You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1787 lines
63KB

  1. /*
  2. * MPEG-4 ALS decoder
  3. * Copyright (c) 2009 Thilo Borgmann <thilo.borgmann _at_ googlemail.com>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * MPEG-4 ALS decoder
  24. * @author Thilo Borgmann <thilo.borgmann _at_ googlemail.com>
  25. */
  26. //#define DEBUG
  27. #include "avcodec.h"
  28. #include "get_bits.h"
  29. #include "unary.h"
  30. #include "mpeg4audio.h"
  31. #include "bytestream.h"
  32. #include "bgmc.h"
  33. #include "dsputil.h"
  34. #include "internal.h"
  35. #include "libavutil/samplefmt.h"
  36. #include "libavutil/crc.h"
  37. #include <stdint.h>
  38. /** Rice parameters and corresponding index offsets for decoding the
  39. * indices of scaled PARCOR values. The table chosen is set globally
  40. * by the encoder and stored in ALSSpecificConfig.
  41. */
  42. static const int8_t parcor_rice_table[3][20][2] = {
  43. { {-52, 4}, {-29, 5}, {-31, 4}, { 19, 4}, {-16, 4},
  44. { 12, 3}, { -7, 3}, { 9, 3}, { -5, 3}, { 6, 3},
  45. { -4, 3}, { 3, 3}, { -3, 2}, { 3, 2}, { -2, 2},
  46. { 3, 2}, { -1, 2}, { 2, 2}, { -1, 2}, { 2, 2} },
  47. { {-58, 3}, {-42, 4}, {-46, 4}, { 37, 5}, {-36, 4},
  48. { 29, 4}, {-29, 4}, { 25, 4}, {-23, 4}, { 20, 4},
  49. {-17, 4}, { 16, 4}, {-12, 4}, { 12, 3}, {-10, 4},
  50. { 7, 3}, { -4, 4}, { 3, 3}, { -1, 3}, { 1, 3} },
  51. { {-59, 3}, {-45, 5}, {-50, 4}, { 38, 4}, {-39, 4},
  52. { 32, 4}, {-30, 4}, { 25, 3}, {-23, 3}, { 20, 3},
  53. {-20, 3}, { 16, 3}, {-13, 3}, { 10, 3}, { -7, 3},
  54. { 3, 3}, { 0, 3}, { -1, 3}, { 2, 3}, { -1, 2} }
  55. };
  56. /** Scaled PARCOR values used for the first two PARCOR coefficients.
  57. * To be indexed by the Rice coded indices.
  58. * Generated by: parcor_scaled_values[i] = 32 + ((i * (i+1)) << 7) - (1 << 20)
  59. * Actual values are divided by 32 in order to be stored in 16 bits.
  60. */
  61. static const int16_t parcor_scaled_values[] = {
  62. -1048544 / 32, -1048288 / 32, -1047776 / 32, -1047008 / 32,
  63. -1045984 / 32, -1044704 / 32, -1043168 / 32, -1041376 / 32,
  64. -1039328 / 32, -1037024 / 32, -1034464 / 32, -1031648 / 32,
  65. -1028576 / 32, -1025248 / 32, -1021664 / 32, -1017824 / 32,
  66. -1013728 / 32, -1009376 / 32, -1004768 / 32, -999904 / 32,
  67. -994784 / 32, -989408 / 32, -983776 / 32, -977888 / 32,
  68. -971744 / 32, -965344 / 32, -958688 / 32, -951776 / 32,
  69. -944608 / 32, -937184 / 32, -929504 / 32, -921568 / 32,
  70. -913376 / 32, -904928 / 32, -896224 / 32, -887264 / 32,
  71. -878048 / 32, -868576 / 32, -858848 / 32, -848864 / 32,
  72. -838624 / 32, -828128 / 32, -817376 / 32, -806368 / 32,
  73. -795104 / 32, -783584 / 32, -771808 / 32, -759776 / 32,
  74. -747488 / 32, -734944 / 32, -722144 / 32, -709088 / 32,
  75. -695776 / 32, -682208 / 32, -668384 / 32, -654304 / 32,
  76. -639968 / 32, -625376 / 32, -610528 / 32, -595424 / 32,
  77. -580064 / 32, -564448 / 32, -548576 / 32, -532448 / 32,
  78. -516064 / 32, -499424 / 32, -482528 / 32, -465376 / 32,
  79. -447968 / 32, -430304 / 32, -412384 / 32, -394208 / 32,
  80. -375776 / 32, -357088 / 32, -338144 / 32, -318944 / 32,
  81. -299488 / 32, -279776 / 32, -259808 / 32, -239584 / 32,
  82. -219104 / 32, -198368 / 32, -177376 / 32, -156128 / 32,
  83. -134624 / 32, -112864 / 32, -90848 / 32, -68576 / 32,
  84. -46048 / 32, -23264 / 32, -224 / 32, 23072 / 32,
  85. 46624 / 32, 70432 / 32, 94496 / 32, 118816 / 32,
  86. 143392 / 32, 168224 / 32, 193312 / 32, 218656 / 32,
  87. 244256 / 32, 270112 / 32, 296224 / 32, 322592 / 32,
  88. 349216 / 32, 376096 / 32, 403232 / 32, 430624 / 32,
  89. 458272 / 32, 486176 / 32, 514336 / 32, 542752 / 32,
  90. 571424 / 32, 600352 / 32, 629536 / 32, 658976 / 32,
  91. 688672 / 32, 718624 / 32, 748832 / 32, 779296 / 32,
  92. 810016 / 32, 840992 / 32, 872224 / 32, 903712 / 32,
  93. 935456 / 32, 967456 / 32, 999712 / 32, 1032224 / 32
  94. };
  95. /** Gain values of p(0) for long-term prediction.
  96. * To be indexed by the Rice coded indices.
  97. */
  98. static const uint8_t ltp_gain_values [4][4] = {
  99. { 0, 8, 16, 24},
  100. {32, 40, 48, 56},
  101. {64, 70, 76, 82},
  102. {88, 92, 96, 100}
  103. };
  104. /** Inter-channel weighting factors for multi-channel correlation.
  105. * To be indexed by the Rice coded indices.
  106. */
  107. static const int16_t mcc_weightings[] = {
  108. 204, 192, 179, 166, 153, 140, 128, 115,
  109. 102, 89, 76, 64, 51, 38, 25, 12,
  110. 0, -12, -25, -38, -51, -64, -76, -89,
  111. -102, -115, -128, -140, -153, -166, -179, -192
  112. };
  113. /** Tail codes used in arithmetic coding using block Gilbert-Moore codes.
  114. */
  115. static const uint8_t tail_code[16][6] = {
  116. { 74, 44, 25, 13, 7, 3},
  117. { 68, 42, 24, 13, 7, 3},
  118. { 58, 39, 23, 13, 7, 3},
  119. {126, 70, 37, 19, 10, 5},
  120. {132, 70, 37, 20, 10, 5},
  121. {124, 70, 38, 20, 10, 5},
  122. {120, 69, 37, 20, 11, 5},
  123. {116, 67, 37, 20, 11, 5},
  124. {108, 66, 36, 20, 10, 5},
  125. {102, 62, 36, 20, 10, 5},
  126. { 88, 58, 34, 19, 10, 5},
  127. {162, 89, 49, 25, 13, 7},
  128. {156, 87, 49, 26, 14, 7},
  129. {150, 86, 47, 26, 14, 7},
  130. {142, 84, 47, 26, 14, 7},
  131. {131, 79, 46, 26, 14, 7}
  132. };
  133. enum RA_Flag {
  134. RA_FLAG_NONE,
  135. RA_FLAG_FRAMES,
  136. RA_FLAG_HEADER
  137. };
  138. typedef struct {
  139. uint32_t samples; ///< number of samples, 0xFFFFFFFF if unknown
  140. int resolution; ///< 000 = 8-bit; 001 = 16-bit; 010 = 24-bit; 011 = 32-bit
  141. int floating; ///< 1 = IEEE 32-bit floating-point, 0 = integer
  142. int msb_first; ///< 1 = original CRC calculated on big-endian system, 0 = little-endian
  143. int frame_length; ///< frame length for each frame (last frame may differ)
  144. int ra_distance; ///< distance between RA frames (in frames, 0...255)
  145. enum RA_Flag ra_flag; ///< indicates where the size of ra units is stored
  146. int adapt_order; ///< adaptive order: 1 = on, 0 = off
  147. int coef_table; ///< table index of Rice code parameters
  148. int long_term_prediction; ///< long term prediction (LTP): 1 = on, 0 = off
  149. int max_order; ///< maximum prediction order (0..1023)
  150. int block_switching; ///< number of block switching levels
  151. int bgmc; ///< "Block Gilbert-Moore Code": 1 = on, 0 = off (Rice coding only)
  152. int sb_part; ///< sub-block partition
  153. int joint_stereo; ///< joint stereo: 1 = on, 0 = off
  154. int mc_coding; ///< extended inter-channel coding (multi channel coding): 1 = on, 0 = off
  155. int chan_config; ///< indicates that a chan_config_info field is present
  156. int chan_sort; ///< channel rearrangement: 1 = on, 0 = off
  157. int rlslms; ///< use "Recursive Least Square-Least Mean Square" predictor: 1 = on, 0 = off
  158. int chan_config_info; ///< mapping of channels to loudspeaker locations. Unused until setting channel configuration is implemented.
  159. int *chan_pos; ///< original channel positions
  160. int crc_enabled; ///< enable Cyclic Redundancy Checksum
  161. } ALSSpecificConfig;
  162. typedef struct {
  163. int stop_flag;
  164. int master_channel;
  165. int time_diff_flag;
  166. int time_diff_sign;
  167. int time_diff_index;
  168. int weighting[6];
  169. } ALSChannelData;
  170. typedef struct {
  171. AVCodecContext *avctx;
  172. AVFrame frame;
  173. ALSSpecificConfig sconf;
  174. GetBitContext gb;
  175. DSPContext dsp;
  176. const AVCRC *crc_table;
  177. uint32_t crc_org; ///< CRC value of the original input data
  178. uint32_t crc; ///< CRC value calculated from decoded data
  179. unsigned int cur_frame_length; ///< length of the current frame to decode
  180. unsigned int frame_id; ///< the frame ID / number of the current frame
  181. unsigned int js_switch; ///< if true, joint-stereo decoding is enforced
  182. unsigned int num_blocks; ///< number of blocks used in the current frame
  183. unsigned int s_max; ///< maximum Rice parameter allowed in entropy coding
  184. uint8_t *bgmc_lut; ///< pointer at lookup tables used for BGMC
  185. int *bgmc_lut_status; ///< pointer at lookup table status flags used for BGMC
  186. int ltp_lag_length; ///< number of bits used for ltp lag value
  187. int *const_block; ///< contains const_block flags for all channels
  188. unsigned int *shift_lsbs; ///< contains shift_lsbs flags for all channels
  189. unsigned int *opt_order; ///< contains opt_order flags for all channels
  190. int *store_prev_samples; ///< contains store_prev_samples flags for all channels
  191. int *use_ltp; ///< contains use_ltp flags for all channels
  192. int *ltp_lag; ///< contains ltp lag values for all channels
  193. int **ltp_gain; ///< gain values for ltp 5-tap filter for a channel
  194. int *ltp_gain_buffer; ///< contains all gain values for ltp 5-tap filter
  195. int32_t **quant_cof; ///< quantized parcor coefficients for a channel
  196. int32_t *quant_cof_buffer; ///< contains all quantized parcor coefficients
  197. int32_t **lpc_cof; ///< coefficients of the direct form prediction filter for a channel
  198. int32_t *lpc_cof_buffer; ///< contains all coefficients of the direct form prediction filter
  199. int32_t *lpc_cof_reversed_buffer; ///< temporary buffer to set up a reversed versio of lpc_cof_buffer
  200. ALSChannelData **chan_data; ///< channel data for multi-channel correlation
  201. ALSChannelData *chan_data_buffer; ///< contains channel data for all channels
  202. int *reverted_channels; ///< stores a flag for each reverted channel
  203. int32_t *prev_raw_samples; ///< contains unshifted raw samples from the previous block
  204. int32_t **raw_samples; ///< decoded raw samples for each channel
  205. int32_t *raw_buffer; ///< contains all decoded raw samples including carryover samples
  206. uint8_t *crc_buffer; ///< buffer of byte order corrected samples used for CRC check
  207. } ALSDecContext;
  208. typedef struct {
  209. unsigned int block_length; ///< number of samples within the block
  210. unsigned int ra_block; ///< if true, this is a random access block
  211. int *const_block; ///< if true, this is a constant value block
  212. int js_blocks; ///< true if this block contains a difference signal
  213. unsigned int *shift_lsbs; ///< shift of values for this block
  214. unsigned int *opt_order; ///< prediction order of this block
  215. int *store_prev_samples;///< if true, carryover samples have to be stored
  216. int *use_ltp; ///< if true, long-term prediction is used
  217. int *ltp_lag; ///< lag value for long-term prediction
  218. int *ltp_gain; ///< gain values for ltp 5-tap filter
  219. int32_t *quant_cof; ///< quantized parcor coefficients
  220. int32_t *lpc_cof; ///< coefficients of the direct form prediction
  221. int32_t *raw_samples; ///< decoded raw samples / residuals for this block
  222. int32_t *prev_raw_samples; ///< contains unshifted raw samples from the previous block
  223. int32_t *raw_other; ///< decoded raw samples of the other channel of a channel pair
  224. } ALSBlockData;
  225. static av_cold void dprint_specific_config(ALSDecContext *ctx)
  226. {
  227. #ifdef DEBUG
  228. AVCodecContext *avctx = ctx->avctx;
  229. ALSSpecificConfig *sconf = &ctx->sconf;
  230. av_dlog(avctx, "resolution = %i\n", sconf->resolution);
  231. av_dlog(avctx, "floating = %i\n", sconf->floating);
  232. av_dlog(avctx, "frame_length = %i\n", sconf->frame_length);
  233. av_dlog(avctx, "ra_distance = %i\n", sconf->ra_distance);
  234. av_dlog(avctx, "ra_flag = %i\n", sconf->ra_flag);
  235. av_dlog(avctx, "adapt_order = %i\n", sconf->adapt_order);
  236. av_dlog(avctx, "coef_table = %i\n", sconf->coef_table);
  237. av_dlog(avctx, "long_term_prediction = %i\n", sconf->long_term_prediction);
  238. av_dlog(avctx, "max_order = %i\n", sconf->max_order);
  239. av_dlog(avctx, "block_switching = %i\n", sconf->block_switching);
  240. av_dlog(avctx, "bgmc = %i\n", sconf->bgmc);
  241. av_dlog(avctx, "sb_part = %i\n", sconf->sb_part);
  242. av_dlog(avctx, "joint_stereo = %i\n", sconf->joint_stereo);
  243. av_dlog(avctx, "mc_coding = %i\n", sconf->mc_coding);
  244. av_dlog(avctx, "chan_config = %i\n", sconf->chan_config);
  245. av_dlog(avctx, "chan_sort = %i\n", sconf->chan_sort);
  246. av_dlog(avctx, "RLSLMS = %i\n", sconf->rlslms);
  247. av_dlog(avctx, "chan_config_info = %i\n", sconf->chan_config_info);
  248. #endif
  249. }
  250. /** Read an ALSSpecificConfig from a buffer into the output struct.
  251. */
  252. static av_cold int read_specific_config(ALSDecContext *ctx)
  253. {
  254. GetBitContext gb;
  255. uint64_t ht_size;
  256. int i, config_offset;
  257. MPEG4AudioConfig m4ac;
  258. ALSSpecificConfig *sconf = &ctx->sconf;
  259. AVCodecContext *avctx = ctx->avctx;
  260. uint32_t als_id, header_size, trailer_size;
  261. init_get_bits(&gb, avctx->extradata, avctx->extradata_size * 8);
  262. config_offset = avpriv_mpeg4audio_get_config(&m4ac, avctx->extradata,
  263. avctx->extradata_size * 8, 1);
  264. if (config_offset < 0)
  265. return -1;
  266. skip_bits_long(&gb, config_offset);
  267. if (get_bits_left(&gb) < (30 << 3))
  268. return -1;
  269. // read the fixed items
  270. als_id = get_bits_long(&gb, 32);
  271. avctx->sample_rate = m4ac.sample_rate;
  272. skip_bits_long(&gb, 32); // sample rate already known
  273. sconf->samples = get_bits_long(&gb, 32);
  274. avctx->channels = m4ac.channels;
  275. skip_bits(&gb, 16); // number of channels already knwon
  276. skip_bits(&gb, 3); // skip file_type
  277. sconf->resolution = get_bits(&gb, 3);
  278. sconf->floating = get_bits1(&gb);
  279. sconf->msb_first = get_bits1(&gb);
  280. sconf->frame_length = get_bits(&gb, 16) + 1;
  281. sconf->ra_distance = get_bits(&gb, 8);
  282. sconf->ra_flag = get_bits(&gb, 2);
  283. sconf->adapt_order = get_bits1(&gb);
  284. sconf->coef_table = get_bits(&gb, 2);
  285. sconf->long_term_prediction = get_bits1(&gb);
  286. sconf->max_order = get_bits(&gb, 10);
  287. sconf->block_switching = get_bits(&gb, 2);
  288. sconf->bgmc = get_bits1(&gb);
  289. sconf->sb_part = get_bits1(&gb);
  290. sconf->joint_stereo = get_bits1(&gb);
  291. sconf->mc_coding = get_bits1(&gb);
  292. sconf->chan_config = get_bits1(&gb);
  293. sconf->chan_sort = get_bits1(&gb);
  294. sconf->crc_enabled = get_bits1(&gb);
  295. sconf->rlslms = get_bits1(&gb);
  296. skip_bits(&gb, 5); // skip 5 reserved bits
  297. skip_bits1(&gb); // skip aux_data_enabled
  298. // check for ALSSpecificConfig struct
  299. if (als_id != MKBETAG('A','L','S','\0'))
  300. return -1;
  301. ctx->cur_frame_length = sconf->frame_length;
  302. // read channel config
  303. if (sconf->chan_config)
  304. sconf->chan_config_info = get_bits(&gb, 16);
  305. // TODO: use this to set avctx->channel_layout
  306. // read channel sorting
  307. if (sconf->chan_sort && avctx->channels > 1) {
  308. int chan_pos_bits = av_ceil_log2(avctx->channels);
  309. int bits_needed = avctx->channels * chan_pos_bits + 7;
  310. if (get_bits_left(&gb) < bits_needed)
  311. return -1;
  312. if (!(sconf->chan_pos = av_malloc(avctx->channels * sizeof(*sconf->chan_pos))))
  313. return AVERROR(ENOMEM);
  314. for (i = 0; i < avctx->channels; i++) {
  315. sconf->chan_pos[i] = get_bits(&gb, chan_pos_bits);
  316. if (sconf->chan_pos[i] >= avctx->channels) {
  317. av_log(avctx, AV_LOG_WARNING, "Invalid channel reordering.\n");
  318. sconf->chan_sort = 0;
  319. break;
  320. }
  321. }
  322. align_get_bits(&gb);
  323. } else {
  324. sconf->chan_sort = 0;
  325. }
  326. // read fixed header and trailer sizes,
  327. // if size = 0xFFFFFFFF then there is no data field!
  328. if (get_bits_left(&gb) < 64)
  329. return -1;
  330. header_size = get_bits_long(&gb, 32);
  331. trailer_size = get_bits_long(&gb, 32);
  332. if (header_size == 0xFFFFFFFF)
  333. header_size = 0;
  334. if (trailer_size == 0xFFFFFFFF)
  335. trailer_size = 0;
  336. ht_size = ((int64_t)(header_size) + (int64_t)(trailer_size)) << 3;
  337. // skip the header and trailer data
  338. if (get_bits_left(&gb) < ht_size)
  339. return -1;
  340. if (ht_size > INT32_MAX)
  341. return -1;
  342. skip_bits_long(&gb, ht_size);
  343. // initialize CRC calculation
  344. if (sconf->crc_enabled) {
  345. if (get_bits_left(&gb) < 32)
  346. return -1;
  347. if (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL)) {
  348. ctx->crc_table = av_crc_get_table(AV_CRC_32_IEEE_LE);
  349. ctx->crc = 0xFFFFFFFF;
  350. ctx->crc_org = ~get_bits_long(&gb, 32);
  351. } else
  352. skip_bits_long(&gb, 32);
  353. }
  354. // no need to read the rest of ALSSpecificConfig (ra_unit_size & aux data)
  355. dprint_specific_config(ctx);
  356. return 0;
  357. }
  358. /** Check the ALSSpecificConfig for unsupported features.
  359. */
  360. static int check_specific_config(ALSDecContext *ctx)
  361. {
  362. ALSSpecificConfig *sconf = &ctx->sconf;
  363. int error = 0;
  364. // report unsupported feature and set error value
  365. #define MISSING_ERR(cond, str, errval) \
  366. { \
  367. if (cond) { \
  368. av_log_missing_feature(ctx->avctx, str, 0); \
  369. error = errval; \
  370. } \
  371. }
  372. MISSING_ERR(sconf->floating, "Floating point decoding", AVERROR_PATCHWELCOME);
  373. MISSING_ERR(sconf->rlslms, "Adaptive RLS-LMS prediction", AVERROR_PATCHWELCOME);
  374. return error;
  375. }
  376. /** Parse the bs_info field to extract the block partitioning used in
  377. * block switching mode, refer to ISO/IEC 14496-3, section 11.6.2.
  378. */
  379. static void parse_bs_info(const uint32_t bs_info, unsigned int n,
  380. unsigned int div, unsigned int **div_blocks,
  381. unsigned int *num_blocks)
  382. {
  383. if (n < 31 && ((bs_info << n) & 0x40000000)) {
  384. // if the level is valid and the investigated bit n is set
  385. // then recursively check both children at bits (2n+1) and (2n+2)
  386. n *= 2;
  387. div += 1;
  388. parse_bs_info(bs_info, n + 1, div, div_blocks, num_blocks);
  389. parse_bs_info(bs_info, n + 2, div, div_blocks, num_blocks);
  390. } else {
  391. // else the bit is not set or the last level has been reached
  392. // (bit implicitly not set)
  393. **div_blocks = div;
  394. (*div_blocks)++;
  395. (*num_blocks)++;
  396. }
  397. }
  398. /** Read and decode a Rice codeword.
  399. */
  400. static int32_t decode_rice(GetBitContext *gb, unsigned int k)
  401. {
  402. int max = get_bits_left(gb) - k;
  403. int q = get_unary(gb, 0, max);
  404. int r = k ? get_bits1(gb) : !(q & 1);
  405. if (k > 1) {
  406. q <<= (k - 1);
  407. q += get_bits_long(gb, k - 1);
  408. } else if (!k) {
  409. q >>= 1;
  410. }
  411. return r ? q : ~q;
  412. }
  413. /** Convert PARCOR coefficient k to direct filter coefficient.
  414. */
  415. static void parcor_to_lpc(unsigned int k, const int32_t *par, int32_t *cof)
  416. {
  417. int i, j;
  418. for (i = 0, j = k - 1; i < j; i++, j--) {
  419. int tmp1 = ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
  420. cof[j] += ((MUL64(par[k], cof[i]) + (1 << 19)) >> 20);
  421. cof[i] += tmp1;
  422. }
  423. if (i == j)
  424. cof[i] += ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
  425. cof[k] = par[k];
  426. }
  427. /** Read block switching field if necessary and set actual block sizes.
  428. * Also assure that the block sizes of the last frame correspond to the
  429. * actual number of samples.
  430. */
  431. static void get_block_sizes(ALSDecContext *ctx, unsigned int *div_blocks,
  432. uint32_t *bs_info)
  433. {
  434. ALSSpecificConfig *sconf = &ctx->sconf;
  435. GetBitContext *gb = &ctx->gb;
  436. unsigned int *ptr_div_blocks = div_blocks;
  437. unsigned int b;
  438. if (sconf->block_switching) {
  439. unsigned int bs_info_len = 1 << (sconf->block_switching + 2);
  440. *bs_info = get_bits_long(gb, bs_info_len);
  441. *bs_info <<= (32 - bs_info_len);
  442. }
  443. ctx->num_blocks = 0;
  444. parse_bs_info(*bs_info, 0, 0, &ptr_div_blocks, &ctx->num_blocks);
  445. // The last frame may have an overdetermined block structure given in
  446. // the bitstream. In that case the defined block structure would need
  447. // more samples than available to be consistent.
  448. // The block structure is actually used but the block sizes are adapted
  449. // to fit the actual number of available samples.
  450. // Example: 5 samples, 2nd level block sizes: 2 2 2 2.
  451. // This results in the actual block sizes: 2 2 1 0.
  452. // This is not specified in 14496-3 but actually done by the reference
  453. // codec RM22 revision 2.
  454. // This appears to happen in case of an odd number of samples in the last
  455. // frame which is actually not allowed by the block length switching part
  456. // of 14496-3.
  457. // The ALS conformance files feature an odd number of samples in the last
  458. // frame.
  459. for (b = 0; b < ctx->num_blocks; b++)
  460. div_blocks[b] = ctx->sconf.frame_length >> div_blocks[b];
  461. if (ctx->cur_frame_length != ctx->sconf.frame_length) {
  462. unsigned int remaining = ctx->cur_frame_length;
  463. for (b = 0; b < ctx->num_blocks; b++) {
  464. if (remaining <= div_blocks[b]) {
  465. div_blocks[b] = remaining;
  466. ctx->num_blocks = b + 1;
  467. break;
  468. }
  469. remaining -= div_blocks[b];
  470. }
  471. }
  472. }
  473. /** Read the block data for a constant block
  474. */
  475. static int read_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
  476. {
  477. ALSSpecificConfig *sconf = &ctx->sconf;
  478. AVCodecContext *avctx = ctx->avctx;
  479. GetBitContext *gb = &ctx->gb;
  480. if (bd->block_length <= 0)
  481. return AVERROR_INVALIDDATA;
  482. *bd->raw_samples = 0;
  483. *bd->const_block = get_bits1(gb); // 1 = constant value, 0 = zero block (silence)
  484. bd->js_blocks = get_bits1(gb);
  485. // skip 5 reserved bits
  486. skip_bits(gb, 5);
  487. if (*bd->const_block) {
  488. unsigned int const_val_bits = sconf->floating ? 24 : avctx->bits_per_raw_sample;
  489. *bd->raw_samples = get_sbits_long(gb, const_val_bits);
  490. }
  491. // ensure constant block decoding by reusing this field
  492. *bd->const_block = 1;
  493. return 0;
  494. }
  495. /** Decode the block data for a constant block
  496. */
  497. static void decode_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
  498. {
  499. int smp = bd->block_length - 1;
  500. int32_t val = *bd->raw_samples;
  501. int32_t *dst = bd->raw_samples + 1;
  502. // write raw samples into buffer
  503. for (; smp; smp--)
  504. *dst++ = val;
  505. }
  506. /** Read the block data for a non-constant block
  507. */
  508. static int read_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
  509. {
  510. ALSSpecificConfig *sconf = &ctx->sconf;
  511. AVCodecContext *avctx = ctx->avctx;
  512. GetBitContext *gb = &ctx->gb;
  513. unsigned int k;
  514. unsigned int s[8];
  515. unsigned int sx[8];
  516. unsigned int sub_blocks, log2_sub_blocks, sb_length;
  517. unsigned int start = 0;
  518. unsigned int opt_order;
  519. int sb;
  520. int32_t *quant_cof = bd->quant_cof;
  521. int32_t *current_res;
  522. // ensure variable block decoding by reusing this field
  523. *bd->const_block = 0;
  524. *bd->opt_order = 1;
  525. bd->js_blocks = get_bits1(gb);
  526. opt_order = *bd->opt_order;
  527. // determine the number of subblocks for entropy decoding
  528. if (!sconf->bgmc && !sconf->sb_part) {
  529. log2_sub_blocks = 0;
  530. } else {
  531. if (sconf->bgmc && sconf->sb_part)
  532. log2_sub_blocks = get_bits(gb, 2);
  533. else
  534. log2_sub_blocks = 2 * get_bits1(gb);
  535. }
  536. sub_blocks = 1 << log2_sub_blocks;
  537. // do not continue in case of a damaged stream since
  538. // block_length must be evenly divisible by sub_blocks
  539. if (bd->block_length & (sub_blocks - 1)) {
  540. av_log(avctx, AV_LOG_WARNING,
  541. "Block length is not evenly divisible by the number of subblocks.\n");
  542. return -1;
  543. }
  544. sb_length = bd->block_length >> log2_sub_blocks;
  545. if (sconf->bgmc) {
  546. s[0] = get_bits(gb, 8 + (sconf->resolution > 1));
  547. for (k = 1; k < sub_blocks; k++)
  548. s[k] = s[k - 1] + decode_rice(gb, 2);
  549. for (k = 0; k < sub_blocks; k++) {
  550. sx[k] = s[k] & 0x0F;
  551. s [k] >>= 4;
  552. }
  553. } else {
  554. s[0] = get_bits(gb, 4 + (sconf->resolution > 1));
  555. for (k = 1; k < sub_blocks; k++)
  556. s[k] = s[k - 1] + decode_rice(gb, 0);
  557. }
  558. for (k = 1; k < sub_blocks; k++)
  559. if (s[k] > 32) {
  560. av_log(avctx, AV_LOG_ERROR, "k invalid for rice code.\n");
  561. return AVERROR_INVALIDDATA;
  562. }
  563. if (get_bits1(gb))
  564. *bd->shift_lsbs = get_bits(gb, 4) + 1;
  565. *bd->store_prev_samples = (bd->js_blocks && bd->raw_other) || *bd->shift_lsbs;
  566. if (!sconf->rlslms) {
  567. if (sconf->adapt_order) {
  568. int opt_order_length = av_ceil_log2(av_clip((bd->block_length >> 3) - 1,
  569. 2, sconf->max_order + 1));
  570. *bd->opt_order = get_bits(gb, opt_order_length);
  571. if (*bd->opt_order > sconf->max_order) {
  572. *bd->opt_order = sconf->max_order;
  573. av_log(avctx, AV_LOG_ERROR, "Predictor order too large!\n");
  574. return AVERROR_INVALIDDATA;
  575. }
  576. } else {
  577. *bd->opt_order = sconf->max_order;
  578. }
  579. opt_order = *bd->opt_order;
  580. if (opt_order) {
  581. int add_base;
  582. if (sconf->coef_table == 3) {
  583. add_base = 0x7F;
  584. // read coefficient 0
  585. quant_cof[0] = 32 * parcor_scaled_values[get_bits(gb, 7)];
  586. // read coefficient 1
  587. if (opt_order > 1)
  588. quant_cof[1] = -32 * parcor_scaled_values[get_bits(gb, 7)];
  589. // read coefficients 2 to opt_order
  590. for (k = 2; k < opt_order; k++)
  591. quant_cof[k] = get_bits(gb, 7);
  592. } else {
  593. int k_max;
  594. add_base = 1;
  595. // read coefficient 0 to 19
  596. k_max = FFMIN(opt_order, 20);
  597. for (k = 0; k < k_max; k++) {
  598. int rice_param = parcor_rice_table[sconf->coef_table][k][1];
  599. int offset = parcor_rice_table[sconf->coef_table][k][0];
  600. quant_cof[k] = decode_rice(gb, rice_param) + offset;
  601. if (quant_cof[k] < -64 || quant_cof[k] > 63) {
  602. av_log(avctx, AV_LOG_ERROR, "quant_cof %d is out of range\n", quant_cof[k]);
  603. return AVERROR_INVALIDDATA;
  604. }
  605. }
  606. // read coefficients 20 to 126
  607. k_max = FFMIN(opt_order, 127);
  608. for (; k < k_max; k++)
  609. quant_cof[k] = decode_rice(gb, 2) + (k & 1);
  610. // read coefficients 127 to opt_order
  611. for (; k < opt_order; k++)
  612. quant_cof[k] = decode_rice(gb, 1);
  613. quant_cof[0] = 32 * parcor_scaled_values[quant_cof[0] + 64];
  614. if (opt_order > 1)
  615. quant_cof[1] = -32 * parcor_scaled_values[quant_cof[1] + 64];
  616. }
  617. for (k = 2; k < opt_order; k++)
  618. quant_cof[k] = (quant_cof[k] << 14) + (add_base << 13);
  619. }
  620. }
  621. // read LTP gain and lag values
  622. if (sconf->long_term_prediction) {
  623. *bd->use_ltp = get_bits1(gb);
  624. if (*bd->use_ltp) {
  625. int r, c;
  626. bd->ltp_gain[0] = decode_rice(gb, 1) << 3;
  627. bd->ltp_gain[1] = decode_rice(gb, 2) << 3;
  628. r = get_unary(gb, 0, 3);
  629. c = get_bits(gb, 2);
  630. bd->ltp_gain[2] = ltp_gain_values[r][c];
  631. bd->ltp_gain[3] = decode_rice(gb, 2) << 3;
  632. bd->ltp_gain[4] = decode_rice(gb, 1) << 3;
  633. *bd->ltp_lag = get_bits(gb, ctx->ltp_lag_length);
  634. *bd->ltp_lag += FFMAX(4, opt_order + 1);
  635. }
  636. }
  637. // read first value and residuals in case of a random access block
  638. if (bd->ra_block) {
  639. if (opt_order)
  640. bd->raw_samples[0] = decode_rice(gb, avctx->bits_per_raw_sample - 4);
  641. if (opt_order > 1)
  642. bd->raw_samples[1] = decode_rice(gb, FFMIN(s[0] + 3, ctx->s_max));
  643. if (opt_order > 2)
  644. bd->raw_samples[2] = decode_rice(gb, FFMIN(s[0] + 1, ctx->s_max));
  645. start = FFMIN(opt_order, 3);
  646. }
  647. // read all residuals
  648. if (sconf->bgmc) {
  649. int delta[8];
  650. unsigned int k [8];
  651. unsigned int b = av_clip((av_ceil_log2(bd->block_length) - 3) >> 1, 0, 5);
  652. // read most significant bits
  653. unsigned int high;
  654. unsigned int low;
  655. unsigned int value;
  656. ff_bgmc_decode_init(gb, &high, &low, &value);
  657. current_res = bd->raw_samples + start;
  658. for (sb = 0; sb < sub_blocks; sb++) {
  659. unsigned int sb_len = sb_length - (sb ? 0 : start);
  660. k [sb] = s[sb] > b ? s[sb] - b : 0;
  661. delta[sb] = 5 - s[sb] + k[sb];
  662. ff_bgmc_decode(gb, sb_len, current_res,
  663. delta[sb], sx[sb], &high, &low, &value, ctx->bgmc_lut, ctx->bgmc_lut_status);
  664. current_res += sb_len;
  665. }
  666. ff_bgmc_decode_end(gb);
  667. // read least significant bits and tails
  668. current_res = bd->raw_samples + start;
  669. for (sb = 0; sb < sub_blocks; sb++, start = 0) {
  670. unsigned int cur_tail_code = tail_code[sx[sb]][delta[sb]];
  671. unsigned int cur_k = k[sb];
  672. unsigned int cur_s = s[sb];
  673. for (; start < sb_length; start++) {
  674. int32_t res = *current_res;
  675. if (res == cur_tail_code) {
  676. unsigned int max_msb = (2 + (sx[sb] > 2) + (sx[sb] > 10))
  677. << (5 - delta[sb]);
  678. res = decode_rice(gb, cur_s);
  679. if (res >= 0) {
  680. res += (max_msb ) << cur_k;
  681. } else {
  682. res -= (max_msb - 1) << cur_k;
  683. }
  684. } else {
  685. if (res > cur_tail_code)
  686. res--;
  687. if (res & 1)
  688. res = -res;
  689. res >>= 1;
  690. if (cur_k) {
  691. res <<= cur_k;
  692. res |= get_bits_long(gb, cur_k);
  693. }
  694. }
  695. *current_res++ = res;
  696. }
  697. }
  698. } else {
  699. current_res = bd->raw_samples + start;
  700. for (sb = 0; sb < sub_blocks; sb++, start = 0)
  701. for (; start < sb_length; start++)
  702. *current_res++ = decode_rice(gb, s[sb]);
  703. }
  704. if (!sconf->mc_coding || ctx->js_switch)
  705. align_get_bits(gb);
  706. return 0;
  707. }
  708. /** Decode the block data for a non-constant block
  709. */
  710. static int decode_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
  711. {
  712. ALSSpecificConfig *sconf = &ctx->sconf;
  713. unsigned int block_length = bd->block_length;
  714. unsigned int smp = 0;
  715. unsigned int k;
  716. int opt_order = *bd->opt_order;
  717. int sb;
  718. int64_t y;
  719. int32_t *quant_cof = bd->quant_cof;
  720. int32_t *lpc_cof = bd->lpc_cof;
  721. int32_t *raw_samples = bd->raw_samples;
  722. int32_t *raw_samples_end = bd->raw_samples + bd->block_length;
  723. int32_t *lpc_cof_reversed = ctx->lpc_cof_reversed_buffer;
  724. // reverse long-term prediction
  725. if (*bd->use_ltp) {
  726. int ltp_smp;
  727. for (ltp_smp = FFMAX(*bd->ltp_lag - 2, 0); ltp_smp < block_length; ltp_smp++) {
  728. int center = ltp_smp - *bd->ltp_lag;
  729. int begin = FFMAX(0, center - 2);
  730. int end = center + 3;
  731. int tab = 5 - (end - begin);
  732. int base;
  733. y = 1 << 6;
  734. for (base = begin; base < end; base++, tab++)
  735. y += MUL64(bd->ltp_gain[tab], raw_samples[base]);
  736. raw_samples[ltp_smp] += y >> 7;
  737. }
  738. }
  739. // reconstruct all samples from residuals
  740. if (bd->ra_block) {
  741. for (smp = 0; smp < opt_order; smp++) {
  742. y = 1 << 19;
  743. for (sb = 0; sb < smp; sb++)
  744. y += MUL64(lpc_cof[sb], raw_samples[-(sb + 1)]);
  745. *raw_samples++ -= y >> 20;
  746. parcor_to_lpc(smp, quant_cof, lpc_cof);
  747. }
  748. } else {
  749. for (k = 0; k < opt_order; k++)
  750. parcor_to_lpc(k, quant_cof, lpc_cof);
  751. // store previous samples in case that they have to be altered
  752. if (*bd->store_prev_samples)
  753. memcpy(bd->prev_raw_samples, raw_samples - sconf->max_order,
  754. sizeof(*bd->prev_raw_samples) * sconf->max_order);
  755. // reconstruct difference signal for prediction (joint-stereo)
  756. if (bd->js_blocks && bd->raw_other) {
  757. int32_t *left, *right;
  758. if (bd->raw_other > raw_samples) { // D = R - L
  759. left = raw_samples;
  760. right = bd->raw_other;
  761. } else { // D = R - L
  762. left = bd->raw_other;
  763. right = raw_samples;
  764. }
  765. for (sb = -1; sb >= -sconf->max_order; sb--)
  766. raw_samples[sb] = right[sb] - left[sb];
  767. }
  768. // reconstruct shifted signal
  769. if (*bd->shift_lsbs)
  770. for (sb = -1; sb >= -sconf->max_order; sb--)
  771. raw_samples[sb] >>= *bd->shift_lsbs;
  772. }
  773. // reverse linear prediction coefficients for efficiency
  774. lpc_cof = lpc_cof + opt_order;
  775. for (sb = 0; sb < opt_order; sb++)
  776. lpc_cof_reversed[sb] = lpc_cof[-(sb + 1)];
  777. // reconstruct raw samples
  778. raw_samples = bd->raw_samples + smp;
  779. lpc_cof = lpc_cof_reversed + opt_order;
  780. for (; raw_samples < raw_samples_end; raw_samples++) {
  781. y = 1 << 19;
  782. for (sb = -opt_order; sb < 0; sb++)
  783. y += MUL64(lpc_cof[sb], raw_samples[sb]);
  784. *raw_samples -= y >> 20;
  785. }
  786. raw_samples = bd->raw_samples;
  787. // restore previous samples in case that they have been altered
  788. if (*bd->store_prev_samples)
  789. memcpy(raw_samples - sconf->max_order, bd->prev_raw_samples,
  790. sizeof(*raw_samples) * sconf->max_order);
  791. return 0;
  792. }
  793. /** Read the block data.
  794. */
  795. static int read_block(ALSDecContext *ctx, ALSBlockData *bd)
  796. {
  797. GetBitContext *gb = &ctx->gb;
  798. int ret;
  799. *bd->shift_lsbs = 0;
  800. // read block type flag and read the samples accordingly
  801. if (get_bits1(gb)) {
  802. if ((ret = read_var_block_data(ctx, bd)) < 0)
  803. return ret;
  804. } else {
  805. if ((ret = read_const_block_data(ctx, bd)) < 0)
  806. return ret;
  807. }
  808. return 0;
  809. }
  810. /** Decode the block data.
  811. */
  812. static int decode_block(ALSDecContext *ctx, ALSBlockData *bd)
  813. {
  814. unsigned int smp;
  815. // read block type flag and read the samples accordingly
  816. if (*bd->const_block)
  817. decode_const_block_data(ctx, bd);
  818. else if (decode_var_block_data(ctx, bd))
  819. return -1;
  820. // TODO: read RLSLMS extension data
  821. if (*bd->shift_lsbs)
  822. for (smp = 0; smp < bd->block_length; smp++)
  823. bd->raw_samples[smp] <<= *bd->shift_lsbs;
  824. return 0;
  825. }
  826. /** Read and decode block data successively.
  827. */
  828. static int read_decode_block(ALSDecContext *ctx, ALSBlockData *bd)
  829. {
  830. int ret;
  831. ret = read_block(ctx, bd);
  832. if (ret)
  833. return ret;
  834. ret = decode_block(ctx, bd);
  835. return ret;
  836. }
  837. /** Compute the number of samples left to decode for the current frame and
  838. * sets these samples to zero.
  839. */
  840. static void zero_remaining(unsigned int b, unsigned int b_max,
  841. const unsigned int *div_blocks, int32_t *buf)
  842. {
  843. unsigned int count = 0;
  844. while (b < b_max)
  845. count += div_blocks[b++];
  846. if (count)
  847. memset(buf, 0, sizeof(*buf) * count);
  848. }
  849. /** Decode blocks independently.
  850. */
  851. static int decode_blocks_ind(ALSDecContext *ctx, unsigned int ra_frame,
  852. unsigned int c, const unsigned int *div_blocks,
  853. unsigned int *js_blocks)
  854. {
  855. unsigned int b;
  856. ALSBlockData bd = { 0 };
  857. bd.ra_block = ra_frame;
  858. bd.const_block = ctx->const_block;
  859. bd.shift_lsbs = ctx->shift_lsbs;
  860. bd.opt_order = ctx->opt_order;
  861. bd.store_prev_samples = ctx->store_prev_samples;
  862. bd.use_ltp = ctx->use_ltp;
  863. bd.ltp_lag = ctx->ltp_lag;
  864. bd.ltp_gain = ctx->ltp_gain[0];
  865. bd.quant_cof = ctx->quant_cof[0];
  866. bd.lpc_cof = ctx->lpc_cof[0];
  867. bd.prev_raw_samples = ctx->prev_raw_samples;
  868. bd.raw_samples = ctx->raw_samples[c];
  869. for (b = 0; b < ctx->num_blocks; b++) {
  870. bd.block_length = div_blocks[b];
  871. if (read_decode_block(ctx, &bd)) {
  872. // damaged block, write zero for the rest of the frame
  873. zero_remaining(b, ctx->num_blocks, div_blocks, bd.raw_samples);
  874. return -1;
  875. }
  876. bd.raw_samples += div_blocks[b];
  877. bd.ra_block = 0;
  878. }
  879. return 0;
  880. }
  881. /** Decode blocks dependently.
  882. */
  883. static int decode_blocks(ALSDecContext *ctx, unsigned int ra_frame,
  884. unsigned int c, const unsigned int *div_blocks,
  885. unsigned int *js_blocks)
  886. {
  887. ALSSpecificConfig *sconf = &ctx->sconf;
  888. unsigned int offset = 0;
  889. unsigned int b;
  890. ALSBlockData bd[2] = { { 0 } };
  891. bd[0].ra_block = ra_frame;
  892. bd[0].const_block = ctx->const_block;
  893. bd[0].shift_lsbs = ctx->shift_lsbs;
  894. bd[0].opt_order = ctx->opt_order;
  895. bd[0].store_prev_samples = ctx->store_prev_samples;
  896. bd[0].use_ltp = ctx->use_ltp;
  897. bd[0].ltp_lag = ctx->ltp_lag;
  898. bd[0].ltp_gain = ctx->ltp_gain[0];
  899. bd[0].quant_cof = ctx->quant_cof[0];
  900. bd[0].lpc_cof = ctx->lpc_cof[0];
  901. bd[0].prev_raw_samples = ctx->prev_raw_samples;
  902. bd[0].js_blocks = *js_blocks;
  903. bd[1].ra_block = ra_frame;
  904. bd[1].const_block = ctx->const_block;
  905. bd[1].shift_lsbs = ctx->shift_lsbs;
  906. bd[1].opt_order = ctx->opt_order;
  907. bd[1].store_prev_samples = ctx->store_prev_samples;
  908. bd[1].use_ltp = ctx->use_ltp;
  909. bd[1].ltp_lag = ctx->ltp_lag;
  910. bd[1].ltp_gain = ctx->ltp_gain[0];
  911. bd[1].quant_cof = ctx->quant_cof[0];
  912. bd[1].lpc_cof = ctx->lpc_cof[0];
  913. bd[1].prev_raw_samples = ctx->prev_raw_samples;
  914. bd[1].js_blocks = *(js_blocks + 1);
  915. // decode all blocks
  916. for (b = 0; b < ctx->num_blocks; b++) {
  917. unsigned int s;
  918. bd[0].block_length = div_blocks[b];
  919. bd[1].block_length = div_blocks[b];
  920. bd[0].raw_samples = ctx->raw_samples[c ] + offset;
  921. bd[1].raw_samples = ctx->raw_samples[c + 1] + offset;
  922. bd[0].raw_other = bd[1].raw_samples;
  923. bd[1].raw_other = bd[0].raw_samples;
  924. if(read_decode_block(ctx, &bd[0]) || read_decode_block(ctx, &bd[1])) {
  925. // damaged block, write zero for the rest of the frame
  926. zero_remaining(b, ctx->num_blocks, div_blocks, bd[0].raw_samples);
  927. zero_remaining(b, ctx->num_blocks, div_blocks, bd[1].raw_samples);
  928. return -1;
  929. }
  930. // reconstruct joint-stereo blocks
  931. if (bd[0].js_blocks) {
  932. if (bd[1].js_blocks)
  933. av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel pair.\n");
  934. for (s = 0; s < div_blocks[b]; s++)
  935. bd[0].raw_samples[s] = bd[1].raw_samples[s] - bd[0].raw_samples[s];
  936. } else if (bd[1].js_blocks) {
  937. for (s = 0; s < div_blocks[b]; s++)
  938. bd[1].raw_samples[s] = bd[1].raw_samples[s] + bd[0].raw_samples[s];
  939. }
  940. offset += div_blocks[b];
  941. bd[0].ra_block = 0;
  942. bd[1].ra_block = 0;
  943. }
  944. // store carryover raw samples,
  945. // the others channel raw samples are stored by the calling function.
  946. memmove(ctx->raw_samples[c] - sconf->max_order,
  947. ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
  948. sizeof(*ctx->raw_samples[c]) * sconf->max_order);
  949. return 0;
  950. }
  951. /** Read the channel data.
  952. */
  953. static int read_channel_data(ALSDecContext *ctx, ALSChannelData *cd, int c)
  954. {
  955. GetBitContext *gb = &ctx->gb;
  956. ALSChannelData *current = cd;
  957. unsigned int channels = ctx->avctx->channels;
  958. int entries = 0;
  959. while (entries < channels && !(current->stop_flag = get_bits1(gb))) {
  960. current->master_channel = get_bits_long(gb, av_ceil_log2(channels));
  961. if (current->master_channel >= channels) {
  962. av_log(ctx->avctx, AV_LOG_ERROR, "Invalid master channel!\n");
  963. return -1;
  964. }
  965. if (current->master_channel != c) {
  966. current->time_diff_flag = get_bits1(gb);
  967. current->weighting[0] = mcc_weightings[av_clip(decode_rice(gb, 1) + 16, 0, 31)];
  968. current->weighting[1] = mcc_weightings[av_clip(decode_rice(gb, 2) + 14, 0, 31)];
  969. current->weighting[2] = mcc_weightings[av_clip(decode_rice(gb, 1) + 16, 0, 31)];
  970. if (current->time_diff_flag) {
  971. current->weighting[3] = mcc_weightings[av_clip(decode_rice(gb, 1) + 16, 0, 31)];
  972. current->weighting[4] = mcc_weightings[av_clip(decode_rice(gb, 1) + 16, 0, 31)];
  973. current->weighting[5] = mcc_weightings[av_clip(decode_rice(gb, 1) + 16, 0, 31)];
  974. current->time_diff_sign = get_bits1(gb);
  975. current->time_diff_index = get_bits(gb, ctx->ltp_lag_length - 3) + 3;
  976. }
  977. }
  978. current++;
  979. entries++;
  980. }
  981. if (entries == channels) {
  982. av_log(ctx->avctx, AV_LOG_ERROR, "Damaged channel data!\n");
  983. return -1;
  984. }
  985. align_get_bits(gb);
  986. return 0;
  987. }
  988. /** Recursively reverts the inter-channel correlation for a block.
  989. */
  990. static int revert_channel_correlation(ALSDecContext *ctx, ALSBlockData *bd,
  991. ALSChannelData **cd, int *reverted,
  992. unsigned int offset, int c)
  993. {
  994. ALSChannelData *ch = cd[c];
  995. unsigned int dep = 0;
  996. unsigned int channels = ctx->avctx->channels;
  997. if (reverted[c])
  998. return 0;
  999. reverted[c] = 1;
  1000. while (dep < channels && !ch[dep].stop_flag) {
  1001. revert_channel_correlation(ctx, bd, cd, reverted, offset,
  1002. ch[dep].master_channel);
  1003. dep++;
  1004. }
  1005. if (dep == channels) {
  1006. av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel correlation.\n");
  1007. return -1;
  1008. }
  1009. bd->const_block = ctx->const_block + c;
  1010. bd->shift_lsbs = ctx->shift_lsbs + c;
  1011. bd->opt_order = ctx->opt_order + c;
  1012. bd->store_prev_samples = ctx->store_prev_samples + c;
  1013. bd->use_ltp = ctx->use_ltp + c;
  1014. bd->ltp_lag = ctx->ltp_lag + c;
  1015. bd->ltp_gain = ctx->ltp_gain[c];
  1016. bd->lpc_cof = ctx->lpc_cof[c];
  1017. bd->quant_cof = ctx->quant_cof[c];
  1018. bd->raw_samples = ctx->raw_samples[c] + offset;
  1019. dep = 0;
  1020. while (!ch[dep].stop_flag) {
  1021. unsigned int smp;
  1022. unsigned int begin = 1;
  1023. unsigned int end = bd->block_length - 1;
  1024. int64_t y;
  1025. int32_t *master = ctx->raw_samples[ch[dep].master_channel] + offset;
  1026. if (ch[dep].time_diff_flag) {
  1027. int t = ch[dep].time_diff_index;
  1028. if (ch[dep].time_diff_sign) {
  1029. t = -t;
  1030. begin -= t;
  1031. } else {
  1032. end -= t;
  1033. }
  1034. for (smp = begin; smp < end; smp++) {
  1035. y = (1 << 6) +
  1036. MUL64(ch[dep].weighting[0], master[smp - 1 ]) +
  1037. MUL64(ch[dep].weighting[1], master[smp ]) +
  1038. MUL64(ch[dep].weighting[2], master[smp + 1 ]) +
  1039. MUL64(ch[dep].weighting[3], master[smp - 1 + t]) +
  1040. MUL64(ch[dep].weighting[4], master[smp + t]) +
  1041. MUL64(ch[dep].weighting[5], master[smp + 1 + t]);
  1042. bd->raw_samples[smp] += y >> 7;
  1043. }
  1044. } else {
  1045. for (smp = begin; smp < end; smp++) {
  1046. y = (1 << 6) +
  1047. MUL64(ch[dep].weighting[0], master[smp - 1]) +
  1048. MUL64(ch[dep].weighting[1], master[smp ]) +
  1049. MUL64(ch[dep].weighting[2], master[smp + 1]);
  1050. bd->raw_samples[smp] += y >> 7;
  1051. }
  1052. }
  1053. dep++;
  1054. }
  1055. return 0;
  1056. }
  1057. /** Read the frame data.
  1058. */
  1059. static int read_frame_data(ALSDecContext *ctx, unsigned int ra_frame)
  1060. {
  1061. ALSSpecificConfig *sconf = &ctx->sconf;
  1062. AVCodecContext *avctx = ctx->avctx;
  1063. GetBitContext *gb = &ctx->gb;
  1064. unsigned int div_blocks[32]; ///< block sizes.
  1065. unsigned int c;
  1066. unsigned int js_blocks[2];
  1067. uint32_t bs_info = 0;
  1068. // skip the size of the ra unit if present in the frame
  1069. if (sconf->ra_flag == RA_FLAG_FRAMES && ra_frame)
  1070. skip_bits_long(gb, 32);
  1071. if (sconf->mc_coding && sconf->joint_stereo) {
  1072. ctx->js_switch = get_bits1(gb);
  1073. align_get_bits(gb);
  1074. }
  1075. if (!sconf->mc_coding || ctx->js_switch) {
  1076. int independent_bs = !sconf->joint_stereo;
  1077. for (c = 0; c < avctx->channels; c++) {
  1078. js_blocks[0] = 0;
  1079. js_blocks[1] = 0;
  1080. get_block_sizes(ctx, div_blocks, &bs_info);
  1081. // if joint_stereo and block_switching is set, independent decoding
  1082. // is signaled via the first bit of bs_info
  1083. if (sconf->joint_stereo && sconf->block_switching)
  1084. if (bs_info >> 31)
  1085. independent_bs = 2;
  1086. // if this is the last channel, it has to be decoded independently
  1087. if (c == avctx->channels - 1)
  1088. independent_bs = 1;
  1089. if (independent_bs) {
  1090. if (decode_blocks_ind(ctx, ra_frame, c, div_blocks, js_blocks))
  1091. return -1;
  1092. independent_bs--;
  1093. } else {
  1094. if (decode_blocks(ctx, ra_frame, c, div_blocks, js_blocks))
  1095. return -1;
  1096. c++;
  1097. }
  1098. // store carryover raw samples
  1099. memmove(ctx->raw_samples[c] - sconf->max_order,
  1100. ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
  1101. sizeof(*ctx->raw_samples[c]) * sconf->max_order);
  1102. }
  1103. } else { // multi-channel coding
  1104. ALSBlockData bd = { 0 };
  1105. int b, ret;
  1106. int *reverted_channels = ctx->reverted_channels;
  1107. unsigned int offset = 0;
  1108. for (c = 0; c < avctx->channels; c++)
  1109. if (ctx->chan_data[c] < ctx->chan_data_buffer) {
  1110. av_log(ctx->avctx, AV_LOG_ERROR, "Invalid channel data!\n");
  1111. return -1;
  1112. }
  1113. memset(reverted_channels, 0, sizeof(*reverted_channels) * avctx->channels);
  1114. bd.ra_block = ra_frame;
  1115. bd.prev_raw_samples = ctx->prev_raw_samples;
  1116. get_block_sizes(ctx, div_blocks, &bs_info);
  1117. for (b = 0; b < ctx->num_blocks; b++) {
  1118. bd.block_length = div_blocks[b];
  1119. for (c = 0; c < avctx->channels; c++) {
  1120. bd.const_block = ctx->const_block + c;
  1121. bd.shift_lsbs = ctx->shift_lsbs + c;
  1122. bd.opt_order = ctx->opt_order + c;
  1123. bd.store_prev_samples = ctx->store_prev_samples + c;
  1124. bd.use_ltp = ctx->use_ltp + c;
  1125. bd.ltp_lag = ctx->ltp_lag + c;
  1126. bd.ltp_gain = ctx->ltp_gain[c];
  1127. bd.lpc_cof = ctx->lpc_cof[c];
  1128. bd.quant_cof = ctx->quant_cof[c];
  1129. bd.raw_samples = ctx->raw_samples[c] + offset;
  1130. bd.raw_other = NULL;
  1131. if ((ret = read_block(ctx, &bd)) < 0)
  1132. return ret;
  1133. if ((ret = read_channel_data(ctx, ctx->chan_data[c], c)) < 0)
  1134. return ret;
  1135. }
  1136. for (c = 0; c < avctx->channels; c++)
  1137. if (revert_channel_correlation(ctx, &bd, ctx->chan_data,
  1138. reverted_channels, offset, c))
  1139. return -1;
  1140. for (c = 0; c < avctx->channels; c++) {
  1141. bd.const_block = ctx->const_block + c;
  1142. bd.shift_lsbs = ctx->shift_lsbs + c;
  1143. bd.opt_order = ctx->opt_order + c;
  1144. bd.store_prev_samples = ctx->store_prev_samples + c;
  1145. bd.use_ltp = ctx->use_ltp + c;
  1146. bd.ltp_lag = ctx->ltp_lag + c;
  1147. bd.ltp_gain = ctx->ltp_gain[c];
  1148. bd.lpc_cof = ctx->lpc_cof[c];
  1149. bd.quant_cof = ctx->quant_cof[c];
  1150. bd.raw_samples = ctx->raw_samples[c] + offset;
  1151. if ((ret = decode_block(ctx, &bd)) < 0)
  1152. return ret;
  1153. }
  1154. memset(reverted_channels, 0, avctx->channels * sizeof(*reverted_channels));
  1155. offset += div_blocks[b];
  1156. bd.ra_block = 0;
  1157. }
  1158. // store carryover raw samples
  1159. for (c = 0; c < avctx->channels; c++)
  1160. memmove(ctx->raw_samples[c] - sconf->max_order,
  1161. ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
  1162. sizeof(*ctx->raw_samples[c]) * sconf->max_order);
  1163. }
  1164. // TODO: read_diff_float_data
  1165. return 0;
  1166. }
  1167. /** Decode an ALS frame.
  1168. */
  1169. static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr,
  1170. AVPacket *avpkt)
  1171. {
  1172. ALSDecContext *ctx = avctx->priv_data;
  1173. ALSSpecificConfig *sconf = &ctx->sconf;
  1174. const uint8_t *buffer = avpkt->data;
  1175. int buffer_size = avpkt->size;
  1176. int invalid_frame, ret;
  1177. unsigned int c, sample, ra_frame, bytes_read, shift;
  1178. init_get_bits(&ctx->gb, buffer, buffer_size * 8);
  1179. // In the case that the distance between random access frames is set to zero
  1180. // (sconf->ra_distance == 0) no frame is treated as a random access frame.
  1181. // For the first frame, if prediction is used, all samples used from the
  1182. // previous frame are assumed to be zero.
  1183. ra_frame = sconf->ra_distance && !(ctx->frame_id % sconf->ra_distance);
  1184. // the last frame to decode might have a different length
  1185. if (sconf->samples != 0xFFFFFFFF)
  1186. ctx->cur_frame_length = FFMIN(sconf->samples - ctx->frame_id * (uint64_t) sconf->frame_length,
  1187. sconf->frame_length);
  1188. else
  1189. ctx->cur_frame_length = sconf->frame_length;
  1190. // decode the frame data
  1191. if ((invalid_frame = read_frame_data(ctx, ra_frame)) < 0)
  1192. av_log(ctx->avctx, AV_LOG_WARNING,
  1193. "Reading frame data failed. Skipping RA unit.\n");
  1194. ctx->frame_id++;
  1195. /* get output buffer */
  1196. ctx->frame.nb_samples = ctx->cur_frame_length;
  1197. if ((ret = ff_get_buffer(avctx, &ctx->frame)) < 0) {
  1198. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  1199. return ret;
  1200. }
  1201. // transform decoded frame into output format
  1202. #define INTERLEAVE_OUTPUT(bps) \
  1203. { \
  1204. int##bps##_t *dest = (int##bps##_t*)ctx->frame.data[0]; \
  1205. shift = bps - ctx->avctx->bits_per_raw_sample; \
  1206. if (!sconf->chan_sort) { \
  1207. for (sample = 0; sample < ctx->cur_frame_length; sample++) \
  1208. for (c = 0; c < avctx->channels; c++) \
  1209. *dest++ = ctx->raw_samples[c][sample] << shift; \
  1210. } else { \
  1211. for (sample = 0; sample < ctx->cur_frame_length; sample++) \
  1212. for (c = 0; c < avctx->channels; c++) \
  1213. *dest++ = ctx->raw_samples[sconf->chan_pos[c]][sample] << shift; \
  1214. } \
  1215. }
  1216. if (ctx->avctx->bits_per_raw_sample <= 16) {
  1217. INTERLEAVE_OUTPUT(16)
  1218. } else {
  1219. INTERLEAVE_OUTPUT(32)
  1220. }
  1221. // update CRC
  1222. if (sconf->crc_enabled && (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL))) {
  1223. int swap = HAVE_BIGENDIAN != sconf->msb_first;
  1224. if (ctx->avctx->bits_per_raw_sample == 24) {
  1225. int32_t *src = (int32_t *)ctx->frame.data[0];
  1226. for (sample = 0;
  1227. sample < ctx->cur_frame_length * avctx->channels;
  1228. sample++) {
  1229. int32_t v;
  1230. if (swap)
  1231. v = av_bswap32(src[sample]);
  1232. else
  1233. v = src[sample];
  1234. if (!HAVE_BIGENDIAN)
  1235. v >>= 8;
  1236. ctx->crc = av_crc(ctx->crc_table, ctx->crc, (uint8_t*)(&v), 3);
  1237. }
  1238. } else {
  1239. uint8_t *crc_source;
  1240. if (swap) {
  1241. if (ctx->avctx->bits_per_raw_sample <= 16) {
  1242. int16_t *src = (int16_t*) ctx->frame.data[0];
  1243. int16_t *dest = (int16_t*) ctx->crc_buffer;
  1244. for (sample = 0;
  1245. sample < ctx->cur_frame_length * avctx->channels;
  1246. sample++)
  1247. *dest++ = av_bswap16(src[sample]);
  1248. } else {
  1249. ctx->dsp.bswap_buf((uint32_t*)ctx->crc_buffer,
  1250. (uint32_t *)ctx->frame.data[0],
  1251. ctx->cur_frame_length * avctx->channels);
  1252. }
  1253. crc_source = ctx->crc_buffer;
  1254. } else {
  1255. crc_source = ctx->frame.data[0];
  1256. }
  1257. ctx->crc = av_crc(ctx->crc_table, ctx->crc, crc_source,
  1258. ctx->cur_frame_length * avctx->channels *
  1259. av_get_bytes_per_sample(avctx->sample_fmt));
  1260. }
  1261. // check CRC sums if this is the last frame
  1262. if (ctx->cur_frame_length != sconf->frame_length &&
  1263. ctx->crc_org != ctx->crc) {
  1264. av_log(avctx, AV_LOG_ERROR, "CRC error!\n");
  1265. }
  1266. }
  1267. *got_frame_ptr = 1;
  1268. *(AVFrame *)data = ctx->frame;
  1269. bytes_read = invalid_frame ? buffer_size :
  1270. (get_bits_count(&ctx->gb) + 7) >> 3;
  1271. return bytes_read;
  1272. }
  1273. /** Uninitialize the ALS decoder.
  1274. */
  1275. static av_cold int decode_end(AVCodecContext *avctx)
  1276. {
  1277. ALSDecContext *ctx = avctx->priv_data;
  1278. av_freep(&ctx->sconf.chan_pos);
  1279. ff_bgmc_end(&ctx->bgmc_lut, &ctx->bgmc_lut_status);
  1280. av_freep(&ctx->const_block);
  1281. av_freep(&ctx->shift_lsbs);
  1282. av_freep(&ctx->opt_order);
  1283. av_freep(&ctx->store_prev_samples);
  1284. av_freep(&ctx->use_ltp);
  1285. av_freep(&ctx->ltp_lag);
  1286. av_freep(&ctx->ltp_gain);
  1287. av_freep(&ctx->ltp_gain_buffer);
  1288. av_freep(&ctx->quant_cof);
  1289. av_freep(&ctx->lpc_cof);
  1290. av_freep(&ctx->quant_cof_buffer);
  1291. av_freep(&ctx->lpc_cof_buffer);
  1292. av_freep(&ctx->lpc_cof_reversed_buffer);
  1293. av_freep(&ctx->prev_raw_samples);
  1294. av_freep(&ctx->raw_samples);
  1295. av_freep(&ctx->raw_buffer);
  1296. av_freep(&ctx->chan_data);
  1297. av_freep(&ctx->chan_data_buffer);
  1298. av_freep(&ctx->reverted_channels);
  1299. av_freep(&ctx->crc_buffer);
  1300. return 0;
  1301. }
  1302. /** Initialize the ALS decoder.
  1303. */
  1304. static av_cold int decode_init(AVCodecContext *avctx)
  1305. {
  1306. unsigned int c;
  1307. unsigned int channel_size;
  1308. int num_buffers;
  1309. ALSDecContext *ctx = avctx->priv_data;
  1310. ALSSpecificConfig *sconf = &ctx->sconf;
  1311. ctx->avctx = avctx;
  1312. if (!avctx->extradata) {
  1313. av_log(avctx, AV_LOG_ERROR, "Missing required ALS extradata!\n");
  1314. return -1;
  1315. }
  1316. if (read_specific_config(ctx)) {
  1317. av_log(avctx, AV_LOG_ERROR, "Reading ALSSpecificConfig failed!\n");
  1318. decode_end(avctx);
  1319. return -1;
  1320. }
  1321. if (check_specific_config(ctx)) {
  1322. decode_end(avctx);
  1323. return -1;
  1324. }
  1325. if (sconf->bgmc)
  1326. ff_bgmc_init(avctx, &ctx->bgmc_lut, &ctx->bgmc_lut_status);
  1327. if (sconf->floating) {
  1328. avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
  1329. avctx->bits_per_raw_sample = 32;
  1330. } else {
  1331. avctx->sample_fmt = sconf->resolution > 1
  1332. ? AV_SAMPLE_FMT_S32 : AV_SAMPLE_FMT_S16;
  1333. avctx->bits_per_raw_sample = (sconf->resolution + 1) * 8;
  1334. }
  1335. // set maximum Rice parameter for progressive decoding based on resolution
  1336. // This is not specified in 14496-3 but actually done by the reference
  1337. // codec RM22 revision 2.
  1338. ctx->s_max = sconf->resolution > 1 ? 31 : 15;
  1339. // set lag value for long-term prediction
  1340. ctx->ltp_lag_length = 8 + (avctx->sample_rate >= 96000) +
  1341. (avctx->sample_rate >= 192000);
  1342. // allocate quantized parcor coefficient buffer
  1343. num_buffers = sconf->mc_coding ? avctx->channels : 1;
  1344. ctx->quant_cof = av_malloc(sizeof(*ctx->quant_cof) * num_buffers);
  1345. ctx->lpc_cof = av_malloc(sizeof(*ctx->lpc_cof) * num_buffers);
  1346. ctx->quant_cof_buffer = av_malloc(sizeof(*ctx->quant_cof_buffer) *
  1347. num_buffers * sconf->max_order);
  1348. ctx->lpc_cof_buffer = av_malloc(sizeof(*ctx->lpc_cof_buffer) *
  1349. num_buffers * sconf->max_order);
  1350. ctx->lpc_cof_reversed_buffer = av_malloc(sizeof(*ctx->lpc_cof_buffer) *
  1351. sconf->max_order);
  1352. if (!ctx->quant_cof || !ctx->lpc_cof ||
  1353. !ctx->quant_cof_buffer || !ctx->lpc_cof_buffer ||
  1354. !ctx->lpc_cof_reversed_buffer) {
  1355. av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed!\n");
  1356. return AVERROR(ENOMEM);
  1357. }
  1358. // assign quantized parcor coefficient buffers
  1359. for (c = 0; c < num_buffers; c++) {
  1360. ctx->quant_cof[c] = ctx->quant_cof_buffer + c * sconf->max_order;
  1361. ctx->lpc_cof[c] = ctx->lpc_cof_buffer + c * sconf->max_order;
  1362. }
  1363. // allocate and assign lag and gain data buffer for ltp mode
  1364. ctx->const_block = av_malloc (sizeof(*ctx->const_block) * num_buffers);
  1365. ctx->shift_lsbs = av_malloc (sizeof(*ctx->shift_lsbs) * num_buffers);
  1366. ctx->opt_order = av_malloc (sizeof(*ctx->opt_order) * num_buffers);
  1367. ctx->store_prev_samples = av_malloc(sizeof(*ctx->store_prev_samples) * num_buffers);
  1368. ctx->use_ltp = av_mallocz(sizeof(*ctx->use_ltp) * num_buffers);
  1369. ctx->ltp_lag = av_malloc (sizeof(*ctx->ltp_lag) * num_buffers);
  1370. ctx->ltp_gain = av_malloc (sizeof(*ctx->ltp_gain) * num_buffers);
  1371. ctx->ltp_gain_buffer = av_malloc (sizeof(*ctx->ltp_gain_buffer) *
  1372. num_buffers * 5);
  1373. if (!ctx->const_block || !ctx->shift_lsbs ||
  1374. !ctx->opt_order || !ctx->store_prev_samples ||
  1375. !ctx->use_ltp || !ctx->ltp_lag ||
  1376. !ctx->ltp_gain || !ctx->ltp_gain_buffer) {
  1377. av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed!\n");
  1378. decode_end(avctx);
  1379. return AVERROR(ENOMEM);
  1380. }
  1381. for (c = 0; c < num_buffers; c++)
  1382. ctx->ltp_gain[c] = ctx->ltp_gain_buffer + c * 5;
  1383. // allocate and assign channel data buffer for mcc mode
  1384. if (sconf->mc_coding) {
  1385. ctx->chan_data_buffer = av_malloc(sizeof(*ctx->chan_data_buffer) *
  1386. num_buffers * num_buffers);
  1387. ctx->chan_data = av_malloc(sizeof(*ctx->chan_data) *
  1388. num_buffers);
  1389. ctx->reverted_channels = av_malloc(sizeof(*ctx->reverted_channels) *
  1390. num_buffers);
  1391. if (!ctx->chan_data_buffer || !ctx->chan_data || !ctx->reverted_channels) {
  1392. av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed!\n");
  1393. decode_end(avctx);
  1394. return AVERROR(ENOMEM);
  1395. }
  1396. for (c = 0; c < num_buffers; c++)
  1397. ctx->chan_data[c] = ctx->chan_data_buffer + c * num_buffers;
  1398. } else {
  1399. ctx->chan_data = NULL;
  1400. ctx->chan_data_buffer = NULL;
  1401. ctx->reverted_channels = NULL;
  1402. }
  1403. channel_size = sconf->frame_length + sconf->max_order;
  1404. ctx->prev_raw_samples = av_malloc (sizeof(*ctx->prev_raw_samples) * sconf->max_order);
  1405. ctx->raw_buffer = av_mallocz(sizeof(*ctx-> raw_buffer) * avctx->channels * channel_size);
  1406. ctx->raw_samples = av_malloc (sizeof(*ctx-> raw_samples) * avctx->channels);
  1407. // allocate previous raw sample buffer
  1408. if (!ctx->prev_raw_samples || !ctx->raw_buffer|| !ctx->raw_samples) {
  1409. av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed!\n");
  1410. decode_end(avctx);
  1411. return AVERROR(ENOMEM);
  1412. }
  1413. // assign raw samples buffers
  1414. ctx->raw_samples[0] = ctx->raw_buffer + sconf->max_order;
  1415. for (c = 1; c < avctx->channels; c++)
  1416. ctx->raw_samples[c] = ctx->raw_samples[c - 1] + channel_size;
  1417. // allocate crc buffer
  1418. if (HAVE_BIGENDIAN != sconf->msb_first && sconf->crc_enabled &&
  1419. (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL))) {
  1420. ctx->crc_buffer = av_malloc(sizeof(*ctx->crc_buffer) *
  1421. ctx->cur_frame_length *
  1422. avctx->channels *
  1423. av_get_bytes_per_sample(avctx->sample_fmt));
  1424. if (!ctx->crc_buffer) {
  1425. av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed!\n");
  1426. decode_end(avctx);
  1427. return AVERROR(ENOMEM);
  1428. }
  1429. }
  1430. ff_dsputil_init(&ctx->dsp, avctx);
  1431. avcodec_get_frame_defaults(&ctx->frame);
  1432. avctx->coded_frame = &ctx->frame;
  1433. return 0;
  1434. }
  1435. /** Flush (reset) the frame ID after seeking.
  1436. */
  1437. static av_cold void flush(AVCodecContext *avctx)
  1438. {
  1439. ALSDecContext *ctx = avctx->priv_data;
  1440. ctx->frame_id = 0;
  1441. }
  1442. AVCodec ff_als_decoder = {
  1443. .name = "als",
  1444. .type = AVMEDIA_TYPE_AUDIO,
  1445. .id = AV_CODEC_ID_MP4ALS,
  1446. .priv_data_size = sizeof(ALSDecContext),
  1447. .init = decode_init,
  1448. .close = decode_end,
  1449. .decode = decode_frame,
  1450. .flush = flush,
  1451. .capabilities = CODEC_CAP_SUBFRAMES | CODEC_CAP_DR1,
  1452. .long_name = NULL_IF_CONFIG_SMALL("MPEG-4 Audio Lossless Coding (ALS)"),
  1453. };