You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

289 lines
8.3KB

  1. /*
  2. * Copyright (c) 2006 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #ifndef AVUTIL_SOFTFLOAT_H
  21. #define AVUTIL_SOFTFLOAT_H
  22. #include <stdint.h>
  23. #include "common.h"
  24. #include "avassert.h"
  25. #include "softfloat_tables.h"
  26. #define MIN_EXP -149
  27. #define MAX_EXP 126
  28. #define ONE_BITS 29
  29. typedef struct SoftFloat{
  30. int32_t mant;
  31. int32_t exp;
  32. }SoftFloat;
  33. static const SoftFloat FLOAT_0 = { 0, MIN_EXP}; ///< 0.0
  34. static const SoftFloat FLOAT_05 = { 0x20000000, 0}; ///< 0.5
  35. static const SoftFloat FLOAT_1 = { 0x20000000, 1}; ///< 1.0
  36. static const SoftFloat FLOAT_EPSILON = { 0x29F16B12, -16}; ///< A small value
  37. static const SoftFloat FLOAT_1584893192 = { 0x32B771ED, 1}; ///< 1.584893192 (10^.2)
  38. static const SoftFloat FLOAT_100000 = { 0x30D40000, 17}; ///< 100000
  39. static const SoftFloat FLOAT_0999999 = { 0x3FFFFBCE, 0}; ///< 0.999999
  40. /**
  41. * Convert a SoftFloat to a double precision float.
  42. */
  43. static inline av_const double av_sf2double(SoftFloat v) {
  44. v.exp -= ONE_BITS +1;
  45. return ldexp(v.mant, v.exp);
  46. }
  47. static av_const SoftFloat av_normalize_sf(SoftFloat a){
  48. if(a.mant){
  49. #if 1
  50. while((a.mant + 0x1FFFFFFFU)<0x3FFFFFFFU){
  51. a.mant += a.mant;
  52. a.exp -= 1;
  53. }
  54. #else
  55. int s=ONE_BITS - av_log2(FFABS(a.mant));
  56. a.exp -= s;
  57. a.mant <<= s;
  58. #endif
  59. if(a.exp < MIN_EXP){
  60. a.exp = MIN_EXP;
  61. a.mant= 0;
  62. }
  63. }else{
  64. a.exp= MIN_EXP;
  65. }
  66. return a;
  67. }
  68. static inline av_const SoftFloat av_normalize1_sf(SoftFloat a){
  69. #if 1
  70. if((int32_t)(a.mant + 0x40000000U) <= 0){
  71. a.exp++;
  72. a.mant>>=1;
  73. }
  74. av_assert2(a.mant < 0x40000000 && a.mant > -0x40000000);
  75. av_assert2(a.exp <= MAX_EXP);
  76. return a;
  77. #elif 1
  78. int t= a.mant + 0x40000000 < 0;
  79. return (SoftFloat){ a.mant>>t, a.exp+t};
  80. #else
  81. int t= (a.mant + 0x3FFFFFFFU)>>31;
  82. return (SoftFloat){a.mant>>t, a.exp+t};
  83. #endif
  84. }
  85. /**
  86. * @return Will not be more denormalized than a*b. So if either input is
  87. * normalized, then the output will not be worse then the other input.
  88. * If both are normalized, then the output will be normalized.
  89. */
  90. static inline av_const SoftFloat av_mul_sf(SoftFloat a, SoftFloat b){
  91. a.exp += b.exp;
  92. av_assert2((int32_t)((a.mant * (int64_t)b.mant) >> ONE_BITS) == (a.mant * (int64_t)b.mant) >> ONE_BITS);
  93. a.mant = (a.mant * (int64_t)b.mant) >> ONE_BITS;
  94. a = av_normalize1_sf((SoftFloat){a.mant, a.exp - 1});
  95. if (!a.mant || a.exp < MIN_EXP)
  96. return FLOAT_0;
  97. return a;
  98. }
  99. /**
  100. * b has to be normalized and not zero.
  101. * @return Will not be more denormalized than a.
  102. */
  103. static inline av_const SoftFloat av_div_sf(SoftFloat a, SoftFloat b){
  104. int64_t temp = (int64_t)a.mant * (1<<(ONE_BITS+1));
  105. temp /= b.mant;
  106. a.exp -= b.exp;
  107. a.mant = temp;
  108. while (a.mant != temp) {
  109. temp /= 2;
  110. a.exp--;
  111. a.mant = temp;
  112. }
  113. a = av_normalize1_sf(a);
  114. if (!a.mant || a.exp < MIN_EXP)
  115. return FLOAT_0;
  116. return a;
  117. }
  118. /**
  119. * Compares two SoftFloats.
  120. * @returns < 0 if the first is less
  121. * > 0 if the first is greater
  122. * 0 if they are equal
  123. */
  124. static inline av_const int av_cmp_sf(SoftFloat a, SoftFloat b){
  125. int t= a.exp - b.exp;
  126. if (t <-31) return - b.mant ;
  127. else if (t < 0) return (a.mant >> (-t)) - b.mant ;
  128. else if (t < 32) return a.mant - (b.mant >> t);
  129. else return a.mant ;
  130. }
  131. /**
  132. * Compares two SoftFloats.
  133. * @returns 1 if a is greater than b, 0 otherwise
  134. */
  135. static inline av_const int av_gt_sf(SoftFloat a, SoftFloat b)
  136. {
  137. int t= a.exp - b.exp;
  138. if (t <-31) return 0 > b.mant ;
  139. else if (t < 0) return (a.mant >> (-t)) > b.mant ;
  140. else if (t < 32) return a.mant > (b.mant >> t);
  141. else return a.mant > 0 ;
  142. }
  143. /**
  144. * @returns the sum of 2 SoftFloats.
  145. */
  146. static inline av_const SoftFloat av_add_sf(SoftFloat a, SoftFloat b){
  147. int t= a.exp - b.exp;
  148. if (t <-31) return b;
  149. else if (t < 0) return av_normalize_sf(av_normalize1_sf((SoftFloat){ b.mant + (a.mant >> (-t)), b.exp}));
  150. else if (t < 32) return av_normalize_sf(av_normalize1_sf((SoftFloat){ a.mant + (b.mant >> t ), a.exp}));
  151. else return a;
  152. }
  153. /**
  154. * @returns the difference of 2 SoftFloats.
  155. */
  156. static inline av_const SoftFloat av_sub_sf(SoftFloat a, SoftFloat b){
  157. return av_add_sf(a, (SoftFloat){ -b.mant, b.exp});
  158. }
  159. //FIXME log, exp, pow
  160. /**
  161. * Converts a mantisse and exponent to a SoftFloat.
  162. * This converts a fixed point value v with frac_bits fractional bits to a
  163. * SoftFloat.
  164. * @returns a SoftFloat with value v * 2^-frac_bits
  165. */
  166. static inline av_const SoftFloat av_int2sf(int v, int frac_bits){
  167. int exp_offset = 0;
  168. if(v <= INT_MIN + 1){
  169. exp_offset = 1;
  170. v>>=1;
  171. }
  172. return av_normalize_sf(av_normalize1_sf((SoftFloat){v, ONE_BITS + 1 - frac_bits + exp_offset}));
  173. }
  174. /**
  175. * Converts a SoftFloat to an integer.
  176. * Rounding is to -inf.
  177. */
  178. static inline av_const int av_sf2int(SoftFloat v, int frac_bits){
  179. v.exp += frac_bits - (ONE_BITS + 1);
  180. if(v.exp >= 0) return v.mant << v.exp ;
  181. else return v.mant >>(-v.exp);
  182. }
  183. /**
  184. * Rounding-to-nearest used.
  185. */
  186. static av_always_inline SoftFloat av_sqrt_sf(SoftFloat val)
  187. {
  188. int tabIndex, rem;
  189. if (val.mant == 0)
  190. val.exp = MIN_EXP;
  191. else if (val.mant < 0)
  192. abort();
  193. else
  194. {
  195. tabIndex = (val.mant - 0x20000000) >> 20;
  196. rem = val.mant & 0xFFFFF;
  197. val.mant = (int)(((int64_t)av_sqrttbl_sf[tabIndex] * (0x100000 - rem) +
  198. (int64_t)av_sqrttbl_sf[tabIndex + 1] * rem +
  199. 0x80000) >> 20);
  200. val.mant = (int)(((int64_t)av_sqr_exp_multbl_sf[val.exp & 1] * val.mant +
  201. 0x10000000) >> 29);
  202. if (val.mant < 0x40000000)
  203. val.exp -= 2;
  204. else
  205. val.mant >>= 1;
  206. val.exp = (val.exp >> 1) + 1;
  207. }
  208. return val;
  209. }
  210. /**
  211. * Rounding-to-nearest used.
  212. */
  213. static av_unused void av_sincos_sf(int a, int *s, int *c)
  214. {
  215. int idx, sign;
  216. int sv, cv;
  217. int st, ct;
  218. idx = a >> 26;
  219. sign = (int32_t)((unsigned)idx << 27) >> 31;
  220. cv = av_costbl_1_sf[idx & 0xf];
  221. cv = (cv ^ sign) - sign;
  222. idx -= 8;
  223. sign = (int32_t)((unsigned)idx << 27) >> 31;
  224. sv = av_costbl_1_sf[idx & 0xf];
  225. sv = (sv ^ sign) - sign;
  226. idx = a >> 21;
  227. ct = av_costbl_2_sf[idx & 0x1f];
  228. st = av_sintbl_2_sf[idx & 0x1f];
  229. idx = (int)(((int64_t)cv * ct - (int64_t)sv * st + 0x20000000) >> 30);
  230. sv = (int)(((int64_t)cv * st + (int64_t)sv * ct + 0x20000000) >> 30);
  231. cv = idx;
  232. idx = a >> 16;
  233. ct = av_costbl_3_sf[idx & 0x1f];
  234. st = av_sintbl_3_sf[idx & 0x1f];
  235. idx = (int)(((int64_t)cv * ct - (int64_t)sv * st + 0x20000000) >> 30);
  236. sv = (int)(((int64_t)cv * st + (int64_t)sv * ct + 0x20000000) >> 30);
  237. cv = idx;
  238. idx = a >> 11;
  239. ct = (int)(((int64_t)av_costbl_4_sf[idx & 0x1f] * (0x800 - (a & 0x7ff)) +
  240. (int64_t)av_costbl_4_sf[(idx & 0x1f)+1]*(a & 0x7ff) +
  241. 0x400) >> 11);
  242. st = (int)(((int64_t)av_sintbl_4_sf[idx & 0x1f] * (0x800 - (a & 0x7ff)) +
  243. (int64_t)av_sintbl_4_sf[(idx & 0x1f) + 1] * (a & 0x7ff) +
  244. 0x400) >> 11);
  245. *c = (int)(((int64_t)cv * ct + (int64_t)sv * st + 0x20000000) >> 30);
  246. *s = (int)(((int64_t)cv * st + (int64_t)sv * ct + 0x20000000) >> 30);
  247. }
  248. #endif /* AVUTIL_SOFTFLOAT_H */