You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1889 lines
66KB

  1. /*
  2. * Motion estimation
  3. * Copyright (c) 2000,2001 Fabrice Bellard.
  4. * Copyright (c) 2002-2004 Michael Niedermayer
  5. *
  6. *
  7. * This library is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2 of the License, or (at your option) any later version.
  11. *
  12. * This library is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with this library; if not, write to the Free Software
  19. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  20. *
  21. * new Motion Estimation (X1/EPZS) by Michael Niedermayer <michaelni@gmx.at>
  22. */
  23. /**
  24. * @file motion_est.c
  25. * Motion estimation.
  26. */
  27. #include <stdlib.h>
  28. #include <stdio.h>
  29. #include <limits.h>
  30. #include "avcodec.h"
  31. #include "dsputil.h"
  32. #include "mpegvideo.h"
  33. //#undef NDEBUG
  34. //#include <assert.h>
  35. #define SQ(a) ((a)*(a))
  36. #define P_LEFT P[1]
  37. #define P_TOP P[2]
  38. #define P_TOPRIGHT P[3]
  39. #define P_MEDIAN P[4]
  40. #define P_MV1 P[9]
  41. static inline int sad_hpel_motion_search(MpegEncContext * s,
  42. int *mx_ptr, int *my_ptr, int dmin,
  43. int pred_x, int pred_y, uint8_t *src_data[3],
  44. uint8_t *ref_data[6], int stride, int uvstride,
  45. int size, int h, uint8_t * const mv_penalty);
  46. static inline int update_map_generation(MpegEncContext * s)
  47. {
  48. s->me.map_generation+= 1<<(ME_MAP_MV_BITS*2);
  49. if(s->me.map_generation==0){
  50. s->me.map_generation= 1<<(ME_MAP_MV_BITS*2);
  51. memset(s->me.map, 0, sizeof(uint32_t)*ME_MAP_SIZE);
  52. }
  53. return s->me.map_generation;
  54. }
  55. /* shape adaptive search stuff */
  56. typedef struct Minima{
  57. int height;
  58. int x, y;
  59. int checked;
  60. }Minima;
  61. static int minima_cmp(const void *a, const void *b){
  62. const Minima *da = (const Minima *) a;
  63. const Minima *db = (const Minima *) b;
  64. return da->height - db->height;
  65. }
  66. /* SIMPLE */
  67. #define RENAME(a) simple_ ## a
  68. #define CMP(d, x, y, size)\
  69. d = cmp(s, src_y, (ref_y) + (x) + (y)*(stride), stride, h);
  70. #define CMP_HPEL(d, dx, dy, x, y, size)\
  71. {\
  72. const int dxy= (dx) + 2*(dy);\
  73. hpel_put[0][dxy](s->me.scratchpad, (ref_y) + (x) + (y)*(stride), stride, h);\
  74. d = cmp_sub(s, s->me.scratchpad, src_y, stride, h);\
  75. }
  76. #define CMP_QPEL(d, dx, dy, x, y, size)\
  77. {\
  78. const int dxy= (dx) + 4*(dy);\
  79. qpel_put[0][dxy](s->me.scratchpad, (ref_y) + (x) + (y)*(stride), stride);\
  80. d = cmp_sub(s, s->me.scratchpad, src_y, stride, h);\
  81. }
  82. #include "motion_est_template.c"
  83. #undef RENAME
  84. #undef CMP
  85. #undef CMP_HPEL
  86. #undef CMP_QPEL
  87. #undef INIT
  88. /* SIMPLE CHROMA */
  89. #define RENAME(a) simple_chroma_ ## a
  90. #define CMP(d, x, y, size)\
  91. d = cmp(s, src_y, (ref_y) + (x) + (y)*(stride), stride, h);\
  92. if(chroma_cmp){\
  93. int dxy= ((x)&1) + 2*((y)&1);\
  94. int c= ((x)>>1) + ((y)>>1)*uvstride;\
  95. \
  96. chroma_hpel_put[0][dxy](s->me.scratchpad, ref_u + c, uvstride, h>>1);\
  97. d += chroma_cmp(s, s->me.scratchpad, src_u, uvstride, h>>1);\
  98. chroma_hpel_put[0][dxy](s->me.scratchpad, ref_v + c, uvstride, h>>1);\
  99. d += chroma_cmp(s, s->me.scratchpad, src_v, uvstride, h>>1);\
  100. }
  101. #define CMP_HPEL(d, dx, dy, x, y, size)\
  102. {\
  103. const int dxy= (dx) + 2*(dy);\
  104. hpel_put[0][dxy](s->me.scratchpad, (ref_y) + (x) + (y)*(stride), stride, h);\
  105. d = cmp_sub(s, s->me.scratchpad, src_y, stride, h);\
  106. if(chroma_cmp_sub){\
  107. int cxy= (dxy) | ((x)&1) | (2*((y)&1));\
  108. int c= ((x)>>1) + ((y)>>1)*uvstride;\
  109. chroma_hpel_put[0][cxy](s->me.scratchpad, ref_u + c, uvstride, h>>1);\
  110. d += chroma_cmp_sub(s, s->me.scratchpad, src_u, uvstride, h>>1);\
  111. chroma_hpel_put[0][cxy](s->me.scratchpad, ref_v + c, uvstride, h>>1);\
  112. d += chroma_cmp_sub(s, s->me.scratchpad, src_v, uvstride, h>>1);\
  113. }\
  114. }
  115. #define CMP_QPEL(d, dx, dy, x, y, size)\
  116. {\
  117. const int dxy= (dx) + 4*(dy);\
  118. qpel_put[0][dxy](s->me.scratchpad, (ref_y) + (x) + (y)*(stride), stride);\
  119. d = cmp_sub(s, s->me.scratchpad, src_y, stride, h);\
  120. if(chroma_cmp_sub){\
  121. int cxy, c;\
  122. int cx= (4*(x) + (dx))/2;\
  123. int cy= (4*(y) + (dy))/2;\
  124. cx= (cx>>1)|(cx&1);\
  125. cy= (cy>>1)|(cy&1);\
  126. cxy= (cx&1) + 2*(cy&1);\
  127. c= ((cx)>>1) + ((cy)>>1)*uvstride;\
  128. chroma_hpel_put[0][cxy](s->me.scratchpad, ref_u + c, uvstride, h>>1);\
  129. d += chroma_cmp_sub(s, s->me.scratchpad, src_u, uvstride, h>>1);\
  130. chroma_hpel_put[0][cxy](s->me.scratchpad, ref_v + c, uvstride, h>>1);\
  131. d += chroma_cmp_sub(s, s->me.scratchpad, src_v, uvstride, h>>1);\
  132. }\
  133. }
  134. #include "motion_est_template.c"
  135. #undef RENAME
  136. #undef CMP
  137. #undef CMP_HPEL
  138. #undef CMP_QPEL
  139. #undef INIT
  140. /* SIMPLE DIRECT HPEL */
  141. #define RENAME(a) simple_direct_hpel_ ## a
  142. //FIXME precalc divisions stuff
  143. #define CMP_DIRECT(d, dx, dy, x, y, size, cmp_func)\
  144. if((x) >= xmin && 2*(x) + (dx) <= 2*xmax && (y) >= ymin && 2*(y) + (dy) <= 2*ymax){\
  145. const int hx= 2*(x) + (dx);\
  146. const int hy= 2*(y) + (dy);\
  147. if(s->mv_type==MV_TYPE_8X8){\
  148. int i;\
  149. for(i=0; i<4; i++){\
  150. int fx = s->me.direct_basis_mv[i][0] + hx;\
  151. int fy = s->me.direct_basis_mv[i][1] + hy;\
  152. int bx = hx ? fx - s->me.co_located_mv[i][0] : s->me.co_located_mv[i][0]*(time_pb - time_pp)/time_pp + (i &1)*16;\
  153. int by = hy ? fy - s->me.co_located_mv[i][1] : s->me.co_located_mv[i][1]*(time_pb - time_pp)/time_pp + (i>>1)*16;\
  154. int fxy= (fx&1) + 2*(fy&1);\
  155. int bxy= (bx&1) + 2*(by&1);\
  156. \
  157. uint8_t *dst= s->me.scratchpad + 8*(i&1) + 8*stride*(i>>1);\
  158. hpel_put[1][fxy](dst, (ref_y ) + (fx>>1) + (fy>>1)*(stride), stride, 8);\
  159. hpel_avg[1][bxy](dst, (ref_data[3]) + (bx>>1) + (by>>1)*(stride), stride, 8);\
  160. }\
  161. }else{\
  162. int fx = s->me.direct_basis_mv[0][0] + hx;\
  163. int fy = s->me.direct_basis_mv[0][1] + hy;\
  164. int bx = hx ? fx - s->me.co_located_mv[0][0] : (s->me.co_located_mv[0][0]*(time_pb - time_pp)/time_pp);\
  165. int by = hy ? fy - s->me.co_located_mv[0][1] : (s->me.co_located_mv[0][1]*(time_pb - time_pp)/time_pp);\
  166. int fxy= (fx&1) + 2*(fy&1);\
  167. int bxy= (bx&1) + 2*(by&1);\
  168. \
  169. assert((fx>>1) + 16*s->mb_x >= -16);\
  170. assert((fy>>1) + 16*s->mb_y >= -16);\
  171. assert((fx>>1) + 16*s->mb_x <= s->width);\
  172. assert((fy>>1) + 16*s->mb_y <= s->height);\
  173. assert((bx>>1) + 16*s->mb_x >= -16);\
  174. assert((by>>1) + 16*s->mb_y >= -16);\
  175. assert((bx>>1) + 16*s->mb_x <= s->width);\
  176. assert((by>>1) + 16*s->mb_y <= s->height);\
  177. \
  178. hpel_put[0][fxy](s->me.scratchpad, (ref_y ) + (fx>>1) + (fy>>1)*(stride), stride, 16);\
  179. hpel_avg[0][bxy](s->me.scratchpad, (ref_data[3]) + (bx>>1) + (by>>1)*(stride), stride, 16);\
  180. }\
  181. d = cmp_func(s, s->me.scratchpad, src_y, stride, 16);\
  182. }else\
  183. d= 256*256*256*32;
  184. #define CMP_HPEL(d, dx, dy, x, y, size)\
  185. CMP_DIRECT(d, dx, dy, x, y, size, cmp_sub)
  186. #define CMP(d, x, y, size)\
  187. CMP_DIRECT(d, 0, 0, x, y, size, cmp)
  188. #include "motion_est_template.c"
  189. #undef RENAME
  190. #undef CMP
  191. #undef CMP_HPEL
  192. #undef CMP_QPEL
  193. #undef INIT
  194. #undef CMP_DIRECT
  195. /* SIMPLE DIRECT QPEL */
  196. #define RENAME(a) simple_direct_qpel_ ## a
  197. #define CMP_DIRECT(d, dx, dy, x, y, size, cmp_func)\
  198. if((x) >= xmin && 4*(x) + (dx) <= 4*xmax && (y) >= ymin && 4*(y) + (dy) <= 4*ymax){\
  199. const int qx= 4*(x) + (dx);\
  200. const int qy= 4*(y) + (dy);\
  201. if(s->mv_type==MV_TYPE_8X8){\
  202. int i;\
  203. for(i=0; i<4; i++){\
  204. int fx = s->me.direct_basis_mv[i][0] + qx;\
  205. int fy = s->me.direct_basis_mv[i][1] + qy;\
  206. int bx = qx ? fx - s->me.co_located_mv[i][0] : s->me.co_located_mv[i][0]*(time_pb - time_pp)/time_pp + (i &1)*16;\
  207. int by = qy ? fy - s->me.co_located_mv[i][1] : s->me.co_located_mv[i][1]*(time_pb - time_pp)/time_pp + (i>>1)*16;\
  208. int fxy= (fx&3) + 4*(fy&3);\
  209. int bxy= (bx&3) + 4*(by&3);\
  210. \
  211. uint8_t *dst= s->me.scratchpad + 8*(i&1) + 8*stride*(i>>1);\
  212. qpel_put[1][fxy](dst, (ref_y ) + (fx>>2) + (fy>>2)*(stride), stride);\
  213. qpel_avg[1][bxy](dst, (ref_data[3]) + (bx>>2) + (by>>2)*(stride), stride);\
  214. }\
  215. }else{\
  216. int fx = s->me.direct_basis_mv[0][0] + qx;\
  217. int fy = s->me.direct_basis_mv[0][1] + qy;\
  218. int bx = qx ? fx - s->me.co_located_mv[0][0] : s->me.co_located_mv[0][0]*(time_pb - time_pp)/time_pp;\
  219. int by = qy ? fy - s->me.co_located_mv[0][1] : s->me.co_located_mv[0][1]*(time_pb - time_pp)/time_pp;\
  220. int fxy= (fx&3) + 4*(fy&3);\
  221. int bxy= (bx&3) + 4*(by&3);\
  222. \
  223. qpel_put[1][fxy](s->me.scratchpad , (ref_y ) + (fx>>2) + (fy>>2)*(stride) , stride);\
  224. qpel_put[1][fxy](s->me.scratchpad + 8 , (ref_y ) + (fx>>2) + (fy>>2)*(stride) + 8 , stride);\
  225. qpel_put[1][fxy](s->me.scratchpad + 8*stride, (ref_y ) + (fx>>2) + (fy>>2)*(stride) + 8*stride, stride);\
  226. qpel_put[1][fxy](s->me.scratchpad + 8 + 8*stride, (ref_y ) + (fx>>2) + (fy>>2)*(stride) + 8 + 8*stride, stride);\
  227. qpel_avg[1][bxy](s->me.scratchpad , (ref_data[3]) + (bx>>2) + (by>>2)*(stride) , stride);\
  228. qpel_avg[1][bxy](s->me.scratchpad + 8 , (ref_data[3]) + (bx>>2) + (by>>2)*(stride) + 8 , stride);\
  229. qpel_avg[1][bxy](s->me.scratchpad + 8*stride, (ref_data[3]) + (bx>>2) + (by>>2)*(stride) + 8*stride, stride);\
  230. qpel_avg[1][bxy](s->me.scratchpad + 8 + 8*stride, (ref_data[3]) + (bx>>2) + (by>>2)*(stride) + 8 + 8*stride, stride);\
  231. }\
  232. d = cmp_func(s, s->me.scratchpad, src_y, stride, 16);\
  233. }else\
  234. d= 256*256*256*32;
  235. #define CMP_QPEL(d, dx, dy, x, y, size)\
  236. CMP_DIRECT(d, dx, dy, x, y, size, cmp_sub)
  237. #define CMP(d, x, y, size)\
  238. CMP_DIRECT(d, 0, 0, x, y, size, cmp)
  239. #include "motion_est_template.c"
  240. #undef RENAME
  241. #undef CMP
  242. #undef CMP_HPEL
  243. #undef CMP_QPEL
  244. #undef INIT
  245. #undef CMP__DIRECT
  246. static inline int get_penalty_factor(MpegEncContext *s, int type){
  247. switch(type&0xFF){
  248. default:
  249. case FF_CMP_SAD:
  250. return s->qscale*2;
  251. case FF_CMP_DCT:
  252. return s->qscale*3;
  253. case FF_CMP_SATD:
  254. return s->qscale*6;
  255. case FF_CMP_SSE:
  256. return s->qscale*s->qscale*2;
  257. case FF_CMP_BIT:
  258. return 1;
  259. case FF_CMP_RD:
  260. case FF_CMP_PSNR:
  261. return (s->qscale*s->qscale*185 + 64)>>7;
  262. }
  263. }
  264. void ff_init_me(MpegEncContext *s){
  265. ff_set_cmp(&s->dsp, s->dsp.me_pre_cmp, s->avctx->me_pre_cmp);
  266. ff_set_cmp(&s->dsp, s->dsp.me_cmp, s->avctx->me_cmp);
  267. ff_set_cmp(&s->dsp, s->dsp.me_sub_cmp, s->avctx->me_sub_cmp);
  268. ff_set_cmp(&s->dsp, s->dsp.mb_cmp, s->avctx->mb_cmp);
  269. if(s->flags&CODEC_FLAG_QPEL){
  270. if(s->avctx->me_sub_cmp&FF_CMP_CHROMA)
  271. s->me.sub_motion_search= simple_chroma_qpel_motion_search;
  272. else
  273. s->me.sub_motion_search= simple_qpel_motion_search;
  274. }else{
  275. if(s->avctx->me_sub_cmp&FF_CMP_CHROMA)
  276. s->me.sub_motion_search= simple_chroma_hpel_motion_search;
  277. else if( s->avctx->me_sub_cmp == FF_CMP_SAD
  278. && s->avctx-> me_cmp == FF_CMP_SAD
  279. && s->avctx-> mb_cmp == FF_CMP_SAD)
  280. s->me.sub_motion_search= sad_hpel_motion_search; // 2050 vs. 2450 cycles
  281. else
  282. s->me.sub_motion_search= simple_hpel_motion_search;
  283. }
  284. if(s->avctx->me_cmp&FF_CMP_CHROMA){
  285. s->me.motion_search[0]= simple_chroma_epzs_motion_search;
  286. s->me.motion_search[1]= simple_chroma_epzs_motion_search4;
  287. s->me.motion_search[4]= simple_chroma_epzs_motion_search2;
  288. }else{
  289. s->me.motion_search[0]= simple_epzs_motion_search;
  290. s->me.motion_search[1]= simple_epzs_motion_search4;
  291. s->me.motion_search[4]= simple_epzs_motion_search2;
  292. }
  293. if(s->avctx->me_pre_cmp&FF_CMP_CHROMA){
  294. s->me.pre_motion_search= simple_chroma_epzs_motion_search;
  295. }else{
  296. s->me.pre_motion_search= simple_epzs_motion_search;
  297. }
  298. if(s->flags&CODEC_FLAG_QPEL){
  299. if(s->avctx->mb_cmp&FF_CMP_CHROMA)
  300. s->me.get_mb_score= simple_chroma_qpel_get_mb_score;
  301. else
  302. s->me.get_mb_score= simple_qpel_get_mb_score;
  303. }else{
  304. if(s->avctx->mb_cmp&FF_CMP_CHROMA)
  305. s->me.get_mb_score= simple_chroma_hpel_get_mb_score;
  306. else
  307. s->me.get_mb_score= simple_hpel_get_mb_score;
  308. }
  309. }
  310. #if 0
  311. static int pix_dev(uint8_t * pix, int line_size, int mean)
  312. {
  313. int s, i, j;
  314. s = 0;
  315. for (i = 0; i < 16; i++) {
  316. for (j = 0; j < 16; j += 8) {
  317. s += ABS(pix[0]-mean);
  318. s += ABS(pix[1]-mean);
  319. s += ABS(pix[2]-mean);
  320. s += ABS(pix[3]-mean);
  321. s += ABS(pix[4]-mean);
  322. s += ABS(pix[5]-mean);
  323. s += ABS(pix[6]-mean);
  324. s += ABS(pix[7]-mean);
  325. pix += 8;
  326. }
  327. pix += line_size - 16;
  328. }
  329. return s;
  330. }
  331. #endif
  332. static inline void no_motion_search(MpegEncContext * s,
  333. int *mx_ptr, int *my_ptr)
  334. {
  335. *mx_ptr = 16 * s->mb_x;
  336. *my_ptr = 16 * s->mb_y;
  337. }
  338. static int full_motion_search(MpegEncContext * s,
  339. int *mx_ptr, int *my_ptr, int range,
  340. int xmin, int ymin, int xmax, int ymax, uint8_t *ref_picture)
  341. {
  342. int x1, y1, x2, y2, xx, yy, x, y;
  343. int mx, my, dmin, d;
  344. uint8_t *pix;
  345. xx = 16 * s->mb_x;
  346. yy = 16 * s->mb_y;
  347. x1 = xx - range + 1; /* we loose one pixel to avoid boundary pb with half pixel pred */
  348. if (x1 < xmin)
  349. x1 = xmin;
  350. x2 = xx + range - 1;
  351. if (x2 > xmax)
  352. x2 = xmax;
  353. y1 = yy - range + 1;
  354. if (y1 < ymin)
  355. y1 = ymin;
  356. y2 = yy + range - 1;
  357. if (y2 > ymax)
  358. y2 = ymax;
  359. pix = s->new_picture.data[0] + (yy * s->linesize) + xx;
  360. dmin = 0x7fffffff;
  361. mx = 0;
  362. my = 0;
  363. for (y = y1; y <= y2; y++) {
  364. for (x = x1; x <= x2; x++) {
  365. d = s->dsp.pix_abs[0][0](NULL, pix, ref_picture + (y * s->linesize) + x,
  366. s->linesize, 16);
  367. if (d < dmin ||
  368. (d == dmin &&
  369. (abs(x - xx) + abs(y - yy)) <
  370. (abs(mx - xx) + abs(my - yy)))) {
  371. dmin = d;
  372. mx = x;
  373. my = y;
  374. }
  375. }
  376. }
  377. *mx_ptr = mx;
  378. *my_ptr = my;
  379. #if 0
  380. if (*mx_ptr < -(2 * range) || *mx_ptr >= (2 * range) ||
  381. *my_ptr < -(2 * range) || *my_ptr >= (2 * range)) {
  382. fprintf(stderr, "error %d %d\n", *mx_ptr, *my_ptr);
  383. }
  384. #endif
  385. return dmin;
  386. }
  387. static int log_motion_search(MpegEncContext * s,
  388. int *mx_ptr, int *my_ptr, int range,
  389. int xmin, int ymin, int xmax, int ymax, uint8_t *ref_picture)
  390. {
  391. int x1, y1, x2, y2, xx, yy, x, y;
  392. int mx, my, dmin, d;
  393. uint8_t *pix;
  394. xx = s->mb_x << 4;
  395. yy = s->mb_y << 4;
  396. /* Left limit */
  397. x1 = xx - range;
  398. if (x1 < xmin)
  399. x1 = xmin;
  400. /* Right limit */
  401. x2 = xx + range;
  402. if (x2 > xmax)
  403. x2 = xmax;
  404. /* Upper limit */
  405. y1 = yy - range;
  406. if (y1 < ymin)
  407. y1 = ymin;
  408. /* Lower limit */
  409. y2 = yy + range;
  410. if (y2 > ymax)
  411. y2 = ymax;
  412. pix = s->new_picture.data[0] + (yy * s->linesize) + xx;
  413. dmin = 0x7fffffff;
  414. mx = 0;
  415. my = 0;
  416. do {
  417. for (y = y1; y <= y2; y += range) {
  418. for (x = x1; x <= x2; x += range) {
  419. d = s->dsp.pix_abs[0][0](NULL, pix, ref_picture + (y * s->linesize) + x, s->linesize, 16);
  420. if (d < dmin || (d == dmin && (abs(x - xx) + abs(y - yy)) < (abs(mx - xx) + abs(my - yy)))) {
  421. dmin = d;
  422. mx = x;
  423. my = y;
  424. }
  425. }
  426. }
  427. range = range >> 1;
  428. x1 = mx - range;
  429. if (x1 < xmin)
  430. x1 = xmin;
  431. x2 = mx + range;
  432. if (x2 > xmax)
  433. x2 = xmax;
  434. y1 = my - range;
  435. if (y1 < ymin)
  436. y1 = ymin;
  437. y2 = my + range;
  438. if (y2 > ymax)
  439. y2 = ymax;
  440. } while (range >= 1);
  441. #ifdef DEBUG
  442. fprintf(stderr, "log - MX: %d\tMY: %d\n", mx, my);
  443. #endif
  444. *mx_ptr = mx;
  445. *my_ptr = my;
  446. return dmin;
  447. }
  448. static int phods_motion_search(MpegEncContext * s,
  449. int *mx_ptr, int *my_ptr, int range,
  450. int xmin, int ymin, int xmax, int ymax, uint8_t *ref_picture)
  451. {
  452. int x1, y1, x2, y2, xx, yy, x, y, lastx, d;
  453. int mx, my, dminx, dminy;
  454. uint8_t *pix;
  455. xx = s->mb_x << 4;
  456. yy = s->mb_y << 4;
  457. /* Left limit */
  458. x1 = xx - range;
  459. if (x1 < xmin)
  460. x1 = xmin;
  461. /* Right limit */
  462. x2 = xx + range;
  463. if (x2 > xmax)
  464. x2 = xmax;
  465. /* Upper limit */
  466. y1 = yy - range;
  467. if (y1 < ymin)
  468. y1 = ymin;
  469. /* Lower limit */
  470. y2 = yy + range;
  471. if (y2 > ymax)
  472. y2 = ymax;
  473. pix = s->new_picture.data[0] + (yy * s->linesize) + xx;
  474. mx = 0;
  475. my = 0;
  476. x = xx;
  477. y = yy;
  478. do {
  479. dminx = 0x7fffffff;
  480. dminy = 0x7fffffff;
  481. lastx = x;
  482. for (x = x1; x <= x2; x += range) {
  483. d = s->dsp.pix_abs[0][0](NULL, pix, ref_picture + (y * s->linesize) + x, s->linesize, 16);
  484. if (d < dminx || (d == dminx && (abs(x - xx) + abs(y - yy)) < (abs(mx - xx) + abs(my - yy)))) {
  485. dminx = d;
  486. mx = x;
  487. }
  488. }
  489. x = lastx;
  490. for (y = y1; y <= y2; y += range) {
  491. d = s->dsp.pix_abs[0][0](NULL, pix, ref_picture + (y * s->linesize) + x, s->linesize, 16);
  492. if (d < dminy || (d == dminy && (abs(x - xx) + abs(y - yy)) < (abs(mx - xx) + abs(my - yy)))) {
  493. dminy = d;
  494. my = y;
  495. }
  496. }
  497. range = range >> 1;
  498. x = mx;
  499. y = my;
  500. x1 = mx - range;
  501. if (x1 < xmin)
  502. x1 = xmin;
  503. x2 = mx + range;
  504. if (x2 > xmax)
  505. x2 = xmax;
  506. y1 = my - range;
  507. if (y1 < ymin)
  508. y1 = ymin;
  509. y2 = my + range;
  510. if (y2 > ymax)
  511. y2 = ymax;
  512. } while (range >= 1);
  513. #ifdef DEBUG
  514. fprintf(stderr, "phods - MX: %d\tMY: %d\n", mx, my);
  515. #endif
  516. /* half pixel search */
  517. *mx_ptr = mx;
  518. *my_ptr = my;
  519. return dminy;
  520. }
  521. #define Z_THRESHOLD 256
  522. #define CHECK_SAD_HALF_MV(suffix, x, y) \
  523. {\
  524. d= s->dsp.pix_abs[size][(x?1:0)+(y?2:0)](NULL, pix, ptr+((x)>>1), stride, h);\
  525. d += (mv_penalty[pen_x + x] + mv_penalty[pen_y + y])*penalty_factor;\
  526. COPY3_IF_LT(dminh, d, dx, x, dy, y)\
  527. }
  528. static inline int sad_hpel_motion_search(MpegEncContext * s,
  529. int *mx_ptr, int *my_ptr, int dmin,
  530. int pred_x, int pred_y, uint8_t *src_data[3],
  531. uint8_t *ref_data[6], int stride, int uvstride,
  532. int size, int h, uint8_t * const mv_penalty)
  533. {
  534. uint32_t *score_map= s->me.score_map;
  535. const int penalty_factor= s->me.sub_penalty_factor;
  536. int mx, my, dminh;
  537. uint8_t *pix, *ptr;
  538. const int xmin= s->me.xmin;
  539. const int ymin= s->me.ymin;
  540. const int xmax= s->me.xmax;
  541. const int ymax= s->me.ymax;
  542. if(s->me.skip){
  543. // printf("S");
  544. *mx_ptr = 0;
  545. *my_ptr = 0;
  546. return dmin;
  547. }
  548. // printf("N");
  549. pix = src_data[0];
  550. mx = *mx_ptr;
  551. my = *my_ptr;
  552. ptr = ref_data[0] + (my * stride) + mx;
  553. dminh = dmin;
  554. if (mx > xmin && mx < xmax &&
  555. my > ymin && my < ymax) {
  556. int dx=0, dy=0;
  557. int d, pen_x, pen_y;
  558. const int index= (my<<ME_MAP_SHIFT) + mx;
  559. const int t= score_map[(index-(1<<ME_MAP_SHIFT))&(ME_MAP_SIZE-1)];
  560. const int l= score_map[(index- 1 )&(ME_MAP_SIZE-1)];
  561. const int r= score_map[(index+ 1 )&(ME_MAP_SIZE-1)];
  562. const int b= score_map[(index+(1<<ME_MAP_SHIFT))&(ME_MAP_SIZE-1)];
  563. mx<<=1;
  564. my<<=1;
  565. pen_x= pred_x + mx;
  566. pen_y= pred_y + my;
  567. ptr-= stride;
  568. if(t<=b){
  569. CHECK_SAD_HALF_MV(y2 , 0, -1)
  570. if(l<=r){
  571. CHECK_SAD_HALF_MV(xy2, -1, -1)
  572. if(t+r<=b+l){
  573. CHECK_SAD_HALF_MV(xy2, +1, -1)
  574. ptr+= stride;
  575. }else{
  576. ptr+= stride;
  577. CHECK_SAD_HALF_MV(xy2, -1, +1)
  578. }
  579. CHECK_SAD_HALF_MV(x2 , -1, 0)
  580. }else{
  581. CHECK_SAD_HALF_MV(xy2, +1, -1)
  582. if(t+l<=b+r){
  583. CHECK_SAD_HALF_MV(xy2, -1, -1)
  584. ptr+= stride;
  585. }else{
  586. ptr+= stride;
  587. CHECK_SAD_HALF_MV(xy2, +1, +1)
  588. }
  589. CHECK_SAD_HALF_MV(x2 , +1, 0)
  590. }
  591. }else{
  592. if(l<=r){
  593. if(t+l<=b+r){
  594. CHECK_SAD_HALF_MV(xy2, -1, -1)
  595. ptr+= stride;
  596. }else{
  597. ptr+= stride;
  598. CHECK_SAD_HALF_MV(xy2, +1, +1)
  599. }
  600. CHECK_SAD_HALF_MV(x2 , -1, 0)
  601. CHECK_SAD_HALF_MV(xy2, -1, +1)
  602. }else{
  603. if(t+r<=b+l){
  604. CHECK_SAD_HALF_MV(xy2, +1, -1)
  605. ptr+= stride;
  606. }else{
  607. ptr+= stride;
  608. CHECK_SAD_HALF_MV(xy2, -1, +1)
  609. }
  610. CHECK_SAD_HALF_MV(x2 , +1, 0)
  611. CHECK_SAD_HALF_MV(xy2, +1, +1)
  612. }
  613. CHECK_SAD_HALF_MV(y2 , 0, +1)
  614. }
  615. mx+=dx;
  616. my+=dy;
  617. }else{
  618. mx<<=1;
  619. my<<=1;
  620. }
  621. *mx_ptr = mx;
  622. *my_ptr = my;
  623. return dminh;
  624. }
  625. static inline void set_p_mv_tables(MpegEncContext * s, int mx, int my, int mv4)
  626. {
  627. const int xy= s->mb_x + s->mb_y*s->mb_stride;
  628. s->p_mv_table[xy][0] = mx;
  629. s->p_mv_table[xy][1] = my;
  630. /* has allready been set to the 4 MV if 4MV is done */
  631. if(mv4){
  632. int mot_xy= s->block_index[0];
  633. s->current_picture.motion_val[0][mot_xy ][0]= mx;
  634. s->current_picture.motion_val[0][mot_xy ][1]= my;
  635. s->current_picture.motion_val[0][mot_xy+1][0]= mx;
  636. s->current_picture.motion_val[0][mot_xy+1][1]= my;
  637. mot_xy += s->block_wrap[0];
  638. s->current_picture.motion_val[0][mot_xy ][0]= mx;
  639. s->current_picture.motion_val[0][mot_xy ][1]= my;
  640. s->current_picture.motion_val[0][mot_xy+1][0]= mx;
  641. s->current_picture.motion_val[0][mot_xy+1][1]= my;
  642. }
  643. }
  644. /**
  645. * get fullpel ME search limits.
  646. */
  647. static inline void get_limits(MpegEncContext *s, int x, int y)
  648. {
  649. /*
  650. if(s->avctx->me_range) s->me.range= s->avctx->me_range >> 1;
  651. else s->me.range= 16;
  652. */
  653. if (s->unrestricted_mv) {
  654. s->me.xmin = - x - 16;
  655. s->me.ymin = - y - 16;
  656. s->me.xmax = - x + s->mb_width *16;
  657. s->me.ymax = - y + s->mb_height*16;
  658. } else {
  659. s->me.xmin = - x;
  660. s->me.ymin = - y;
  661. s->me.xmax = - x + s->mb_width *16 - 16;
  662. s->me.ymax = - y + s->mb_height*16 - 16;
  663. }
  664. }
  665. static inline int h263_mv4_search(MpegEncContext *s, int mx, int my, int shift)
  666. {
  667. const int size= 1;
  668. const int h=8;
  669. int block;
  670. int P[10][2];
  671. int dmin_sum=0, mx4_sum=0, my4_sum=0;
  672. uint8_t * const mv_penalty= s->me.mv_penalty[s->f_code] + MAX_MV;
  673. int same=1;
  674. const int stride= s->linesize;
  675. const int uvstride= s->uvlinesize;
  676. for(block=0; block<4; block++){
  677. int mx4, my4;
  678. int pred_x4, pred_y4;
  679. int dmin4;
  680. static const int off[4]= {2, 1, 1, -1};
  681. const int mot_stride = s->block_wrap[0];
  682. const int mot_xy = s->block_index[block];
  683. const int block_x= (block&1);
  684. const int block_y= (block>>1);
  685. uint8_t *src_data[3]= {
  686. s->new_picture.data[0] + 8*(2*s->mb_x + block_x) + stride *8*(2*s->mb_y + block_y), //FIXME chroma?
  687. s->new_picture.data[1] + 4*(2*s->mb_x + block_x) + uvstride*4*(2*s->mb_y + block_y),
  688. s->new_picture.data[2] + 4*(2*s->mb_x + block_x) + uvstride*4*(2*s->mb_y + block_y)
  689. };
  690. uint8_t *ref_data[3]= {
  691. s->last_picture.data[0] + 8*(2*s->mb_x + block_x) + stride *8*(2*s->mb_y + block_y), //FIXME chroma?
  692. s->last_picture.data[1] + 4*(2*s->mb_x + block_x) + uvstride*4*(2*s->mb_y + block_y),
  693. s->last_picture.data[2] + 4*(2*s->mb_x + block_x) + uvstride*4*(2*s->mb_y + block_y)
  694. };
  695. P_LEFT[0] = s->current_picture.motion_val[0][mot_xy - 1][0];
  696. P_LEFT[1] = s->current_picture.motion_val[0][mot_xy - 1][1];
  697. if(P_LEFT[0] > (s->me.xmax<<shift)) P_LEFT[0] = (s->me.xmax<<shift);
  698. /* special case for first line */
  699. if (s->first_slice_line && block<2) {
  700. pred_x4= P_LEFT[0];
  701. pred_y4= P_LEFT[1];
  702. } else {
  703. P_TOP[0] = s->current_picture.motion_val[0][mot_xy - mot_stride ][0];
  704. P_TOP[1] = s->current_picture.motion_val[0][mot_xy - mot_stride ][1];
  705. P_TOPRIGHT[0] = s->current_picture.motion_val[0][mot_xy - mot_stride + off[block]][0];
  706. P_TOPRIGHT[1] = s->current_picture.motion_val[0][mot_xy - mot_stride + off[block]][1];
  707. if(P_TOP[1] > (s->me.ymax<<shift)) P_TOP[1] = (s->me.ymax<<shift);
  708. if(P_TOPRIGHT[0] < (s->me.xmin<<shift)) P_TOPRIGHT[0]= (s->me.xmin<<shift);
  709. if(P_TOPRIGHT[0] > (s->me.xmax<<shift)) P_TOPRIGHT[0]= (s->me.xmax<<shift);
  710. if(P_TOPRIGHT[1] > (s->me.ymax<<shift)) P_TOPRIGHT[1]= (s->me.ymax<<shift);
  711. P_MEDIAN[0]= mid_pred(P_LEFT[0], P_TOP[0], P_TOPRIGHT[0]);
  712. P_MEDIAN[1]= mid_pred(P_LEFT[1], P_TOP[1], P_TOPRIGHT[1]);
  713. // if(s->out_format == FMT_H263){
  714. pred_x4 = P_MEDIAN[0];
  715. pred_y4 = P_MEDIAN[1];
  716. #if 0
  717. }else { /* mpeg1 at least */
  718. pred_x4= P_LEFT[0];
  719. pred_y4= P_LEFT[1];
  720. }
  721. #endif
  722. }
  723. P_MV1[0]= mx;
  724. P_MV1[1]= my;
  725. dmin4 = s->me.motion_search[1](s, &mx4, &my4, P, pred_x4, pred_y4,
  726. src_data, ref_data, stride, uvstride, s->p_mv_table, (1<<16)>>shift, mv_penalty);
  727. dmin4= s->me.sub_motion_search(s, &mx4, &my4, dmin4,
  728. pred_x4, pred_y4, src_data, ref_data, stride, uvstride, size, h, mv_penalty);
  729. if(s->dsp.me_sub_cmp[0] != s->dsp.mb_cmp[0]
  730. && s->avctx->mb_decision == FF_MB_DECISION_SIMPLE){
  731. int dxy;
  732. const int offset= ((block&1) + (block>>1)*stride)*8;
  733. uint8_t *dest_y = s->me.scratchpad + offset;
  734. if(s->quarter_sample){
  735. uint8_t *ref= ref_data[0] + (mx4>>2) + (my4>>2)*stride;
  736. dxy = ((my4 & 3) << 2) | (mx4 & 3);
  737. if(s->no_rounding)
  738. s->dsp.put_no_rnd_qpel_pixels_tab[1][dxy](dest_y , ref , stride);
  739. else
  740. s->dsp.put_qpel_pixels_tab [1][dxy](dest_y , ref , stride);
  741. }else{
  742. uint8_t *ref= ref_data[0] + (mx4>>1) + (my4>>1)*stride;
  743. dxy = ((my4 & 1) << 1) | (mx4 & 1);
  744. if(s->no_rounding)
  745. s->dsp.put_no_rnd_pixels_tab[1][dxy](dest_y , ref , stride, h);
  746. else
  747. s->dsp.put_pixels_tab [1][dxy](dest_y , ref , stride, h);
  748. }
  749. dmin_sum+= (mv_penalty[mx4-pred_x4] + mv_penalty[my4-pred_y4])*s->me.mb_penalty_factor;
  750. }else
  751. dmin_sum+= dmin4;
  752. if(s->quarter_sample){
  753. mx4_sum+= mx4/2;
  754. my4_sum+= my4/2;
  755. }else{
  756. mx4_sum+= mx4;
  757. my4_sum+= my4;
  758. }
  759. s->current_picture.motion_val[0][ s->block_index[block] ][0]= mx4;
  760. s->current_picture.motion_val[0][ s->block_index[block] ][1]= my4;
  761. if(mx4 != mx || my4 != my) same=0;
  762. }
  763. if(same)
  764. return INT_MAX;
  765. if(s->dsp.me_sub_cmp[0] != s->dsp.mb_cmp[0]){
  766. dmin_sum += s->dsp.mb_cmp[0](s, s->new_picture.data[0] + s->mb_x*16 + s->mb_y*16*stride, s->me.scratchpad, stride, 16);
  767. }
  768. if(s->avctx->mb_cmp&FF_CMP_CHROMA){
  769. int dxy;
  770. int mx, my;
  771. int offset;
  772. mx= ff_h263_round_chroma(mx4_sum);
  773. my= ff_h263_round_chroma(my4_sum);
  774. dxy = ((my & 1) << 1) | (mx & 1);
  775. offset= (s->mb_x*8 + (mx>>1)) + (s->mb_y*8 + (my>>1))*s->uvlinesize;
  776. if(s->no_rounding){
  777. s->dsp.put_no_rnd_pixels_tab[1][dxy](s->me.scratchpad , s->last_picture.data[1] + offset, s->uvlinesize, 8);
  778. s->dsp.put_no_rnd_pixels_tab[1][dxy](s->me.scratchpad+8 , s->last_picture.data[2] + offset, s->uvlinesize, 8);
  779. }else{
  780. s->dsp.put_pixels_tab [1][dxy](s->me.scratchpad , s->last_picture.data[1] + offset, s->uvlinesize, 8);
  781. s->dsp.put_pixels_tab [1][dxy](s->me.scratchpad+8 , s->last_picture.data[2] + offset, s->uvlinesize, 8);
  782. }
  783. dmin_sum += s->dsp.mb_cmp[1](s, s->new_picture.data[1] + s->mb_x*8 + s->mb_y*8*s->uvlinesize, s->me.scratchpad , s->uvlinesize, 8);
  784. dmin_sum += s->dsp.mb_cmp[1](s, s->new_picture.data[2] + s->mb_x*8 + s->mb_y*8*s->uvlinesize, s->me.scratchpad+8, s->uvlinesize, 8);
  785. }
  786. switch(s->avctx->mb_cmp&0xFF){
  787. /*case FF_CMP_SSE:
  788. return dmin_sum+ 32*s->qscale*s->qscale;*/
  789. case FF_CMP_RD:
  790. return dmin_sum;
  791. default:
  792. return dmin_sum+ 11*s->me.mb_penalty_factor;
  793. }
  794. }
  795. static int interlaced_search(MpegEncContext *s, uint8_t *frame_src_data[3], uint8_t *frame_ref_data[3],
  796. int16_t (*mv_tables[2][2])[2], uint8_t *field_select_tables[2], int f_code, int mx, int my)
  797. {
  798. const int size=0;
  799. const int h=8;
  800. int block;
  801. int P[10][2];
  802. uint8_t * const mv_penalty= s->me.mv_penalty[f_code] + MAX_MV;
  803. int same=1;
  804. const int stride= 2*s->linesize;
  805. const int uvstride= 2*s->uvlinesize;
  806. int dmin_sum= 0;
  807. const int mot_stride= s->mb_stride;
  808. const int xy= s->mb_x + s->mb_y*mot_stride;
  809. s->me.ymin>>=1;
  810. s->me.ymax>>=1;
  811. for(block=0; block<2; block++){
  812. int field_select;
  813. int best_dmin= INT_MAX;
  814. int best_field= -1;
  815. uint8_t *src_data[3]= {
  816. frame_src_data[0] + s-> linesize*block,
  817. frame_src_data[1] + s->uvlinesize*block,
  818. frame_src_data[2] + s->uvlinesize*block
  819. };
  820. for(field_select=0; field_select<2; field_select++){
  821. int dmin, mx_i, my_i, pred_x, pred_y;
  822. uint8_t *ref_data[3]= {
  823. frame_ref_data[0] + s-> linesize*field_select,
  824. frame_ref_data[1] + s->uvlinesize*field_select,
  825. frame_ref_data[2] + s->uvlinesize*field_select
  826. };
  827. int16_t (*mv_table)[2]= mv_tables[block][field_select];
  828. P_LEFT[0] = mv_table[xy - 1][0];
  829. P_LEFT[1] = mv_table[xy - 1][1];
  830. if(P_LEFT[0] > (s->me.xmax<<1)) P_LEFT[0] = (s->me.xmax<<1);
  831. pred_x= P_LEFT[0];
  832. pred_y= P_LEFT[1];
  833. if(!s->first_slice_line){
  834. P_TOP[0] = mv_table[xy - mot_stride][0];
  835. P_TOP[1] = mv_table[xy - mot_stride][1];
  836. P_TOPRIGHT[0] = mv_table[xy - mot_stride + 1][0];
  837. P_TOPRIGHT[1] = mv_table[xy - mot_stride + 1][1];
  838. if(P_TOP[1] > (s->me.ymax<<1)) P_TOP[1] = (s->me.ymax<<1);
  839. if(P_TOPRIGHT[0] < (s->me.xmin<<1)) P_TOPRIGHT[0]= (s->me.xmin<<1);
  840. if(P_TOPRIGHT[0] > (s->me.xmax<<1)) P_TOPRIGHT[0]= (s->me.xmax<<1);
  841. if(P_TOPRIGHT[1] > (s->me.ymax<<1)) P_TOPRIGHT[1]= (s->me.ymax<<1);
  842. P_MEDIAN[0]= mid_pred(P_LEFT[0], P_TOP[0], P_TOPRIGHT[0]);
  843. P_MEDIAN[1]= mid_pred(P_LEFT[1], P_TOP[1], P_TOPRIGHT[1]);
  844. }
  845. P_MV1[0]= mx; //FIXME not correct if block != field_select
  846. P_MV1[1]= my / 2;
  847. dmin = s->me.motion_search[4](s, &mx_i, &my_i, P, pred_x, pred_y,
  848. src_data, ref_data, stride, uvstride, mv_table, (1<<16)>>1, mv_penalty);
  849. dmin= s->me.sub_motion_search(s, &mx_i, &my_i, dmin,
  850. pred_x, pred_y, src_data, ref_data, stride, uvstride, size, h, mv_penalty);
  851. mv_table[xy][0]= mx_i;
  852. mv_table[xy][1]= my_i;
  853. if(s->dsp.me_sub_cmp[0] != s->dsp.mb_cmp[0]
  854. && s->avctx->mb_decision == FF_MB_DECISION_SIMPLE){
  855. int dxy;
  856. //FIXME chroma ME
  857. uint8_t *ref= ref_data[0] + (mx_i>>1) + (my_i>>1)*stride;
  858. dxy = ((my_i & 1) << 1) | (mx_i & 1);
  859. if(s->no_rounding){
  860. s->dsp.put_no_rnd_pixels_tab[size][dxy](s->me.scratchpad, ref , stride, h);
  861. }else{
  862. s->dsp.put_pixels_tab [size][dxy](s->me.scratchpad, ref , stride, h);
  863. }
  864. dmin= s->dsp.mb_cmp[size](s, src_data[0], s->me.scratchpad, stride, h);
  865. dmin+= (mv_penalty[mx_i-pred_x] + mv_penalty[my_i-pred_y] + 1)*s->me.mb_penalty_factor;
  866. }else
  867. dmin+= s->me.mb_penalty_factor; //field_select bits
  868. dmin += field_select != block; //slightly prefer same field
  869. if(dmin < best_dmin){
  870. best_dmin= dmin;
  871. best_field= field_select;
  872. }
  873. }
  874. {
  875. int16_t (*mv_table)[2]= mv_tables[block][best_field];
  876. if(mv_table[xy][0] != mx) same=0; //FIXME check if these checks work and are any good at all
  877. if(mv_table[xy][1]&1) same=0;
  878. if(mv_table[xy][1]*2 != my) same=0;
  879. if(best_field != block) same=0;
  880. }
  881. field_select_tables[block][xy]= best_field;
  882. dmin_sum += best_dmin;
  883. }
  884. s->me.ymin<<=1;
  885. s->me.ymax<<=1;
  886. if(same)
  887. return INT_MAX;
  888. switch(s->avctx->mb_cmp&0xFF){
  889. /*case FF_CMP_SSE:
  890. return dmin_sum+ 32*s->qscale*s->qscale;*/
  891. case FF_CMP_RD:
  892. return dmin_sum;
  893. default:
  894. return dmin_sum+ 11*s->me.mb_penalty_factor;
  895. }
  896. }
  897. void ff_estimate_p_frame_motion(MpegEncContext * s,
  898. int mb_x, int mb_y)
  899. {
  900. uint8_t *pix, *ppix;
  901. int sum, varc, vard, mx, my, dmin, xx, yy;
  902. int pred_x=0, pred_y=0;
  903. int P[10][2];
  904. const int shift= 1+s->quarter_sample;
  905. int mb_type=0;
  906. uint8_t *ref_picture= s->last_picture.data[0];
  907. Picture * const pic= &s->current_picture;
  908. uint8_t * const mv_penalty= s->me.mv_penalty[s->f_code] + MAX_MV;
  909. const int stride= s->linesize;
  910. const int uvstride= s->uvlinesize;
  911. uint8_t *src_data[3]= {
  912. s->new_picture.data[0] + 16*(mb_x + stride*mb_y),
  913. s->new_picture.data[1] + 8*(mb_x + uvstride*mb_y),
  914. s->new_picture.data[2] + 8*(mb_x + uvstride*mb_y)
  915. };
  916. uint8_t *ref_data[3]= {
  917. s->last_picture.data[0] + 16*(mb_x + stride*mb_y),
  918. s->last_picture.data[1] + 8*(mb_x + uvstride*mb_y),
  919. s->last_picture.data[2] + 8*(mb_x + uvstride*mb_y)
  920. };
  921. assert(s->quarter_sample==0 || s->quarter_sample==1);
  922. s->me.penalty_factor = get_penalty_factor(s, s->avctx->me_cmp);
  923. s->me.sub_penalty_factor= get_penalty_factor(s, s->avctx->me_sub_cmp);
  924. s->me.mb_penalty_factor = get_penalty_factor(s, s->avctx->mb_cmp);
  925. get_limits(s, 16*mb_x, 16*mb_y);
  926. s->me.skip=0;
  927. switch(s->me_method) {
  928. case ME_ZERO:
  929. default:
  930. no_motion_search(s, &mx, &my);
  931. mx-= mb_x*16;
  932. my-= mb_y*16;
  933. dmin = 0;
  934. break;
  935. #if 0
  936. case ME_FULL:
  937. dmin = full_motion_search(s, &mx, &my, range, ref_picture);
  938. mx-= mb_x*16;
  939. my-= mb_y*16;
  940. break;
  941. case ME_LOG:
  942. dmin = log_motion_search(s, &mx, &my, range / 2, ref_picture);
  943. mx-= mb_x*16;
  944. my-= mb_y*16;
  945. break;
  946. case ME_PHODS:
  947. dmin = phods_motion_search(s, &mx, &my, range / 2, ref_picture);
  948. mx-= mb_x*16;
  949. my-= mb_y*16;
  950. break;
  951. #endif
  952. case ME_X1:
  953. case ME_EPZS:
  954. {
  955. const int mot_stride = s->block_wrap[0];
  956. const int mot_xy = s->block_index[0];
  957. P_LEFT[0] = s->current_picture.motion_val[0][mot_xy - 1][0];
  958. P_LEFT[1] = s->current_picture.motion_val[0][mot_xy - 1][1];
  959. if(P_LEFT[0] > (s->me.xmax<<shift)) P_LEFT[0] = (s->me.xmax<<shift);
  960. if(!s->first_slice_line) {
  961. P_TOP[0] = s->current_picture.motion_val[0][mot_xy - mot_stride ][0];
  962. P_TOP[1] = s->current_picture.motion_val[0][mot_xy - mot_stride ][1];
  963. P_TOPRIGHT[0] = s->current_picture.motion_val[0][mot_xy - mot_stride + 2][0];
  964. P_TOPRIGHT[1] = s->current_picture.motion_val[0][mot_xy - mot_stride + 2][1];
  965. if(P_TOP[1] > (s->me.ymax<<shift)) P_TOP[1] = (s->me.ymax<<shift);
  966. if(P_TOPRIGHT[0] < (s->me.xmin<<shift)) P_TOPRIGHT[0]= (s->me.xmin<<shift);
  967. if(P_TOPRIGHT[1] > (s->me.ymax<<shift)) P_TOPRIGHT[1]= (s->me.ymax<<shift);
  968. P_MEDIAN[0]= mid_pred(P_LEFT[0], P_TOP[0], P_TOPRIGHT[0]);
  969. P_MEDIAN[1]= mid_pred(P_LEFT[1], P_TOP[1], P_TOPRIGHT[1]);
  970. if(s->out_format == FMT_H263){
  971. pred_x = P_MEDIAN[0];
  972. pred_y = P_MEDIAN[1];
  973. }else { /* mpeg1 at least */
  974. pred_x= P_LEFT[0];
  975. pred_y= P_LEFT[1];
  976. }
  977. }else{
  978. pred_x= P_LEFT[0];
  979. pred_y= P_LEFT[1];
  980. }
  981. }
  982. dmin = s->me.motion_search[0](s, &mx, &my, P, pred_x, pred_y,
  983. src_data, ref_data, stride, uvstride, s->p_mv_table, (1<<16)>>shift, mv_penalty);
  984. break;
  985. }
  986. /* intra / predictive decision */
  987. xx = mb_x * 16;
  988. yy = mb_y * 16;
  989. pix = src_data[0];
  990. /* At this point (mx,my) are full-pell and the relative displacement */
  991. ppix = ref_data[0] + (my * s->linesize) + mx;
  992. sum = s->dsp.pix_sum(pix, s->linesize);
  993. varc = (s->dsp.pix_norm1(pix, s->linesize) - (((unsigned)(sum*sum))>>8) + 500 + 128)>>8;
  994. vard = (s->dsp.sse[0](NULL, pix, ppix, s->linesize, 16)+128)>>8;
  995. //printf("%d %d %d %X %X %X\n", s->mb_width, mb_x, mb_y,(int)s, (int)s->mb_var, (int)s->mc_mb_var); fflush(stdout);
  996. pic->mb_var [s->mb_stride * mb_y + mb_x] = varc;
  997. pic->mc_mb_var[s->mb_stride * mb_y + mb_x] = vard;
  998. pic->mb_mean [s->mb_stride * mb_y + mb_x] = (sum+128)>>8;
  999. // pic->mb_cmp_score[s->mb_stride * mb_y + mb_x] = dmin;
  1000. s->mb_var_sum_temp += varc;
  1001. s->mc_mb_var_sum_temp += vard;
  1002. //printf("E%d %d %d %X %X %X\n", s->mb_width, mb_x, mb_y,(int)s, (int)s->mb_var, (int)s->mc_mb_var); fflush(stdout);
  1003. #if 0
  1004. printf("varc=%4d avg_var=%4d (sum=%4d) vard=%4d mx=%2d my=%2d\n",
  1005. varc, s->avg_mb_var, sum, vard, mx - xx, my - yy);
  1006. #endif
  1007. if(s->avctx->mb_decision > FF_MB_DECISION_SIMPLE){
  1008. if (vard <= 64 || vard < varc)
  1009. s->scene_change_score+= ff_sqrt(vard) - ff_sqrt(varc);
  1010. else
  1011. s->scene_change_score+= s->qscale;
  1012. if (vard*2 + 200 > varc)
  1013. mb_type|= CANDIDATE_MB_TYPE_INTRA;
  1014. if (varc*2 + 200 > vard){
  1015. mb_type|= CANDIDATE_MB_TYPE_INTER;
  1016. s->me.sub_motion_search(s, &mx, &my, dmin,
  1017. pred_x, pred_y, src_data, ref_data, stride, uvstride, 0, 16, mv_penalty);
  1018. if(s->flags&CODEC_FLAG_MV0)
  1019. if(mx || my)
  1020. mb_type |= CANDIDATE_MB_TYPE_SKIPED; //FIXME check difference
  1021. }else{
  1022. mx <<=shift;
  1023. my <<=shift;
  1024. }
  1025. if((s->flags&CODEC_FLAG_4MV)
  1026. && !s->me.skip && varc>50 && vard>10){
  1027. if(h263_mv4_search(s, mx, my, shift) < INT_MAX)
  1028. mb_type|=CANDIDATE_MB_TYPE_INTER4V;
  1029. set_p_mv_tables(s, mx, my, 0);
  1030. }else
  1031. set_p_mv_tables(s, mx, my, 1);
  1032. if((s->flags&CODEC_FLAG_INTERLACED_ME)
  1033. && !s->me.skip){ //FIXME varc/d checks
  1034. if(interlaced_search(s, src_data, ref_data, s->p_field_mv_table, s->p_field_select_table, s->f_code, mx, my) < INT_MAX)
  1035. mb_type |= CANDIDATE_MB_TYPE_INTER_I;
  1036. }
  1037. }else{
  1038. int intra_score, i;
  1039. mb_type= CANDIDATE_MB_TYPE_INTER;
  1040. dmin= s->me.sub_motion_search(s, &mx, &my, dmin,
  1041. pred_x, pred_y, src_data, ref_data, stride, uvstride, 0, 16, mv_penalty);
  1042. if(s->avctx->me_sub_cmp != s->avctx->mb_cmp && !s->me.skip)
  1043. dmin= s->me.get_mb_score(s, mx, my, pred_x, pred_y, src_data, ref_data, stride, uvstride, mv_penalty);
  1044. if((s->flags&CODEC_FLAG_4MV)
  1045. && !s->me.skip && varc>50 && vard>10){
  1046. int dmin4= h263_mv4_search(s, mx, my, shift);
  1047. if(dmin4 < dmin){
  1048. mb_type= CANDIDATE_MB_TYPE_INTER4V;
  1049. dmin=dmin4;
  1050. }
  1051. }
  1052. if((s->flags&CODEC_FLAG_INTERLACED_ME)
  1053. && !s->me.skip){ //FIXME varc/d checks
  1054. int dmin_i= interlaced_search(s, src_data, ref_data, s->p_field_mv_table, s->p_field_select_table, s->f_code, mx, my);
  1055. if(dmin_i < dmin){
  1056. mb_type = CANDIDATE_MB_TYPE_INTER_I;
  1057. dmin= dmin_i;
  1058. }
  1059. }
  1060. // pic->mb_cmp_score[s->mb_stride * mb_y + mb_x] = dmin;
  1061. set_p_mv_tables(s, mx, my, mb_type!=CANDIDATE_MB_TYPE_INTER4V);
  1062. /* get intra luma score */
  1063. if((s->avctx->mb_cmp&0xFF)==FF_CMP_SSE){
  1064. intra_score= (varc<<8) - 500; //FIXME dont scale it down so we dont have to fix it
  1065. }else{
  1066. int mean= (sum+128)>>8;
  1067. mean*= 0x01010101;
  1068. for(i=0; i<16; i++){
  1069. *(uint32_t*)(&s->me.scratchpad[i*s->linesize+ 0]) = mean;
  1070. *(uint32_t*)(&s->me.scratchpad[i*s->linesize+ 4]) = mean;
  1071. *(uint32_t*)(&s->me.scratchpad[i*s->linesize+ 8]) = mean;
  1072. *(uint32_t*)(&s->me.scratchpad[i*s->linesize+12]) = mean;
  1073. }
  1074. intra_score= s->dsp.mb_cmp[0](s, s->me.scratchpad, pix, s->linesize, 16);
  1075. }
  1076. #if 0 //FIXME
  1077. /* get chroma score */
  1078. if(s->avctx->mb_cmp&FF_CMP_CHROMA){
  1079. for(i=1; i<3; i++){
  1080. uint8_t *dest_c;
  1081. int mean;
  1082. if(s->out_format == FMT_H263){
  1083. mean= (s->dc_val[i][mb_x + (mb_y+1)*(s->mb_width+2)] + 4)>>3; //FIXME not exact but simple ;)
  1084. }else{
  1085. mean= (s->last_dc[i] + 4)>>3;
  1086. }
  1087. dest_c = s->new_picture.data[i] + (mb_y * 8 * (s->uvlinesize)) + mb_x * 8;
  1088. mean*= 0x01010101;
  1089. for(i=0; i<8; i++){
  1090. *(uint32_t*)(&s->me.scratchpad[i*s->uvlinesize+ 0]) = mean;
  1091. *(uint32_t*)(&s->me.scratchpad[i*s->uvlinesize+ 4]) = mean;
  1092. }
  1093. intra_score+= s->dsp.mb_cmp[1](s, s->me.scratchpad, dest_c, s->uvlinesize);
  1094. }
  1095. }
  1096. #endif
  1097. intra_score += s->me.mb_penalty_factor*16;
  1098. if(intra_score < dmin){
  1099. mb_type= CANDIDATE_MB_TYPE_INTRA;
  1100. s->current_picture.mb_type[mb_y*s->mb_stride + mb_x]= CANDIDATE_MB_TYPE_INTRA; //FIXME cleanup
  1101. }else
  1102. s->current_picture.mb_type[mb_y*s->mb_stride + mb_x]= 0;
  1103. if (vard <= 64 || vard < varc) { //FIXME
  1104. s->scene_change_score+= ff_sqrt(vard) - ff_sqrt(varc);
  1105. }else{
  1106. s->scene_change_score+= s->qscale;
  1107. }
  1108. }
  1109. s->mb_type[mb_y*s->mb_stride + mb_x]= mb_type;
  1110. }
  1111. int ff_pre_estimate_p_frame_motion(MpegEncContext * s,
  1112. int mb_x, int mb_y)
  1113. {
  1114. int mx, my, dmin;
  1115. int pred_x=0, pred_y=0;
  1116. int P[10][2];
  1117. const int shift= 1+s->quarter_sample;
  1118. uint8_t * const mv_penalty= s->me.mv_penalty[s->f_code] + MAX_MV;
  1119. const int xy= mb_x + mb_y*s->mb_stride;
  1120. const int stride= s->linesize;
  1121. const int uvstride= s->uvlinesize;
  1122. uint8_t *src_data[3]= {
  1123. s->new_picture.data[0] + 16*(mb_x + stride*mb_y),
  1124. s->new_picture.data[1] + 8*(mb_x + uvstride*mb_y),
  1125. s->new_picture.data[2] + 8*(mb_x + uvstride*mb_y)
  1126. };
  1127. uint8_t *ref_data[3]= {
  1128. s->last_picture.data[0] + 16*(mb_x + stride*mb_y),
  1129. s->last_picture.data[1] + 8*(mb_x + uvstride*mb_y),
  1130. s->last_picture.data[2] + 8*(mb_x + uvstride*mb_y)
  1131. };
  1132. assert(s->quarter_sample==0 || s->quarter_sample==1);
  1133. s->me.pre_penalty_factor = get_penalty_factor(s, s->avctx->me_pre_cmp);
  1134. get_limits(s, 16*mb_x, 16*mb_y);
  1135. s->me.skip=0;
  1136. P_LEFT[0] = s->p_mv_table[xy + 1][0];
  1137. P_LEFT[1] = s->p_mv_table[xy + 1][1];
  1138. if(P_LEFT[0] < (s->me.xmin<<shift)) P_LEFT[0] = (s->me.xmin<<shift);
  1139. /* special case for first line */
  1140. if (s->first_slice_line) {
  1141. pred_x= P_LEFT[0];
  1142. pred_y= P_LEFT[1];
  1143. P_TOP[0]= P_TOPRIGHT[0]= P_MEDIAN[0]=
  1144. P_TOP[1]= P_TOPRIGHT[1]= P_MEDIAN[1]= 0; //FIXME
  1145. } else {
  1146. P_TOP[0] = s->p_mv_table[xy + s->mb_stride ][0];
  1147. P_TOP[1] = s->p_mv_table[xy + s->mb_stride ][1];
  1148. P_TOPRIGHT[0] = s->p_mv_table[xy + s->mb_stride - 1][0];
  1149. P_TOPRIGHT[1] = s->p_mv_table[xy + s->mb_stride - 1][1];
  1150. if(P_TOP[1] < (s->me.ymin<<shift)) P_TOP[1] = (s->me.ymin<<shift);
  1151. if(P_TOPRIGHT[0] > (s->me.xmax<<shift)) P_TOPRIGHT[0]= (s->me.xmax<<shift);
  1152. if(P_TOPRIGHT[1] < (s->me.ymin<<shift)) P_TOPRIGHT[1]= (s->me.ymin<<shift);
  1153. P_MEDIAN[0]= mid_pred(P_LEFT[0], P_TOP[0], P_TOPRIGHT[0]);
  1154. P_MEDIAN[1]= mid_pred(P_LEFT[1], P_TOP[1], P_TOPRIGHT[1]);
  1155. pred_x = P_MEDIAN[0];
  1156. pred_y = P_MEDIAN[1];
  1157. }
  1158. dmin = s->me.pre_motion_search(s, &mx, &my, P, pred_x, pred_y,
  1159. src_data, ref_data, stride, uvstride, s->p_mv_table, (1<<16)>>shift, mv_penalty);
  1160. s->p_mv_table[xy][0] = mx<<shift;
  1161. s->p_mv_table[xy][1] = my<<shift;
  1162. return dmin;
  1163. }
  1164. static int ff_estimate_motion_b(MpegEncContext * s,
  1165. int mb_x, int mb_y, int16_t (*mv_table)[2], uint8_t *src_data[3],
  1166. uint8_t *ref_data[3], int stride, int uvstride, int f_code)
  1167. {
  1168. int mx, my, dmin;
  1169. int pred_x=0, pred_y=0;
  1170. int P[10][2];
  1171. const int shift= 1+s->quarter_sample;
  1172. const int mot_stride = s->mb_stride;
  1173. const int mot_xy = mb_y*mot_stride + mb_x;
  1174. uint8_t * const ref_picture= ref_data[0] - 16*s->mb_x - 16*s->mb_y*s->linesize; //FIXME ugly
  1175. uint8_t * const mv_penalty= s->me.mv_penalty[f_code] + MAX_MV;
  1176. int mv_scale;
  1177. s->me.penalty_factor = get_penalty_factor(s, s->avctx->me_cmp);
  1178. s->me.sub_penalty_factor= get_penalty_factor(s, s->avctx->me_sub_cmp);
  1179. s->me.mb_penalty_factor = get_penalty_factor(s, s->avctx->mb_cmp);
  1180. get_limits(s, 16*mb_x, 16*mb_y);
  1181. switch(s->me_method) {
  1182. case ME_ZERO:
  1183. default:
  1184. no_motion_search(s, &mx, &my);
  1185. dmin = 0;
  1186. mx-= mb_x*16;
  1187. my-= mb_y*16;
  1188. break;
  1189. #if 0
  1190. case ME_FULL:
  1191. dmin = full_motion_search(s, &mx, &my, range, ref_picture);
  1192. mx-= mb_x*16;
  1193. my-= mb_y*16;
  1194. break;
  1195. case ME_LOG:
  1196. dmin = log_motion_search(s, &mx, &my, range / 2, ref_picture);
  1197. mx-= mb_x*16;
  1198. my-= mb_y*16;
  1199. break;
  1200. case ME_PHODS:
  1201. dmin = phods_motion_search(s, &mx, &my, range / 2, ref_picture);
  1202. mx-= mb_x*16;
  1203. my-= mb_y*16;
  1204. break;
  1205. #endif
  1206. case ME_X1:
  1207. case ME_EPZS:
  1208. {
  1209. P_LEFT[0] = mv_table[mot_xy - 1][0];
  1210. P_LEFT[1] = mv_table[mot_xy - 1][1];
  1211. if(P_LEFT[0] > (s->me.xmax<<shift)) P_LEFT[0] = (s->me.xmax<<shift);
  1212. /* special case for first line */
  1213. if (!s->first_slice_line) {
  1214. P_TOP[0] = mv_table[mot_xy - mot_stride ][0];
  1215. P_TOP[1] = mv_table[mot_xy - mot_stride ][1];
  1216. P_TOPRIGHT[0] = mv_table[mot_xy - mot_stride + 1 ][0];
  1217. P_TOPRIGHT[1] = mv_table[mot_xy - mot_stride + 1 ][1];
  1218. if(P_TOP[1] > (s->me.ymax<<shift)) P_TOP[1]= (s->me.ymax<<shift);
  1219. if(P_TOPRIGHT[0] < (s->me.xmin<<shift)) P_TOPRIGHT[0]= (s->me.xmin<<shift);
  1220. if(P_TOPRIGHT[1] > (s->me.ymax<<shift)) P_TOPRIGHT[1]= (s->me.ymax<<shift);
  1221. P_MEDIAN[0]= mid_pred(P_LEFT[0], P_TOP[0], P_TOPRIGHT[0]);
  1222. P_MEDIAN[1]= mid_pred(P_LEFT[1], P_TOP[1], P_TOPRIGHT[1]);
  1223. }
  1224. pred_x= P_LEFT[0];
  1225. pred_y= P_LEFT[1];
  1226. }
  1227. if(mv_table == s->b_forw_mv_table){
  1228. mv_scale= (s->pb_time<<16) / (s->pp_time<<shift);
  1229. }else{
  1230. mv_scale= ((s->pb_time - s->pp_time)<<16) / (s->pp_time<<shift);
  1231. }
  1232. dmin = s->me.motion_search[0](s, &mx, &my, P, pred_x, pred_y,
  1233. src_data, ref_data, stride, uvstride, s->p_mv_table, mv_scale, mv_penalty);
  1234. break;
  1235. }
  1236. dmin= s->me.sub_motion_search(s, &mx, &my, dmin,
  1237. pred_x, pred_y, src_data, ref_data, stride, uvstride, 0, 16, mv_penalty);
  1238. if(s->avctx->me_sub_cmp != s->avctx->mb_cmp && !s->me.skip)
  1239. dmin= s->me.get_mb_score(s, mx, my, pred_x, pred_y, src_data, ref_data, stride, uvstride, mv_penalty);
  1240. //printf("%d %d %d %d//", s->mb_x, s->mb_y, mx, my);
  1241. // s->mb_type[mb_y*s->mb_width + mb_x]= mb_type;
  1242. mv_table[mot_xy][0]= mx;
  1243. mv_table[mot_xy][1]= my;
  1244. return dmin;
  1245. }
  1246. static inline int check_bidir_mv(MpegEncContext * s, uint8_t *src_data[3], uint8_t *ref_data[6],
  1247. int stride, int uvstride,
  1248. int motion_fx, int motion_fy,
  1249. int motion_bx, int motion_by,
  1250. int pred_fx, int pred_fy,
  1251. int pred_bx, int pred_by,
  1252. int size, int h)
  1253. {
  1254. //FIXME optimize?
  1255. //FIXME move into template?
  1256. //FIXME better f_code prediction (max mv & distance)
  1257. //FIXME pointers
  1258. uint8_t * const mv_penalty= s->me.mv_penalty[s->f_code] + MAX_MV; // f_code of the prev frame
  1259. uint8_t *dest_y = s->me.scratchpad;
  1260. uint8_t *ptr;
  1261. int dxy;
  1262. int src_x, src_y;
  1263. int fbmin;
  1264. if(s->quarter_sample){
  1265. dxy = ((motion_fy & 3) << 2) | (motion_fx & 3);
  1266. src_x = motion_fx >> 2;
  1267. src_y = motion_fy >> 2;
  1268. ptr = ref_data[0] + (src_y * stride) + src_x;
  1269. s->dsp.put_qpel_pixels_tab[0][dxy](dest_y , ptr , stride);
  1270. dxy = ((motion_by & 3) << 2) | (motion_bx & 3);
  1271. src_x = motion_bx >> 2;
  1272. src_y = motion_by >> 2;
  1273. ptr = ref_data[3] + (src_y * stride) + src_x;
  1274. s->dsp.avg_qpel_pixels_tab[size][dxy](dest_y , ptr , stride);
  1275. }else{
  1276. dxy = ((motion_fy & 1) << 1) | (motion_fx & 1);
  1277. src_x = motion_fx >> 1;
  1278. src_y = motion_fy >> 1;
  1279. ptr = ref_data[0] + (src_y * stride) + src_x;
  1280. s->dsp.put_pixels_tab[size][dxy](dest_y , ptr , stride, h);
  1281. dxy = ((motion_by & 1) << 1) | (motion_bx & 1);
  1282. src_x = motion_bx >> 1;
  1283. src_y = motion_by >> 1;
  1284. ptr = ref_data[3] + (src_y * stride) + src_x;
  1285. s->dsp.avg_pixels_tab[size][dxy](dest_y , ptr , stride, h);
  1286. }
  1287. fbmin = (mv_penalty[motion_fx-pred_fx] + mv_penalty[motion_fy-pred_fy])*s->me.mb_penalty_factor
  1288. +(mv_penalty[motion_bx-pred_bx] + mv_penalty[motion_by-pred_by])*s->me.mb_penalty_factor
  1289. + s->dsp.mb_cmp[size](s, src_data[0], dest_y, stride, h); //FIXME new_pic
  1290. if(s->avctx->mb_cmp&FF_CMP_CHROMA){
  1291. }
  1292. //FIXME CHROMA !!!
  1293. return fbmin;
  1294. }
  1295. /* refine the bidir vectors in hq mode and return the score in both lq & hq mode*/
  1296. static inline int bidir_refine(MpegEncContext * s, uint8_t *src_data[3], uint8_t *ref_data[6],
  1297. int stride, int uvstride,
  1298. int mb_x, int mb_y)
  1299. {
  1300. const int mot_stride = s->mb_stride;
  1301. const int xy = mb_y *mot_stride + mb_x;
  1302. int fbmin;
  1303. int pred_fx= s->b_bidir_forw_mv_table[xy-1][0];
  1304. int pred_fy= s->b_bidir_forw_mv_table[xy-1][1];
  1305. int pred_bx= s->b_bidir_back_mv_table[xy-1][0];
  1306. int pred_by= s->b_bidir_back_mv_table[xy-1][1];
  1307. int motion_fx= s->b_bidir_forw_mv_table[xy][0]= s->b_forw_mv_table[xy][0];
  1308. int motion_fy= s->b_bidir_forw_mv_table[xy][1]= s->b_forw_mv_table[xy][1];
  1309. int motion_bx= s->b_bidir_back_mv_table[xy][0]= s->b_back_mv_table[xy][0];
  1310. int motion_by= s->b_bidir_back_mv_table[xy][1]= s->b_back_mv_table[xy][1];
  1311. //FIXME do refinement and add flag
  1312. fbmin= check_bidir_mv(s, src_data, ref_data, stride, uvstride,
  1313. motion_fx, motion_fy,
  1314. motion_bx, motion_by,
  1315. pred_fx, pred_fy,
  1316. pred_bx, pred_by,
  1317. 0, 16);
  1318. return fbmin;
  1319. }
  1320. static inline int direct_search(MpegEncContext * s, uint8_t *src_data[3], uint8_t *ref_data[6],
  1321. int stride, int uvstride,
  1322. int mb_x, int mb_y)
  1323. {
  1324. int P[10][2];
  1325. const int mot_stride = s->mb_stride;
  1326. const int mot_xy = mb_y*mot_stride + mb_x;
  1327. const int shift= 1+s->quarter_sample;
  1328. int dmin, i;
  1329. const int time_pp= s->pp_time;
  1330. const int time_pb= s->pb_time;
  1331. int mx, my, xmin, xmax, ymin, ymax;
  1332. int16_t (*mv_table)[2]= s->b_direct_mv_table;
  1333. uint8_t * const mv_penalty= s->me.mv_penalty[1] + MAX_MV;
  1334. ymin= xmin=(-32)>>shift;
  1335. ymax= xmax= 31>>shift;
  1336. if(IS_8X8(s->next_picture.mb_type[mot_xy])){
  1337. s->mv_type= MV_TYPE_8X8;
  1338. }else{
  1339. s->mv_type= MV_TYPE_16X16;
  1340. }
  1341. for(i=0; i<4; i++){
  1342. int index= s->block_index[i];
  1343. int min, max;
  1344. s->me.co_located_mv[i][0]= s->next_picture.motion_val[0][index][0];
  1345. s->me.co_located_mv[i][1]= s->next_picture.motion_val[0][index][1];
  1346. s->me.direct_basis_mv[i][0]= s->me.co_located_mv[i][0]*time_pb/time_pp + ((i& 1)<<(shift+3));
  1347. s->me.direct_basis_mv[i][1]= s->me.co_located_mv[i][1]*time_pb/time_pp + ((i>>1)<<(shift+3));
  1348. // s->me.direct_basis_mv[1][i][0]= s->me.co_located_mv[i][0]*(time_pb - time_pp)/time_pp + ((i &1)<<(shift+3);
  1349. // s->me.direct_basis_mv[1][i][1]= s->me.co_located_mv[i][1]*(time_pb - time_pp)/time_pp + ((i>>1)<<(shift+3);
  1350. max= FFMAX(s->me.direct_basis_mv[i][0], s->me.direct_basis_mv[i][0] - s->me.co_located_mv[i][0])>>shift;
  1351. min= FFMIN(s->me.direct_basis_mv[i][0], s->me.direct_basis_mv[i][0] - s->me.co_located_mv[i][0])>>shift;
  1352. max+= 16*mb_x + 1; // +-1 is for the simpler rounding
  1353. min+= 16*mb_x - 1;
  1354. xmax= FFMIN(xmax, s->width - max);
  1355. xmin= FFMAX(xmin, - 16 - min);
  1356. max= FFMAX(s->me.direct_basis_mv[i][1], s->me.direct_basis_mv[i][1] - s->me.co_located_mv[i][1])>>shift;
  1357. min= FFMIN(s->me.direct_basis_mv[i][1], s->me.direct_basis_mv[i][1] - s->me.co_located_mv[i][1])>>shift;
  1358. max+= 16*mb_y + 1; // +-1 is for the simpler rounding
  1359. min+= 16*mb_y - 1;
  1360. ymax= FFMIN(ymax, s->height - max);
  1361. ymin= FFMAX(ymin, - 16 - min);
  1362. if(s->mv_type == MV_TYPE_16X16) break;
  1363. }
  1364. assert(xmax <= 15 && ymax <= 15 && xmin >= -16 && ymin >= -16);
  1365. if(xmax < 0 || xmin >0 || ymax < 0 || ymin > 0){
  1366. s->b_direct_mv_table[mot_xy][0]= 0;
  1367. s->b_direct_mv_table[mot_xy][1]= 0;
  1368. return 256*256*256*64;
  1369. }
  1370. s->me.xmin= xmin;
  1371. s->me.ymin= ymin;
  1372. s->me.xmax= xmax;
  1373. s->me.ymax= ymax;
  1374. P_LEFT[0] = clip(mv_table[mot_xy - 1][0], xmin<<shift, xmax<<shift);
  1375. P_LEFT[1] = clip(mv_table[mot_xy - 1][1], ymin<<shift, ymax<<shift);
  1376. /* special case for first line */
  1377. if (!s->first_slice_line) { //FIXME maybe allow this over thread boundary as its cliped
  1378. P_TOP[0] = clip(mv_table[mot_xy - mot_stride ][0], xmin<<shift, xmax<<shift);
  1379. P_TOP[1] = clip(mv_table[mot_xy - mot_stride ][1], ymin<<shift, ymax<<shift);
  1380. P_TOPRIGHT[0] = clip(mv_table[mot_xy - mot_stride + 1 ][0], xmin<<shift, xmax<<shift);
  1381. P_TOPRIGHT[1] = clip(mv_table[mot_xy - mot_stride + 1 ][1], ymin<<shift, ymax<<shift);
  1382. P_MEDIAN[0]= mid_pred(P_LEFT[0], P_TOP[0], P_TOPRIGHT[0]);
  1383. P_MEDIAN[1]= mid_pred(P_LEFT[1], P_TOP[1], P_TOPRIGHT[1]);
  1384. }
  1385. //FIXME direct_search ptr in context!!! (needed for chroma anyway or this will get messy)
  1386. if(s->flags&CODEC_FLAG_QPEL){
  1387. dmin = simple_direct_qpel_epzs_motion_search(s, &mx, &my, P, 0, 0,
  1388. src_data, ref_data, stride, uvstride, mv_table, 1<<14, mv_penalty);
  1389. dmin = simple_direct_qpel_qpel_motion_search(s, &mx, &my, dmin,
  1390. 0, 0, src_data, ref_data, stride, uvstride, 0, 16, mv_penalty);
  1391. if(s->avctx->me_sub_cmp != s->avctx->mb_cmp && !s->me.skip)
  1392. dmin= simple_direct_qpel_qpel_get_mb_score(s, mx, my, 0, 0, src_data, ref_data, stride, uvstride, mv_penalty);
  1393. }else{
  1394. dmin = simple_direct_hpel_epzs_motion_search(s, &mx, &my, P, 0, 0,
  1395. src_data, ref_data, stride, uvstride, mv_table, 1<<15, mv_penalty);
  1396. dmin = simple_direct_hpel_hpel_motion_search(s, &mx, &my, dmin,
  1397. 0, 0, src_data, ref_data, stride, uvstride, 0, 16, mv_penalty);
  1398. if(s->avctx->me_sub_cmp != s->avctx->mb_cmp && !s->me.skip)
  1399. dmin= simple_direct_hpel_hpel_get_mb_score(s, mx, my, 0, 0, src_data, ref_data, stride, uvstride, mv_penalty);
  1400. }
  1401. get_limits(s, 16*mb_x, 16*mb_y); //restore s->me.?min/max, maybe not needed
  1402. s->b_direct_mv_table[mot_xy][0]= mx;
  1403. s->b_direct_mv_table[mot_xy][1]= my;
  1404. return dmin;
  1405. }
  1406. void ff_estimate_b_frame_motion(MpegEncContext * s,
  1407. int mb_x, int mb_y)
  1408. {
  1409. const int penalty_factor= s->me.mb_penalty_factor;
  1410. int fmin, bmin, dmin, fbmin, bimin, fimin;
  1411. int type=0;
  1412. const int stride= s->linesize;
  1413. const int uvstride= s->uvlinesize;
  1414. uint8_t *src_data[3]= {
  1415. s->new_picture.data[0] + 16*(s->mb_x + stride*s->mb_y),
  1416. s->new_picture.data[1] + 8*(s->mb_x + uvstride*s->mb_y),
  1417. s->new_picture.data[2] + 8*(s->mb_x + uvstride*s->mb_y)
  1418. };
  1419. uint8_t *ref_data[6]= {
  1420. s->last_picture.data[0] + 16*(s->mb_x + stride*s->mb_y),
  1421. s->last_picture.data[1] + 8*(s->mb_x + uvstride*s->mb_y),
  1422. s->last_picture.data[2] + 8*(s->mb_x + uvstride*s->mb_y),
  1423. s->next_picture.data[0] + 16*(s->mb_x + stride*s->mb_y),
  1424. s->next_picture.data[1] + 8*(s->mb_x + uvstride*s->mb_y),
  1425. s->next_picture.data[2] + 8*(s->mb_x + uvstride*s->mb_y)
  1426. };
  1427. s->me.skip=0;
  1428. if (s->codec_id == CODEC_ID_MPEG4)
  1429. dmin= direct_search(s, src_data, ref_data, stride, uvstride, mb_x, mb_y);
  1430. else
  1431. dmin= INT_MAX;
  1432. //FIXME penalty stuff for non mpeg4
  1433. s->me.skip=0;
  1434. fmin= ff_estimate_motion_b(s, mb_x, mb_y, s->b_forw_mv_table, src_data,
  1435. ref_data, stride, uvstride, s->f_code) + 3*penalty_factor;
  1436. s->me.skip=0;
  1437. bmin= ff_estimate_motion_b(s, mb_x, mb_y, s->b_back_mv_table, src_data,
  1438. ref_data+3, stride, uvstride, s->b_code) + 2*penalty_factor;
  1439. //printf(" %d %d ", s->b_forw_mv_table[xy][0], s->b_forw_mv_table[xy][1]);
  1440. s->me.skip=0;
  1441. fbmin= bidir_refine(s, src_data, ref_data, stride, uvstride, mb_x, mb_y) + penalty_factor;
  1442. //printf("%d %d %d %d\n", dmin, fmin, bmin, fbmin);
  1443. if(s->flags & CODEC_FLAG_INTERLACED_ME){
  1444. const int xy = mb_y*s->mb_stride + mb_x;
  1445. //FIXME mb type penalty
  1446. s->me.skip=0;
  1447. fimin= interlaced_search(s, src_data, ref_data ,
  1448. s->b_field_mv_table[0], s->b_field_select_table[0], s->f_code,
  1449. s->b_forw_mv_table[xy][0], s->b_forw_mv_table[xy][1]);
  1450. bimin= interlaced_search(s, src_data, ref_data+3,
  1451. s->b_field_mv_table[1], s->b_field_select_table[1], s->b_code,
  1452. s->b_back_mv_table[xy][0], s->b_back_mv_table[xy][1]);
  1453. }else
  1454. fimin= bimin= INT_MAX;
  1455. {
  1456. int score= fmin;
  1457. type = CANDIDATE_MB_TYPE_FORWARD;
  1458. if (dmin <= score){
  1459. score = dmin;
  1460. type = CANDIDATE_MB_TYPE_DIRECT;
  1461. }
  1462. if(bmin<score){
  1463. score=bmin;
  1464. type= CANDIDATE_MB_TYPE_BACKWARD;
  1465. }
  1466. if(fbmin<score){
  1467. score=fbmin;
  1468. type= CANDIDATE_MB_TYPE_BIDIR;
  1469. }
  1470. if(fimin<score){
  1471. score=fimin;
  1472. type= CANDIDATE_MB_TYPE_FORWARD_I;
  1473. }
  1474. if(bimin<score){
  1475. score=bimin;
  1476. type= CANDIDATE_MB_TYPE_BACKWARD_I;
  1477. }
  1478. score= ((unsigned)(score*score + 128*256))>>16;
  1479. s->mc_mb_var_sum_temp += score;
  1480. s->current_picture.mc_mb_var[mb_y*s->mb_stride + mb_x] = score; //FIXME use SSE
  1481. }
  1482. if(s->avctx->mb_decision > FF_MB_DECISION_SIMPLE){
  1483. type= CANDIDATE_MB_TYPE_FORWARD | CANDIDATE_MB_TYPE_BACKWARD | CANDIDATE_MB_TYPE_BIDIR | CANDIDATE_MB_TYPE_DIRECT;
  1484. if(fimin < INT_MAX)
  1485. type |= CANDIDATE_MB_TYPE_FORWARD_I;
  1486. if(bimin < INT_MAX)
  1487. type |= CANDIDATE_MB_TYPE_BACKWARD_I;
  1488. if(fimin < INT_MAX && bimin < INT_MAX){
  1489. type |= CANDIDATE_MB_TYPE_BIDIR_I;
  1490. }
  1491. //FIXME something smarter
  1492. if(dmin>256*256*16) type&= ~CANDIDATE_MB_TYPE_DIRECT; //dont try direct mode if its invalid for this MB
  1493. #if 0
  1494. if(s->out_format == FMT_MPEG1)
  1495. type |= CANDIDATE_MB_TYPE_INTRA;
  1496. #endif
  1497. }
  1498. s->mb_type[mb_y*s->mb_stride + mb_x]= type;
  1499. }
  1500. /* find best f_code for ME which do unlimited searches */
  1501. int ff_get_best_fcode(MpegEncContext * s, int16_t (*mv_table)[2], int type)
  1502. {
  1503. if(s->me_method>=ME_EPZS){
  1504. int score[8];
  1505. int i, y;
  1506. uint8_t * fcode_tab= s->fcode_tab;
  1507. int best_fcode=-1;
  1508. int best_score=-10000000;
  1509. for(i=0; i<8; i++) score[i]= s->mb_num*(8-i);
  1510. for(y=0; y<s->mb_height; y++){
  1511. int x;
  1512. int xy= y*s->mb_stride;
  1513. for(x=0; x<s->mb_width; x++){
  1514. if(s->mb_type[xy] & type){
  1515. int fcode= FFMAX(fcode_tab[mv_table[xy][0] + MAX_MV],
  1516. fcode_tab[mv_table[xy][1] + MAX_MV]);
  1517. int j;
  1518. for(j=0; j<fcode && j<8; j++){
  1519. if(s->pict_type==B_TYPE || s->current_picture.mc_mb_var[xy] < s->current_picture.mb_var[xy])
  1520. score[j]-= 170;
  1521. }
  1522. }
  1523. xy++;
  1524. }
  1525. }
  1526. for(i=1; i<8; i++){
  1527. if(score[i] > best_score){
  1528. best_score= score[i];
  1529. best_fcode= i;
  1530. }
  1531. // printf("%d %d\n", i, score[i]);
  1532. }
  1533. // printf("fcode: %d type: %d\n", i, s->pict_type);
  1534. return best_fcode;
  1535. /* for(i=0; i<=MAX_FCODE; i++){
  1536. printf("%d ", mv_num[i]);
  1537. }
  1538. printf("\n");*/
  1539. }else{
  1540. return 1;
  1541. }
  1542. }
  1543. void ff_fix_long_p_mvs(MpegEncContext * s)
  1544. {
  1545. const int f_code= s->f_code;
  1546. int y, range;
  1547. assert(s->pict_type==P_TYPE);
  1548. range = (((s->out_format == FMT_MPEG1) ? 8 : 16) << f_code);
  1549. if(s->msmpeg4_version) range= 16;
  1550. if(s->avctx->me_range && range > s->avctx->me_range) range= s->avctx->me_range;
  1551. //printf("%d no:%d %d//\n", clip, noclip, f_code);
  1552. if(s->flags&CODEC_FLAG_4MV){
  1553. const int wrap= 2+ s->mb_width*2;
  1554. /* clip / convert to intra 8x8 type MVs */
  1555. for(y=0; y<s->mb_height; y++){
  1556. int xy= (y*2 + 1)*wrap + 1;
  1557. int i= y*s->mb_stride;
  1558. int x;
  1559. for(x=0; x<s->mb_width; x++){
  1560. if(s->mb_type[i]&CANDIDATE_MB_TYPE_INTER4V){
  1561. int block;
  1562. for(block=0; block<4; block++){
  1563. int off= (block& 1) + (block>>1)*wrap;
  1564. int mx= s->current_picture.motion_val[0][ xy + off ][0];
  1565. int my= s->current_picture.motion_val[0][ xy + off ][1];
  1566. if( mx >=range || mx <-range
  1567. || my >=range || my <-range){
  1568. s->mb_type[i] &= ~CANDIDATE_MB_TYPE_INTER4V;
  1569. s->mb_type[i] |= CANDIDATE_MB_TYPE_INTRA;
  1570. s->current_picture.mb_type[i]= CANDIDATE_MB_TYPE_INTRA;
  1571. }
  1572. }
  1573. }
  1574. xy+=2;
  1575. i++;
  1576. }
  1577. }
  1578. }
  1579. }
  1580. /**
  1581. *
  1582. * @param truncate 1 for truncation, 0 for using intra
  1583. */
  1584. void ff_fix_long_mvs(MpegEncContext * s, uint8_t *field_select_table, int field_select,
  1585. int16_t (*mv_table)[2], int f_code, int type, int truncate)
  1586. {
  1587. int y, h_range, v_range;
  1588. // RAL: 8 in MPEG-1, 16 in MPEG-4
  1589. int range = (((s->out_format == FMT_MPEG1) ? 8 : 16) << f_code);
  1590. if(s->msmpeg4_version) range= 16;
  1591. if(s->avctx->me_range && range > s->avctx->me_range) range= s->avctx->me_range;
  1592. h_range= range;
  1593. v_range= field_select_table ? range>>1 : range;
  1594. /* clip / convert to intra 16x16 type MVs */
  1595. for(y=0; y<s->mb_height; y++){
  1596. int x;
  1597. int xy= y*s->mb_stride;
  1598. for(x=0; x<s->mb_width; x++){
  1599. if (s->mb_type[xy] & type){ // RAL: "type" test added...
  1600. if(field_select_table==NULL || field_select_table[xy] == field_select){
  1601. if( mv_table[xy][0] >=h_range || mv_table[xy][0] <-h_range
  1602. || mv_table[xy][1] >=v_range || mv_table[xy][1] <-v_range){
  1603. if(truncate){
  1604. if (mv_table[xy][0] > h_range-1) mv_table[xy][0]= h_range-1;
  1605. else if(mv_table[xy][0] < -h_range ) mv_table[xy][0]= -h_range;
  1606. if (mv_table[xy][1] > v_range-1) mv_table[xy][1]= v_range-1;
  1607. else if(mv_table[xy][1] < -v_range ) mv_table[xy][1]= -v_range;
  1608. }else{
  1609. s->mb_type[xy] &= ~type;
  1610. s->mb_type[xy] |= CANDIDATE_MB_TYPE_INTRA;
  1611. mv_table[xy][0]=
  1612. mv_table[xy][1]= 0;
  1613. }
  1614. }
  1615. }
  1616. }
  1617. xy++;
  1618. }
  1619. }
  1620. }