. if (!s->segmentation.enabled) {
  1365. b->seg_id = 0;
  1366. } else if (s->keyframe || s->intraonly) {
  1367. b->seg_id = !s->segmentation.update_map ? 0 :
  1368. vp8_rac_get_tree(&s->c, vp9_segmentation_tree, s->prob.seg);
  1369. } else if (!s->segmentation.update_map ||
  1370. (s->segmentation.temporal &&
  1371. vp56_rac_get_prob_branchy(&s->c,
  1372. s->prob.segpred[s->above_segpred_ctx[col] +
  1373. s->left_segpred_ctx[row7]]))) {
  1374. if (!s->errorres && !s->segmentation.ignore_refmap) {
  1375. int pred = 8, x;
  1376. uint8_t *refsegmap = s->frames[REF_FRAME_SEGMAP].segmentation_map;
  1377. if (!s->frames[REF_FRAME_SEGMAP].uses_2pass)
  1378. ff_thread_await_progress(&s->frames[REF_FRAME_SEGMAP].tf, row >> 3, 0);
  1379. for (y = 0; y < h4; y++) {
  1380. int idx_base = (y + row) * 8 * s->sb_cols + col;
  1381. for (x = 0; x < w4; x++)
  1382. pred = FFMIN(pred, refsegmap[idx_base + x]);
  1383. }
  1384. av_assert1(pred < 8);
  1385. b->seg_id = pred;
  1386. } else {
  1387. b->seg_id = 0;
  1388. }
  1389. memset(&s->above_segpred_ctx[col], 1, w4);
  1390. memset(&s->left_segpred_ctx[row7], 1, h4);
  1391. } else {
  1392. b->seg_id = vp8_rac_get_tree(&s->c, vp9_segmentation_tree,
  1393. s->prob.seg);
  1394. memset(&s->above_segpred_ctx[col], 0, w4);
  1395. memset(&s->left_segpred_ctx[row7], 0, h4);
  1396. }
  1397. if (s->segmentation.enabled &&
  1398. (s->segmentation.update_map || s->keyframe || s->intraonly)) {
  1399. setctx_2d(&s->frames[CUR_FRAME].segmentation_map[row * 8 * s->sb_cols + col],
  1400. bw4, bh4, 8 * s->sb_cols, b->seg_id);
  1401. }
  1402. b->skip = s->segmentation.enabled &&
  1403. s->segmentation.feat[b->seg_id].skip_enabled;
  1404. if (!b->skip) {
  1405. int c = s->left_skip_ctx[row7] + s->above_skip_ctx[col];
  1406. b->skip = vp56_rac_get_prob(&s->c, s->prob.p.skip[c]);
  1407. s->counts.skip[c][b->skip]++;
  1408. }
  1409. if (s->keyframe || s->intraonly) {
  1410. b->intra = 1;
  1411. } else if (s->segmentation.feat[b->seg_id].ref_enabled) {
  1412. b->intra = !s->segmentation.feat[b->seg_id].ref_val;
  1413. } else {
  1414. int c, bit;
  1415. if (have_a && have_l) {
  1416. c = s->above_intra_ctx[col] + s->left_intra_ctx[row7];
  1417. c += (c == 2);
  1418. } else {
  1419. c = have_a ? 2 * s->above_intra_ctx[col] :
  1420. have_l ? 2 * s->left_intra_ctx[row7] : 0;
  1421. }
  1422. bit = vp56_rac_get_prob(&s->c, s->prob.p.intra[c]);
  1423. s->counts.intra[c][bit]++;
  1424. b->intra = !bit;
  1425. }
  1426. if ((b->intra || !b->skip) && s->txfmmode == TX_SWITCHABLE) {
  1427. int c;
  1428. if (have_a) {
  1429. if (have_l) {
  1430. c = (s->above_skip_ctx[col] ? max_tx :
  1431. s->above_txfm_ctx[col]) +
  1432. (s->left_skip_ctx[row7] ? max_tx :
  1433. s->left_txfm_ctx[row7]) > max_tx;
  1434. } else {
  1435. c = s->above_skip_ctx[col] ? 1 :
  1436. (s->above_txfm_ctx[col] * 2 > max_tx);
  1437. }
  1438. } else if (have_l) {
  1439. c = s->left_skip_ctx[row7] ? 1 :
  1440. (s->left_txfm_ctx[row7] * 2 > max_tx);
  1441. } else {
  1442. c = 1;
  1443. }
  1444. switch (max_tx) {
  1445. case TX_32X32:
  1446. b->tx = vp56_rac_get_prob(&s->c, s->prob.p.tx32p[c][0]);
  1447. if (b->tx) {
  1448. b->tx += vp56_rac_get_prob(&s->c, s->prob.p.tx32p[c][1]);
  1449. if (b->tx == 2)
  1450. b->tx += vp56_rac_get_prob(&s->c, s->prob.p.tx32p[c][2]);
  1451. }
  1452. s->counts.tx32p[c][b->tx]++;
  1453. break;
  1454. case TX_16X16:
  1455. b->tx = vp56_rac_get_prob(&s->c, s->prob.p.tx16p[c][0]);
  1456. if (b->tx)
  1457. b->tx += vp56_rac_get_prob(&s->c, s->prob.p.tx16p[c][1]);
  1458. s->counts.tx16p[c][b->tx]++;
  1459. break;
  1460. case TX_8X8:
  1461. b->tx = vp56_rac_get_prob(&s->c, s->prob.p.tx8p[c]);
  1462. s->counts.tx8p[c][b->tx]++;
  1463. break;
  1464. case TX_4X4:
  1465. b->tx = TX_4X4;
  1466. break;
  1467. }
  1468. } else {
  1469. b->tx = FFMIN(max_tx, s->txfmmode);
  1470. }
  1471. if (s->keyframe || s->intraonly) {
  1472. uint8_t *a = &s->above_mode_ctx[col * 2];
  1473. uint8_t *l = &s->left_mode_ctx[(row7) << 1];
  1474. b->comp = 0;
  1475. if (b->bs > BS_8x8) {
  1476. // FIXME the memory storage intermediates here aren't really
  1477. // necessary, they're just there to make the code slightly
  1478. // simpler for now
  1479. b->mode[0] = a[0] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
  1480. vp9_default_kf_ymode_probs[a[0]][l[0]]);
  1481. if (b->bs != BS_8x4) {
  1482. b->mode[1] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
  1483. vp9_default_kf_ymode_probs[a[1]][b->mode[0]]);
  1484. l[0] = a[1] = b->mode[1];
  1485. } else {
  1486. l[0] = a[1] = b->mode[1] = b->mode[0];
  1487. }
  1488. if (b->bs != BS_4x8) {
  1489. b->mode[2] = a[0] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
  1490. vp9_default_kf_ymode_probs[a[0]][l[1]]);
  1491. if (b->bs != BS_8x4) {
  1492. b->mode[3] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
  1493. vp9_default_kf_ymode_probs[a[1]][b->mode[2]]);
  1494. l[1] = a[1] = b->mode[3];
  1495. } else {
  1496. l[1] = a[1] = b->mode[3] = b->mode[2];
  1497. }
  1498. } else {
  1499. b->mode[2] = b->mode[0];
  1500. l[1] = a[1] = b->mode[3] = b->mode[1];
  1501. }
  1502. } else {
  1503. b->mode[0] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
  1504. vp9_default_kf_ymode_probs[*a][*l]);
  1505. b->mode[3] = b->mode[2] = b->mode[1] = b->mode[0];
  1506. // FIXME this can probably be optimized
  1507. memset(a, b->mode[0], bwh_tab[0][b->bs][0]);
  1508. memset(l, b->mode[0], bwh_tab[0][b->bs][1]);
  1509. }
  1510. b->uvmode = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
  1511. vp9_default_kf_uvmode_probs[b->mode[3]]);
  1512. } else if (b->intra) {
  1513. b->comp = 0;
  1514. if (b->bs > BS_8x8) {
  1515. b->mode[0] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
  1516. s->prob.p.y_mode[0]);
  1517. s->counts.y_mode[0][b->mode[0]]++;
  1518. if (b->bs != BS_8x4) {
  1519. b->mode[1] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
  1520. s->prob.p.y_mode[0]);
  1521. s->counts.y_mode[0][b->mode[1]]++;
  1522. } else {
  1523. b->mode[1] = b->mode[0];
  1524. }
  1525. if (b->bs != BS_4x8) {
  1526. b->mode[2] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
  1527. s->prob.p.y_mode[0]);
  1528. s->counts.y_mode[0][b->mode[2]]++;
  1529. if (b->bs != BS_8x4) {
  1530. b->mode[3] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
  1531. s->prob.p.y_mode[0]);
  1532. s->counts.y_mode[0][b->mode[3]]++;
  1533. } else {
  1534. b->mode[3] = b->mode[2];
  1535. }
  1536. } else {
  1537. b->mode[2] = b->mode[0];
  1538. b->mode[3] = b->mode[1];
  1539. }
  1540. } else {
  1541. static const uint8_t size_group[10] = {
  1542. 3, 3, 3, 3, 2, 2, 2, 1, 1, 1
  1543. };
  1544. int sz = size_group[b->bs];
  1545. b->mode[0] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
  1546. s->prob.p.y_mode[sz]);
  1547. b->mode[1] = b->mode[2] = b->mode[3] = b->mode[0];
  1548. s->counts.y_mode[sz][b->mode[3]]++;
  1549. }
  1550. b->uvmode = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
  1551. s->prob.p.uv_mode[b->mode[3]]);
  1552. s->counts.uv_mode[b->mode[3]][b->uvmode]++;
  1553. } else {
  1554. static const uint8_t inter_mode_ctx_lut[14][14] = {
  1555. { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
  1556. { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
  1557. { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
  1558. { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
  1559. { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
  1560. { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
  1561. { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
  1562. { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
  1563. { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
  1564. { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
  1565. { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 2, 2, 1, 3 },
  1566. { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 2, 2, 1, 3 },
  1567. { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 1, 1, 0, 3 },
  1568. { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3, 3, 3, 4 },
  1569. };
  1570. if (s->segmentation.feat[b->seg_id].ref_enabled) {
  1571. av_assert2(s->segmentation.feat[b->seg_id].ref_val != 0);
  1572. b->comp = 0;
  1573. b->ref[0] = s->segmentation.feat[b->seg_id].ref_val - 1;
  1574. } else {
  1575. // read comp_pred flag
  1576. if (s->comppredmode != PRED_SWITCHABLE) {
  1577. b->comp = s->comppredmode == PRED_COMPREF;
  1578. } else {
  1579. int c;
  1580. // FIXME add intra as ref=0xff (or -1) to make these easier?
  1581. if (have_a) {
  1582. if (have_l) {
  1583. if (s->above_comp_ctx[col] && s->left_comp_ctx[row7]) {
  1584. c = 4;
  1585. } else if (s->above_comp_ctx[col]) {
  1586. c = 2 + (s->left_intra_ctx[row7] ||
  1587. s->left_ref_ctx[row7] == s->fixcompref);
  1588. } else if (s->left_comp_ctx[row7]) {
  1589. c = 2 + (s->above_intra_ctx[col] ||
  1590. s->above_ref_ctx[col] == s->fixcompref);
  1591. } else {
  1592. c = (!s->above_intra_ctx[col] &&
  1593. s->above_ref_ctx[col] == s->fixcompref) ^
  1594. (!s->left_intra_ctx[row7] &&
  1595. s->left_ref_ctx[row & 7] == s->fixcompref);
  1596. }
  1597. } else {
  1598. c = s->above_comp_ctx[col] ? 3 :
  1599. (!s->above_intra_ctx[col] && s->above_ref_ctx[col] == s->fixcompref);
  1600. }
  1601. } else if (have_l) {
  1602. c = s->left_comp_ctx[row7] ? 3 :
  1603. (!s->left_intra_ctx[row7] && s->left_ref_ctx[row7] == s->fixcompref);
  1604. } else {
  1605. c = 1;
  1606. }
  1607. b->comp = vp56_rac_get_prob(&s->c, s->prob.p.comp[c]);
  1608. s->counts.comp[c][b->comp]++;
  1609. }
  1610. // read actual references
  1611. // FIXME probably cache a few variables here to prevent repetitive
  1612. // memory accesses below
  1613. if (b->comp) /* two references */ {
  1614. int fix_idx = s->signbias[s->fixcompref], var_idx = !fix_idx, c, bit;
  1615. b->ref[fix_idx] = s->fixcompref;
  1616. // FIXME can this codeblob be replaced by some sort of LUT?
  1617. if (have_a) {
  1618. if (have_l) {
  1619. if (s->above_intra_ctx[col]) {
  1620. if (s->left_intra_ctx[row7]) {
  1621. c = 2;
  1622. } else {
  1623. c = 1 + 2 * (s->left_ref_ctx[row7] != s->varcompref[1]);
  1624. }
  1625. } else if (s->left_intra_ctx[row7]) {
  1626. c = 1 + 2 * (s->above_ref_ctx[col] != s->varcompref[1]);
  1627. } else {
  1628. int refl = s->left_ref_ctx[row7], refa = s->above_ref_ctx[col];
  1629. if (refl == refa && refa == s->varcompref[1]) {
  1630. c = 0;
  1631. } else if (!s->left_comp_ctx[row7] && !s->above_comp_ctx[col]) {
  1632. if ((refa == s->fixcompref && refl == s->varcompref[0]) ||
  1633. (refl == s->fixcompref && refa == s->varcompref[0])) {
  1634. c = 4;
  1635. } else {
  1636. c = (refa == refl) ? 3 : 1;
  1637. }
  1638. } else if (!s->left_comp_ctx[row7]) {
  1639. if (refa == s->varcompref[1] && refl != s->varcompref[1]) {
  1640. c = 1;
  1641. } else {
  1642. c = (refl == s->varcompref[1] &&
  1643. refa != s->varcompref[1]) ? 2 : 4;
  1644. }
  1645. } else if (!s->above_comp_ctx[col]) {
  1646. if (refl == s->varcompref[1] && refa != s->varcompref[1]) {
  1647. c = 1;
  1648. } else {
  1649. c = (refa == s->varcompref[1] &&
  1650. refl != s->varcompref[1]) ? 2 : 4;
  1651. }
  1652. } else {
  1653. c = (refl == refa) ? 4 : 2;
  1654. }
  1655. }
  1656. } else {
  1657. if (s->above_intra_ctx[col]) {
  1658. c = 2;
  1659. } else if (s->above_comp_ctx[col]) {
  1660. c = 4 * (s->above_ref_ctx[col] != s->varcompref[1]);
  1661. } else {
  1662. c = 3 * (s->above_ref_ctx[col] != s->varcompref[1]);
  1663. }
  1664. }
  1665. } else if (have_l) {
  1666. if (s->left_intra_ctx[row7]) {
  1667. c = 2;
  1668. } else if (s->left_comp_ctx[row7]) {
  1669. c = 4 * (s->left_ref_ctx[row7] != s->varcompref[1]);
  1670. } else {
  1671. c = 3 * (s->left_ref_ctx[row7] != s->varcompref[1]);
  1672. }
  1673. } else {
  1674. c = 2;
  1675. }
  1676. bit = vp56_rac_get_prob(&s->c, s->prob.p.comp_ref[c]);
  1677. b->ref[var_idx] = s->varcompref[bit];
  1678. s->counts.comp_ref[c][bit]++;
  1679. } else /* single reference */ {
  1680. int bit, c;
  1681. if (have_a && !s->above_intra_ctx[col]) {
  1682. if (have_l && !s->left_intra_ctx[row7]) {
  1683. if (s->left_comp_ctx[row7]) {
  1684. if (s->above_comp_ctx[col]) {
  1685. c = 1 + (!s->fixcompref || !s->left_ref_ctx[row7] ||
  1686. !s->above_ref_ctx[col]);
  1687. } else {
  1688. c = (3 * !s->above_ref_ctx[col]) +
  1689. (!s->fixcompref || !s->left_ref_ctx[row7]);
  1690. }
  1691. } else if (s->above_comp_ctx[col]) {
  1692. c = (3 * !s->left_ref_ctx[row7]) +
  1693. (!s->fixcompref || !s->above_ref_ctx[col]);
  1694. } else {
  1695. c = 2 * !s->left_ref_ctx[row7] + 2 * !s->above_ref_ctx[col];
  1696. }
  1697. } else if (s->above_intra_ctx[col]) {
  1698. c = 2;
  1699. } else if (s->above_comp_ctx[col]) {
  1700. c = 1 + (!s->fixcompref || !s->above_ref_ctx[col]);
  1701. } else {
  1702. c = 4 * (!s->above_ref_ctx[col]);
  1703. }
  1704. } else if (have_l && !s->left_intra_ctx[row7]) {
  1705. if (s->left_intra_ctx[row7]) {
  1706. c = 2;
  1707. } else if (s->left_comp_ctx[row7]) {
  1708. c = 1 + (!s->fixcompref || !s->left_ref_ctx[row7]);
  1709. } else {
  1710. c = 4 * (!s->left_ref_ctx[row7]);
  1711. }
  1712. } else {
  1713. c = 2;
  1714. }
  1715. bit = vp56_rac_get_prob(&s->c, s->prob.p.single_ref[c][0]);
  1716. s->counts.single_ref[c][0][bit]++;
  1717. if (!bit) {
  1718. b->ref[0] = 0;
  1719. } else {
  1720. // FIXME can this codeblob be replaced by some sort of LUT?
  1721. if (have_a) {
  1722. if (have_l) {
  1723. if (s->left_intra_ctx[row7]) {
  1724. if (s->above_intra_ctx[col]) {
  1725. c = 2;
  1726. } else if (s->above_comp_ctx[col]) {
  1727. c = 1 + 2 * (s->fixcompref == 1 ||
  1728. s->above_ref_ctx[col] == 1);
  1729. } else if (!s->above_ref_ctx[col]) {
  1730. c = 3;
  1731. } else {
  1732. c = 4 * (s->above_ref_ctx[col] == 1);
  1733. }
  1734. } else if (s->above_intra_ctx[col]) {
  1735. if (s->left_intra_ctx[row7]) {
  1736. c = 2;
  1737. } else if (s->left_comp_ctx[row7]) {
  1738. c = 1 + 2 * (s->fixcompref == 1 ||
  1739. s->left_ref_ctx[row7] == 1);
  1740. } else if (!s->left_ref_ctx[row7]) {
  1741. c = 3;
  1742. } else {
  1743. c = 4 * (s->left_ref_ctx[row7] == 1);
  1744. }
  1745. } else if (s->above_comp_ctx[col]) {
  1746. if (s->left_comp_ctx[row7]) {
  1747. if (s->left_ref_ctx[row7] == s->above_ref_ctx[col]) {
  1748. c = 3 * (s->fixcompref == 1 ||
  1749. s->left_ref_ctx[row7] == 1);
  1750. } else {
  1751. c = 2;
  1752. }
  1753. } else if (!s->left_ref_ctx[row7]) {
  1754. c = 1 + 2 * (s->fixcompref == 1 ||
  1755. s->above_ref_ctx[col] == 1);
  1756. } else {
  1757. c = 3 * (s->left_ref_ctx[row7] == 1) +
  1758. (s->fixcompref == 1 || s->above_ref_ctx[col] == 1);
  1759. }
  1760. } else if (s->left_comp_ctx[row7]) {
  1761. if (!s->above_ref_ctx[col]) {
  1762. c = 1 + 2 * (s->fixcompref == 1 ||
  1763. s->left_ref_ctx[row7] == 1);
  1764. } else {
  1765. c = 3 * (s->above_ref_ctx[col] == 1) +
  1766. (s->fixcompref == 1 || s->left_ref_ctx[row7] == 1);
  1767. }
  1768. } else if (!s->above_ref_ctx[col]) {
  1769. if (!s->left_ref_ctx[row7]) {
  1770. c = 3;
  1771. } else {
  1772. c = 4 * (s->left_ref_ctx[row7] == 1);
  1773. }
  1774. } else if (!s->left_ref_ctx[row7]) {
  1775. c = 4 * (s->above_ref_ctx[col] == 1);
  1776. } else {
  1777. c = 2 * (s->left_ref_ctx[row7] == 1) +
  1778. 2 * (s->above_ref_ctx[col] == 1);
  1779. }
  1780. } else {
  1781. if (s->above_intra_ctx[col] ||
  1782. (!s->above_comp_ctx[col] && !s->above_ref_ctx[col])) {
  1783. c = 2;
  1784. } else if (s->above_comp_ctx[col]) {
  1785. c = 3 * (s->fixcompref == 1 || s->above_ref_ctx[col] == 1);
  1786. } else {
  1787. c = 4 * (s->above_ref_ctx[col] == 1);
  1788. }
  1789. }
  1790. } else if (have_l) {
  1791. if (s->left_intra_ctx[row7] ||
  1792. (!s->left_comp_ctx[row7] && !s->left_ref_ctx[row7])) {
  1793. c = 2;
  1794. } else if (s->left_comp_ctx[row7]) {
  1795. c = 3 * (s->fixcompref == 1 || s->left_ref_ctx[row7] == 1);
  1796. } else {
  1797. c = 4 * (s->left_ref_ctx[row7] == 1);
  1798. }
  1799. } else {
  1800. c = 2;
  1801. }
  1802. bit = vp56_rac_get_prob(&s->c, s->prob.p.single_ref[c][1]);
  1803. s->counts.single_ref[c][1][bit]++;
  1804. b->ref[0] = 1 + bit;
  1805. }
  1806. }
  1807. }
  1808. if (b->bs <= BS_8x8) {
  1809. if (s->segmentation.feat[b->seg_id].skip_enabled) {
  1810. b->mode[0] = b->mode[1] = b->mode[2] = b->mode[3] = ZEROMV;
  1811. } else {
  1812. static const uint8_t off[10] = {
  1813. 3, 0, 0, 1, 0, 0, 0, 0, 0, 0
  1814. };
  1815. // FIXME this needs to use the LUT tables from find_ref_mvs
  1816. // because not all are -1,0/0,-1
  1817. int c = inter_mode_ctx_lut[s->above_mode_ctx[col + off[b->bs]]]
  1818. [s->left_mode_ctx[row7 + off[b->bs]]];
  1819. b->mode[0] = vp8_rac_get_tree(&s->c, vp9_inter_mode_tree,
  1820. s->prob.p.mv_mode[c]);
  1821. b->mode[1] = b->mode[2] = b->mode[3] = b->mode[0];
  1822. s->counts.mv_mode[c][b->mode[0] - 10]++;
  1823. }
  1824. }
  1825. if (s->filtermode == FILTER_SWITCHABLE) {
  1826. int c;
  1827. if (have_a && s->above_mode_ctx[col] >= NEARESTMV) {
  1828. if (have_l && s->left_mode_ctx[row7] >= NEARESTMV) {
  1829. c = s->above_filter_ctx[col] == s->left_filter_ctx[row7] ?
  1830. s->left_filter_ctx[row7] : 3;
  1831. } else {
  1832. c = s->above_filter_ctx[col];
  1833. }
  1834. } else if (have_l && s->left_mode_ctx[row7] >= NEARESTMV) {
  1835. c = s->left_filter_ctx[row7];
  1836. } else {
  1837. c = 3;
  1838. }
  1839. filter_id = vp8_rac_get_tree(&s->c, vp9_filter_tree,
  1840. s->prob.p.filter[c]);
  1841. s->counts.filter[c][filter_id]++;
  1842. b->filter = vp9_filter_lut[filter_id];
  1843. } else {
  1844. b->filter = s->filtermode;
  1845. }
  1846. if (b->bs > BS_8x8) {
  1847. int c = inter_mode_ctx_lut[s->above_mode_ctx[col]][s->left_mode_ctx[row7]];
  1848. b->mode[0] = vp8_rac_get_tree(&s->c, vp9_inter_mode_tree,
  1849. s->prob.p.mv_mode[c]);
  1850. s->counts.mv_mode[c][b->mode[0] - 10]++;
  1851. fill_mv(s, b->mv[0], b->mode[0], 0);
  1852. if (b->bs != BS_8x4) {
  1853. b->mode[1] = vp8_rac_get_tree(&s->c, vp9_inter_mode_tree,
  1854. s->prob.p.mv_mode[c]);
  1855. s->counts.mv_mode[c][b->mode[1] - 10]++;
  1856. fill_mv(s, b->mv[1], b->mode[1], 1);
  1857. } else {
  1858. b->mode[1] = b->mode[0];
  1859. AV_COPY32(&b->mv[1][0], &b->mv[0][0]);
  1860. AV_COPY32(&b->mv[1][1], &b->mv[0][1]);
  1861. }
  1862. if (b->bs != BS_4x8) {
  1863. b->mode[2] = vp8_rac_get_tree(&s->c, vp9_inter_mode_tree,
  1864. s->prob.p.mv_mode[c]);
  1865. s->counts.mv_mode[c][b->mode[2] - 10]++;
  1866. fill_mv(s, b->mv[2], b->mode[2], 2);
  1867. if (b->bs != BS_8x4) {
  1868. b->mode[3] = vp8_rac_get_tree(&s->c, vp9_inter_mode_tree,
  1869. s->prob.p.mv_mode[c]);
  1870. s->counts.mv_mode[c][b->mode[3] - 10]++;
  1871. fill_mv(s, b->mv[3], b->mode[3], 3);
  1872. } else {
  1873. b->mode[3] = b->mode[2];
  1874. AV_COPY32(&b->mv[3][0], &b->mv[2][0]);
  1875. AV_COPY32(&b->mv[3][1], &b->mv[2][1]);
  1876. }
  1877. } else {
  1878. b->mode[2] = b->mode[0];
  1879. AV_COPY32(&b->mv[2][0], &b->mv[0][0]);
  1880. AV_COPY32(&b->mv[2][1], &b->mv[0][1]);
  1881. b->mode[3] = b->mode[1];
  1882. AV_COPY32(&b->mv[3][0], &b->mv[1][0]);
  1883. AV_COPY32(&b->mv[3][1], &b->mv[1][1]);
  1884. }
  1885. } else {
  1886. fill_mv(s, b->mv[0], b->mode[0], -1);
  1887. AV_COPY32(&b->mv[1][0], &b->mv[0][0]);
  1888. AV_COPY32(&b->mv[2][0], &b->mv[0][0]);
  1889. AV_COPY32(&b->mv[3][0], &b->mv[0][0]);
  1890. AV_COPY32(&b->mv[1][1], &b->mv[0][1]);
  1891. AV_COPY32(&b->mv[2][1], &b->mv[0][1]);
  1892. AV_COPY32(&b->mv[3][1], &b->mv[0][1]);
  1893. }
  1894. vref = b->ref[b->comp ? s->signbias[s->varcompref[0]] : 0];
  1895. }
  1896. #if HAVE_FAST_64BIT
  1897. #define SPLAT_CTX(var, val, n) \
  1898. switch (n) { \
  1899. case 1: var = val; break; \
  1900. case 2: AV_WN16A(&var, val * 0x0101); break; \
  1901. case 4: AV_WN32A(&var, val * 0x01010101); break; \
  1902. case 8: AV_WN64A(&var, val * 0x0101010101010101ULL); break; \
  1903. case 16: { \
  1904. uint64_t v64 = val * 0x0101010101010101ULL; \
  1905. AV_WN64A( &var, v64); \
  1906. AV_WN64A(&((uint8_t *) &var)[8], v64); \
  1907. break; \
  1908. } \
  1909. }
  1910. #else
  1911. #define SPLAT_CTX(var, val, n) \
  1912. switch (n) { \
  1913. case 1: var = val; break; \
  1914. case 2: AV_WN16A(&var, val * 0x0101); break; \
  1915. case 4: AV_WN32A(&var, val * 0x01010101); break; \
  1916. case 8: { \
  1917. uint32_t v32 = val * 0x01010101; \
  1918. AV_WN32A( &var, v32); \
  1919. AV_WN32A(&((uint8_t *) &var)[4], v32); \
  1920. break; \
  1921. } \
  1922. case 16: { \
  1923. uint32_t v32 = val * 0x01010101; \
  1924. AV_WN32A( &var, v32); \
  1925. AV_WN32A(&((uint8_t *) &var)[4], v32); \
  1926. AV_WN32A(&((uint8_t *) &var)[8], v32); \
  1927. AV_WN32A(&((uint8_t *) &var)[12], v32); \
  1928. break; \
  1929. } \
  1930. }
  1931. #endif
  1932. switch (bwh_tab[1][b->bs][0]) {
  1933. #define SET_CTXS(dir, off, n) \
  1934. do { \
  1935. SPLAT_CTX(s->dir##_skip_ctx[off], b->skip, n); \
  1936. SPLAT_CTX(s->dir##_txfm_ctx[off], b->tx, n); \
  1937. SPLAT_CTX(s->dir##_partition_ctx[off], dir##_ctx[b->bs], n); \
  1938. if (!s->keyframe && !s->intraonly) { \
  1939. SPLAT_CTX(s->dir##_intra_ctx[off], b->intra, n); \
  1940. SPLAT_CTX(s->dir##_comp_ctx[off], b->comp, n); \
  1941. SPLAT_CTX(s->dir##_mode_ctx[off], b->mode[3], n); \
  1942. if (!b->intra) { \
  1943. SPLAT_CTX(s->dir##_ref_ctx[off], vref, n); \
  1944. if (s->filtermode == FILTER_SWITCHABLE) { \
  1945. SPLAT_CTX(s->dir##_filter_ctx[off], filter_id, n); \
  1946. } \
  1947. } \
  1948. } \
  1949. } while (0)
  1950. case 1: SET_CTXS(above, col, 1); break;
  1951. case 2: SET_CTXS(above, col, 2); break;
  1952. case 4: SET_CTXS(above, col, 4); break;
  1953. case 8: SET_CTXS(above, col, 8); break;
  1954. }
  1955. switch (bwh_tab[1][b->bs][1]) {
  1956. case 1: SET_CTXS(left, row7, 1); break;
  1957. case 2: SET_CTXS(left, row7, 2); break;
  1958. case 4: SET_CTXS(left, row7, 4); break;
  1959. case 8: SET_CTXS(left, row7, 8); break;
  1960. }
  1961. #undef SPLAT_CTX
  1962. #undef SET_CTXS
  1963. if (!s->keyframe && !s->intraonly) {
  1964. if (b->bs > BS_8x8) {
  1965. int mv0 = AV_RN32A(&b->mv[3][0]), mv1 = AV_RN32A(&b->mv[3][1]);
  1966. AV_COPY32(&s->left_mv_ctx[row7 * 2 + 0][0], &b->mv[1][0]);
  1967. AV_COPY32(&s->left_mv_ctx[row7 * 2 + 0][1], &b->mv[1][1]);
  1968. AV_WN32A(&s->left_mv_ctx[row7 * 2 + 1][0], mv0);
  1969. AV_WN32A(&s->left_mv_ctx[row7 * 2 + 1][1], mv1);
  1970. AV_COPY32(&s->above_mv_ctx[col * 2 + 0][0], &b->mv[2][0]);
  1971. AV_COPY32(&s->above_mv_ctx[col * 2 + 0][1], &b->mv[2][1]);
  1972. AV_WN32A(&s->above_mv_ctx[col * 2 + 1][0], mv0);
  1973. AV_WN32A(&s->above_mv_ctx[col * 2 + 1][1], mv1);
  1974. } else {
  1975. int n, mv0 = AV_RN32A(&b->mv[3][0]), mv1 = AV_RN32A(&b->mv[3][1]);
  1976. for (n = 0; n < w4 * 2; n++) {
  1977. AV_WN32A(&s->above_mv_ctx[col * 2 + n][0], mv0);
  1978. AV_WN32A(&s->above_mv_ctx[col * 2 + n][1], mv1);
  1979. }
  1980. for (n = 0; n < h4 * 2; n++) {
  1981. AV_WN32A(&s->left_mv_ctx[row7 * 2 + n][0], mv0);
  1982. AV_WN32A(&s->left_mv_ctx[row7 * 2 + n][1], mv1);
  1983. }
  1984. }
  1985. }
  1986. // FIXME kinda ugly
  1987. for (y = 0; y < h4; y++) {
  1988. int x, o = (row + y) * s->sb_cols * 8 + col;
  1989. struct VP9mvrefPair *mv = &s->frames[CUR_FRAME].mv[o];
  1990. if (b->intra) {
  1991. for (x = 0; x < w4; x++) {
  1992. mv[x].ref[0] =
  1993. mv[x].ref[1] = -1;
  1994. }
  1995. } else if (b->comp) {
  1996. for (x = 0; x < w4; x++) {
  1997. mv[x].ref[0] = b->ref[0];
  1998. mv[x].ref[1] = b->ref[1];
  1999. AV_COPY32(&mv[x].mv[0], &b->mv[3][0]);
  2000. AV_COPY32(&mv[x].mv[1], &b->mv[3][1]);
  2001. }
  2002. } else {
  2003. for (x = 0; x < w4; x++) {
  2004. mv[x].ref[0] = b->ref[0];
  2005. mv[x].ref[1] = -1;
  2006. AV_COPY32(&mv[x].mv[0], &b->mv[3][0]);
  2007. }
  2008. }
  2009. }
  2010. }
  2011. // FIXME merge cnt/eob arguments?
  2012. static av_always_inline int
  2013. decode_coeffs_b_generic(VP56RangeCoder *c, int16_t *coef, int n_coeffs,
  2014. int is_tx32x32, int is8bitsperpixel, int bpp, unsigned (*cnt)[6][3],
  2015. unsigned (*eob)[6][2], uint8_t (*p)[6][11],
  2016. int nnz, const int16_t *scan, const int16_t (*nb)[2],
  2017. const int16_t *band_counts, const int16_t *qmul)
  2018. {
  2019. int i = 0, band = 0, band_left = band_counts[band];
  2020. uint8_t *tp = p[0][nnz];
  2021. uint8_t cache[1024];
  2022. do {
  2023. int val, rc;
  2024. val = vp56_rac_get_prob_branchy(c, tp[0]); // eob
  2025. eob[band][nnz][val]++;
  2026. if (!val)
  2027. break;
  2028. skip_eob:
  2029. if (!vp56_rac_get_prob_branchy(c, tp[1])) { // zero
  2030. cnt[band][nnz][0]++;
  2031. if (!--band_left)
  2032. band_left = band_counts[++band];
  2033. cache[scan[i]] = 0;
  2034. nnz = (1 + cache[nb[i][0]] + cache[nb[i][1]]) >> 1;
  2035. tp = p[band][nnz];
  2036. if (++i == n_coeffs)
  2037. break; //invalid input; blocks should end with EOB
  2038. goto skip_eob;
  2039. }
  2040. rc = scan[i];
  2041. if (!vp56_rac_get_prob_branchy(c, tp[2])) { // one
  2042. cnt[band][nnz][1]++;
  2043. val = 1;
  2044. cache[rc] = 1;
  2045. } else {
  2046. // fill in p[3-10] (model fill) - only once per frame for each pos
  2047. if (!tp[3])
  2048. memcpy(&tp[3], vp9_model_pareto8[tp[2]], 8);
  2049. cnt[band][nnz][2]++;
  2050. if (!vp56_rac_get_prob_branchy(c, tp[3])) { // 2, 3, 4
  2051. if (!vp56_rac_get_prob_branchy(c, tp[4])) {
  2052. cache[rc] = val = 2;
  2053. } else {
  2054. val = 3 + vp56_rac_get_prob(c, tp[5]);
  2055. cache[rc] = 3;
  2056. }
  2057. } else if (!vp56_rac_get_prob_branchy(c, tp[6])) { // cat1/2
  2058. cache[rc] = 4;
  2059. if (!vp56_rac_get_prob_branchy(c, tp[7])) {
  2060. val = 5 + vp56_rac_get_prob(c, 159);
  2061. } else {
  2062. val = 7 + (vp56_rac_get_prob(c, 165) << 1);
  2063. val += vp56_rac_get_prob(c, 145);
  2064. }
  2065. } else { // cat 3-6
  2066. cache[rc] = 5;
  2067. if (!vp56_rac_get_prob_branchy(c, tp[8])) {
  2068. if (!vp56_rac_get_prob_branchy(c, tp[9])) {
  2069. val = 11 + (vp56_rac_get_prob(c, 173) << 2);
  2070. val += (vp56_rac_get_prob(c, 148) << 1);
  2071. val += vp56_rac_get_prob(c, 140);
  2072. } else {
  2073. val = 19 + (vp56_rac_get_prob(c, 176) << 3);
  2074. val += (vp56_rac_get_prob(c, 155) << 2);
  2075. val += (vp56_rac_get_prob(c, 140) << 1);
  2076. val += vp56_rac_get_prob(c, 135);
  2077. }
  2078. } else if (!vp56_rac_get_prob_branchy(c, tp[10])) {
  2079. val = 35 + (vp56_rac_get_prob(c, 180) << 4);
  2080. val += (vp56_rac_get_prob(c, 157) << 3);
  2081. val += (vp56_rac_get_prob(c, 141) << 2);
  2082. val += (vp56_rac_get_prob(c, 134) << 1);
  2083. val += vp56_rac_get_prob(c, 130);
  2084. } else {
  2085. val = 67;
  2086. if (!is8bitsperpixel) {
  2087. if (bpp == 12) {
  2088. val += vp56_rac_get_prob(c, 255) << 17;
  2089. val += vp56_rac_get_prob(c, 255) << 16;
  2090. }
  2091. val += (vp56_rac_get_prob(c, 255) << 15);
  2092. val += (vp56_rac_get_prob(c, 255) << 14);
  2093. }
  2094. val += (vp56_rac_get_prob(c, 254) << 13);
  2095. val += (vp56_rac_get_prob(c, 254) << 12);
  2096. val += (vp56_rac_get_prob(c, 254) << 11);
  2097. val += (vp56_rac_get_prob(c, 252) << 10);
  2098. val += (vp56_rac_get_prob(c, 249) << 9);
  2099. val += (vp56_rac_get_prob(c, 243) << 8);
  2100. val += (vp56_rac_get_prob(c, 230) << 7);
  2101. val += (vp56_rac_get_prob(c, 196) << 6);
  2102. val += (vp56_rac_get_prob(c, 177) << 5);
  2103. val += (vp56_rac_get_prob(c, 153) << 4);
  2104. val += (vp56_rac_get_prob(c, 140) << 3);
  2105. val += (vp56_rac_get_prob(c, 133) << 2);
  2106. val += (vp56_rac_get_prob(c, 130) << 1);
  2107. val += vp56_rac_get_prob(c, 129);
  2108. }
  2109. }
  2110. }
  2111. #define STORE_COEF(c, i, v) do { \
  2112. if (is8bitsperpixel) { \
  2113. c[i] = v; \
  2114. } else { \
  2115. AV_WN32A(&c[i * 2], v); \
  2116. } \
  2117. } while (0)
  2118. if (!--band_left)
  2119. band_left = band_counts[++band];
  2120. if (is_tx32x32)
  2121. STORE_COEF(coef, rc, ((vp8_rac_get(c) ? -val : val) * qmul[!!i]) / 2);
  2122. else
  2123. STORE_COEF(coef, rc, (vp8_rac_get(c) ? -val : val) * qmul[!!i]);
  2124. nnz = (1 + cache[nb[i][0]] + cache[nb[i][1]]) >> 1;
  2125. tp = p[band][nnz];
  2126. } while (++i < n_coeffs);
  2127. return i;
  2128. }
  2129. static int decode_coeffs_b_8bpp(VP9Context *s, int16_t *coef, int n_coeffs,
  2130. unsigned (*cnt)[6][3], unsigned (*eob)[6][2],
  2131. uint8_t (*p)[6][11], int nnz, const int16_t *scan,
  2132. const int16_t (*nb)[2], const int16_t *band_counts,
  2133. const int16_t *qmul)
  2134. {
  2135. return decode_coeffs_b_generic(&s->c, coef, n_coeffs, 0, 1, 8, cnt, eob, p,
  2136. nnz, scan, nb, band_counts, qmul);
  2137. }
  2138. static int decode_coeffs_b32_8bpp(VP9Context *s, int16_t *coef, int n_coeffs,
  2139. unsigned (*cnt)[6][3], unsigned (*eob)[6][2],
  2140. uint8_t (*p)[6][11], int nnz, const int16_t *scan,
  2141. const int16_t (*nb)[2], const int16_t *band_counts,
  2142. const int16_t *qmul)
  2143. {
  2144. return decode_coeffs_b_generic(&s->c, coef, n_coeffs, 1, 1, 8, cnt, eob, p,
  2145. nnz, scan, nb, band_counts, qmul);
  2146. }
  2147. static int decode_coeffs_b_16bpp(VP9Context *s, int16_t *coef, int n_coeffs,
  2148. unsigned (*cnt)[6][3], unsigned (*eob)[6][2],
  2149. uint8_t (*p)[6][11], int nnz, const int16_t *scan,
  2150. const int16_t (*nb)[2], const int16_t *band_counts,
  2151. const int16_t *qmul)
  2152. {
  2153. return decode_coeffs_b_generic(&s->c, coef, n_coeffs, 0, 0, s->bpp, cnt, eob, p,
  2154. nnz, scan, nb, band_counts, qmul);
  2155. }
  2156. static int decode_coeffs_b32_16bpp(VP9Context *s, int16_t *coef, int n_coeffs,
  2157. unsigned (*cnt)[6][3], unsigned (*eob)[6][2],
  2158. uint8_t (*p)[6][11], int nnz, const int16_t *scan,
  2159. const int16_t (*nb)[2], const int16_t *band_counts,
  2160. const int16_t *qmul)
  2161. {
  2162. return decode_coeffs_b_generic(&s->c, coef, n_coeffs, 1, 0, s->bpp, cnt, eob, p,
  2163. nnz, scan, nb, band_counts, qmul);
  2164. }
  2165. static av_always_inline int decode_coeffs(AVCodecContext *ctx, int is8bitsperpixel)
  2166. {
  2167. VP9Context *s = ctx->priv_data;
  2168. VP9Block *b = s->b;
  2169. int row = s->row, col = s->col;
  2170. uint8_t (*p)[6][11] = s->prob.coef[b->tx][0 /* y */][!b->intra];
  2171. unsigned (*c)[6][3] = s->counts.coef[b->tx][0 /* y */][!b->intra];
  2172. unsigned (*e)[6][2] = s->counts.eob[b->tx][0 /* y */][!b->intra];
  2173. int w4 = bwh_tab[1][b->bs][0] << 1, h4 = bwh_tab[1][b->bs][1] << 1;
  2174. int end_x = FFMIN(2 * (s->cols - col), w4);
  2175. int end_y = FFMIN(2 * (s->rows - row), h4);
  2176. int n, pl, x, y, res;
  2177. int16_t (*qmul)[2] = s->segmentation.feat[b->seg_id].qmul;
  2178. int tx = 4 * s->lossless + b->tx;
  2179. const int16_t * const *yscans = vp9_scans[tx];
  2180. const int16_t (* const *ynbs)[2] = vp9_scans_nb[tx];
  2181. const int16_t *uvscan = vp9_scans[b->uvtx][DCT_DCT];
  2182. const int16_t (*uvnb)[2] = vp9_scans_nb[b->uvtx][DCT_DCT];
  2183. uint8_t *a = &s->above_y_nnz_ctx[col * 2];
  2184. uint8_t *l = &s->left_y_nnz_ctx[(row & 7) << 1];
  2185. static const int16_t band_counts[4][8] = {
  2186. { 1, 2, 3, 4, 3, 16 - 13 },
  2187. { 1, 2, 3, 4, 11, 64 - 21 },
  2188. { 1, 2, 3, 4, 11, 256 - 21 },
  2189. { 1, 2, 3, 4, 11, 1024 - 21 },
  2190. };
  2191. const int16_t *y_band_counts = band_counts[b->tx];
  2192. const int16_t *uv_band_counts = band_counts[b->uvtx];
  2193. int bytesperpixel = is8bitsperpixel ? 1 : 2;
  2194. int total_coeff = 0;
  2195. #define MERGE(la, end, step, rd) \
  2196. for (n = 0; n < end; n += step) \
  2197. la[n] = !!rd(&la[n])
  2198. #define MERGE_CTX(step, rd) \
  2199. do { \
  2200. MERGE(l, end_y, step, rd); \
  2201. MERGE(a, end_x, step, rd); \
  2202. } while (0)
  2203. #define DECODE_Y_COEF_LOOP(step, mode_index, v) \
  2204. for (n = 0, y = 0; y < end_y; y += step) { \
  2205. for (x = 0; x < end_x; x += step, n += step * step) { \
  2206. enum TxfmType txtp = vp9_intra_txfm_type[b->mode[mode_index]]; \
  2207. res = (is8bitsperpixel ? decode_coeffs_b##v##_8bpp : decode_coeffs_b##v##_16bpp) \
  2208. (s, s->block + 16 * n * bytesperpixel, 16 * step * step, \
  2209. c, e, p, a[x] + l[y], yscans[txtp], \
  2210. ynbs[txtp], y_band_counts, qmul[0]); \
  2211. a[x] = l[y] = !!res; \
  2212. total_coeff |= !!res; \
  2213. if (step >= 4) { \
  2214. AV_WN16A(&s->eob[n], res); \
  2215. } else { \
  2216. s->eob[n] = res; \
  2217. } \
  2218. } \
  2219. }
  2220. #define SPLAT(la, end, step, cond) \
  2221. if (step == 2) { \
  2222. for (n = 1; n < end; n += step) \
  2223. la[n] = la[n - 1]; \
  2224. } else if (step == 4) { \
  2225. if (cond) { \
  2226. for (n = 0; n < end; n += step) \
  2227. AV_WN32A(&la[n], la[n] * 0x01010101); \
  2228. } else { \
  2229. for (n = 0; n < end; n += step) \
  2230. memset(&la[n + 1], la[n], FFMIN(end - n - 1, 3)); \
  2231. } \
  2232. } else /* step == 8 */ { \
  2233. if (cond) { \
  2234. if (HAVE_FAST_64BIT) { \
  2235. for (n = 0; n < end; n += step) \
  2236. AV_WN64A(&la[n], la[n] * 0x0101010101010101ULL); \
  2237. } else { \
  2238. for (n = 0; n < end; n += step) { \
  2239. uint32_t v32 = la[n] * 0x01010101; \
  2240. AV_WN32A(&la[n], v32); \
  2241. AV_WN32A(&la[n + 4], v32); \
  2242. } \
  2243. } \
  2244. } else { \
  2245. for (n = 0; n < end; n += step) \
  2246. memset(&la[n + 1], la[n], FFMIN(end - n - 1, 7)); \
  2247. } \
  2248. }
  2249. #define SPLAT_CTX(step) \
  2250. do { \
  2251. SPLAT(a, end_x, step, end_x == w4); \
  2252. SPLAT(l, end_y, step, end_y == h4); \
  2253. } while (0)
  2254. /* y tokens */
  2255. switch (b->tx) {
  2256. case TX_4X4:
  2257. DECODE_Y_COEF_LOOP(1, b->bs > BS_8x8 ? n : 0,);
  2258. break;
  2259. case TX_8X8:
  2260. MERGE_CTX(2, AV_RN16A);
  2261. DECODE_Y_COEF_LOOP(2, 0,);
  2262. SPLAT_CTX(2);
  2263. break;
  2264. case TX_16X16:
  2265. MERGE_CTX(4, AV_RN32A);
  2266. DECODE_Y_COEF_LOOP(4, 0,);
  2267. SPLAT_CTX(4);
  2268. break;
  2269. case TX_32X32:
  2270. MERGE_CTX(8, AV_RN64A);
  2271. DECODE_Y_COEF_LOOP(8, 0, 32);
  2272. SPLAT_CTX(8);
  2273. break;
  2274. }
  2275. #define DECODE_UV_COEF_LOOP(step, v) \
  2276. for (n = 0, y = 0; y < end_y; y += step) { \
  2277. for (x = 0; x < end_x; x += step, n += step * step) { \
  2278. res = (is8bitsperpixel ? decode_coeffs_b##v##_8bpp : decode_coeffs_b##v##_16bpp) \
  2279. (s, s->uvblock[pl] + 16 * n * bytesperpixel, \
  2280. 16 * step * step, c, e, p, a[x] + l[y], \
  2281. uvscan, uvnb, uv_band_counts, qmul[1]); \
  2282. a[x] = l[y] = !!res; \
  2283. total_coeff |= !!res; \
  2284. if (step >= 4) { \
  2285. AV_WN16A(&s->uveob[pl][n], res); \
  2286. } else { \
  2287. s->uveob[pl][n] = res; \
  2288. } \
  2289. } \
  2290. }
  2291. p = s->prob.coef[b->uvtx][1 /* uv */][!b->intra];
  2292. c = s->counts.coef[b->uvtx][1 /* uv */][!b->intra];
  2293. e = s->counts.eob[b->uvtx][1 /* uv */][!b->intra];
  2294. w4 >>= s->ss_h;
  2295. end_x >>= s->ss_h;
  2296. h4 >>= s->ss_v;
  2297. end_y >>= s->ss_v;
  2298. for (pl = 0; pl < 2; pl++) {
  2299. a = &s->above_uv_nnz_ctx[pl][col << !s->ss_h];
  2300. l = &s->left_uv_nnz_ctx[pl][(row & 7) << !s->ss_v];
  2301. switch (b->uvtx) {
  2302. case TX_4X4:
  2303. DECODE_UV_COEF_LOOP(1,);
  2304. break;
  2305. case TX_8X8:
  2306. MERGE_CTX(2, AV_RN16A);
  2307. DECODE_UV_COEF_LOOP(2,);
  2308. SPLAT_CTX(2);
  2309. break;
  2310. case TX_16X16:
  2311. MERGE_CTX(4, AV_RN32A);
  2312. DECODE_UV_COEF_LOOP(4,);
  2313. SPLAT_CTX(4);
  2314. break;
  2315. case TX_32X32:
  2316. MERGE_CTX(8, AV_RN64A);
  2317. DECODE_UV_COEF_LOOP(8, 32);
  2318. SPLAT_CTX(8);
  2319. break;
  2320. }
  2321. }
  2322. return total_coeff;
  2323. }
  2324. static int decode_coeffs_8bpp(AVCodecContext *ctx)
  2325. {
  2326. return decode_coeffs(ctx, 1);
  2327. }
  2328. static int decode_coeffs_16bpp(AVCodecContext *ctx)
  2329. {
  2330. return decode_coeffs(ctx, 0);
  2331. }
  2332. static av_always_inline int check_intra_mode(VP9Context *s, int mode, uint8_t **a,
  2333. uint8_t *dst_edge, ptrdiff_t stride_edge,
  2334. uint8_t *dst_inner, ptrdiff_t stride_inner,
  2335. uint8_t *l, int col, int x, int w,
  2336. int row, int y, enum TxfmMode tx,
  2337. int p, int ss_h, int ss_v, int bytesperpixel)
  2338. {
  2339. int have_top = row > 0 || y > 0;
  2340. int have_left = col > s->tiling.tile_col_start || x > 0;
  2341. int have_right = x < w - 1;
  2342. int bpp = s->bpp;
  2343. static const uint8_t mode_conv[10][2 /* have_left */][2 /* have_top */] = {
  2344. [VERT_PRED] = { { DC_127_PRED, VERT_PRED },
  2345. { DC_127_PRED, VERT_PRED } },
  2346. [HOR_PRED] = { { DC_129_PRED, DC_129_PRED },
  2347. { HOR_PRED, HOR_PRED } },
  2348. [DC_PRED] = { { DC_128_PRED, TOP_DC_PRED },
  2349. { LEFT_DC_PRED, DC_PRED } },
  2350. [DIAG_DOWN_LEFT_PRED] = { { DC_127_PRED, DIAG_DOWN_LEFT_PRED },
  2351. { DC_127_PRED, DIAG_DOWN_LEFT_PRED } },
  2352. [DIAG_DOWN_RIGHT_PRED] = { { DIAG_DOWN_RIGHT_PRED, DIAG_DOWN_RIGHT_PRED },
  2353. { DIAG_DOWN_RIGHT_PRED, DIAG_DOWN_RIGHT_PRED } },
  2354. [VERT_RIGHT_PRED] = { { VERT_RIGHT_PRED, VERT_RIGHT_PRED },
  2355. { VERT_RIGHT_PRED, VERT_RIGHT_PRED } },
  2356. [HOR_DOWN_PRED] = { { HOR_DOWN_PRED, HOR_DOWN_PRED },
  2357. { HOR_DOWN_PRED, HOR_DOWN_PRED } },
  2358. [VERT_LEFT_PRED] = { { DC_127_PRED, VERT_LEFT_PRED },
  2359. { DC_127_PRED, VERT_LEFT_PRED } },
  2360. [HOR_UP_PRED] = { { DC_129_PRED, DC_129_PRED },
  2361. { HOR_UP_PRED, HOR_UP_PRED } },
  2362. [TM_VP8_PRED] = { { DC_129_PRED, VERT_PRED },
  2363. { HOR_PRED, TM_VP8_PRED } },
  2364. };
  2365. static const struct {
  2366. uint8_t needs_left:1;
  2367. uint8_t needs_top:1;
  2368. uint8_t needs_topleft:1;
  2369. uint8_t needs_topright:1;
  2370. uint8_t invert_left:1;
  2371. } edges[N_INTRA_PRED_MODES] = {
  2372. [VERT_PRED] = { .needs_top = 1 },
  2373. [HOR_PRED] = { .needs_left = 1 },
  2374. [DC_PRED] = { .needs_top = 1, .needs_left = 1 },
  2375. [DIAG_DOWN_LEFT_PRED] = { .needs_top = 1, .needs_topright = 1 },
  2376. [DIAG_DOWN_RIGHT_PRED] = { .needs_left = 1, .needs_top = 1, .needs_topleft = 1 },
  2377. [VERT_RIGHT_PRED] = { .needs_left = 1, .needs_top = 1, .needs_topleft = 1 },
  2378. [HOR_DOWN_PRED] = { .needs_left = 1, .needs_top = 1, .needs_topleft = 1 },
  2379. [VERT_LEFT_PRED] = { .needs_top = 1, .needs_topright = 1 },
  2380. [HOR_UP_PRED] = { .needs_left = 1, .invert_left = 1 },
  2381. [TM_VP8_PRED] = { .needs_left = 1, .needs_top = 1, .needs_topleft = 1 },
  2382. [LEFT_DC_PRED] = { .needs_left = 1 },
  2383. [TOP_DC_PRED] = { .needs_top = 1 },
  2384. [DC_128_PRED] = { 0 },
  2385. [DC_127_PRED] = { 0 },
  2386. [DC_129_PRED] = { 0 }
  2387. };
  2388. av_assert2(mode >= 0 && mode < 10);
  2389. mode = mode_conv[mode][have_left][have_top];
  2390. if (edges[mode].needs_top) {
  2391. uint8_t *top, *topleft;
  2392. int n_px_need = 4 << tx, n_px_have = (((s->cols - col) << !ss_h) - x) * 4;
  2393. int n_px_need_tr = 0;
  2394. if (tx == TX_4X4 && edges[mode].needs_topright && have_right)
  2395. n_px_need_tr = 4;
  2396. // if top of sb64-row, use s->intra_pred_data[] instead of
  2397. // dst[-stride] for intra prediction (it contains pre- instead of
  2398. // post-loopfilter data)
  2399. if (have_top) {
  2400. top = !(row & 7) && !y ?
  2401. s->intra_pred_data[p] + (col * (8 >> ss_h) + x * 4) * bytesperpixel :
  2402. y == 0 ? &dst_edge[-stride_edge] : &dst_inner[-stride_inner];
  2403. if (have_left)
  2404. topleft = !(row & 7) && !y ?
  2405. s->intra_pred_data[p] + (col * (8 >> ss_h) + x * 4) * bytesperpixel :
  2406. y == 0 || x == 0 ? &dst_edge[-stride_edge] :
  2407. &dst_inner[-stride_inner];
  2408. }
  2409. if (have_top &&
  2410. (!edges[mode].needs_topleft || (have_left && top == topleft)) &&
  2411. (tx != TX_4X4 || !edges[mode].needs_topright || have_right) &&
  2412. n_px_need + n_px_need_tr <= n_px_have) {
  2413. *a = top;
  2414. } else {
  2415. if (have_top) {
  2416. if (n_px_need <= n_px_have) {
  2417. memcpy(*a, top, n_px_need * bytesperpixel);
  2418. } else {
  2419. #define memset_bpp(c, i1, v, i2, num) do { \
  2420. if (bytesperpixel == 1) { \
  2421. memset(&(c)[(i1)], (v)[(i2)], (num)); \
  2422. } else { \
  2423. int n, val = AV_RN16A(&(v)[(i2) * 2]); \
  2424. for (n = 0; n < (num); n++) { \
  2425. AV_WN16A(&(c)[((i1) + n) * 2], val); \
  2426. } \
  2427. } \
  2428. } while (0)
  2429. memcpy(*a, top, n_px_have * bytesperpixel);
  2430. memset_bpp(*a, n_px_have, (*a), n_px_have - 1, n_px_need - n_px_have);
  2431. }
  2432. } else {
  2433. #define memset_val(c, val, num) do { \
  2434. if (bytesperpixel == 1) { \
  2435. memset((c), (val), (num)); \
  2436. } else { \
  2437. int n; \
  2438. for (n = 0; n < (num); n++) { \
  2439. AV_WN16A(&(c)[n * 2], (val)); \
  2440. } \
  2441. } \
  2442. } while (0)
  2443. memset_val(*a, (128 << (bpp - 8)) - 1, n_px_need);
  2444. }
  2445. if (edges[mode].needs_topleft) {
  2446. if (have_left && have_top) {
  2447. #define assign_bpp(c, i1, v, i2) do { \
  2448. if (bytesperpixel == 1) { \
  2449. (c)[(i1)] = (v)[(i2)]; \
  2450. } else { \
  2451. AV_COPY16(&(c)[(i1) * 2], &(v)[(i2) * 2]); \
  2452. } \
  2453. } while (0)
  2454. assign_bpp(*a, -1, topleft, -1);
  2455. } else {
  2456. #define assign_val(c, i, v) do { \
  2457. if (bytesperpixel == 1) { \
  2458. (c)[(i)] = (v); \
  2459. } else { \
  2460. AV_WN16A(&(c)[(i) * 2], (v)); \
  2461. } \
  2462. } while (0)
  2463. assign_val((*a), -1, (128 << (bpp - 8)) + (have_top ? +1 : -1));
  2464. }
  2465. }
  2466. if (tx == TX_4X4 && edges[mode].needs_topright) {
  2467. if (have_top && have_right &&
  2468. n_px_need + n_px_need_tr <= n_px_have) {
  2469. memcpy(&(*a)[4 * bytesperpixel], &top[4 * bytesperpixel], 4 * bytesperpixel);
  2470. } else {
  2471. memset_bpp(*a, 4, *a, 3, 4);
  2472. }
  2473. }
  2474. }
  2475. }
  2476. if (edges[mode].needs_left) {
  2477. if (have_left) {
  2478. int n_px_need = 4 << tx, i, n_px_have = (((s->rows - row) << !ss_v) - y) * 4;
  2479. uint8_t *dst = x == 0 ? dst_edge : dst_inner;
  2480. ptrdiff_t stride = x == 0 ? stride_edge : stride_inner;
  2481. if (edges[mode].invert_left) {
  2482. if (n_px_need <= n_px_have) {
  2483. for (i = 0; i < n_px_need; i++)
  2484. assign_bpp(l, i, &dst[i * stride], -1);
  2485. } else {
  2486. for (i = 0; i < n_px_have; i++)
  2487. assign_bpp(l, i, &dst[i * stride], -1);
  2488. memset_bpp(l, n_px_have, l, n_px_have - 1, n_px_need - n_px_have);
  2489. }
  2490. } else {
  2491. if (n_px_need <= n_px_have) {
  2492. for (i = 0; i < n_px_need; i++)
  2493. assign_bpp(l, n_px_need - 1 - i, &dst[i * stride], -1);
  2494. } else {
  2495. for (i = 0; i < n_px_have; i++)
  2496. assign_bpp(l, n_px_need - 1 - i, &dst[i * stride], -1);
  2497. memset_bpp(l, 0, l, n_px_need - n_px_have, n_px_need - n_px_have);
  2498. }
  2499. }
  2500. } else {
  2501. memset_val(l, (128 << (bpp - 8)) + 1, 4 << tx);
  2502. }
  2503. }
  2504. return mode;
  2505. }
  2506. static av_always_inline void intra_recon(AVCodecContext *ctx, ptrdiff_t y_off,
  2507. ptrdiff_t uv_off, int bytesperpixel)
  2508. {
  2509. VP9Context *s = ctx->priv_data;
  2510. VP9Block *b = s->b;
  2511. int row = s->row, col = s->col;
  2512. int w4 = bwh_tab[1][b->bs][0] << 1, step1d = 1 << b->tx, n;
  2513. int h4 = bwh_tab[1][b->bs][1] << 1, x, y, step = 1 << (b->tx * 2);
  2514. int end_x = FFMIN(2 * (s->cols - col), w4);
  2515. int end_y = FFMIN(2 * (s->rows - row), h4);
  2516. int tx = 4 * s->lossless + b->tx, uvtx = b->uvtx + 4 * s->lossless;
  2517. int uvstep1d = 1 << b->uvtx, p;
  2518. uint8_t *dst = s->dst[0], *dst_r = s->frames[CUR_FRAME].tf.f->data[0] + y_off;
  2519. LOCAL_ALIGNED_32(uint8_t, a_buf, [96]);
  2520. LOCAL_ALIGNED_32(uint8_t, l, [64]);
  2521. for (n = 0, y = 0; y < end_y; y += step1d) {
  2522. uint8_t *ptr = dst, *ptr_r = dst_r;
  2523. for (x = 0; x < end_x; x += step1d, ptr += 4 * step1d * bytesperpixel,
  2524. ptr_r += 4 * step1d * bytesperpixel, n += step) {
  2525. int mode = b->mode[b->bs > BS_8x8 && b->tx == TX_4X4 ?
  2526. y * 2 + x : 0];
  2527. uint8_t *a = &a_buf[32];
  2528. enum TxfmType txtp = vp9_intra_txfm_type[mode];
  2529. int eob = b->skip ? 0 : b->tx > TX_8X8 ? AV_RN16A(&s->eob[n]) : s->eob[n];
  2530. mode = check_intra_mode(s, mode, &a, ptr_r,
  2531. s->frames[CUR_FRAME].tf.f->linesize[0],
  2532. ptr, s->y_stride, l,
  2533. col, x, w4, row, y, b->tx, 0, 0, 0, bytesperpixel);
  2534. s->dsp.intra_pred[b->tx][mode](ptr, s->y_stride, l, a);
  2535. if (eob)
  2536. s->dsp.itxfm_add[tx][txtp](ptr, s->y_stride,
  2537. s->block + 16 * n * bytesperpixel, eob);
  2538. }
  2539. dst_r += 4 * step1d * s->frames[CUR_FRAME].tf.f->linesize[0];
  2540. dst += 4 * step1d * s->y_stride;
  2541. }
  2542. // U/V
  2543. w4 >>= s->ss_h;
  2544. end_x >>= s->ss_h;
  2545. end_y >>= s->ss_v;
  2546. step = 1 << (b->uvtx * 2);
  2547. for (p = 0; p < 2; p++) {
  2548. dst = s->dst[1 + p];
  2549. dst_r = s->frames[CUR_FRAME].tf.f->data[1 + p] + uv_off;
  2550. for (n = 0, y = 0; y < end_y; y += uvstep1d) {
  2551. uint8_t *ptr = dst, *ptr_r = dst_r;
  2552. for (x = 0; x < end_x; x += uvstep1d, ptr += 4 * uvstep1d * bytesperpixel,
  2553. ptr_r += 4 * uvstep1d * bytesperpixel, n += step) {
  2554. int mode = b->uvmode;
  2555. uint8_t *a = &a_buf[32];
  2556. int eob = b->skip ? 0 : b->uvtx > TX_8X8 ? AV_RN16A(&s->uveob[p][n]) : s->uveob[p][n];
  2557. mode = check_intra_mode(s, mode, &a, ptr_r,
  2558. s->frames[CUR_FRAME].tf.f->linesize[1],
  2559. ptr, s->uv_stride, l, col, x, w4, row, y,
  2560. b->uvtx, p + 1, s->ss_h, s->ss_v, bytesperpixel);
  2561. s->dsp.intra_pred[b->uvtx][mode](ptr, s->uv_stride, l, a);
  2562. if (eob)
  2563. s->dsp.itxfm_add[uvtx][DCT_DCT](ptr, s->uv_stride,
  2564. s->uvblock[p] + 16 * n * bytesperpixel, eob);
  2565. }
  2566. dst_r += 4 * uvstep1d * s->frames[CUR_FRAME].tf.f->linesize[1];
  2567. dst += 4 * uvstep1d * s->uv_stride;
  2568. }
  2569. }
  2570. }
  2571. static void intra_recon_8bpp(AVCodecContext *ctx, ptrdiff_t y_off, ptrdiff_t uv_off)
  2572. {
  2573. intra_recon(ctx, y_off, uv_off, 1);
  2574. }
  2575. static void intra_recon_16bpp(AVCodecContext *ctx, ptrdiff_t y_off, ptrdiff_t uv_off)
  2576. {
  2577. intra_recon(ctx, y_off, uv_off, 2);
  2578. }
  2579. static av_always_inline void mc_luma_scaled(VP9Context *s, vp9_scaled_mc_func smc,
  2580. uint8_t *dst, ptrdiff_t dst_stride,
  2581. const uint8_t *ref, ptrdiff_t ref_stride,
  2582. ThreadFrame *ref_frame,
  2583. ptrdiff_t y, ptrdiff_t x, const VP56mv *in_mv,
  2584. int px, int py, int pw, int ph,
  2585. int bw, int bh, int w, int h, int bytesperpixel,
  2586. const uint16_t *scale, const uint8_t *step)
  2587. {
  2588. #define scale_mv(n, dim) (((int64_t)(n) * scale[dim]) >> 14)
  2589. int mx, my;
  2590. int refbw_m1, refbh_m1;
  2591. int th;
  2592. VP56mv mv;
  2593. mv.x = av_clip(in_mv->x, -(x + pw - px + 4) << 3, (s->cols * 8 - x + px + 3) << 3);
  2594. mv.y = av_clip(in_mv->y, -(y + ph - py + 4) << 3, (s->rows * 8 - y + py + 3) << 3);
  2595. // BUG libvpx seems to scale the two components separately. This introduces
  2596. // rounding errors but we have to reproduce them to be exactly compatible
  2597. // with the output from libvpx...
  2598. mx = scale_mv(mv.x * 2, 0) + scale_mv(x * 16, 0);
  2599. my = scale_mv(mv.y * 2, 1) + scale_mv(y * 16, 1);
  2600. y = my >> 4;
  2601. x = mx >> 4;
  2602. ref += y * ref_stride + x * bytesperpixel;
  2603. mx &= 15;
  2604. my &= 15;
  2605. refbw_m1 = ((bw - 1) * step[0] + mx) >> 4;
  2606. refbh_m1 = ((bh - 1) * step[1] + my) >> 4;
  2607. // FIXME bilinear filter only needs 0/1 pixels, not 3/4
  2608. // we use +7 because the last 7 pixels of each sbrow can be changed in
  2609. // the longest loopfilter of the next sbrow
  2610. th = (y + refbh_m1 + 4 + 7) >> 6;
  2611. ff_thread_await_progress(ref_frame, FFMAX(th, 0), 0);
  2612. if (x < 3 || y < 3 || x + 4 >= w - refbw_m1 || y + 4 >= h - refbh_m1) {
  2613. s->vdsp.emulated_edge_mc(s->edge_emu_buffer,
  2614. ref - 3 * ref_stride - 3 * bytesperpixel,
  2615. 288, ref_stride,
  2616. refbw_m1 + 8, refbh_m1 + 8,
  2617. x - 3, y - 3, w, h);
  2618. ref = s->edge_emu_buffer + 3 * 288 + 3 * bytesperpixel;
  2619. ref_stride = 288;
  2620. }
  2621. smc(dst, dst_stride, ref, ref_stride, bh, mx, my, step[0], step[1]);
  2622. }
  2623. static av_always_inline void mc_chroma_scaled(VP9Context *s, vp9_scaled_mc_func smc,
  2624. uint8_t *dst_u, uint8_t *dst_v,
  2625. ptrdiff_t dst_stride,
  2626. const uint8_t *ref_u, ptrdiff_t src_stride_u,
  2627. const uint8_t *ref_v, ptrdiff_t src_stride_v,
  2628. ThreadFrame *ref_frame,
  2629. ptrdiff_t y, ptrdiff_t x, const VP56mv *in_mv,
  2630. int px, int py, int pw, int ph,
  2631. int bw, int bh, int w, int h, int bytesperpixel,
  2632. const uint16_t *scale, const uint8_t *step)
  2633. {
  2634. int mx, my;
  2635. int refbw_m1, refbh_m1;
  2636. int th;
  2637. VP56mv mv;
  2638. if (s->ss_h) {
  2639. // BUG https://code.google.com/p/webm/issues/detail?id=820
  2640. mv.x = av_clip(in_mv->x, -(x + pw - px + 4) << 4, (s->cols * 4 - x + px + 3) << 4);
  2641. mx = scale_mv(mv.x, 0) + (scale_mv(x * 16, 0) & ~15) + (scale_mv(x * 32, 0) & 15);
  2642. } else {
  2643. mv.x = av_clip(in_mv->x, -(x + pw - px + 4) << 3, (s->cols * 8 - x + px + 3) << 3);
  2644. mx = scale_mv(mv.x << 1, 0) + scale_mv(x * 16, 0);
  2645. }
  2646. if (s->ss_v) {
  2647. // BUG https://code.google.com/p/webm/issues/detail?id=820
  2648. mv.y = av_clip(in_mv->y, -(y + ph - py + 4) << 4, (s->rows * 4 - y + py + 3) << 4);
  2649. my = scale_mv(mv.y, 1) + (scale_mv(y * 16, 1) & ~15) + (scale_mv(y * 32, 1) & 15);
  2650. } else {
  2651. mv.y = av_clip(in_mv->y, -(y + ph - py + 4) << 3, (s->rows * 8 - y + py + 3) << 3);
  2652. my = scale_mv(mv.y << 1, 1) + scale_mv(y * 16, 1);
  2653. }
  2654. #undef scale_mv
  2655. y = my >> 4;
  2656. x = mx >> 4;
  2657. ref_u += y * src_stride_u + x * bytesperpixel;
  2658. ref_v += y * src_stride_v + x * bytesperpixel;
  2659. mx &= 15;
  2660. my &= 15;
  2661. refbw_m1 = ((bw - 1) * step[0] + mx) >> 4;
  2662. refbh_m1 = ((bh - 1) * step[1] + my) >> 4;
  2663. // FIXME bilinear filter only needs 0/1 pixels, not 3/4
  2664. // we use +7 because the last 7 pixels of each sbrow can be changed in
  2665. // the longest loopfilter of the next sbrow
  2666. th = (y + refbh_m1 + 4 + 7) >> (6 - s->ss_v);
  2667. ff_thread_await_progress(ref_frame, FFMAX(th, 0), 0);
  2668. if (x < 3 || y < 3 || x + 4 >= w - refbw_m1 || y + 4 >= h - refbh_m1) {
  2669. s->vdsp.emulated_edge_mc(s->edge_emu_buffer,
  2670. ref_u - 3 * src_stride_u - 3 * bytesperpixel,
  2671. 288, src_stride_u,
  2672. refbw_m1 + 8, refbh_m1 + 8,
  2673. x - 3, y - 3, w, h);
  2674. ref_u = s->edge_emu_buffer + 3 * 288 + 3 * bytesperpixel;
  2675. smc(dst_u, dst_stride, ref_u, 288, bh, mx, my, step[0], step[1]);
  2676. s->vdsp.emulated_edge_mc(s->edge_emu_buffer,
  2677. ref_v - 3 * src_stride_v - 3 * bytesperpixel,
  2678. 288, src_stride_v,
  2679. refbw_m1 + 8, refbh_m1 + 8,
  2680. x - 3, y - 3, w, h);
  2681. ref_v = s->edge_emu_buffer + 3 * 288 + 3 * bytesperpixel;
  2682. smc(dst_v, dst_stride, ref_v, 288, bh, mx, my, step[0], step[1]);
  2683. } else {
  2684. smc(dst_u, dst_stride, ref_u, src_stride_u, bh, mx, my, step[0], step[1]);
  2685. smc(dst_v, dst_stride, ref_v, src_stride_v, bh, mx, my, step[0], step[1]);
  2686. }
  2687. }
  2688. #define mc_luma_dir(s, mc, dst, dst_ls, src, src_ls, tref, row, col, mv, \
  2689. px, py, pw, ph, bw, bh, w, h, i) \
  2690. mc_luma_scaled(s, s->dsp.s##mc, dst, dst_ls, src, src_ls, tref, row, col, \
  2691. mv, px, py, pw, ph, bw, bh, w, h, bytesperpixel, \
  2692. s->mvscale[b->ref[i]], s->mvstep[b->ref[i]])
  2693. #define mc_chroma_dir(s, mc, dstu, dstv, dst_ls, srcu, srcu_ls, srcv, srcv_ls, tref, \
  2694. row, col, mv, px, py, pw, ph, bw, bh, w, h, i) \
  2695. mc_chroma_scaled(s, s->dsp.s##mc, dstu, dstv, dst_ls, srcu, srcu_ls, srcv, srcv_ls, tref, \
  2696. row, col, mv, px, py, pw, ph, bw, bh, w, h, bytesperpixel, \
  2697. s->mvscale[b->ref[i]], s->mvstep[b->ref[i]])
  2698. #define SCALED 1
  2699. #define FN(x) x##_scaled_8bpp
  2700. #define BYTES_PER_PIXEL 1
  2701. #include "vp9_mc_template.c"
  2702. #undef FN
  2703. #undef BYTES_PER_PIXEL
  2704. #define FN(x) x##_scaled_16bpp
  2705. #define BYTES_PER_PIXEL 2
  2706. #include "vp9_mc_template.c"
  2707. #undef mc_luma_dir
  2708. #undef mc_chroma_dir
  2709. #undef FN
  2710. #undef BYTES_PER_PIXEL
  2711. #undef SCALED
  2712. static av_always_inline void mc_luma_unscaled(VP9Context *s, vp9_mc_func (*mc)[2],
  2713. uint8_t *dst, ptrdiff_t dst_stride,
  2714. const uint8_t *ref, ptrdiff_t ref_stride,
  2715. ThreadFrame *ref_frame,
  2716. ptrdiff_t y, ptrdiff_t x, const VP56mv *mv,
  2717. int bw, int bh, int w, int h, int bytesperpixel)
  2718. {
  2719. int mx = mv->x, my = mv->y, th;
  2720. y += my >> 3;
  2721. x += mx >> 3;
  2722. ref += y * ref_stride + x * bytesperpixel;
  2723. mx &= 7;
  2724. my &= 7;
  2725. // FIXME bilinear filter only needs 0/1 pixels, not 3/4
  2726. // we use +7 because the last 7 pixels of each sbrow can be changed in
  2727. // the longest loopfilter of the next sbrow
  2728. th = (y + bh + 4 * !!my + 7) >> 6;
  2729. ff_thread_await_progress(ref_frame, FFMAX(th, 0), 0);
  2730. if (x < !!mx * 3 || y < !!my * 3 ||
  2731. x + !!mx * 4 > w - bw || y + !!my * 4 > h - bh) {
  2732. s->vdsp.emulated_edge_mc(s->edge_emu_buffer,
  2733. ref - !!my * 3 * ref_stride - !!mx * 3 * bytesperpixel,
  2734. 160, ref_stride,
  2735. bw + !!mx * 7, bh + !!my * 7,
  2736. x - !!mx * 3, y - !!my * 3, w, h);
  2737. ref = s->edge_emu_buffer + !!my * 3 * 160 + !!mx * 3 * bytesperpixel;
  2738. ref_stride = 160;
  2739. }
  2740. mc[!!mx][!!my](dst, dst_stride, ref, ref_stride, bh, mx << 1, my << 1);
  2741. }
  2742. static av_always_inline void mc_chroma_unscaled(VP9Context *s, vp9_mc_func (*mc)[2],
  2743. uint8_t *dst_u, uint8_t *dst_v,
  2744. ptrdiff_t dst_stride,
  2745. const uint8_t *ref_u, ptrdiff_t src_stride_u,
  2746. const uint8_t *ref_v, ptrdiff_t src_stride_v,
  2747. ThreadFrame *ref_frame,
  2748. ptrdiff_t y, ptrdiff_t x, const VP56mv *mv,
  2749. int bw, int bh, int w, int h, int bytesperpixel)
  2750. {
  2751. int mx = mv->x << !s->ss_h, my = mv->y << !s->ss_v, th;
  2752. y += my >> 4;
  2753. x += mx >> 4;
  2754. ref_u += y * src_stride_u + x * bytesperpixel;
  2755. ref_v += y * src_stride_v + x * bytesperpixel;
  2756. mx &= 15;
  2757. my &= 15;
  2758. // FIXME bilinear filter only needs 0/1 pixels, not 3/4
  2759. // we use +7 because the last 7 pixels of each sbrow can be changed in
  2760. // the longest loopfilter of the next sbrow
  2761. th = (y + bh + 4 * !!my + 7) >> (6 - s->ss_v);
  2762. ff_thread_await_progress(ref_frame, FFMAX(th, 0), 0);
  2763. if (x < !!mx * 3 || y < !!my * 3 ||
  2764. x + !!mx * 4 > w - bw || y + !!my * 4 > h - bh) {
  2765. s->vdsp.emulated_edge_mc(s->edge_emu_buffer,
  2766. ref_u - !!my * 3 * src_stride_u - !!mx * 3 * bytesperpixel,
  2767. 160, src_stride_u,
  2768. bw + !!mx * 7, bh + !!my * 7,
  2769. x - !!mx * 3, y - !!my * 3, w, h);
  2770. ref_u = s->edge_emu_buffer + !!my * 3 * 160 + !!mx * 3 * bytesperpixel;
  2771. mc[!!mx][!!my](dst_u, dst_stride, ref_u, 160, bh, mx, my);
  2772. s->vdsp.emulated_edge_mc(s->edge_emu_buffer,
  2773. ref_v - !!my * 3 * src_stride_v - !!mx * 3 * bytesperpixel,
  2774. 160, src_stride_v,
  2775. bw + !!mx * 7, bh + !!my * 7,
  2776. x - !!mx * 3, y - !!my * 3, w, h);
  2777. ref_v = s->edge_emu_buffer + !!my * 3 * 160 + !!mx * 3 * bytesperpixel;
  2778. mc[!!mx][!!my](dst_v, dst_stride, ref_v, 160, bh, mx, my);
  2779. } else {
  2780. mc[!!mx][!!my](dst_u, dst_stride, ref_u, src_stride_u, bh, mx, my);
  2781. mc[!!mx][!!my](dst_v, dst_stride, ref_v, src_stride_v, bh, mx, my);
  2782. }
  2783. }
  2784. #define mc_luma_dir(s, mc, dst, dst_ls, src, src_ls, tref, row, col, mv, \
  2785. px, py, pw, ph, bw, bh, w, h, i) \
  2786. mc_luma_unscaled(s, s->dsp.mc, dst, dst_ls, src, src_ls, tref, row, col, \
  2787. mv, bw, bh, w, h, bytesperpixel)
  2788. #define mc_chroma_dir(s, mc, dstu, dstv, dst_ls, srcu, srcu_ls, srcv, srcv_ls, tref, \
  2789. row, col, mv, px, py, pw, ph, bw, bh, w, h, i) \
  2790. mc_chroma_unscaled(s, s->dsp.mc, dstu, dstv, dst_ls, srcu, srcu_ls, srcv, srcv_ls, tref, \
  2791. row, col, mv, bw, bh, w, h, bytesperpixel)
  2792. #define SCALED 0
  2793. #define FN(x) x##_8bpp
  2794. #define BYTES_PER_PIXEL 1
  2795. #include "vp9_mc_template.c"
  2796. #undef FN
  2797. #undef BYTES_PER_PIXEL
  2798. #define FN(x) x##_16bpp
  2799. #define BYTES_PER_PIXEL 2
  2800. #include "vp9_mc_template.c"
  2801. #undef mc_luma_dir_dir
  2802. #undef mc_chroma_dir_dir
  2803. #undef FN
  2804. #undef BYTES_PER_PIXEL
  2805. #undef SCALED
  2806. static av_always_inline void inter_recon(AVCodecContext *ctx, int bytesperpixel)
  2807. {
  2808. VP9Context *s = ctx->priv_data;
  2809. VP9Block *b = s->b;
  2810. int row = s->row, col = s->col;
  2811. if (s->mvscale[b->ref[0]][0] || (b->comp && s->mvscale[b->ref[1]][0])) {
  2812. if (bytesperpixel == 1) {
  2813. inter_pred_scaled_8bpp(ctx);
  2814. } else {
  2815. inter_pred_scaled_16bpp(ctx);
  2816. }
  2817. } else {
  2818. if (bytesperpixel == 1) {
  2819. inter_pred_8bpp(ctx);
  2820. } else {
  2821. inter_pred_16bpp(ctx);
  2822. }
  2823. }
  2824. if (!b->skip) {
  2825. /* mostly copied intra_recon() */
  2826. int w4 = bwh_tab[1][b->bs][0] << 1, step1d = 1 << b->tx, n;
  2827. int h4 = bwh_tab[1][b->bs][1] << 1, x, y, step = 1 << (b->tx * 2);
  2828. int end_x = FFMIN(2 * (s->cols - col), w4);
  2829. int end_y = FFMIN(2 * (s->rows - row), h4);
  2830. int tx = 4 * s->lossless + b->tx, uvtx = b->uvtx + 4 * s->lossless;
  2831. int uvstep1d = 1 << b->uvtx, p;
  2832. uint8_t *dst = s->dst[0];
  2833. // y itxfm add
  2834. for (n = 0, y = 0; y < end_y; y += step1d) {
  2835. uint8_t *ptr = dst;
  2836. for (x = 0; x < end_x; x += step1d,
  2837. ptr += 4 * step1d * bytesperpixel, n += step) {
  2838. int eob = b->tx > TX_8X8 ? AV_RN16A(&s->eob[n]) : s->eob[n];
  2839. if (eob)
  2840. s->dsp.itxfm_add[tx][DCT_DCT](ptr, s->y_stride,
  2841. s->block + 16 * n * bytesperpixel, eob);
  2842. }
  2843. dst += 4 * s->y_stride * step1d;
  2844. }
  2845. // uv itxfm add
  2846. end_x >>= s->ss_h;
  2847. end_y >>= s->ss_v;
  2848. step = 1 << (b->uvtx * 2);
  2849. for (p = 0; p < 2; p++) {
  2850. dst = s->dst[p + 1];
  2851. for (n = 0, y = 0; y < end_y; y += uvstep1d) {
  2852. uint8_t *ptr = dst;
  2853. for (x = 0; x < end_x; x += uvstep1d,
  2854. ptr += 4 * uvstep1d * bytesperpixel, n += step) {
  2855. int eob = b->uvtx > TX_8X8 ? AV_RN16A(&s->uveob[p][n]) : s->uveob[p][n];
  2856. if (eob)
  2857. s->dsp.itxfm_add[uvtx][DCT_DCT](ptr, s->uv_stride,
  2858. s->uvblock[p] + 16 * n * bytesperpixel, eob);
  2859. }
  2860. dst += 4 * uvstep1d * s->uv_stride;
  2861. }
  2862. }
  2863. }
  2864. }
  2865. static void inter_recon_8bpp(AVCodecContext *ctx)
  2866. {
  2867. inter_recon(ctx, 1);
  2868. }
  2869. static void inter_recon_16bpp(AVCodecContext *ctx)
  2870. {
  2871. inter_recon(ctx, 2);
  2872. }
  2873. static av_always_inline void mask_edges(uint8_t (*mask)[8][4], int ss_h, int ss_v,
  2874. int row_and_7, int col_and_7,
  2875. int w, int h, int col_end, int row_end,
  2876. enum TxfmMode tx, int skip_inter)
  2877. {
  2878. static const unsigned wide_filter_col_mask[2] = { 0x11, 0x01 };
  2879. static const unsigned wide_filter_row_mask[2] = { 0x03, 0x07 };
  2880. // FIXME I'm pretty sure all loops can be replaced by a single LUT if
  2881. // we make VP9Filter.mask uint64_t (i.e. row/col all single variable)
  2882. // and make the LUT 5-indexed (bl, bp, is_uv, tx and row/col), and then
  2883. // use row_and_7/col_and_7 as shifts (1*col_and_7+8*row_and_7)
  2884. // the intended behaviour of the vp9 loopfilter is to work on 8-pixel
  2885. // edges. This means that for UV, we work on two subsampled blocks at
  2886. // a time, and we only use the topleft block's mode information to set
  2887. // things like block strength. Thus, for any block size smaller than
  2888. // 16x16, ignore the odd portion of the block.
  2889. if (tx == TX_4X4 && (ss_v | ss_h)) {
  2890. if (h == ss_v) {
  2891. if (row_and_7 & 1)
  2892. return;
  2893. if (!row_end)
  2894. h += 1;
  2895. }
  2896. if (w == ss_h) {
  2897. if (col_and_7 & 1)
  2898. return;
  2899. if (!col_end)
  2900. w += 1;
  2901. }
  2902. }
  2903. if (tx == TX_4X4 && !skip_inter) {
  2904. int t = 1 << col_and_7, m_col = (t << w) - t, y;
  2905. // on 32-px edges, use the 8-px wide loopfilter; else, use 4-px wide
  2906. int m_row_8 = m_col & wide_filter_col_mask[ss_h], m_row_4 = m_col - m_row_8;
  2907. for (y = row_and_7; y < h + row_and_7; y++) {
  2908. int col_mask_id = 2 - !(y & wide_filter_row_mask[ss_v]);
  2909. mask[0][y][1] |= m_row_8;
  2910. mask[0][y][2] |= m_row_4;
  2911. // for odd lines, if the odd col is not being filtered,
  2912. // skip odd row also:
  2913. // .---. <-- a
  2914. // | |
  2915. // |___| <-- b
  2916. // ^ ^
  2917. // c d
  2918. //
  2919. // if a/c are even row/col and b/d are odd, and d is skipped,
  2920. // e.g. right edge of size-66x66.webm, then skip b also (bug)
  2921. if ((ss_h & ss_v) && (col_end & 1) && (y & 1)) {
  2922. mask[1][y][col_mask_id] |= (t << (w - 1)) - t;
  2923. } else {
  2924. mask[1][y][col_mask_id] |= m_col;
  2925. }
  2926. if (!ss_h)
  2927. mask[0][y][3] |= m_col;
  2928. if (!ss_v) {
  2929. if (ss_h && (col_end & 1))
  2930. mask[1][y][3] |= (t << (w - 1)) - t;
  2931. else
  2932. mask[1][y][3] |= m_col;
  2933. }
  2934. }
  2935. } else {
  2936. int y, t = 1 << col_and_7, m_col = (t << w) - t;
  2937. if (!skip_inter) {
  2938. int mask_id = (tx == TX_8X8);
  2939. static const unsigned masks[4] = { 0xff, 0x55, 0x11, 0x01 };
  2940. int l2 = tx + ss_h - 1, step1d;
  2941. int m_row = m_col & masks[l2];
  2942. // at odd UV col/row edges tx16/tx32 loopfilter edges, force
  2943. // 8wd loopfilter to prevent going off the visible edge.
  2944. if (ss_h && tx > TX_8X8 && (w ^ (w - 1)) == 1) {
  2945. int m_row_16 = ((t << (w - 1)) - t) & masks[l2];
  2946. int m_row_8 = m_row - m_row_16;
  2947. for (y = row_and_7; y < h + row_and_7; y++) {
  2948. mask[0][y][0] |= m_row_16;
  2949. mask[0][y][1] |= m_row_8;
  2950. }
  2951. } else {
  2952. for (y = row_and_7; y < h + row_and_7; y++)
  2953. mask[0][y][mask_id] |= m_row;
  2954. }
  2955. l2 = tx + ss_v - 1;
  2956. step1d = 1 << l2;
  2957. if (ss_v && tx > TX_8X8 && (h ^ (h - 1)) == 1) {
  2958. for (y = row_and_7; y < h + row_and_7 - 1; y += step1d)
  2959. mask[1][y][0] |= m_col;
  2960. if (y - row_and_7 == h - 1)
  2961. mask[1][y][1] |= m_col;
  2962. } else {
  2963. for (y = row_and_7; y < h + row_and_7; y += step1d)
  2964. mask[1][y][mask_id] |= m_col;
  2965. }
  2966. } else if (tx != TX_4X4) {
  2967. int mask_id;
  2968. mask_id = (tx == TX_8X8) || (h == ss_v);
  2969. mask[1][row_and_7][mask_id] |= m_col;
  2970. mask_id = (tx == TX_8X8) || (w == ss_h);
  2971. for (y = row_and_7; y < h + row_and_7; y++)
  2972. mask[0][y][mask_id] |= t;
  2973. } else {
  2974. int t8 = t & wide_filter_col_mask[ss_h], t4 = t - t8;
  2975. for (y = row_and_7; y < h + row_and_7; y++) {
  2976. mask[0][y][2] |= t4;
  2977. mask[0][y][1] |= t8;
  2978. }
  2979. mask[1][row_and_7][2 - !(row_and_7 & wide_filter_row_mask[ss_v])] |= m_col;
  2980. }
  2981. }
  2982. }
  2983. static void decode_b(AVCodecContext *ctx, int row, int col,
  2984. struct VP9Filter *lflvl, ptrdiff_t yoff, ptrdiff_t uvoff,
  2985. enum BlockLevel bl, enum BlockPartition bp)
  2986. {
  2987. VP9Context *s = ctx->priv_data;
  2988. VP9Block *b = s->b;
  2989. enum BlockSize bs = bl * 3 + bp;
  2990. int bytesperpixel = s->bytesperpixel;
  2991. int w4 = bwh_tab[1][bs][0], h4 = bwh_tab[1][bs][1], lvl;
  2992. int emu[2];
  2993. AVFrame *f = s->frames[CUR_FRAME].tf.f;
  2994. s->row = row;
  2995. s->row7 = row & 7;
  2996. s->col = col;
  2997. s->col7 = col & 7;
  2998. s->min_mv.x = -(128 + col * 64);
  2999. s->min_mv.y = -(128 + row * 64);
  3000. s->max_mv.x = 128 + (s->cols - col - w4) * 64;
  3001. s->max_mv.y = 128 + (s->rows - row - h4) * 64;
  3002. if (s->pass < 2) {
  3003. b->bs = bs;
  3004. b->bl = bl;
  3005. b->bp = bp;
  3006. decode_mode(ctx);
  3007. b->uvtx = b->tx - ((s->ss_h && w4 * 2 == (1 << b->tx)) ||
  3008. (s->ss_v && h4 * 2 == (1 << b->tx)));
  3009. if (!b->skip) {
  3010. int has_coeffs;
  3011. if (bytesperpixel == 1) {
  3012. has_coeffs = decode_coeffs_8bpp(ctx);
  3013. } else {
  3014. has_coeffs = decode_coeffs_16bpp(ctx);
  3015. }
  3016. if (!has_coeffs && b->bs <= BS_8x8 && !b->intra) {
  3017. b->skip = 1;
  3018. memset(&s->above_skip_ctx[col], 1, w4);
  3019. memset(&s->left_skip_ctx[s->row7], 1, h4);
  3020. }
  3021. } else {
  3022. int row7 = s->row7;
  3023. #define SPLAT_ZERO_CTX(v, n) \
  3024. switch (n) { \
  3025. case 1: v = 0; break; \
  3026. case 2: AV_ZERO16(&v); break; \
  3027. case 4: AV_ZERO32(&v); break; \
  3028. case 8: AV_ZERO64(&v); break; \
  3029. case 16: AV_ZERO128(&v); break; \
  3030. }
  3031. #define SPLAT_ZERO_YUV(dir, var, off, n, dir2) \
  3032. do { \
  3033. SPLAT_ZERO_CTX(s->dir##_y_##var[off * 2], n * 2); \
  3034. if (s->ss_##dir2) { \
  3035. SPLAT_ZERO_CTX(s->dir##_uv_##var[0][off], n); \
  3036. SPLAT_ZERO_CTX(s->dir##_uv_##var[1][off], n); \
  3037. } else { \
  3038. SPLAT_ZERO_CTX(s->dir##_uv_##var[0][off * 2], n * 2); \
  3039. SPLAT_ZERO_CTX(s->dir##_uv_##var[1][off * 2], n * 2); \
  3040. } \
  3041. } while (0)
  3042. switch (w4) {
  3043. case 1: SPLAT_ZERO_YUV(above, nnz_ctx, col, 1, h); break;
  3044. case 2: SPLAT_ZERO_YUV(above, nnz_ctx, col, 2, h); break;
  3045. case 4: SPLAT_ZERO_YUV(above, nnz_ctx, col, 4, h); break;
  3046. case 8: SPLAT_ZERO_YUV(above, nnz_ctx, col, 8, h); break;
  3047. }
  3048. switch (h4) {
  3049. case 1: SPLAT_ZERO_YUV(left, nnz_ctx, row7, 1, v); break;
  3050. case 2: SPLAT_ZERO_YUV(left, nnz_ctx, row7, 2, v); break;
  3051. case 4: SPLAT_ZERO_YUV(left, nnz_ctx, row7, 4, v); break;
  3052. case 8: SPLAT_ZERO_YUV(left, nnz_ctx, row7, 8, v); break;
  3053. }
  3054. }
  3055. if (s->pass == 1) {
  3056. s->b++;
  3057. s->block += w4 * h4 * 64 * bytesperpixel;
  3058. s->uvblock[0] += w4 * h4 * 64 * bytesperpixel >> (s->ss_h + s->ss_v);
  3059. s->uvblock[1] += w4 * h4 * 64 * bytesperpixel >> (s->ss_h + s->ss_v);
  3060. s->eob += 4 * w4 * h4;
  3061. s->uveob[0] += 4 * w4 * h4 >> (s->ss_h + s->ss_v);
  3062. s->uveob[1] += 4 * w4 * h4 >> (s->ss_h + s->ss_v);
  3063. return;
  3064. }
  3065. }
  3066. // emulated overhangs if the stride of the target buffer can't hold. This
  3067. // makes it possible to support emu-edge and so on even if we have large block
  3068. // overhangs
  3069. emu[0] = (col + w4) * 8 > f->linesize[0] ||
  3070. (row + h4) > s->rows;
  3071. emu[1] = (col + w4) * 4 > f->linesize[1] ||
  3072. (row + h4) > s->rows;
  3073. if (emu[0]) {
  3074. s->dst[0] = s->tmp_y;
  3075. s->y_stride = 128;
  3076. } else {
  3077. s->dst[0] = f->data[0] + yoff;
  3078. s->y_stride = f->linesize[0];
  3079. }
  3080. if (emu[1]) {
  3081. s->dst[1] = s->tmp_uv[0];
  3082. s->dst[2] = s->tmp_uv[1];
  3083. s->uv_stride = 128;
  3084. } else {
  3085. s->dst[1] = f->data[1] + uvoff;
  3086. s->dst[2] = f->data[2] + uvoff;
  3087. s->uv_stride = f->linesize[1];
  3088. }
  3089. if (b->intra) {
  3090. if (s->bpp > 8) {
  3091. intra_recon_16bpp(ctx, yoff, uvoff);
  3092. } else {
  3093. intra_recon_8bpp(ctx, yoff, uvoff);
  3094. }
  3095. } else {
  3096. if (s->bpp > 8) {
  3097. inter_recon_16bpp(ctx);
  3098. } else {
  3099. inter_recon_8bpp(ctx);
  3100. }
  3101. }
  3102. if (emu[0]) {
  3103. int w = FFMIN(s->cols - col, w4) * 8, h = FFMIN(s->rows - row, h4) * 8, n, o = 0;
  3104. for (n = 0; o < w; n++) {
  3105. int bw = 64 >> n;
  3106. av_assert2(n <= 4);
  3107. if (w & bw) {
  3108. s->dsp.mc[n][0][0][0][0](f->data[0] + yoff + o, f->linesize[0],
  3109. s->tmp_y + o, 128, h, 0, 0);
  3110. o += bw * bytesperpixel;
  3111. }
  3112. }
  3113. }
  3114. if (emu[1]) {
  3115. int w = FFMIN(s->cols - col, w4) * 8 >> s->ss_h;
  3116. int h = FFMIN(s->rows - row, h4) * 8 >> s->ss_v, n, o = 0;
  3117. for (n = s->ss_h; o < w; n++) {
  3118. int bw = 64 >> n;
  3119. av_assert2(n <= 4);
  3120. if (w & bw) {
  3121. s->dsp.mc[n][0][0][0][0](f->data[1] + uvoff + o, f->linesize[1],
  3122. s->tmp_uv[0] + o, 128, h, 0, 0);
  3123. s->dsp.mc[n][0][0][0][0](f->data[2] + uvoff + o, f->linesize[2],
  3124. s->tmp_uv[1] + o, 128, h, 0, 0);
  3125. o += bw * bytesperpixel;
  3126. }
  3127. }
  3128. }
  3129. // pick filter level and find edges to apply filter to
  3130. if (s->filter.level &&
  3131. (lvl = s->segmentation.feat[b->seg_id].lflvl[b->intra ? 0 : b->ref[0] + 1]
  3132. [b->mode[3] != ZEROMV]) > 0) {
  3133. int x_end = FFMIN(s->cols - col, w4), y_end = FFMIN(s->rows - row, h4);
  3134. int skip_inter = !b->intra && b->skip, col7 = s->col7, row7 = s->row7;
  3135. setctx_2d(&lflvl->level[row7 * 8 + col7], w4, h4, 8, lvl);
  3136. mask_edges(lflvl->mask[0], 0, 0, row7, col7, x_end, y_end, 0, 0, b->tx, skip_inter);
  3137. if (s->ss_h || s->ss_v)
  3138. mask_edges(lflvl->mask[1], s->ss_h, s->ss_v, row7, col7, x_end, y_end,
  3139. s->cols & 1 && col + w4 >= s->cols ? s->cols & 7 : 0,
  3140. s->rows & 1 && row + h4 >= s->rows ? s->rows & 7 : 0,
  3141. b->uvtx, skip_inter);
  3142. if (!s->filter.lim_lut[lvl]) {
  3143. int sharp = s->filter.sharpness;
  3144. int limit = lvl;
  3145. if (sharp > 0) {
  3146. limit >>= (sharp + 3) >> 2;
  3147. limit = FFMIN(limit, 9 - sharp);
  3148. }
  3149. limit = FFMAX(limit, 1);
  3150. s->filter.lim_lut[lvl] = limit;
  3151. s->filter.mblim_lut[lvl] = 2 * (lvl + 2) + limit;
  3152. }
  3153. }
  3154. if (s->pass == 2) {
  3155. s->b++;
  3156. s->block += w4 * h4 * 64 * bytesperpixel;
  3157. s->uvblock[0] += w4 * h4 * 64 * bytesperpixel >> (s->ss_v + s->ss_h);
  3158. s->uvblock[1] += w4 * h4 * 64 * bytesperpixel >> (s->ss_v + s->ss_h);
  3159. s->eob += 4 * w4 * h4;
  3160. s->uveob[0] += 4 * w4 * h4 >> (s->ss_v + s->ss_h);
  3161. s->uveob[1] += 4 * w4 * h4 >> (s->ss_v + s->ss_h);
  3162. }
  3163. }
  3164. static void decode_sb(AVCodecContext *ctx, int row, int col, struct VP9Filter *lflvl,
  3165. ptrdiff_t yoff, ptrdiff_t uvoff, enum BlockLevel bl)
  3166. {
  3167. VP9Context *s = ctx->priv_data;
  3168. int c = ((s->above_partition_ctx[col] >> (3 - bl)) & 1) |
  3169. (((s->left_partition_ctx[row & 0x7] >> (3 - bl)) & 1) << 1);
  3170. const uint8_t *p = s->keyframe || s->intraonly ? vp9_default_kf_partition_probs[bl][c] :
  3171. s->prob.p.partition[bl][c];
  3172. enum BlockPartition bp;
  3173. ptrdiff_t hbs = 4 >> bl;
  3174. AVFrame *f = s->frames[CUR_FRAME].tf.f;
  3175. ptrdiff_t y_stride = f->linesize[0], uv_stride = f->linesize[1];
  3176. int bytesperpixel = s->bytesperpixel;
  3177. if (bl == BL_8X8) {
  3178. bp = vp8_rac_get_tree(&s->c, vp9_partition_tree, p);
  3179. decode_b(ctx, row, col, lflvl, yoff, uvoff, bl, bp);
  3180. } else if (col + hbs < s->cols) { // FIXME why not <=?
  3181. if (row + hbs < s->rows) { // FIXME why not <=?
  3182. bp = vp8_rac_get_tree(&s->c, vp9_partition_tree, p);
  3183. switch (bp) {
  3184. case PARTITION_NONE:
  3185. decode_b(ctx, row, col, lflvl, yoff, uvoff, bl, bp);
  3186. break;
  3187. case PARTITION_H:
  3188. decode_b(ctx, row, col, lflvl, yoff, uvoff, bl, bp);
  3189. yoff += hbs * 8 * y_stride;
  3190. uvoff += hbs * 8 * uv_stride >> s->ss_v;
  3191. decode_b(ctx, row + hbs, col, lflvl, yoff, uvoff, bl, bp);
  3192. break;
  3193. case PARTITION_V:
  3194. decode_b(ctx, row, col, lflvl, yoff, uvoff, bl, bp);
  3195. yoff += hbs * 8 * bytesperpixel;
  3196. uvoff += hbs * 8 * bytesperpixel >> s->ss_h;
  3197. decode_b(ctx, row, col + hbs, lflvl, yoff, uvoff, bl, bp);
  3198. break;
  3199. case PARTITION_SPLIT:
  3200. decode_sb(ctx, row, col, lflvl, yoff, uvoff, bl + 1);
  3201. decode_sb(ctx, row, col + hbs, lflvl,
  3202. yoff + 8 * hbs * bytesperpixel,
  3203. uvoff + (8 * hbs * bytesperpixel >> s->ss_h), bl + 1);
  3204. yoff += hbs * 8 * y_stride;
  3205. uvoff += hbs * 8 * uv_stride >> s->ss_v;
  3206. decode_sb(ctx, row + hbs, col, lflvl, yoff, uvoff, bl + 1);
  3207. decode_sb(ctx, row + hbs, col + hbs, lflvl,
  3208. yoff + 8 * hbs * bytesperpixel,
  3209. uvoff + (8 * hbs * bytesperpixel >> s->ss_h), bl + 1);
  3210. break;
  3211. default:
  3212. av_assert0(0);
  3213. }
  3214. } else if (vp56_rac_get_prob_branchy(&s->c, p[1])) {
  3215. bp = PARTITION_SPLIT;
  3216. decode_sb(ctx, row, col, lflvl, yoff, uvoff, bl + 1);
  3217. decode_sb(ctx, row, col + hbs, lflvl,
  3218. yoff + 8 * hbs * bytesperpixel,
  3219. uvoff + (8 * hbs * bytesperpixel >> s->ss_h), bl + 1);
  3220. } else {
  3221. bp = PARTITION_H;
  3222. decode_b(ctx, row, col, lflvl, yoff, uvoff, bl, bp);
  3223. }
  3224. } else if (row + hbs < s->rows) { // FIXME why not <=?
  3225. if (vp56_rac_get_prob_branchy(&s->c, p[2])) {
  3226. bp = PARTITION_SPLIT;
  3227. decode_sb(ctx, row, col, lflvl, yoff, uvoff, bl + 1);
  3228. yoff += hbs * 8 * y_stride;
  3229. uvoff += hbs * 8 * uv_stride >> s->ss_v;
  3230. decode_sb(ctx, row + hbs, col, lflvl, yoff, uvoff, bl + 1);
  3231. } else {
  3232. bp = PARTITION_V;
  3233. decode_b(ctx, row, col, lflvl, yoff, uvoff, bl, bp);
  3234. }
  3235. } else {
  3236. bp = PARTITION_SPLIT;
  3237. decode_sb(ctx, row, col, lflvl, yoff, uvoff, bl + 1);
  3238. }
  3239. s->counts.partition[bl][c][bp]++;
  3240. }
  3241. static void decode_sb_mem(AVCodecContext *ctx, int row, int col, struct VP9Filter *lflvl,
  3242. ptrdiff_t yoff, ptrdiff_t uvoff, enum BlockLevel bl)
  3243. {
  3244. VP9Context *s = ctx->priv_data;
  3245. VP9Block *b = s->b;
  3246. ptrdiff_t hbs = 4 >> bl;
  3247. AVFrame *f = s->frames[CUR_FRAME].tf.f;
  3248. ptrdiff_t y_stride = f->linesize[0], uv_stride = f->linesize[1];
  3249. int bytesperpixel = s->bytesperpixel;
  3250. if (bl == BL_8X8) {
  3251. av_assert2(b->bl == BL_8X8);
  3252. decode_b(ctx, row, col, lflvl, yoff, uvoff, b->bl, b->bp);
  3253. } else if (s->b->bl == bl) {
  3254. decode_b(ctx, row, col, lflvl, yoff, uvoff, b->bl, b->bp);
  3255. if (b->bp == PARTITION_H && row + hbs < s->rows) {
  3256. yoff += hbs * 8 * y_stride;
  3257. uvoff += hbs * 8 * uv_stride >> s->ss_v;
  3258. decode_b(ctx, row + hbs, col, lflvl, yoff, uvoff, b->bl, b->bp);
  3259. } else if (b->bp == PARTITION_V && col + hbs < s->cols) {
  3260. yoff += hbs * 8 * bytesperpixel;
  3261. uvoff += hbs * 8 * bytesperpixel >> s->ss_h;
  3262. decode_b(ctx, row, col + hbs, lflvl, yoff, uvoff, b->bl, b->bp);
  3263. }
  3264. } else {
  3265. decode_sb_mem(ctx, row, col, lflvl, yoff, uvoff, bl + 1);
  3266. if (col + hbs < s->cols) { // FIXME why not <=?
  3267. if (row + hbs < s->rows) {
  3268. decode_sb_mem(ctx, row, col + hbs, lflvl, yoff + 8 * hbs * bytesperpixel,
  3269. uvoff + (8 * hbs * bytesperpixel >> s->ss_h), bl + 1);
  3270. yoff += hbs * 8 * y_stride;
  3271. uvoff += hbs * 8 * uv_stride >> s->ss_v;
  3272. decode_sb_mem(ctx, row + hbs, col, lflvl, yoff, uvoff, bl + 1);
  3273. decode_sb_mem(ctx, row + hbs, col + hbs, lflvl,
  3274. yoff + 8 * hbs * bytesperpixel,
  3275. uvoff + (8 * hbs * bytesperpixel >> s->ss_h), bl + 1);
  3276. } else {
  3277. yoff += hbs * 8 * bytesperpixel;
  3278. uvoff += hbs * 8 * bytesperpixel >> s->ss_h;
  3279. decode_sb_mem(ctx, row, col + hbs, lflvl, yoff, uvoff, bl + 1);
  3280. }
  3281. } else if (row + hbs < s->rows) {
  3282. yoff += hbs * 8 * y_stride;
  3283. uvoff += hbs * 8 * uv_stride >> s->ss_v;
  3284. decode_sb_mem(ctx, row + hbs, col, lflvl, yoff, uvoff, bl + 1);
  3285. }
  3286. }
  3287. }
  3288. static av_always_inline void filter_plane_cols(VP9Context *s, int col, int ss_h, int ss_v,
  3289. uint8_t *lvl, uint8_t (*mask)[4],
  3290. uint8_t *dst, ptrdiff_t ls)
  3291. {
  3292. int y, x, bytesperpixel = s->bytesperpixel;
  3293. // filter edges between columns (e.g. block1 | block2)
  3294. for (y = 0; y < 8; y += 2 << ss_v, dst += 16 * ls, lvl += 16 << ss_v) {
  3295. uint8_t *ptr = dst, *l = lvl, *hmask1 = mask[y], *hmask2 = mask[y + 1 + ss_v];
  3296. unsigned hm1 = hmask1[0] | hmask1[1] | hmask1[2], hm13 = hmask1[3];
  3297. unsigned hm2 = hmask2[1] | hmask2[2], hm23 = hmask2[3];
  3298. unsigned hm = hm1 | hm2 | hm13 | hm23;
  3299. for (x = 1; hm & ~(x - 1); x <<= 1, ptr += 8 * bytesperpixel >> ss_h) {
  3300. if (col || x > 1) {
  3301. if (hm1 & x) {
  3302. int L = *l, H = L >> 4;
  3303. int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L];
  3304. if (hmask1[0] & x) {
  3305. if (hmask2[0] & x) {
  3306. av_assert2(l[8 << ss_v] == L);
  3307. s->dsp.loop_filter_16[0](ptr, ls, E, I, H);
  3308. } else {
  3309. s->dsp.loop_filter_8[2][0](ptr, ls, E, I, H);
  3310. }
  3311. } else if (hm2 & x) {
  3312. L = l[8 << ss_v];
  3313. H |= (L >> 4) << 8;
  3314. E |= s->filter.mblim_lut[L] << 8;
  3315. I |= s->filter.lim_lut[L] << 8;
  3316. s->dsp.loop_filter_mix2[!!(hmask1[1] & x)]
  3317. [!!(hmask2[1] & x)]
  3318. [0](ptr, ls, E, I, H);
  3319. } else {
  3320. s->dsp.loop_filter_8[!!(hmask1[1] & x)]
  3321. [0](ptr, ls, E, I, H);
  3322. }
  3323. } else if (hm2 & x) {
  3324. int L = l[8 << ss_v], H = L >> 4;
  3325. int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L];
  3326. s->dsp.loop_filter_8[!!(hmask2[1] & x)]
  3327. [0](ptr + 8 * ls, ls, E, I, H);
  3328. }
  3329. }
  3330. if (ss_h) {
  3331. if (x & 0xAA)
  3332. l += 2;
  3333. } else {
  3334. if (hm13 & x) {
  3335. int L = *l, H = L >> 4;
  3336. int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L];
  3337. if (hm23 & x) {
  3338. L = l[8 << ss_v];
  3339. H |= (L >> 4) << 8;
  3340. E |= s->filter.mblim_lut[L] << 8;
  3341. I |= s->filter.lim_lut[L] << 8;
  3342. s->dsp.loop_filter_mix2[0][0][0](ptr + 4 * bytesperpixel, ls, E, I, H);
  3343. } else {
  3344. s->dsp.loop_filter_8[0][0](ptr + 4 * bytesperpixel, ls, E, I, H);
  3345. }
  3346. } else if (hm23 & x) {
  3347. int L = l[8 << ss_v], H = L >> 4;
  3348. int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L];
  3349. s->dsp.loop_filter_8[0][0](ptr + 8 * ls + 4 * bytesperpixel, ls, E, I, H);
  3350. }
  3351. l++;
  3352. }
  3353. }
  3354. }
  3355. }
  3356. static av_always_inline void filter_plane_rows(VP9Context *s, int row, int ss_h, int ss_v,
  3357. uint8_t *lvl, uint8_t (*mask)[4],
  3358. uint8_t *dst, ptrdiff_t ls)
  3359. {
  3360. int y, x, bytesperpixel = s->bytesperpixel;
  3361. // block1
  3362. // filter edges between rows (e.g. ------)
  3363. // block2
  3364. for (y = 0; y < 8; y++, dst += 8 * ls >> ss_v) {
  3365. uint8_t *ptr = dst, *l = lvl, *vmask = mask[y];
  3366. unsigned vm = vmask[0] | vmask[1] | vmask[2], vm3 = vmask[3];
  3367. for (x = 1; vm & ~(x - 1); x <<= (2 << ss_h), ptr += 16 * bytesperpixel, l += 2 << ss_h) {
  3368. if (row || y) {
  3369. if (vm & x) {
  3370. int L = *l, H = L >> 4;
  3371. int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L];
  3372. if (vmask[0] & x) {
  3373. if (vmask[0] & (x << (1 + ss_h))) {
  3374. av_assert2(l[1 + ss_h] == L);
  3375. s->dsp.loop_filter_16[1](ptr, ls, E, I, H);
  3376. } else {
  3377. s->dsp.loop_filter_8[2][1](ptr, ls, E, I, H);
  3378. }
  3379. } else if (vm & (x << (1 + ss_h))) {
  3380. L = l[1 + ss_h];
  3381. H |= (L >> 4) << 8;
  3382. E |= s->filter.mblim_lut[L] << 8;
  3383. I |= s->filter.lim_lut[L] << 8;
  3384. s->dsp.loop_filter_mix2[!!(vmask[1] & x)]
  3385. [!!(vmask[1] & (x << (1 + ss_h)))]
  3386. [1](ptr, ls, E, I, H);
  3387. } else {
  3388. s->dsp.loop_filter_8[!!(vmask[1] & x)]
  3389. [1](ptr, ls, E, I, H);
  3390. }
  3391. } else if (vm & (x << (1 + ss_h))) {
  3392. int L = l[1 + ss_h], H = L >> 4;
  3393. int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L];
  3394. s->dsp.loop_filter_8[!!(vmask[1] & (x << (1 + ss_h)))]
  3395. [1](ptr + 8 * bytesperpixel, ls, E, I, H);
  3396. }
  3397. }
  3398. if (!ss_v) {
  3399. if (vm3 & x) {
  3400. int L = *l, H = L >> 4;
  3401. int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L];
  3402. if (vm3 & (x << (1 + ss_h))) {
  3403. L = l[1 + ss_h];
  3404. H |= (L >> 4) << 8;
  3405. E |= s->filter.mblim_lut[L] << 8;
  3406. I |= s->filter.lim_lut[L] << 8;
  3407. s->dsp.loop_filter_mix2[0][0][1](ptr + ls * 4, ls, E, I, H);
  3408. } else {
  3409. s->dsp.loop_filter_8[0][1](ptr + ls * 4, ls, E, I, H);
  3410. }
  3411. } else if (vm3 & (x << (1 + ss_h))) {
  3412. int L = l[1 + ss_h], H = L >> 4;
  3413. int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L];
  3414. s->dsp.loop_filter_8[0][1](ptr + ls * 4 + 8 * bytesperpixel, ls, E, I, H);
  3415. }
  3416. }
  3417. }
  3418. if (ss_v) {
  3419. if (y & 1)
  3420. lvl += 16;
  3421. } else {
  3422. lvl += 8;
  3423. }
  3424. }
  3425. }
  3426. static void loopfilter_sb(AVCodecContext *ctx, struct VP9Filter *lflvl,
  3427. int row, int col, ptrdiff_t yoff, ptrdiff_t uvoff)
  3428. {
  3429. VP9Context *s = ctx->priv_data;
  3430. AVFrame *f = s->frames[CUR_FRAME].tf.f;
  3431. uint8_t *dst = f->data[0] + yoff;
  3432. ptrdiff_t ls_y = f->linesize[0], ls_uv = f->linesize[1];
  3433. uint8_t (*uv_masks)[8][4] = lflvl->mask[s->ss_h | s->ss_v];
  3434. int p;
  3435. // FIXME in how far can we interleave the v/h loopfilter calls? E.g.
  3436. // if you think of them as acting on a 8x8 block max, we can interleave
  3437. // each v/h within the single x loop, but that only works if we work on
  3438. // 8 pixel blocks, and we won't always do that (we want at least 16px
  3439. // to use SSE2 optimizations, perhaps 32 for AVX2)
  3440. filter_plane_cols(s, col, 0, 0, lflvl->level, lflvl->mask[0][0], dst, ls_y);
  3441. filter_plane_rows(s, row, 0, 0, lflvl->level, lflvl->mask[0][1], dst, ls_y);
  3442. for (p = 0; p < 2; p++) {
  3443. dst = f->data[1 + p] + uvoff;
  3444. filter_plane_cols(s, col, s->ss_h, s->ss_v, lflvl->level, uv_masks[0], dst, ls_uv);
  3445. filter_plane_rows(s, row, s->ss_h, s->ss_v, lflvl->level, uv_masks[1], dst, ls_uv);
  3446. }
  3447. }
  3448. static void set_tile_offset(int *start, int *end, int idx, int log2_n, int n)
  3449. {
  3450. int sb_start = ( idx * n) >> log2_n;
  3451. int sb_end = ((idx + 1) * n) >> log2_n;
  3452. *start = FFMIN(sb_start, n) << 3;
  3453. *end = FFMIN(sb_end, n) << 3;
  3454. }
  3455. static av_always_inline void adapt_prob(uint8_t *p, unsigned ct0, unsigned ct1,
  3456. int max_count, int update_factor)
  3457. {
  3458. unsigned ct = ct0 + ct1, p2, p1;
  3459. if (!ct)
  3460. return;
  3461. p1 = *p;
  3462. p2 = ((ct0 << 8) + (ct >> 1)) / ct;
  3463. p2 = av_clip(p2, 1, 255);
  3464. ct = FFMIN(ct, max_count);
  3465. update_factor = FASTDIV(update_factor * ct, max_count);
  3466. // (p1 * (256 - update_factor) + p2 * update_factor + 128) >> 8
  3467. *p = p1 + (((p2 - p1) * update_factor + 128) >> 8);
  3468. }
  3469. static void adapt_probs(VP9Context *s)
  3470. {
  3471. int i, j, k, l, m;
  3472. prob_context *p = &s->prob_ctx[s->framectxid].p;
  3473. int uf = (s->keyframe || s->intraonly || !s->last_keyframe) ? 112 : 128;
  3474. // coefficients
  3475. for (i = 0; i < 4; i++)
  3476. for (j = 0; j < 2; j++)
  3477. for (k = 0; k < 2; k++)
  3478. for (l = 0; l < 6; l++)
  3479. for (m = 0; m < 6; m++) {
  3480. uint8_t *pp = s->prob_ctx[s->framectxid].coef[i][j][k][l][m];
  3481. unsigned *e = s->counts.eob[i][j][k][l][m];
  3482. unsigned *c = s->counts.coef[i][j][k][l][m];
  3483. if (l == 0 && m >= 3) // dc only has 3 pt
  3484. break;
  3485. adapt_prob(&pp[0], e[0], e[1], 24, uf);
  3486. adapt_prob(&pp[1], c[0], c[1] + c[2], 24, uf);
  3487. adapt_prob(&pp[2], c[1], c[2], 24, uf);
  3488. }
  3489. if (s->keyframe || s->intraonly) {
  3490. memcpy(p->skip, s->prob.p.skip, sizeof(p->skip));
  3491. memcpy(p->tx32p, s->prob.p.tx32p, sizeof(p->tx32p));
  3492. memcpy(p->tx16p, s->prob.p.tx16p, sizeof(p->tx16p));
  3493. memcpy(p->tx8p, s->prob.p.tx8p, sizeof(p->tx8p));
  3494. return;
  3495. }
  3496. // skip flag
  3497. for (i = 0; i < 3; i++)
  3498. adapt_prob(&p->skip[i], s->counts.skip[i][0], s->counts.skip[i][1], 20, 128);
  3499. // intra/inter flag
  3500. for (i = 0; i < 4; i++)
  3501. adapt_prob(&p->intra[i], s->counts.intra[i][0], s->counts.intra[i][1], 20, 128);
  3502. // comppred flag
  3503. if (s->comppredmode == PRED_SWITCHABLE) {
  3504. for (i = 0; i < 5; i++)
  3505. adapt_prob(&p->comp[i], s->counts.comp[i][0], s->counts.comp[i][1], 20, 128);
  3506. }
  3507. // reference frames
  3508. if (s->comppredmode != PRED_SINGLEREF) {
  3509. for (i = 0; i < 5; i++)
  3510. adapt_prob(&p->comp_ref[i], s->counts.comp_ref[i][0],
  3511. s->counts.comp_ref[i][1], 20, 128);
  3512. }
  3513. if (s->comppredmode != PRED_COMPREF) {
  3514. for (i = 0; i < 5; i++) {
  3515. uint8_t *pp = p->single_ref[i];
  3516. unsigned (*c)[2] = s->counts.single_ref[i];
  3517. adapt_prob(&pp[0], c[0][0], c[0][1], 20, 128);
  3518. adapt_prob(&pp[1], c[1][0], c[1][1], 20, 128);
  3519. }
  3520. }
  3521. // block partitioning
  3522. for (i = 0; i < 4; i++)
  3523. for (j = 0; j < 4; j++) {
  3524. uint8_t *pp = p->partition[i][j];
  3525. unsigned *c = s->counts.partition[i][j];
  3526. adapt_prob(&pp[0], c[0], c[1] + c[2] + c[3], 20, 128);
  3527. adapt_prob(&pp[1], c[1], c[2] + c[3], 20, 128);
  3528. adapt_prob(&pp[2], c[2], c[3], 20, 128);
  3529. }
  3530. // tx size
  3531. if (s->txfmmode == TX_SWITCHABLE) {
  3532. for (i = 0; i < 2; i++) {
  3533. unsigned *c16 = s->counts.tx16p[i], *c32 = s->counts.tx32p[i];
  3534. adapt_prob(&p->tx8p[i], s->counts.tx8p[i][0], s->counts.tx8p[i][1], 20, 128);
  3535. adapt_prob(&p->tx16p[i][0], c16[0], c16[1] + c16[2], 20, 128);
  3536. adapt_prob(&p->tx16p[i][1], c16[1], c16[2], 20, 128);
  3537. adapt_prob(&p->tx32p[i][0], c32[0], c32[1] + c32[2] + c32[3], 20, 128);
  3538. adapt_prob(&p->tx32p[i][1], c32[1], c32[2] + c32[3], 20, 128);
  3539. adapt_prob(&p->tx32p[i][2], c32[2], c32[3], 20, 128);
  3540. }
  3541. }
  3542. // interpolation filter
  3543. if (s->filtermode == FILTER_SWITCHABLE) {
  3544. for (i = 0; i < 4; i++) {
  3545. uint8_t *pp = p->filter[i];
  3546. unsigned *c = s->counts.filter[i];
  3547. adapt_prob(&pp[0], c[0], c[1] + c[2], 20, 128);
  3548. adapt_prob(&pp[1], c[1], c[2], 20, 128);
  3549. }
  3550. }
  3551. // inter modes
  3552. for (i = 0; i < 7; i++) {
  3553. uint8_t *pp = p->mv_mode[i];
  3554. unsigned *c = s->counts.mv_mode[i];
  3555. adapt_prob(&pp[0], c[2], c[1] + c[0] + c[3], 20, 128);
  3556. adapt_prob(&pp[1], c[0], c[1] + c[3], 20, 128);
  3557. adapt_prob(&pp[2], c[1], c[3], 20, 128);
  3558. }
  3559. // mv joints
  3560. {
  3561. uint8_t *pp = p->mv_joint;
  3562. unsigned *c = s->counts.mv_joint;
  3563. adapt_prob(&pp[0], c[0], c[1] + c[2] + c[3], 20, 128);
  3564. adapt_prob(&pp[1], c[1], c[2] + c[3], 20, 128);
  3565. adapt_prob(&pp[2], c[2], c[3], 20, 128);
  3566. }
  3567. // mv components
  3568. for (i = 0; i < 2; i++) {
  3569. uint8_t *pp;
  3570. unsigned *c, (*c2)[2], sum;
  3571. adapt_prob(&p->mv_comp[i].sign, s->counts.mv_comp[i].sign[0],
  3572. s->counts.mv_comp[i].sign[1], 20, 128);
  3573. pp = p->mv_comp[i].classes;
  3574. c = s->counts.mv_comp[i].classes;
  3575. sum = c[1] + c[2] + c[3] + c[4] + c[5] + c[6] + c[7] + c[8] + c[9] + c[10];
  3576. adapt_prob(&pp[0], c[0], sum, 20, 128);
  3577. sum -= c[1];
  3578. adapt_prob(&pp[1], c[1], sum, 20, 128);
  3579. sum -= c[2] + c[3];
  3580. adapt_prob(&pp[2], c[2] + c[3], sum, 20, 128);
  3581. adapt_prob(&pp[3], c[2], c[3], 20, 128);
  3582. sum -= c[4] + c[5];
  3583. adapt_prob(&pp[4], c[4] + c[5], sum, 20, 128);
  3584. adapt_prob(&pp[5], c[4], c[5], 20, 128);
  3585. sum -= c[6];
  3586. adapt_prob(&pp[6], c[6], sum, 20, 128);
  3587. adapt_prob(&pp[7], c[7] + c[8], c[9] + c[10], 20, 128);
  3588. adapt_prob(&pp[8], c[7], c[8], 20, 128);
  3589. adapt_prob(&pp[9], c[9], c[10], 20, 128);
  3590. adapt_prob(&p->mv_comp[i].class0, s->counts.mv_comp[i].class0[0],
  3591. s->counts.mv_comp[i].class0[1], 20, 128);
  3592. pp = p->mv_comp[i].bits;
  3593. c2 = s->counts.mv_comp[i].bits;
  3594. for (j = 0; j < 10; j++)
  3595. adapt_prob(&pp[j], c2[j][0], c2[j][1], 20, 128);
  3596. for (j = 0; j < 2; j++) {
  3597. pp = p->mv_comp[i].class0_fp[j];
  3598. c = s->counts.mv_comp[i].class0_fp[j];
  3599. adapt_prob(&pp[0], c[0], c[1] + c[2] + c[3], 20, 128);
  3600. adapt_prob(&pp[1], c[1], c[2] + c[3], 20, 128);
  3601. adapt_prob(&pp[2], c[2], c[3], 20, 128);
  3602. }
  3603. pp = p->mv_comp[i].fp;
  3604. c = s->counts.mv_comp[i].fp;
  3605. adapt_prob(&pp[0], c[0], c[1] + c[2] + c[3], 20, 128);
  3606. adapt_prob(&pp[1], c[1], c[2] + c[3], 20, 128);
  3607. adapt_prob(&pp[2], c[2], c[3], 20, 128);
  3608. if (s->highprecisionmvs) {
  3609. adapt_prob(&p->mv_comp[i].class0_hp, s->counts.mv_comp[i].class0_hp[0],
  3610. s->counts.mv_comp[i].class0_hp[1], 20, 128);
  3611. adapt_prob(&p->mv_comp[i].hp, s->counts.mv_comp[i].hp[0],
  3612. s->counts.mv_comp[i].hp[1], 20, 128);
  3613. }
  3614. }
  3615. // y intra modes
  3616. for (i = 0; i < 4; i++) {
  3617. uint8_t *pp = p->y_mode[i];
  3618. unsigned *c = s->counts.y_mode[i], sum, s2;
  3619. sum = c[0] + c[1] + c[3] + c[4] + c[5] + c[6] + c[7] + c[8] + c[9];
  3620. adapt_prob(&pp[0], c[DC_PRED], sum, 20, 128);
  3621. sum -= c[TM_VP8_PRED];
  3622. adapt_prob(&pp[1], c[TM_VP8_PRED], sum, 20, 128);
  3623. sum -= c[VERT_PRED];
  3624. adapt_prob(&pp[2], c[VERT_PRED], sum, 20, 128);
  3625. s2 = c[HOR_PRED] + c[DIAG_DOWN_RIGHT_PRED] + c[VERT_RIGHT_PRED];
  3626. sum -= s2;
  3627. adapt_prob(&pp[3], s2, sum, 20, 128);
  3628. s2 -= c[HOR_PRED];
  3629. adapt_prob(&pp[4], c[HOR_PRED], s2, 20, 128);
  3630. adapt_prob(&pp[5], c[DIAG_DOWN_RIGHT_PRED], c[VERT_RIGHT_PRED], 20, 128);
  3631. sum -= c[DIAG_DOWN_LEFT_PRED];
  3632. adapt_prob(&pp[6], c[DIAG_DOWN_LEFT_PRED], sum, 20, 128);
  3633. sum -= c[VERT_LEFT_PRED];
  3634. adapt_prob(&pp[7], c[VERT_LEFT_PRED], sum, 20, 128);
  3635. adapt_prob(&pp[8], c[HOR_DOWN_PRED], c[HOR_UP_PRED], 20, 128);
  3636. }
  3637. // uv intra modes
  3638. for (i = 0; i < 10; i++) {
  3639. uint8_t *pp = p->uv_mode[i];
  3640. unsigned *c = s->counts.uv_mode[i], sum, s2;
  3641. sum = c[0] + c[1] + c[3] + c[4] + c[5] + c[6] + c[7] + c[8] + c[9];
  3642. adapt_prob(&pp[0], c[DC_PRED], sum, 20, 128);
  3643. sum -= c[TM_VP8_PRED];
  3644. adapt_prob(&pp[1], c[TM_VP8_PRED], sum, 20, 128);
  3645. sum -= c[VERT_PRED];
  3646. adapt_prob(&pp[2], c[VERT_PRED], sum, 20, 128);
  3647. s2 = c[HOR_PRED] + c[DIAG_DOWN_RIGHT_PRED] + c[VERT_RIGHT_PRED];
  3648. sum -= s2;
  3649. adapt_prob(&pp[3], s2, sum, 20, 128);
  3650. s2 -= c[HOR_PRED];
  3651. adapt_prob(&pp[4], c[HOR_PRED], s2, 20, 128);
  3652. adapt_prob(&pp[5], c[DIAG_DOWN_RIGHT_PRED], c[VERT_RIGHT_PRED], 20, 128);
  3653. sum -= c[DIAG_DOWN_LEFT_PRED];
  3654. adapt_prob(&pp[6], c[DIAG_DOWN_LEFT_PRED], sum, 20, 128);
  3655. sum -= c[VERT_LEFT_PRED];
  3656. adapt_prob(&pp[7], c[VERT_LEFT_PRED], sum, 20, 128);
  3657. adapt_prob(&pp[8], c[HOR_DOWN_PRED], c[HOR_UP_PRED], 20, 128);
  3658. }
  3659. }
  3660. static void free_buffers(VP9Context *s)
  3661. {
  3662. av_freep(&s->intra_pred_data[0]);
  3663. av_freep(&s->b_base);
  3664. av_freep(&s->block_base);
  3665. }
  3666. static av_cold int vp9_decode_free(AVCodecContext *ctx)
  3667. {
  3668. VP9Context *s = ctx->priv_data;
  3669. int i;
  3670. for (i = 0; i < 3; i++) {
  3671. if (s->frames[i].tf.f->data[0])
  3672. vp9_unref_frame(ctx, &s->frames[i]);
  3673. av_frame_free(&s->frames[i].tf.f);
  3674. }
  3675. for (i = 0; i < 8; i++) {
  3676. if (s->refs[i].f->data[0])
  3677. ff_thread_release_buffer(ctx, &s->refs[i]);
  3678. av_frame_free(&s->refs[i].f);
  3679. if (s->next_refs[i].f->data[0])
  3680. ff_thread_release_buffer(ctx, &s->next_refs[i]);
  3681. av_frame_free(&s->next_refs[i].f);
  3682. }
  3683. free_buffers(s);
  3684. av_freep(&s->c_b);
  3685. s->c_b_size = 0;
  3686. return 0;
  3687. }
  3688. static int vp9_decode_frame(AVCodecContext *ctx, void *frame,
  3689. int *got_frame, AVPacket *pkt)
  3690. {
  3691. const uint8_t *data = pkt->data;
  3692. int size = pkt->size;
  3693. VP9Context *s = ctx->priv_data;
  3694. int res, tile_row, tile_col, i, ref, row, col;
  3695. int retain_segmap_ref = s->segmentation.enabled && !s->segmentation.update_map
  3696. && s->frames[REF_FRAME_SEGMAP].segmentation_map;
  3697. ptrdiff_t yoff, uvoff, ls_y, ls_uv;
  3698. AVFrame *f;
  3699. int bytesperpixel;
  3700. if ((res = decode_frame_header(ctx, data, size, &ref)) < 0) {
  3701. return res;
  3702. } else if (res == 0) {
  3703. if (!s->refs[ref].f->data[0]) {
  3704. av_log(ctx, AV_LOG_ERROR, "Requested reference %d not available\n", ref);
  3705. return AVERROR_INVALIDDATA;
  3706. }
  3707. if ((res = av_frame_ref(frame, s->refs[ref].f)) < 0)
  3708. return res;
  3709. ((AVFrame *)frame)->pkt_pts = pkt->pts;
  3710. ((AVFrame *)frame)->pkt_dts = pkt->dts;
  3711. for (i = 0; i < 8; i++) {
  3712. if (s->next_refs[i].f->data[0])
  3713. ff_thread_release_buffer(ctx, &s->next_refs[i]);
  3714. if (s->refs[i].f->data[0] &&
  3715. (res = ff_thread_ref_frame(&s->next_refs[i], &s->refs[i])) < 0)
  3716. return res;
  3717. }
  3718. *got_frame = 1;
  3719. return pkt->size;
  3720. }
  3721. data += res;
  3722. size -= res;
  3723. if (!retain_segmap_ref) {
  3724. if (s->frames[REF_FRAME_SEGMAP].tf.f->data[0])
  3725. vp9_unref_frame(ctx, &s->frames[REF_FRAME_SEGMAP]);
  3726. if (!s->keyframe && !s->intraonly && !s->errorres && s->frames[CUR_FRAME].tf.f->data[0] &&
  3727. (res = vp9_ref_frame(ctx, &s->frames[REF_FRAME_SEGMAP], &s->frames[CUR_FRAME])) < 0)
  3728. return res;
  3729. }
  3730. if (s->frames[REF_FRAME_MVPAIR].tf.f->data[0])
  3731. vp9_unref_frame(ctx, &s->frames[REF_FRAME_MVPAIR]);
  3732. if (!s->intraonly && !s->keyframe && !s->errorres && s->frames[CUR_FRAME].tf.f->data[0] &&
  3733. (res = vp9_ref_frame(ctx, &s->frames[REF_FRAME_MVPAIR], &s->frames[CUR_FRAME])) < 0)
  3734. return res;
  3735. if (s->frames[CUR_FRAME].tf.f->data[0])
  3736. vp9_unref_frame(ctx, &s->frames[CUR_FRAME]);
  3737. if ((res = vp9_alloc_frame(ctx, &s->frames[CUR_FRAME])) < 0)
  3738. return res;
  3739. f = s->frames[CUR_FRAME].tf.f;
  3740. f->key_frame = s->keyframe;
  3741. f->pict_type = (s->keyframe || s->intraonly) ? AV_PICTURE_TYPE_I : AV_PICTURE_TYPE_P;
  3742. ls_y = f->linesize[0];
  3743. ls_uv =f->linesize[1];
  3744. // ref frame setup
  3745. for (i = 0; i < 8; i++) {
  3746. if (s->next_refs[i].f->data[0])
  3747. ff_thread_release_buffer(ctx, &s->next_refs[i]);
  3748. if (s->refreshrefmask & (1 << i)) {
  3749. res = ff_thread_ref_frame(&s->next_refs[i], &s->frames[CUR_FRAME].tf);
  3750. } else if (s->refs[i].f->data[0]) {
  3751. res = ff_thread_ref_frame(&s->next_refs[i], &s->refs[i]);
  3752. }
  3753. if (res < 0)
  3754. return res;
  3755. }
  3756. // main tile decode loop
  3757. bytesperpixel = s->bytesperpixel;
  3758. memset(s->above_partition_ctx, 0, s->cols);
  3759. memset(s->above_skip_ctx, 0, s->cols);
  3760. if (s->keyframe || s->intraonly) {
  3761. memset(s->above_mode_ctx, DC_PRED, s->cols * 2);
  3762. } else {
  3763. memset(s->above_mode_ctx, NEARESTMV, s->cols);
  3764. }
  3765. memset(s->above_y_nnz_ctx, 0, s->sb_cols * 16);
  3766. memset(s->above_uv_nnz_ctx[0], 0, s->sb_cols * 16 >> s->ss_h);
  3767. memset(s->above_uv_nnz_ctx[1], 0, s->sb_cols * 16 >> s->ss_h);
  3768. memset(s->above_segpred_ctx, 0, s->cols);
  3769. s->pass = s->frames[CUR_FRAME].uses_2pass =
  3770. ctx->active_thread_type == FF_THREAD_FRAME && s->refreshctx && !s->parallelmode;
  3771. if ((res = update_block_buffers(ctx)) < 0) {
  3772. av_log(ctx, AV_LOG_ERROR,
  3773. "Failed to allocate block buffers\n");
  3774. return res;
  3775. }
  3776. if (s->refreshctx && s->parallelmode) {
  3777. int j, k, l, m;
  3778. for (i = 0; i < 4; i++) {
  3779. for (j = 0; j < 2; j++)
  3780. for (k = 0; k < 2; k++)
  3781. for (l = 0; l < 6; l++)
  3782. for (m = 0; m < 6; m++)
  3783. memcpy(s->prob_ctx[s->framectxid].coef[i][j][k][l][m],
  3784. s->prob.coef[i][j][k][l][m], 3);
  3785. if (s->txfmmode == i)
  3786. break;
  3787. }
  3788. s->prob_ctx[s->framectxid].p = s->prob.p;
  3789. ff_thread_finish_setup(ctx);
  3790. } else if (!s->refreshctx) {
  3791. ff_thread_finish_setup(ctx);
  3792. }
  3793. do {
  3794. yoff = uvoff = 0;
  3795. s->b = s->b_base;
  3796. s->block = s->block_base;
  3797. s->uvblock[0] = s->uvblock_base[0];
  3798. s->uvblock[1] = s->uvblock_base[1];
  3799. s->eob = s->eob_base;
  3800. s->uveob[0] = s->uveob_base[0];
  3801. s->uveob[1] = s->uveob_base[1];
  3802. for (tile_row = 0; tile_row < s->tiling.tile_rows; tile_row++) {
  3803. set_tile_offset(&s->tiling.tile_row_start, &s->tiling.tile_row_end,
  3804. tile_row, s->tiling.log2_tile_rows, s->sb_rows);
  3805. if (s->pass != 2) {
  3806. for (tile_col = 0; tile_col < s->tiling.tile_cols; tile_col++) {
  3807. int64_t tile_size;
  3808. if (tile_col == s->tiling.tile_cols - 1 &&
  3809. tile_row == s->tiling.tile_rows - 1) {
  3810. tile_size = size;
  3811. } else {
  3812. tile_size = AV_RB32(data);
  3813. data += 4;
  3814. size -= 4;
  3815. }
  3816. if (tile_size > size) {
  3817. ff_thread_report_progress(&s->frames[CUR_FRAME].tf, INT_MAX, 0);
  3818. return AVERROR_INVALIDDATA;
  3819. }
  3820. ff_vp56_init_range_decoder(&s->c_b[tile_col], data, tile_size);
  3821. if (vp56_rac_get_prob_branchy(&s->c_b[tile_col], 128)) { // marker bit
  3822. ff_thread_report_progress(&s->frames[CUR_FRAME].tf, INT_MAX, 0);
  3823. return AVERROR_INVALIDDATA;
  3824. }
  3825. data += tile_size;
  3826. size -= tile_size;
  3827. }
  3828. }
  3829. for (row = s->tiling.tile_row_start; row < s->tiling.tile_row_end;
  3830. row += 8, yoff += ls_y * 64, uvoff += ls_uv * 64 >> s->ss_v) {
  3831. struct VP9Filter *lflvl_ptr = s->lflvl;
  3832. ptrdiff_t yoff2 = yoff, uvoff2 = uvoff;
  3833. for (tile_col = 0; tile_col < s->tiling.tile_cols; tile_col++) {
  3834. set_tile_offset(&s->tiling.tile_col_start, &s->tiling.tile_col_end,
  3835. tile_col, s->tiling.log2_tile_cols, s->sb_cols);
  3836. if (s->pass != 2) {
  3837. memset(s->left_partition_ctx, 0, 8);
  3838. memset(s->left_skip_ctx, 0, 8);
  3839. if (s->keyframe || s->intraonly) {
  3840. memset(s->left_mode_ctx, DC_PRED, 16);
  3841. } else {
  3842. memset(s->left_mode_ctx, NEARESTMV, 8);
  3843. }
  3844. memset(s->left_y_nnz_ctx, 0, 16);
  3845. memset(s->left_uv_nnz_ctx, 0, 32);
  3846. memset(s->left_segpred_ctx, 0, 8);
  3847. memcpy(&s->c, &s->c_b[tile_col], sizeof(s->c));
  3848. }
  3849. for (col = s->tiling.tile_col_start;
  3850. col < s->tiling.tile_col_end;
  3851. col += 8, yoff2 += 64 * bytesperpixel,
  3852. uvoff2 += 64 * bytesperpixel >> s->ss_h, lflvl_ptr++) {
  3853. // FIXME integrate with lf code (i.e. zero after each
  3854. // use, similar to invtxfm coefficients, or similar)
  3855. if (s->pass != 1) {
  3856. memset(lflvl_ptr->mask, 0, sizeof(lflvl_ptr->mask));
  3857. }
  3858. if (s->pass == 2) {
  3859. decode_sb_mem(ctx, row, col, lflvl_ptr,
  3860. yoff2, uvoff2, BL_64X64);
  3861. } else {
  3862. decode_sb(ctx, row, col, lflvl_ptr,
  3863. yoff2, uvoff2, BL_64X64);
  3864. }
  3865. }
  3866. if (s->pass != 2) {
  3867. memcpy(&s->c_b[tile_col], &s->c, sizeof(s->c));
  3868. }
  3869. }
  3870. if (s->pass == 1) {
  3871. continue;
  3872. }
  3873. // backup pre-loopfilter reconstruction data for intra
  3874. // prediction of next row of sb64s
  3875. if (row + 8 < s->rows) {
  3876. memcpy(s->intra_pred_data[0],
  3877. f->data[0] + yoff + 63 * ls_y,
  3878. 8 * s->cols * bytesperpixel);
  3879. memcpy(s->intra_pred_data[1],
  3880. f->data[1] + uvoff + ((64 >> s->ss_v) - 1) * ls_uv,
  3881. 8 * s->cols * bytesperpixel >> s->ss_h);
  3882. memcpy(s->intra_pred_data[2],
  3883. f->data[2] + uvoff + ((64 >> s->ss_v) - 1) * ls_uv,
  3884. 8 * s->cols * bytesperpixel >> s->ss_h);
  3885. }
  3886. // loopfilter one row
  3887. if (s->filter.level) {
  3888. yoff2 = yoff;
  3889. uvoff2 = uvoff;
  3890. lflvl_ptr = s->lflvl;
  3891. for (col = 0; col < s->cols;
  3892. col += 8, yoff2 += 64 * bytesperpixel,
  3893. uvoff2 += 64 * bytesperpixel >> s->ss_h, lflvl_ptr++) {
  3894. loopfilter_sb(ctx, lflvl_ptr, row, col, yoff2, uvoff2);
  3895. }
  3896. }
  3897. // FIXME maybe we can make this more finegrained by running the
  3898. // loopfilter per-block instead of after each sbrow
  3899. // In fact that would also make intra pred left preparation easier?
  3900. ff_thread_report_progress(&s->frames[CUR_FRAME].tf, row >> 3, 0);
  3901. }
  3902. }
  3903. if (s->pass < 2 && s->refreshctx && !s->parallelmode) {
  3904. adapt_probs(s);
  3905. ff_thread_finish_setup(ctx);
  3906. }
  3907. } while (s->pass++ == 1);
  3908. ff_thread_report_progress(&s->frames[CUR_FRAME].tf, INT_MAX, 0);
  3909. // ref frame setup
  3910. for (i = 0; i < 8; i++) {
  3911. if (s->refs[i].f->data[0])
  3912. ff_thread_release_buffer(ctx, &s->refs[i]);
  3913. ff_thread_ref_frame(&s->refs[i], &s->next_refs[i]);
  3914. }
  3915. if (!s->invisible) {
  3916. if ((res = av_frame_ref(frame, s->frames[CUR_FRAME].tf.f)) < 0)
  3917. return res;
  3918. *got_frame = 1;
  3919. }
  3920. return pkt->size;
  3921. }
  3922. static void vp9_decode_flush(AVCodecContext *ctx)
  3923. {
  3924. VP9Context *s = ctx->priv_data;
  3925. int i;
  3926. for (i = 0; i < 3; i++)
  3927. vp9_unref_frame(ctx, &s->frames[i]);
  3928. for (i = 0; i < 8; i++)
  3929. ff_thread_release_buffer(ctx, &s->refs[i]);
  3930. }
  3931. static int init_frames(AVCodecContext *ctx)
  3932. {
  3933. VP9Context *s = ctx->priv_data;
  3934. int i;
  3935. for (i = 0; i < 3; i++) {
  3936. s->frames[i].tf.f = av_frame_alloc();
  3937. if (!s->frames[i].tf.f) {
  3938. vp9_decode_free(ctx);
  3939. av_log(ctx, AV_LOG_ERROR, "Failed to allocate frame buffer %d\n", i);
  3940. return AVERROR(ENOMEM);
  3941. }
  3942. }
  3943. for (i = 0; i < 8; i++) {
  3944. s->refs[i].f = av_frame_alloc();
  3945. s->next_refs[i].f = av_frame_alloc();
  3946. if (!s->refs[i].f || !s->next_refs[i].f) {
  3947. vp9_decode_free(ctx);
  3948. av_log(ctx, AV_LOG_ERROR, "Failed to allocate frame buffer %d\n", i);
  3949. return AVERROR(ENOMEM);
  3950. }
  3951. }
  3952. return 0;
  3953. }
  3954. static av_cold int vp9_decode_init(AVCodecContext *ctx)
  3955. {
  3956. VP9Context *s = ctx->priv_data;
  3957. ctx->internal->allocate_progress = 1;
  3958. s->last_bpp = 0;
  3959. s->filter.sharpness = -1;
  3960. return init_frames(ctx);
  3961. }
  3962. static av_cold int vp9_decode_init_thread_copy(AVCodecContext *avctx)
  3963. {
  3964. return init_frames(avctx);
  3965. }
  3966. static int vp9_decode_update_thread_context(AVCodecContext *dst, const AVCodecContext *src)
  3967. {
  3968. int i, res;
  3969. VP9Context *s = dst->priv_data, *ssrc = src->priv_data;
  3970. // detect size changes in other threads
  3971. if (s->intra_pred_data[0] &&
  3972. (!ssrc->intra_pred_data[0] || s->cols != ssrc->cols || s->rows != ssrc->rows)) {
  3973. free_buffers(s);
  3974. }
  3975. for (i = 0; i < 3; i++) {
  3976. if (s->frames[i].tf.f->data[0])
  3977. vp9_unref_frame(dst, &s->frames[i]);
  3978. if (ssrc->frames[i].tf.f->data[0]) {
  3979. if ((res = vp9_ref_frame(dst, &s->frames[i], &ssrc->frames[i])) < 0)
  3980. return res;
  3981. }
  3982. }
  3983. for (i = 0; i < 8; i++) {
  3984. if (s->refs[i].f->data[0])
  3985. ff_thread_release_buffer(dst, &s->refs[i]);
  3986. if (ssrc->next_refs[i].f->data[0]) {
  3987. if ((res = ff_thread_ref_frame(&s->refs[i], &ssrc->next_refs[i])) < 0)
  3988. return res;
  3989. }
  3990. }
  3991. s->invisible = ssrc->invisible;
  3992. s->keyframe = ssrc->keyframe;
  3993. s->ss_v = ssrc->ss_v;
  3994. s->ss_h = ssrc->ss_h;
  3995. s->segmentation.enabled = ssrc->segmentation.enabled;
  3996. s->segmentation.update_map = ssrc->segmentation.update_map;
  3997. s->bytesperpixel = ssrc->bytesperpixel;
  3998. s->bpp = ssrc->bpp;
  3999. s->bpp_index = ssrc->bpp_index;
  4000. memcpy(&s->prob_ctx, &ssrc->prob_ctx, sizeof(s->prob_ctx));
  4001. memcpy(&s->lf_delta, &ssrc->lf_delta, sizeof(s->lf_delta));
  4002. if (ssrc->segmentation.enabled) {
  4003. memcpy(&s->segmentation.feat, &ssrc->segmentation.feat,
  4004. sizeof(s->segmentation.feat));
  4005. }
  4006. return 0;
  4007. }
  4008. static const AVProfile profiles[] = {
  4009. { FF_PROFILE_VP9_0, "Profile 0" },
  4010. { FF_PROFILE_VP9_1, "Profile 1" },
  4011. { FF_PROFILE_VP9_2, "Profile 2" },
  4012. { FF_PROFILE_VP9_3, "Profile 3" },
  4013. { FF_PROFILE_UNKNOWN },
  4014. };
  4015. AVCodec ff_vp9_decoder = {
  4016. .name = "vp9",
  4017. .long_name = NULL_IF_CONFIG_SMALL("Google VP9"),
  4018. .type = AVMEDIA_TYPE_VIDEO,
  4019. .id = AV_CODEC_ID_VP9,
  4020. .priv_data_size = sizeof(VP9Context),
  4021. .init = vp9_decode_init,
  4022. .close = vp9_decode_free,
  4023. .decode = vp9_decode_frame,
  4024. .capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS,
  4025. .flush = vp9_decode_flush,
  4026. .init_thread_copy = ONLY_IF_THREADS_ENABLED(vp9_decode_init_thread_copy),
  4027. .update_thread_context = ONLY_IF_THREADS_ENABLED(vp9_decode_update_thread_context),
  4028. .profiles = NULL_IF_CONFIG_SMALL(profiles),
  4029. };