You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

843 lines
27KB

  1. /*
  2. * This file is part of Libav.
  3. *
  4. * Libav is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU Lesser General Public
  6. * License as published by the Free Software Foundation; either
  7. * version 2.1 of the License, or (at your option) any later version.
  8. *
  9. * Libav is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  12. * Lesser General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU Lesser General Public
  15. * License along with Libav; if not, write to the Free Software
  16. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. /**
  19. * @file
  20. * @brief IntraX8 (J-Frame) subdecoder, used by WMV2 and VC-1
  21. */
  22. #include "avcodec.h"
  23. #include "get_bits.h"
  24. #include "idctdsp.h"
  25. #include "mpegvideo.h"
  26. #include "msmpeg4data.h"
  27. #include "intrax8huf.h"
  28. #include "intrax8.h"
  29. #include "intrax8dsp.h"
  30. #define MAX_TABLE_DEPTH(table_bits, max_bits) \
  31. ((max_bits + table_bits - 1) / table_bits)
  32. #define DC_VLC_BITS 9
  33. #define AC_VLC_BITS 9
  34. #define OR_VLC_BITS 7
  35. #define DC_VLC_MTD MAX_TABLE_DEPTH(DC_VLC_BITS, MAX_DC_VLC_BITS)
  36. #define AC_VLC_MTD MAX_TABLE_DEPTH(AC_VLC_BITS, MAX_AC_VLC_BITS)
  37. #define OR_VLC_MTD MAX_TABLE_DEPTH(OR_VLC_BITS, MAX_OR_VLC_BITS)
  38. static VLC j_ac_vlc[2][2][8]; // [quant < 13], [intra / inter], [select]
  39. static VLC j_dc_vlc[2][8]; // [quant], [select]
  40. static VLC j_orient_vlc[2][4]; // [quant], [select]
  41. static av_cold int x8_vlc_init(void)
  42. {
  43. int i;
  44. int offset = 0;
  45. int sizeidx = 0;
  46. static const uint16_t sizes[8 * 4 + 8 * 2 + 2 + 4] = {
  47. 576, 548, 582, 618, 546, 616, 560, 642,
  48. 584, 582, 704, 664, 512, 544, 656, 640,
  49. 512, 648, 582, 566, 532, 614, 596, 648,
  50. 586, 552, 584, 590, 544, 578, 584, 624,
  51. 528, 528, 526, 528, 536, 528, 526, 544,
  52. 544, 512, 512, 528, 528, 544, 512, 544,
  53. 128, 128, 128, 128, 128, 128,
  54. };
  55. static VLC_TYPE table[28150][2];
  56. // set ac tables
  57. #define init_ac_vlc(dst, src) \
  58. do { \
  59. dst.table = &table[offset]; \
  60. dst.table_allocated = sizes[sizeidx]; \
  61. offset += sizes[sizeidx++]; \
  62. init_vlc(&dst, AC_VLC_BITS, 77, &src[1], 4, 2, &src[0], 4, 2, \
  63. INIT_VLC_USE_NEW_STATIC); \
  64. } while(0)
  65. for (i = 0; i < 8; i++) {
  66. init_ac_vlc(j_ac_vlc[0][0][i], x8_ac0_highquant_table[i][0]);
  67. init_ac_vlc(j_ac_vlc[0][1][i], x8_ac1_highquant_table[i][0]);
  68. init_ac_vlc(j_ac_vlc[1][0][i], x8_ac0_lowquant_table[i][0]);
  69. init_ac_vlc(j_ac_vlc[1][1][i], x8_ac1_lowquant_table[i][0]);
  70. }
  71. #undef init_ac_vlc
  72. // set dc tables
  73. #define init_dc_vlc(dst, src) \
  74. do { \
  75. dst.table = &table[offset]; \
  76. dst.table_allocated = sizes[sizeidx]; \
  77. offset += sizes[sizeidx++]; \
  78. init_vlc(&dst, DC_VLC_BITS, 34, &src[1], 4, 2, &src[0], 4, 2, \
  79. INIT_VLC_USE_NEW_STATIC); \
  80. } while(0)
  81. for (i = 0; i < 8; i++) {
  82. init_dc_vlc(j_dc_vlc[0][i], x8_dc_highquant_table[i][0]);
  83. init_dc_vlc(j_dc_vlc[1][i], x8_dc_lowquant_table[i][0]);
  84. }
  85. #undef init_dc_vlc
  86. // set orient tables
  87. #define init_or_vlc(dst, src) \
  88. do { \
  89. dst.table = &table[offset]; \
  90. dst.table_allocated = sizes[sizeidx]; \
  91. offset += sizes[sizeidx++]; \
  92. init_vlc(&dst, OR_VLC_BITS, 12, &src[1], 4, 2, &src[0], 4, 2, \
  93. INIT_VLC_USE_NEW_STATIC); \
  94. } while(0)
  95. for (i = 0; i < 2; i++)
  96. init_or_vlc(j_orient_vlc[0][i], x8_orient_highquant_table[i][0]);
  97. for (i = 0; i < 4; i++)
  98. init_or_vlc(j_orient_vlc[1][i], x8_orient_lowquant_table[i][0]);
  99. #undef init_or_vlc
  100. if (offset != sizeof(table) / sizeof(VLC_TYPE) / 2) {
  101. av_log(NULL, AV_LOG_ERROR, "table size %zd does not match needed %i\n",
  102. sizeof(table) / sizeof(VLC_TYPE) / 2, offset);
  103. return AVERROR_INVALIDDATA;
  104. }
  105. return 0;
  106. }
  107. static void x8_reset_vlc_tables(IntraX8Context *w)
  108. {
  109. memset(w->j_dc_vlc, 0, sizeof(w->j_dc_vlc));
  110. memset(w->j_ac_vlc, 0, sizeof(w->j_ac_vlc));
  111. w->j_orient_vlc = NULL;
  112. }
  113. static inline void x8_select_ac_table(IntraX8Context *const w, int mode)
  114. {
  115. int table_index;
  116. assert(mode < 4);
  117. if (w->j_ac_vlc[mode])
  118. return;
  119. table_index = get_bits(w->gb, 3);
  120. // 2 modes use same tables
  121. w->j_ac_vlc[mode] = &j_ac_vlc[w->quant < 13][mode >> 1][table_index];
  122. assert(w->j_ac_vlc[mode]);
  123. }
  124. static inline int x8_get_orient_vlc(IntraX8Context *w)
  125. {
  126. if (!w->j_orient_vlc) {
  127. int table_index = get_bits(w->gb, 1 + (w->quant < 13));
  128. w->j_orient_vlc = &j_orient_vlc[w->quant < 13][table_index];
  129. }
  130. assert(w->j_orient_vlc);
  131. assert(w->j_orient_vlc->table);
  132. return get_vlc2(w->gb, w->j_orient_vlc->table, OR_VLC_BITS, OR_VLC_MTD);
  133. }
  134. #define extra_bits(eb) (eb) // 3 bits
  135. #define extra_run (0xFF << 8) // 1 bit
  136. #define extra_level (0x00 << 8) // 1 bit
  137. #define run_offset(r) ((r) << 16) // 6 bits
  138. #define level_offset(l) ((l) << 24) // 5 bits
  139. static const uint32_t ac_decode_table[] = {
  140. /* 46 */ extra_bits(3) | extra_run | run_offset(16) | level_offset(0),
  141. /* 47 */ extra_bits(3) | extra_run | run_offset(24) | level_offset(0),
  142. /* 48 */ extra_bits(2) | extra_run | run_offset(4) | level_offset(1),
  143. /* 49 */ extra_bits(3) | extra_run | run_offset(8) | level_offset(1),
  144. /* 50 */ extra_bits(5) | extra_run | run_offset(32) | level_offset(0),
  145. /* 51 */ extra_bits(4) | extra_run | run_offset(16) | level_offset(1),
  146. /* 52 */ extra_bits(2) | extra_level | run_offset(0) | level_offset(4),
  147. /* 53 */ extra_bits(2) | extra_level | run_offset(0) | level_offset(8),
  148. /* 54 */ extra_bits(2) | extra_level | run_offset(0) | level_offset(12),
  149. /* 55 */ extra_bits(3) | extra_level | run_offset(0) | level_offset(16),
  150. /* 56 */ extra_bits(3) | extra_level | run_offset(0) | level_offset(24),
  151. /* 57 */ extra_bits(2) | extra_level | run_offset(1) | level_offset(3),
  152. /* 58 */ extra_bits(3) | extra_level | run_offset(1) | level_offset(7),
  153. /* 59 */ extra_bits(2) | extra_run | run_offset(16) | level_offset(0),
  154. /* 60 */ extra_bits(2) | extra_run | run_offset(20) | level_offset(0),
  155. /* 61 */ extra_bits(2) | extra_run | run_offset(24) | level_offset(0),
  156. /* 62 */ extra_bits(2) | extra_run | run_offset(28) | level_offset(0),
  157. /* 63 */ extra_bits(4) | extra_run | run_offset(32) | level_offset(0),
  158. /* 64 */ extra_bits(4) | extra_run | run_offset(48) | level_offset(0),
  159. /* 65 */ extra_bits(2) | extra_run | run_offset(4) | level_offset(1),
  160. /* 66 */ extra_bits(3) | extra_run | run_offset(8) | level_offset(1),
  161. /* 67 */ extra_bits(4) | extra_run | run_offset(16) | level_offset(1),
  162. /* 68 */ extra_bits(2) | extra_level | run_offset(0) | level_offset(4),
  163. /* 69 */ extra_bits(3) | extra_level | run_offset(0) | level_offset(8),
  164. /* 70 */ extra_bits(4) | extra_level | run_offset(0) | level_offset(16),
  165. /* 71 */ extra_bits(2) | extra_level | run_offset(1) | level_offset(3),
  166. /* 72 */ extra_bits(3) | extra_level | run_offset(1) | level_offset(7),
  167. };
  168. #undef extra_bits
  169. #undef extra_run
  170. #undef extra_level
  171. #undef run_offset
  172. #undef level_offset
  173. static void x8_get_ac_rlf(IntraX8Context *const w, const int mode,
  174. int *const run, int *const level, int *const final)
  175. {
  176. int i, e;
  177. // x8_select_ac_table(w, mode);
  178. i = get_vlc2(w->gb, w->j_ac_vlc[mode]->table, AC_VLC_BITS, AC_VLC_MTD);
  179. if (i < 46) { // [0-45]
  180. int t, l;
  181. if (i < 0) {
  182. (*level) =
  183. (*final) = // prevent 'may be used unilitialized'
  184. (*run) = 64; // this would cause error exit in the ac loop
  185. return;
  186. }
  187. /*
  188. * i == 0-15 r = 0-15 l = 0; r = i & %01111
  189. * i == 16-19 r = 0-3 l = 1; r = i & %00011
  190. * i == 20-21 r = 0-1 l = 2; r = i & %00001
  191. * i == 22 r = 0 l = 3; r = i & %00000
  192. */
  193. (*final) =
  194. t = (i > 22);
  195. i -= 23 * t;
  196. /* l = lut_l[i / 2] = { 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3 }[i >> 1];
  197. * 11 10'01 01'00 00'00 00'00 00'00 00 => 0xE50000 */
  198. l = (0xE50000 >> (i & (0x1E))) & 3; // 0x1E or (~1) or ((i >> 1) << 1)
  199. /* t = lut_mask[l] = { 0x0f, 0x03, 0x01, 0x00 }[l];
  200. * as i < 256 the higher bits do not matter */
  201. t = (0x01030F >> (l << 3));
  202. (*run) = i & t;
  203. (*level) = l;
  204. } else if (i < 73) { // [46-72]
  205. uint32_t sm;
  206. uint32_t mask;
  207. i -= 46;
  208. sm = ac_decode_table[i];
  209. e = get_bits(w->gb, sm & 0xF);
  210. sm >>= 8; // 3bits
  211. mask = sm & 0xff;
  212. sm >>= 8; // 1bit
  213. (*run) = (sm & 0xff) + (e & (mask)); // 6bits
  214. (*level) = (sm >> 8) + (e & (~mask)); // 5bits
  215. (*final) = i > (58 - 46);
  216. } else if (i < 75) { // [73-74]
  217. static const uint8_t crazy_mix_runlevel[32] = {
  218. 0x22, 0x32, 0x33, 0x53, 0x23, 0x42, 0x43, 0x63,
  219. 0x24, 0x52, 0x34, 0x73, 0x25, 0x62, 0x44, 0x83,
  220. 0x26, 0x72, 0x35, 0x54, 0x27, 0x82, 0x45, 0x64,
  221. 0x28, 0x92, 0x36, 0x74, 0x29, 0xa2, 0x46, 0x84,
  222. };
  223. (*final) = !(i & 1);
  224. e = get_bits(w->gb, 5); // get the extra bits
  225. (*run) = crazy_mix_runlevel[e] >> 4;
  226. (*level) = crazy_mix_runlevel[e] & 0x0F;
  227. } else {
  228. (*level) = get_bits(w->gb, 7 - 3 * (i & 1));
  229. (*run) = get_bits(w->gb, 6);
  230. (*final) = get_bits1(w->gb);
  231. }
  232. return;
  233. }
  234. /* static const uint8_t dc_extra_sbits[] = {
  235. * 0, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7,
  236. * }; */
  237. static const uint8_t dc_index_offset[] = {
  238. 0, 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
  239. };
  240. static int x8_get_dc_rlf(IntraX8Context *const w, const int mode,
  241. int *const level, int *const final)
  242. {
  243. int i, e, c;
  244. assert(mode < 3);
  245. if (!w->j_dc_vlc[mode]) {
  246. int table_index = get_bits(w->gb, 3);
  247. // 4 modes, same table
  248. w->j_dc_vlc[mode] = &j_dc_vlc[w->quant < 13][table_index];
  249. }
  250. assert(w->j_dc_vlc);
  251. assert(w->j_dc_vlc[mode]->table);
  252. i = get_vlc2(w->gb, w->j_dc_vlc[mode]->table, DC_VLC_BITS, DC_VLC_MTD);
  253. /* (i >= 17) { i -= 17; final =1; } */
  254. c = i > 16;
  255. (*final) = c;
  256. i -= 17 * c;
  257. if (i <= 0) {
  258. (*level) = 0;
  259. return -i;
  260. }
  261. c = (i + 1) >> 1; // hackish way to calculate dc_extra_sbits[]
  262. c -= c > 1;
  263. e = get_bits(w->gb, c); // get the extra bits
  264. i = dc_index_offset[i] + (e >> 1);
  265. e = -(e & 1); // 0, 0xffffff
  266. (*level) = (i ^ e) - e; // (i ^ 0) -0 , (i ^ 0xff) - (-1)
  267. return 0;
  268. }
  269. // end of huffman
  270. static int x8_setup_spatial_predictor(IntraX8Context *const w, const int chroma)
  271. {
  272. int range;
  273. int sum;
  274. int quant;
  275. w->dsp.setup_spatial_compensation(w->dest[chroma], w->scratchpad,
  276. w->frame->linesize[chroma > 0],
  277. &range, &sum, w->edges);
  278. if (chroma) {
  279. w->orient = w->chroma_orient;
  280. quant = w->quant_dc_chroma;
  281. } else {
  282. quant = w->quant;
  283. }
  284. w->flat_dc = 0;
  285. if (range < quant || range < 3) {
  286. w->orient = 0;
  287. // yep you read right, a +-1 idct error may break decoding!
  288. if (range < 3) {
  289. w->flat_dc = 1;
  290. sum += 9;
  291. // ((1 << 17) + 9) / (8 + 8 + 1 + 2) = 6899
  292. w->predicted_dc = (sum * 6899) >> 17;
  293. }
  294. }
  295. if (chroma)
  296. return 0;
  297. assert(w->orient < 3);
  298. if (range < 2 * w->quant) {
  299. if ((w->edges & 3) == 0) {
  300. if (w->orient == 1)
  301. w->orient = 11;
  302. if (w->orient == 2)
  303. w->orient = 10;
  304. } else {
  305. w->orient = 0;
  306. }
  307. w->raw_orient = 0;
  308. } else {
  309. static const uint8_t prediction_table[3][12] = {
  310. { 0, 8, 4, 10, 11, 2, 6, 9, 1, 3, 5, 7 },
  311. { 4, 0, 8, 11, 10, 3, 5, 2, 6, 9, 1, 7 },
  312. { 8, 0, 4, 10, 11, 1, 7, 2, 6, 9, 3, 5 },
  313. };
  314. w->raw_orient = x8_get_orient_vlc(w);
  315. if (w->raw_orient < 0)
  316. return -1;
  317. assert(w->raw_orient < 12);
  318. assert(w->orient < 3);
  319. w->orient = prediction_table[w->orient][w->raw_orient];
  320. }
  321. return 0;
  322. }
  323. static void x8_update_predictions(IntraX8Context *const w, const int orient,
  324. const int est_run)
  325. {
  326. MpegEncContext *const s = w->s;
  327. w->prediction_table[s->mb_x * 2 + (s->mb_y & 1)] = (est_run << 2) + 1 * (orient == 4) + 2 * (orient == 8);
  328. /*
  329. * y = 2n + 0 -> // 0 2 4
  330. * y = 2n + 1 -> // 1 3 5
  331. */
  332. }
  333. static void x8_get_prediction_chroma(IntraX8Context *const w)
  334. {
  335. MpegEncContext *const s = w->s;
  336. w->edges = 1 * (!(s->mb_x >> 1));
  337. w->edges |= 2 * (!(s->mb_y >> 1));
  338. w->edges |= 4 * (s->mb_x >= (2 * s->mb_width - 1)); // mb_x for chroma would always be odd
  339. w->raw_orient = 0;
  340. // lut_co[8] = {inv,4,8,8, inv,4,8,8} <- => {1,1,0,0;1,1,0,0} => 0xCC
  341. if (w->edges & 3) {
  342. w->chroma_orient = 4 << ((0xCC >> w->edges) & 1);
  343. return;
  344. }
  345. // block[x - 1][y | 1 - 1)]
  346. w->chroma_orient = (w->prediction_table[2 * s->mb_x - 2] & 0x03) << 2;
  347. }
  348. static void x8_get_prediction(IntraX8Context *const w)
  349. {
  350. MpegEncContext *const s = w->s;
  351. int a, b, c, i;
  352. w->edges = 1 * (!s->mb_x);
  353. w->edges |= 2 * (!s->mb_y);
  354. w->edges |= 4 * (s->mb_x >= (2 * s->mb_width - 1));
  355. switch (w->edges & 3) {
  356. case 0:
  357. break;
  358. case 1:
  359. // take the one from the above block[0][y - 1]
  360. w->est_run = w->prediction_table[!(s->mb_y & 1)] >> 2;
  361. w->orient = 1;
  362. return;
  363. case 2:
  364. // take the one from the previous block[x - 1][0]
  365. w->est_run = w->prediction_table[2 * s->mb_x - 2] >> 2;
  366. w->orient = 2;
  367. return;
  368. case 3:
  369. w->est_run = 16;
  370. w->orient = 0;
  371. return;
  372. }
  373. // no edge cases
  374. b = w->prediction_table[2 * s->mb_x + !(s->mb_y & 1)]; // block[x ][y - 1]
  375. a = w->prediction_table[2 * s->mb_x - 2 + (s->mb_y & 1)]; // block[x - 1][y ]
  376. c = w->prediction_table[2 * s->mb_x - 2 + !(s->mb_y & 1)]; // block[x - 1][y - 1]
  377. w->est_run = FFMIN(b, a);
  378. /* This condition has nothing to do with w->edges, even if it looks
  379. * similar it would trigger if e.g. x = 3; y = 2;
  380. * I guess somebody wrote something wrong and it became standard. */
  381. if ((s->mb_x & s->mb_y) != 0)
  382. w->est_run = FFMIN(c, w->est_run);
  383. w->est_run >>= 2;
  384. a &= 3;
  385. b &= 3;
  386. c &= 3;
  387. i = (0xFFEAF4C4 >> (2 * b + 8 * a)) & 3;
  388. if (i != 3)
  389. w->orient = i;
  390. else
  391. w->orient = (0xFFEAD8 >> (2 * c + 8 * (w->quant > 12))) & 3;
  392. /*
  393. * lut1[b][a] = {
  394. * ->{ 0, 1, 0, pad },
  395. * { 0, 1, X, pad },
  396. * { 2, 2, 2, pad }
  397. * }
  398. * pad 2 2 2;
  399. * pad X 1 0;
  400. * pad 0 1 0 <-
  401. * -> 11 10 '10 10 '11 11'01 00 '11 00'01 00 => 0xEAF4C4
  402. *
  403. * lut2[q>12][c] = {
  404. * ->{ 0, 2, 1, pad},
  405. * { 2, 2, 2, pad}
  406. * }
  407. * pad 2 2 2;
  408. * pad 1 2 0 <-
  409. * -> 11 10'10 10 '11 01'10 00 => 0xEAD8
  410. */
  411. }
  412. static void x8_ac_compensation(IntraX8Context *const w, const int direction,
  413. const int dc_level)
  414. {
  415. MpegEncContext *const s = w->s;
  416. int t;
  417. #define B(x, y) s->block[0][w->idsp.idct_permutation[(x) + (y) * 8]]
  418. #define T(x) ((x) * dc_level + 0x8000) >> 16;
  419. switch (direction) {
  420. case 0:
  421. t = T(3811); // h
  422. B(1, 0) -= t;
  423. B(0, 1) -= t;
  424. t = T(487); // e
  425. B(2, 0) -= t;
  426. B(0, 2) -= t;
  427. t = T(506); // f
  428. B(3, 0) -= t;
  429. B(0, 3) -= t;
  430. t = T(135); // c
  431. B(4, 0) -= t;
  432. B(0, 4) -= t;
  433. B(2, 1) += t;
  434. B(1, 2) += t;
  435. B(3, 1) += t;
  436. B(1, 3) += t;
  437. t = T(173); // d
  438. B(5, 0) -= t;
  439. B(0, 5) -= t;
  440. t = T(61); // b
  441. B(6, 0) -= t;
  442. B(0, 6) -= t;
  443. B(5, 1) += t;
  444. B(1, 5) += t;
  445. t = T(42); // a
  446. B(7, 0) -= t;
  447. B(0, 7) -= t;
  448. B(4, 1) += t;
  449. B(1, 4) += t;
  450. B(4, 4) += t;
  451. t = T(1084); // g
  452. B(1, 1) += t;
  453. s->block_last_index[0] = FFMAX(s->block_last_index[0], 7 * 8);
  454. break;
  455. case 1:
  456. B(0, 1) -= T(6269);
  457. B(0, 3) -= T(708);
  458. B(0, 5) -= T(172);
  459. B(0, 7) -= T(73);
  460. s->block_last_index[0] = FFMAX(s->block_last_index[0], 7 * 8);
  461. break;
  462. case 2:
  463. B(1, 0) -= T(6269);
  464. B(3, 0) -= T(708);
  465. B(5, 0) -= T(172);
  466. B(7, 0) -= T(73);
  467. s->block_last_index[0] = FFMAX(s->block_last_index[0], 7);
  468. break;
  469. }
  470. #undef B
  471. #undef T
  472. }
  473. static void dsp_x8_put_solidcolor(const uint8_t pix, uint8_t *dst,
  474. const int linesize)
  475. {
  476. int k;
  477. for (k = 0; k < 8; k++) {
  478. memset(dst, pix, 8);
  479. dst += linesize;
  480. }
  481. }
  482. static const int16_t quant_table[64] = {
  483. 256, 256, 256, 256, 256, 256, 259, 262,
  484. 265, 269, 272, 275, 278, 282, 285, 288,
  485. 292, 295, 299, 303, 306, 310, 314, 317,
  486. 321, 325, 329, 333, 337, 341, 345, 349,
  487. 353, 358, 362, 366, 371, 375, 379, 384,
  488. 389, 393, 398, 403, 408, 413, 417, 422,
  489. 428, 433, 438, 443, 448, 454, 459, 465,
  490. 470, 476, 482, 488, 493, 499, 505, 511,
  491. };
  492. static int x8_decode_intra_mb(IntraX8Context *const w, const int chroma)
  493. {
  494. MpegEncContext *const s = w->s;
  495. uint8_t *scantable;
  496. int final, run, level;
  497. int ac_mode, dc_mode, est_run, dc_level;
  498. int pos, n;
  499. int zeros_only;
  500. int use_quant_matrix;
  501. int sign;
  502. assert(w->orient < 12);
  503. w->bdsp.clear_block(s->block[0]);
  504. if (chroma)
  505. dc_mode = 2;
  506. else
  507. dc_mode = !!w->est_run; // 0, 1
  508. if (x8_get_dc_rlf(w, dc_mode, &dc_level, &final))
  509. return -1;
  510. n = 0;
  511. zeros_only = 0;
  512. if (!final) { // decode ac
  513. use_quant_matrix = w->use_quant_matrix;
  514. if (chroma) {
  515. ac_mode = 1;
  516. est_run = 64; // not used
  517. } else {
  518. if (w->raw_orient < 3)
  519. use_quant_matrix = 0;
  520. if (w->raw_orient > 4) {
  521. ac_mode = 0;
  522. est_run = 64;
  523. } else {
  524. if (w->est_run > 1) {
  525. ac_mode = 2;
  526. est_run = w->est_run;
  527. } else {
  528. ac_mode = 3;
  529. est_run = 64;
  530. }
  531. }
  532. }
  533. x8_select_ac_table(w, ac_mode);
  534. /* scantable_selector[12] = { 0, 2, 0, 1, 1, 1, 0, 2, 2, 0, 1, 2 }; <-
  535. * -> 10'01' 00'10' 10'00' 01'01' 01'00' 10'00 => 0x928548 */
  536. scantable = w->scantable[(0x928548 >> (2 * w->orient)) & 3].permutated;
  537. pos = 0;
  538. do {
  539. n++;
  540. if (n >= est_run) {
  541. ac_mode = 3;
  542. x8_select_ac_table(w, 3);
  543. }
  544. x8_get_ac_rlf(w, ac_mode, &run, &level, &final);
  545. pos += run + 1;
  546. if (pos > 63) {
  547. // this also handles vlc error in x8_get_ac_rlf
  548. return -1;
  549. }
  550. level = (level + 1) * w->dquant;
  551. level += w->qsum;
  552. sign = -get_bits1(w->gb);
  553. level = (level ^ sign) - sign;
  554. if (use_quant_matrix)
  555. level = (level * quant_table[pos]) >> 8;
  556. s->block[0][scantable[pos]] = level;
  557. } while (!final);
  558. s->block_last_index[0] = pos;
  559. } else { // DC only
  560. s->block_last_index[0] = 0;
  561. if (w->flat_dc && ((unsigned) (dc_level + 1)) < 3) { // [-1; 1]
  562. int32_t divide_quant = !chroma ? w->divide_quant_dc_luma
  563. : w->divide_quant_dc_chroma;
  564. int32_t dc_quant = !chroma ? w->quant
  565. : w->quant_dc_chroma;
  566. // original intent dc_level += predicted_dc/quant;
  567. // but it got lost somewhere in the rounding
  568. dc_level += (w->predicted_dc * divide_quant + (1 << 12)) >> 13;
  569. dsp_x8_put_solidcolor(av_clip_uint8((dc_level * dc_quant + 4) >> 3),
  570. w->dest[chroma],
  571. w->frame->linesize[!!chroma]);
  572. goto block_placed;
  573. }
  574. zeros_only = (dc_level == 0);
  575. }
  576. if (!chroma)
  577. s->block[0][0] = dc_level * w->quant;
  578. else
  579. s->block[0][0] = dc_level * w->quant_dc_chroma;
  580. // there is !zero_only check in the original, but dc_level check is enough
  581. if ((unsigned int) (dc_level + 1) >= 3 && (w->edges & 3) != 3) {
  582. int direction;
  583. /* ac_comp_direction[orient] = { 0, 3, 3, 1, 1, 0, 0, 0, 2, 2, 2, 1 }; <-
  584. * -> 01'10' 10'10' 00'00' 00'01' 01'11' 11'00 => 0x6A017C */
  585. direction = (0x6A017C >> (w->orient * 2)) & 3;
  586. if (direction != 3) {
  587. // modify block_last[]
  588. x8_ac_compensation(w, direction, s->block[0][0]);
  589. }
  590. }
  591. if (w->flat_dc) {
  592. dsp_x8_put_solidcolor(w->predicted_dc, w->dest[chroma],
  593. w->frame->linesize[!!chroma]);
  594. } else {
  595. w->dsp.spatial_compensation[w->orient](w->scratchpad,
  596. w->dest[chroma],
  597. w->frame->linesize[!!chroma]);
  598. }
  599. if (!zeros_only)
  600. w->idsp.idct_add(w->dest[chroma],
  601. w->frame->linesize[!!chroma],
  602. s->block[0]);
  603. block_placed:
  604. if (!chroma)
  605. x8_update_predictions(w, w->orient, n);
  606. if (w->loopfilter) {
  607. uint8_t *ptr = w->dest[chroma];
  608. int linesize = w->frame->linesize[!!chroma];
  609. if (!((w->edges & 2) || (zeros_only && (w->orient | 4) == 4)))
  610. w->dsp.h_loop_filter(ptr, linesize, w->quant);
  611. if (!((w->edges & 1) || (zeros_only && (w->orient | 8) == 8)))
  612. w->dsp.v_loop_filter(ptr, linesize, w->quant);
  613. }
  614. return 0;
  615. }
  616. // FIXME maybe merge with ff_*
  617. static void x8_init_block_index(IntraX8Context *w, AVFrame *frame, int mb_y)
  618. {
  619. // not parent codec linesize as this would be wrong for field pics
  620. // not that IntraX8 has interlacing support ;)
  621. const int linesize = frame->linesize[0];
  622. const int uvlinesize = frame->linesize[1];
  623. w->dest[0] = frame->data[0];
  624. w->dest[1] = frame->data[1];
  625. w->dest[2] = frame->data[2];
  626. w->dest[0] += mb_y * linesize << 3;
  627. // chroma blocks are on add rows
  628. w->dest[1] += (mb_y & (~1)) * uvlinesize << 2;
  629. w->dest[2] += (mb_y & (~1)) * uvlinesize << 2;
  630. }
  631. av_cold int ff_intrax8_common_init(AVCodecContext *avctx,
  632. IntraX8Context *w, IDCTDSPContext *idsp,
  633. MpegEncContext *const s)
  634. {
  635. int ret = x8_vlc_init();
  636. if (ret < 0)
  637. return ret;
  638. w->avctx = avctx;
  639. w->idsp = *idsp;
  640. w->s = s;
  641. // two rows, 2 blocks per cannon mb
  642. w->prediction_table = av_mallocz(s->mb_width * 2 * 2);
  643. if (!w->prediction_table)
  644. return AVERROR(ENOMEM);
  645. ff_init_scantable(w->idsp.idct_permutation, &w->scantable[0],
  646. ff_wmv1_scantable[0]);
  647. ff_init_scantable(w->idsp.idct_permutation, &w->scantable[1],
  648. ff_wmv1_scantable[2]);
  649. ff_init_scantable(w->idsp.idct_permutation, &w->scantable[2],
  650. ff_wmv1_scantable[3]);
  651. ff_intrax8dsp_init(&w->dsp);
  652. ff_blockdsp_init(&w->bdsp, avctx);
  653. return 0;
  654. }
  655. av_cold void ff_intrax8_common_end(IntraX8Context *w)
  656. {
  657. av_freep(&w->prediction_table);
  658. }
  659. int ff_intrax8_decode_picture(IntraX8Context *const w, Picture *pict,
  660. GetBitContext *gb,
  661. int dquant, int quant_offset, int loopfilter)
  662. {
  663. MpegEncContext *const s = w->s;
  664. int mb_xy;
  665. assert(s);
  666. w->gb = gb;
  667. w->dquant = dquant;
  668. w->quant = dquant >> 1;
  669. w->qsum = quant_offset;
  670. w->frame = pict->f;
  671. w->loopfilter = loopfilter;
  672. w->use_quant_matrix = get_bits1(w->gb);
  673. w->divide_quant_dc_luma = ((1 << 16) + (w->quant >> 1)) / w->quant;
  674. if (w->quant < 5) {
  675. w->quant_dc_chroma = w->quant;
  676. w->divide_quant_dc_chroma = w->divide_quant_dc_luma;
  677. } else {
  678. w->quant_dc_chroma = w->quant + ((w->quant + 3) >> 3);
  679. w->divide_quant_dc_chroma = ((1 << 16) + (w->quant_dc_chroma >> 1)) / w->quant_dc_chroma;
  680. }
  681. x8_reset_vlc_tables(w);
  682. for (s->mb_y = 0; s->mb_y < s->mb_height * 2; s->mb_y++) {
  683. x8_init_block_index(w, w->frame, s->mb_y);
  684. mb_xy = (s->mb_y >> 1) * s->mb_stride;
  685. for (s->mb_x = 0; s->mb_x < s->mb_width * 2; s->mb_x++) {
  686. x8_get_prediction(w);
  687. if (x8_setup_spatial_predictor(w, 0))
  688. goto error;
  689. if (x8_decode_intra_mb(w, 0))
  690. goto error;
  691. if (s->mb_x & s->mb_y & 1) {
  692. x8_get_prediction_chroma(w);
  693. /* when setting up chroma, no vlc is read,
  694. * so no error condition can be reached */
  695. x8_setup_spatial_predictor(w, 1);
  696. if (x8_decode_intra_mb(w, 1))
  697. goto error;
  698. x8_setup_spatial_predictor(w, 2);
  699. if (x8_decode_intra_mb(w, 2))
  700. goto error;
  701. w->dest[1] += 8;
  702. w->dest[2] += 8;
  703. /* emulate MB info in the relevant tables */
  704. s->mbskip_table[mb_xy] = 0;
  705. s->mbintra_table[mb_xy] = 1;
  706. pict->qscale_table[mb_xy] = w->quant;
  707. mb_xy++;
  708. }
  709. w->dest[0] += 8;
  710. }
  711. if (s->mb_y & 1)
  712. ff_mpeg_draw_horiz_band(s, (s->mb_y - 1) * 8, 16);
  713. }
  714. error:
  715. return 0;
  716. }