You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

485 lines
16KB

  1. /*
  2. * WMA compatible codec
  3. * Copyright (c) 2002-2007 The Libav Project
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include "avcodec.h"
  22. #include "sinewin.h"
  23. #include "wma.h"
  24. #include "wma_common.h"
  25. #include "wmadata.h"
  26. #undef NDEBUG
  27. #include <assert.h>
  28. /* XXX: use same run/length optimization as mpeg decoders */
  29. //FIXME maybe split decode / encode or pass flag
  30. static void init_coef_vlc(VLC *vlc, uint16_t **prun_table,
  31. float **plevel_table, uint16_t **pint_table,
  32. const CoefVLCTable *vlc_table)
  33. {
  34. int n = vlc_table->n;
  35. const uint8_t *table_bits = vlc_table->huffbits;
  36. const uint32_t *table_codes = vlc_table->huffcodes;
  37. const uint16_t *levels_table = vlc_table->levels;
  38. uint16_t *run_table, *level_table, *int_table;
  39. float *flevel_table;
  40. int i, l, j, k, level;
  41. init_vlc(vlc, VLCBITS, n, table_bits, 1, 1, table_codes, 4, 4, 0);
  42. run_table = av_malloc(n * sizeof(uint16_t));
  43. level_table = av_malloc(n * sizeof(uint16_t));
  44. flevel_table= av_malloc(n * sizeof(*flevel_table));
  45. int_table = av_malloc(n * sizeof(uint16_t));
  46. i = 2;
  47. level = 1;
  48. k = 0;
  49. while (i < n) {
  50. int_table[k] = i;
  51. l = levels_table[k++];
  52. for (j = 0; j < l; j++) {
  53. run_table[i] = j;
  54. level_table[i] = level;
  55. flevel_table[i]= level;
  56. i++;
  57. }
  58. level++;
  59. }
  60. *prun_table = run_table;
  61. *plevel_table = flevel_table;
  62. *pint_table = int_table;
  63. av_free(level_table);
  64. }
  65. int ff_wma_init(AVCodecContext *avctx, int flags2)
  66. {
  67. WMACodecContext *s = avctx->priv_data;
  68. int i;
  69. float bps1, high_freq;
  70. volatile float bps;
  71. int sample_rate1;
  72. int coef_vlc_table;
  73. if ( avctx->sample_rate <= 0 || avctx->sample_rate > 50000
  74. || avctx->channels <= 0 || avctx->channels > 2
  75. || avctx->bit_rate <= 0)
  76. return -1;
  77. ff_fmt_convert_init(&s->fmt_conv, avctx);
  78. avpriv_float_dsp_init(&s->fdsp, avctx->flags & CODEC_FLAG_BITEXACT);
  79. if (avctx->codec->id == AV_CODEC_ID_WMAV1) {
  80. s->version = 1;
  81. } else {
  82. s->version = 2;
  83. }
  84. /* compute MDCT block size */
  85. s->frame_len_bits = ff_wma_get_frame_len_bits(avctx->sample_rate,
  86. s->version, 0);
  87. s->next_block_len_bits = s->frame_len_bits;
  88. s->prev_block_len_bits = s->frame_len_bits;
  89. s->block_len_bits = s->frame_len_bits;
  90. s->frame_len = 1 << s->frame_len_bits;
  91. if (s->use_variable_block_len) {
  92. int nb_max, nb;
  93. nb = ((flags2 >> 3) & 3) + 1;
  94. if ((avctx->bit_rate / avctx->channels) >= 32000)
  95. nb += 2;
  96. nb_max = s->frame_len_bits - BLOCK_MIN_BITS;
  97. if (nb > nb_max)
  98. nb = nb_max;
  99. s->nb_block_sizes = nb + 1;
  100. } else {
  101. s->nb_block_sizes = 1;
  102. }
  103. /* init rate dependent parameters */
  104. s->use_noise_coding = 1;
  105. high_freq = avctx->sample_rate * 0.5;
  106. /* if version 2, then the rates are normalized */
  107. sample_rate1 = avctx->sample_rate;
  108. if (s->version == 2) {
  109. if (sample_rate1 >= 44100) {
  110. sample_rate1 = 44100;
  111. } else if (sample_rate1 >= 22050) {
  112. sample_rate1 = 22050;
  113. } else if (sample_rate1 >= 16000) {
  114. sample_rate1 = 16000;
  115. } else if (sample_rate1 >= 11025) {
  116. sample_rate1 = 11025;
  117. } else if (sample_rate1 >= 8000) {
  118. sample_rate1 = 8000;
  119. }
  120. }
  121. bps = (float)avctx->bit_rate / (float)(avctx->channels * avctx->sample_rate);
  122. s->byte_offset_bits = av_log2((int)(bps * s->frame_len / 8.0 + 0.5)) + 2;
  123. /* compute high frequency value and choose if noise coding should
  124. be activated */
  125. bps1 = bps;
  126. if (avctx->channels == 2)
  127. bps1 = bps * 1.6;
  128. if (sample_rate1 == 44100) {
  129. if (bps1 >= 0.61) {
  130. s->use_noise_coding = 0;
  131. } else {
  132. high_freq = high_freq * 0.4;
  133. }
  134. } else if (sample_rate1 == 22050) {
  135. if (bps1 >= 1.16) {
  136. s->use_noise_coding = 0;
  137. } else if (bps1 >= 0.72) {
  138. high_freq = high_freq * 0.7;
  139. } else {
  140. high_freq = high_freq * 0.6;
  141. }
  142. } else if (sample_rate1 == 16000) {
  143. if (bps > 0.5) {
  144. high_freq = high_freq * 0.5;
  145. } else {
  146. high_freq = high_freq * 0.3;
  147. }
  148. } else if (sample_rate1 == 11025) {
  149. high_freq = high_freq * 0.7;
  150. } else if (sample_rate1 == 8000) {
  151. if (bps <= 0.625) {
  152. high_freq = high_freq * 0.5;
  153. } else if (bps > 0.75) {
  154. s->use_noise_coding = 0;
  155. } else {
  156. high_freq = high_freq * 0.65;
  157. }
  158. } else {
  159. if (bps >= 0.8) {
  160. high_freq = high_freq * 0.75;
  161. } else if (bps >= 0.6) {
  162. high_freq = high_freq * 0.6;
  163. } else {
  164. high_freq = high_freq * 0.5;
  165. }
  166. }
  167. av_dlog(s->avctx, "flags2=0x%x\n", flags2);
  168. av_dlog(s->avctx, "version=%d channels=%d sample_rate=%d bitrate=%d block_align=%d\n",
  169. s->version, avctx->channels, avctx->sample_rate, avctx->bit_rate,
  170. avctx->block_align);
  171. av_dlog(s->avctx, "bps=%f bps1=%f high_freq=%f bitoffset=%d\n",
  172. bps, bps1, high_freq, s->byte_offset_bits);
  173. av_dlog(s->avctx, "use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
  174. s->use_noise_coding, s->use_exp_vlc, s->nb_block_sizes);
  175. /* compute the scale factor band sizes for each MDCT block size */
  176. {
  177. int a, b, pos, lpos, k, block_len, i, j, n;
  178. const uint8_t *table;
  179. if (s->version == 1) {
  180. s->coefs_start = 3;
  181. } else {
  182. s->coefs_start = 0;
  183. }
  184. for (k = 0; k < s->nb_block_sizes; k++) {
  185. block_len = s->frame_len >> k;
  186. if (s->version == 1) {
  187. lpos = 0;
  188. for (i = 0; i < 25; i++) {
  189. a = ff_wma_critical_freqs[i];
  190. b = avctx->sample_rate;
  191. pos = ((block_len * 2 * a) + (b >> 1)) / b;
  192. if (pos > block_len)
  193. pos = block_len;
  194. s->exponent_bands[0][i] = pos - lpos;
  195. if (pos >= block_len) {
  196. i++;
  197. break;
  198. }
  199. lpos = pos;
  200. }
  201. s->exponent_sizes[0] = i;
  202. } else {
  203. /* hardcoded tables */
  204. table = NULL;
  205. a = s->frame_len_bits - BLOCK_MIN_BITS - k;
  206. if (a < 3) {
  207. if (avctx->sample_rate >= 44100) {
  208. table = exponent_band_44100[a];
  209. } else if (avctx->sample_rate >= 32000) {
  210. table = exponent_band_32000[a];
  211. } else if (avctx->sample_rate >= 22050) {
  212. table = exponent_band_22050[a];
  213. }
  214. }
  215. if (table) {
  216. n = *table++;
  217. for (i = 0; i < n; i++)
  218. s->exponent_bands[k][i] = table[i];
  219. s->exponent_sizes[k] = n;
  220. } else {
  221. j = 0;
  222. lpos = 0;
  223. for (i = 0; i < 25; i++) {
  224. a = ff_wma_critical_freqs[i];
  225. b = avctx->sample_rate;
  226. pos = ((block_len * 2 * a) + (b << 1)) / (4 * b);
  227. pos <<= 2;
  228. if (pos > block_len)
  229. pos = block_len;
  230. if (pos > lpos)
  231. s->exponent_bands[k][j++] = pos - lpos;
  232. if (pos >= block_len)
  233. break;
  234. lpos = pos;
  235. }
  236. s->exponent_sizes[k] = j;
  237. }
  238. }
  239. /* max number of coefs */
  240. s->coefs_end[k] = (s->frame_len - ((s->frame_len * 9) / 100)) >> k;
  241. /* high freq computation */
  242. s->high_band_start[k] = (int)((block_len * 2 * high_freq) /
  243. avctx->sample_rate + 0.5);
  244. n = s->exponent_sizes[k];
  245. j = 0;
  246. pos = 0;
  247. for (i = 0; i < n; i++) {
  248. int start, end;
  249. start = pos;
  250. pos += s->exponent_bands[k][i];
  251. end = pos;
  252. if (start < s->high_band_start[k])
  253. start = s->high_band_start[k];
  254. if (end > s->coefs_end[k])
  255. end = s->coefs_end[k];
  256. if (end > start)
  257. s->exponent_high_bands[k][j++] = end - start;
  258. }
  259. s->exponent_high_sizes[k] = j;
  260. #if 0
  261. tprintf(s->avctx, "%5d: coefs_end=%d high_band_start=%d nb_high_bands=%d: ",
  262. s->frame_len >> k,
  263. s->coefs_end[k],
  264. s->high_band_start[k],
  265. s->exponent_high_sizes[k]);
  266. for (j = 0; j < s->exponent_high_sizes[k]; j++)
  267. tprintf(s->avctx, " %d", s->exponent_high_bands[k][j]);
  268. tprintf(s->avctx, "\n");
  269. #endif
  270. }
  271. }
  272. #ifdef TRACE
  273. {
  274. int i, j;
  275. for (i = 0; i < s->nb_block_sizes; i++) {
  276. tprintf(s->avctx, "%5d: n=%2d:",
  277. s->frame_len >> i,
  278. s->exponent_sizes[i]);
  279. for (j = 0; j < s->exponent_sizes[i]; j++)
  280. tprintf(s->avctx, " %d", s->exponent_bands[i][j]);
  281. tprintf(s->avctx, "\n");
  282. }
  283. }
  284. #endif
  285. /* init MDCT windows : simple sinus window */
  286. for (i = 0; i < s->nb_block_sizes; i++) {
  287. ff_init_ff_sine_windows(s->frame_len_bits - i);
  288. s->windows[i] = ff_sine_windows[s->frame_len_bits - i];
  289. }
  290. s->reset_block_lengths = 1;
  291. if (s->use_noise_coding) {
  292. /* init the noise generator */
  293. if (s->use_exp_vlc) {
  294. s->noise_mult = 0.02;
  295. } else {
  296. s->noise_mult = 0.04;
  297. }
  298. #ifdef TRACE
  299. for (i = 0; i < NOISE_TAB_SIZE; i++)
  300. s->noise_table[i] = 1.0 * s->noise_mult;
  301. #else
  302. {
  303. unsigned int seed;
  304. float norm;
  305. seed = 1;
  306. norm = (1.0 / (float)(1LL << 31)) * sqrt(3) * s->noise_mult;
  307. for (i = 0; i < NOISE_TAB_SIZE; i++) {
  308. seed = seed * 314159 + 1;
  309. s->noise_table[i] = (float)((int)seed) * norm;
  310. }
  311. }
  312. #endif
  313. }
  314. /* choose the VLC tables for the coefficients */
  315. coef_vlc_table = 2;
  316. if (avctx->sample_rate >= 32000) {
  317. if (bps1 < 0.72) {
  318. coef_vlc_table = 0;
  319. } else if (bps1 < 1.16) {
  320. coef_vlc_table = 1;
  321. }
  322. }
  323. s->coef_vlcs[0]= &coef_vlcs[coef_vlc_table * 2 ];
  324. s->coef_vlcs[1]= &coef_vlcs[coef_vlc_table * 2 + 1];
  325. init_coef_vlc(&s->coef_vlc[0], &s->run_table[0], &s->level_table[0], &s->int_table[0],
  326. s->coef_vlcs[0]);
  327. init_coef_vlc(&s->coef_vlc[1], &s->run_table[1], &s->level_table[1], &s->int_table[1],
  328. s->coef_vlcs[1]);
  329. return 0;
  330. }
  331. int ff_wma_total_gain_to_bits(int total_gain)
  332. {
  333. if (total_gain < 15) return 13;
  334. else if (total_gain < 32) return 12;
  335. else if (total_gain < 40) return 11;
  336. else if (total_gain < 45) return 10;
  337. else return 9;
  338. }
  339. int ff_wma_end(AVCodecContext *avctx)
  340. {
  341. WMACodecContext *s = avctx->priv_data;
  342. int i;
  343. for (i = 0; i < s->nb_block_sizes; i++)
  344. ff_mdct_end(&s->mdct_ctx[i]);
  345. if (s->use_exp_vlc) {
  346. ff_free_vlc(&s->exp_vlc);
  347. }
  348. if (s->use_noise_coding) {
  349. ff_free_vlc(&s->hgain_vlc);
  350. }
  351. for (i = 0; i < 2; i++) {
  352. ff_free_vlc(&s->coef_vlc[i]);
  353. av_free(s->run_table[i]);
  354. av_free(s->level_table[i]);
  355. av_free(s->int_table[i]);
  356. }
  357. return 0;
  358. }
  359. /**
  360. * Decode an uncompressed coefficient.
  361. * @param gb GetBitContext
  362. * @return the decoded coefficient
  363. */
  364. unsigned int ff_wma_get_large_val(GetBitContext* gb)
  365. {
  366. /** consumes up to 34 bits */
  367. int n_bits = 8;
  368. /** decode length */
  369. if (get_bits1(gb)) {
  370. n_bits += 8;
  371. if (get_bits1(gb)) {
  372. n_bits += 8;
  373. if (get_bits1(gb)) {
  374. n_bits += 7;
  375. }
  376. }
  377. }
  378. return get_bits_long(gb, n_bits);
  379. }
  380. /**
  381. * Decode run level compressed coefficients.
  382. * @param avctx codec context
  383. * @param gb bitstream reader context
  384. * @param vlc vlc table for get_vlc2
  385. * @param level_table level codes
  386. * @param run_table run codes
  387. * @param version 0 for wma1,2 1 for wmapro
  388. * @param ptr output buffer
  389. * @param offset offset in the output buffer
  390. * @param num_coefs number of input coefficents
  391. * @param block_len input buffer length (2^n)
  392. * @param frame_len_bits number of bits for escaped run codes
  393. * @param coef_nb_bits number of bits for escaped level codes
  394. * @return 0 on success, -1 otherwise
  395. */
  396. int ff_wma_run_level_decode(AVCodecContext* avctx, GetBitContext* gb,
  397. VLC *vlc,
  398. const float *level_table, const uint16_t *run_table,
  399. int version, WMACoef *ptr, int offset,
  400. int num_coefs, int block_len, int frame_len_bits,
  401. int coef_nb_bits)
  402. {
  403. int code, level, sign;
  404. const uint32_t *ilvl = (const uint32_t*)level_table;
  405. uint32_t *iptr = (uint32_t*)ptr;
  406. const unsigned int coef_mask = block_len - 1;
  407. for (; offset < num_coefs; offset++) {
  408. code = get_vlc2(gb, vlc->table, VLCBITS, VLCMAX);
  409. if (code > 1) {
  410. /** normal code */
  411. offset += run_table[code];
  412. sign = get_bits1(gb) - 1;
  413. iptr[offset & coef_mask] = ilvl[code] ^ sign<<31;
  414. } else if (code == 1) {
  415. /** EOB */
  416. break;
  417. } else {
  418. /** escape */
  419. if (!version) {
  420. level = get_bits(gb, coef_nb_bits);
  421. /** NOTE: this is rather suboptimal. reading
  422. block_len_bits would be better */
  423. offset += get_bits(gb, frame_len_bits);
  424. } else {
  425. level = ff_wma_get_large_val(gb);
  426. /** escape decode */
  427. if (get_bits1(gb)) {
  428. if (get_bits1(gb)) {
  429. if (get_bits1(gb)) {
  430. av_log(avctx,AV_LOG_ERROR,
  431. "broken escape sequence\n");
  432. return -1;
  433. } else
  434. offset += get_bits(gb, frame_len_bits) + 4;
  435. } else
  436. offset += get_bits(gb, 2) + 1;
  437. }
  438. }
  439. sign = get_bits1(gb) - 1;
  440. ptr[offset & coef_mask] = (level^sign) - sign;
  441. }
  442. }
  443. /** NOTE: EOB can be omitted */
  444. if (offset > num_coefs) {
  445. av_log(avctx, AV_LOG_ERROR, "overflow in spectral RLE, ignoring\n");
  446. return -1;
  447. }
  448. return 0;
  449. }