You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

633 lines
19KB

  1. /*
  2. * Wing Commander/Xan Video Decoder
  3. * Copyright (C) 2003 the ffmpeg project
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * Xan video decoder for Wing Commander III computer game
  24. * by Mario Brito (mbrito@student.dei.uc.pt)
  25. * and Mike Melanson (melanson@pcisys.net)
  26. *
  27. * The xan_wc3 decoder outputs PAL8 data.
  28. */
  29. #include <stdio.h>
  30. #include <stdlib.h>
  31. #include <string.h>
  32. #include "libavutil/intreadwrite.h"
  33. #include "libavutil/mem.h"
  34. #include "avcodec.h"
  35. #include "bytestream.h"
  36. #define BITSTREAM_READER_LE
  37. #include "get_bits.h"
  38. #define RUNTIME_GAMMA 0
  39. #define VGA__TAG MKTAG('V', 'G', 'A', ' ')
  40. #define PALT_TAG MKTAG('P', 'A', 'L', 'T')
  41. #define SHOT_TAG MKTAG('S', 'H', 'O', 'T')
  42. #define PALETTE_COUNT 256
  43. #define PALETTE_SIZE (PALETTE_COUNT * 3)
  44. #define PALETTES_MAX 256
  45. typedef struct XanContext {
  46. AVCodecContext *avctx;
  47. AVFrame last_frame;
  48. AVFrame current_frame;
  49. const unsigned char *buf;
  50. int size;
  51. /* scratch space */
  52. unsigned char *buffer1;
  53. int buffer1_size;
  54. unsigned char *buffer2;
  55. int buffer2_size;
  56. unsigned *palettes;
  57. int palettes_count;
  58. int cur_palette;
  59. int frame_size;
  60. } XanContext;
  61. static av_cold int xan_decode_init(AVCodecContext *avctx)
  62. {
  63. XanContext *s = avctx->priv_data;
  64. s->avctx = avctx;
  65. s->frame_size = 0;
  66. avctx->pix_fmt = AV_PIX_FMT_PAL8;
  67. s->buffer1_size = avctx->width * avctx->height;
  68. s->buffer1 = av_malloc(s->buffer1_size);
  69. if (!s->buffer1)
  70. return AVERROR(ENOMEM);
  71. s->buffer2_size = avctx->width * avctx->height;
  72. s->buffer2 = av_malloc(s->buffer2_size + 130);
  73. if (!s->buffer2) {
  74. av_freep(&s->buffer1);
  75. return AVERROR(ENOMEM);
  76. }
  77. avcodec_get_frame_defaults(&s->last_frame);
  78. avcodec_get_frame_defaults(&s->current_frame);
  79. return 0;
  80. }
  81. static int xan_huffman_decode(unsigned char *dest, int dest_len,
  82. const unsigned char *src, int src_len)
  83. {
  84. unsigned char byte = *src++;
  85. unsigned char ival = byte + 0x16;
  86. const unsigned char * ptr = src + byte*2;
  87. int ptr_len = src_len - 1 - byte*2;
  88. unsigned char val = ival;
  89. unsigned char *dest_end = dest + dest_len;
  90. GetBitContext gb;
  91. if (ptr_len < 0)
  92. return AVERROR_INVALIDDATA;
  93. init_get_bits(&gb, ptr, ptr_len * 8);
  94. while (val != 0x16) {
  95. unsigned idx = val - 0x17 + get_bits1(&gb) * byte;
  96. if (idx >= 2 * byte)
  97. return -1;
  98. val = src[idx];
  99. if (val < 0x16) {
  100. if (dest >= dest_end)
  101. return 0;
  102. *dest++ = val;
  103. val = ival;
  104. }
  105. }
  106. return 0;
  107. }
  108. /**
  109. * unpack simple compression
  110. *
  111. * @param dest destination buffer of dest_len, must be padded with at least 130 bytes
  112. */
  113. static void xan_unpack(unsigned char *dest, int dest_len,
  114. const unsigned char *src, int src_len)
  115. {
  116. unsigned char opcode;
  117. int size;
  118. unsigned char *dest_org = dest;
  119. unsigned char *dest_end = dest + dest_len;
  120. const unsigned char *src_end = src + src_len;
  121. while (dest < dest_end && src < src_end) {
  122. opcode = *src++;
  123. if (opcode < 0xe0) {
  124. int size2, back;
  125. if ((opcode & 0x80) == 0) {
  126. size = opcode & 3;
  127. back = ((opcode & 0x60) << 3) + *src++ + 1;
  128. size2 = ((opcode & 0x1c) >> 2) + 3;
  129. } else if ((opcode & 0x40) == 0) {
  130. size = *src >> 6;
  131. back = (bytestream_get_be16(&src) & 0x3fff) + 1;
  132. size2 = (opcode & 0x3f) + 4;
  133. } else {
  134. size = opcode & 3;
  135. back = ((opcode & 0x10) << 12) + bytestream_get_be16(&src) + 1;
  136. size2 = ((opcode & 0x0c) << 6) + *src++ + 5;
  137. }
  138. if (dest_end - dest < size + size2 ||
  139. dest + size - dest_org < back ||
  140. src_end - src < size)
  141. return;
  142. memcpy(dest, src, size); dest += size; src += size;
  143. av_memcpy_backptr(dest, back, size2);
  144. dest += size2;
  145. } else {
  146. int finish = opcode >= 0xfc;
  147. size = finish ? opcode & 3 : ((opcode & 0x1f) << 2) + 4;
  148. if (dest_end - dest < size || src_end - src < size)
  149. return;
  150. memcpy(dest, src, size); dest += size; src += size;
  151. if (finish)
  152. return;
  153. }
  154. }
  155. }
  156. static inline void xan_wc3_output_pixel_run(XanContext *s,
  157. const unsigned char *pixel_buffer, int x, int y, int pixel_count)
  158. {
  159. int stride;
  160. int line_inc;
  161. int index;
  162. int current_x;
  163. int width = s->avctx->width;
  164. unsigned char *palette_plane;
  165. palette_plane = s->current_frame.data[0];
  166. stride = s->current_frame.linesize[0];
  167. line_inc = stride - width;
  168. index = y * stride + x;
  169. current_x = x;
  170. while (pixel_count && index < s->frame_size) {
  171. int count = FFMIN(pixel_count, width - current_x);
  172. memcpy(palette_plane + index, pixel_buffer, count);
  173. pixel_count -= count;
  174. index += count;
  175. pixel_buffer += count;
  176. current_x += count;
  177. if (current_x >= width) {
  178. index += line_inc;
  179. current_x = 0;
  180. }
  181. }
  182. }
  183. static inline void xan_wc3_copy_pixel_run(XanContext *s, int x, int y,
  184. int pixel_count, int motion_x,
  185. int motion_y)
  186. {
  187. int stride;
  188. int line_inc;
  189. int curframe_index, prevframe_index;
  190. int curframe_x, prevframe_x;
  191. int width = s->avctx->width;
  192. unsigned char *palette_plane, *prev_palette_plane;
  193. if (y + motion_y < 0 || y + motion_y >= s->avctx->height ||
  194. x + motion_x < 0 || x + motion_x >= s->avctx->width)
  195. return;
  196. palette_plane = s->current_frame.data[0];
  197. prev_palette_plane = s->last_frame.data[0];
  198. if (!prev_palette_plane)
  199. prev_palette_plane = palette_plane;
  200. stride = s->current_frame.linesize[0];
  201. line_inc = stride - width;
  202. curframe_index = y * stride + x;
  203. curframe_x = x;
  204. prevframe_index = (y + motion_y) * stride + x + motion_x;
  205. prevframe_x = x + motion_x;
  206. while (pixel_count &&
  207. curframe_index < s->frame_size &&
  208. prevframe_index < s->frame_size) {
  209. int count = FFMIN3(pixel_count, width - curframe_x,
  210. width - prevframe_x);
  211. memcpy(palette_plane + curframe_index,
  212. prev_palette_plane + prevframe_index, count);
  213. pixel_count -= count;
  214. curframe_index += count;
  215. prevframe_index += count;
  216. curframe_x += count;
  217. prevframe_x += count;
  218. if (curframe_x >= width) {
  219. curframe_index += line_inc;
  220. curframe_x = 0;
  221. }
  222. if (prevframe_x >= width) {
  223. prevframe_index += line_inc;
  224. prevframe_x = 0;
  225. }
  226. }
  227. }
  228. static int xan_wc3_decode_frame(XanContext *s) {
  229. int width = s->avctx->width;
  230. int height = s->avctx->height;
  231. int total_pixels = width * height;
  232. unsigned char opcode;
  233. unsigned char flag = 0;
  234. int size = 0;
  235. int motion_x, motion_y;
  236. int x, y;
  237. unsigned char *opcode_buffer = s->buffer1;
  238. unsigned char *opcode_buffer_end = s->buffer1 + s->buffer1_size;
  239. int opcode_buffer_size = s->buffer1_size;
  240. const unsigned char *imagedata_buffer = s->buffer2;
  241. /* pointers to segments inside the compressed chunk */
  242. const unsigned char *huffman_segment;
  243. const unsigned char *size_segment;
  244. const unsigned char *vector_segment;
  245. const unsigned char *imagedata_segment;
  246. const unsigned char *buf_end = s->buf + s->size;
  247. int huffman_offset, size_offset, vector_offset, imagedata_offset,
  248. imagedata_size;
  249. if (s->size < 8)
  250. return AVERROR_INVALIDDATA;
  251. huffman_offset = AV_RL16(&s->buf[0]);
  252. size_offset = AV_RL16(&s->buf[2]);
  253. vector_offset = AV_RL16(&s->buf[4]);
  254. imagedata_offset = AV_RL16(&s->buf[6]);
  255. if (huffman_offset >= s->size ||
  256. size_offset >= s->size ||
  257. vector_offset >= s->size ||
  258. imagedata_offset >= s->size)
  259. return AVERROR_INVALIDDATA;
  260. huffman_segment = s->buf + huffman_offset;
  261. size_segment = s->buf + size_offset;
  262. vector_segment = s->buf + vector_offset;
  263. imagedata_segment = s->buf + imagedata_offset;
  264. if (xan_huffman_decode(opcode_buffer, opcode_buffer_size,
  265. huffman_segment, s->size - huffman_offset) < 0)
  266. return AVERROR_INVALIDDATA;
  267. if (imagedata_segment[0] == 2) {
  268. xan_unpack(s->buffer2, s->buffer2_size,
  269. &imagedata_segment[1], s->size - imagedata_offset - 1);
  270. imagedata_size = s->buffer2_size;
  271. } else {
  272. imagedata_size = s->size - imagedata_offset - 1;
  273. imagedata_buffer = &imagedata_segment[1];
  274. }
  275. /* use the decoded data segments to build the frame */
  276. x = y = 0;
  277. while (total_pixels && opcode_buffer < opcode_buffer_end) {
  278. opcode = *opcode_buffer++;
  279. size = 0;
  280. switch (opcode) {
  281. case 0:
  282. flag ^= 1;
  283. continue;
  284. case 1:
  285. case 2:
  286. case 3:
  287. case 4:
  288. case 5:
  289. case 6:
  290. case 7:
  291. case 8:
  292. size = opcode;
  293. break;
  294. case 12:
  295. case 13:
  296. case 14:
  297. case 15:
  298. case 16:
  299. case 17:
  300. case 18:
  301. size += (opcode - 10);
  302. break;
  303. case 9:
  304. case 19:
  305. size = *size_segment++;
  306. break;
  307. case 10:
  308. case 20:
  309. size = AV_RB16(&size_segment[0]);
  310. size_segment += 2;
  311. break;
  312. case 11:
  313. case 21:
  314. size = AV_RB24(size_segment);
  315. size_segment += 3;
  316. break;
  317. }
  318. if (size > total_pixels)
  319. break;
  320. if (opcode < 12) {
  321. flag ^= 1;
  322. if (flag) {
  323. /* run of (size) pixels is unchanged from last frame */
  324. xan_wc3_copy_pixel_run(s, x, y, size, 0, 0);
  325. } else {
  326. /* output a run of pixels from imagedata_buffer */
  327. if (imagedata_size < size)
  328. break;
  329. xan_wc3_output_pixel_run(s, imagedata_buffer, x, y, size);
  330. imagedata_buffer += size;
  331. imagedata_size -= size;
  332. }
  333. } else {
  334. if (vector_segment >= buf_end) {
  335. av_log(s->avctx, AV_LOG_ERROR, "vector_segment overread\n");
  336. return AVERROR_INVALIDDATA;
  337. }
  338. /* run-based motion compensation from last frame */
  339. motion_x = sign_extend(*vector_segment >> 4, 4);
  340. motion_y = sign_extend(*vector_segment & 0xF, 4);
  341. vector_segment++;
  342. /* copy a run of pixels from the previous frame */
  343. xan_wc3_copy_pixel_run(s, x, y, size, motion_x, motion_y);
  344. flag = 0;
  345. }
  346. /* coordinate accounting */
  347. total_pixels -= size;
  348. y += (x + size) / width;
  349. x = (x + size) % width;
  350. }
  351. return 0;
  352. }
  353. #if RUNTIME_GAMMA
  354. static inline unsigned mul(unsigned a, unsigned b)
  355. {
  356. return (a * b) >> 16;
  357. }
  358. static inline unsigned pow4(unsigned a)
  359. {
  360. unsigned square = mul(a, a);
  361. return mul(square, square);
  362. }
  363. static inline unsigned pow5(unsigned a)
  364. {
  365. return mul(pow4(a), a);
  366. }
  367. static uint8_t gamma_corr(uint8_t in) {
  368. unsigned lo, hi = 0xff40, target;
  369. int i = 15;
  370. in = (in << 2) | (in >> 6);
  371. /* equivalent float code:
  372. if (in >= 252)
  373. return 253;
  374. return round(pow(in / 256.0, 0.8) * 256);
  375. */
  376. lo = target = in << 8;
  377. do {
  378. unsigned mid = (lo + hi) >> 1;
  379. unsigned pow = pow5(mid);
  380. if (pow > target) hi = mid;
  381. else lo = mid;
  382. } while (--i);
  383. return (pow4((lo + hi) >> 1) + 0x80) >> 8;
  384. }
  385. #else
  386. /**
  387. * This is a gamma correction that xan3 applies to all palette entries.
  388. *
  389. * There is a peculiarity, namely that the values are clamped to 253 -
  390. * it seems likely that this table was calculated by a buggy fixed-point
  391. * implementation, the one above under RUNTIME_GAMMA behaves like this for
  392. * example.
  393. * The exponent value of 0.8 can be explained by this as well, since 0.8 = 4/5
  394. * and thus pow(x, 0.8) is still easy to calculate.
  395. * Also, the input values are first rotated to the left by 2.
  396. */
  397. static const uint8_t gamma_lookup[256] = {
  398. 0x00, 0x09, 0x10, 0x16, 0x1C, 0x21, 0x27, 0x2C,
  399. 0x31, 0x35, 0x3A, 0x3F, 0x43, 0x48, 0x4C, 0x50,
  400. 0x54, 0x59, 0x5D, 0x61, 0x65, 0x69, 0x6D, 0x71,
  401. 0x75, 0x79, 0x7D, 0x80, 0x84, 0x88, 0x8C, 0x8F,
  402. 0x93, 0x97, 0x9A, 0x9E, 0xA2, 0xA5, 0xA9, 0xAC,
  403. 0xB0, 0xB3, 0xB7, 0xBA, 0xBE, 0xC1, 0xC5, 0xC8,
  404. 0xCB, 0xCF, 0xD2, 0xD5, 0xD9, 0xDC, 0xDF, 0xE3,
  405. 0xE6, 0xE9, 0xED, 0xF0, 0xF3, 0xF6, 0xFA, 0xFD,
  406. 0x03, 0x0B, 0x12, 0x18, 0x1D, 0x23, 0x28, 0x2D,
  407. 0x32, 0x36, 0x3B, 0x40, 0x44, 0x49, 0x4D, 0x51,
  408. 0x56, 0x5A, 0x5E, 0x62, 0x66, 0x6A, 0x6E, 0x72,
  409. 0x76, 0x7A, 0x7D, 0x81, 0x85, 0x89, 0x8D, 0x90,
  410. 0x94, 0x98, 0x9B, 0x9F, 0xA2, 0xA6, 0xAA, 0xAD,
  411. 0xB1, 0xB4, 0xB8, 0xBB, 0xBF, 0xC2, 0xC5, 0xC9,
  412. 0xCC, 0xD0, 0xD3, 0xD6, 0xDA, 0xDD, 0xE0, 0xE4,
  413. 0xE7, 0xEA, 0xED, 0xF1, 0xF4, 0xF7, 0xFA, 0xFD,
  414. 0x05, 0x0D, 0x13, 0x19, 0x1F, 0x24, 0x29, 0x2E,
  415. 0x33, 0x38, 0x3C, 0x41, 0x45, 0x4A, 0x4E, 0x52,
  416. 0x57, 0x5B, 0x5F, 0x63, 0x67, 0x6B, 0x6F, 0x73,
  417. 0x77, 0x7B, 0x7E, 0x82, 0x86, 0x8A, 0x8D, 0x91,
  418. 0x95, 0x99, 0x9C, 0xA0, 0xA3, 0xA7, 0xAA, 0xAE,
  419. 0xB2, 0xB5, 0xB9, 0xBC, 0xBF, 0xC3, 0xC6, 0xCA,
  420. 0xCD, 0xD0, 0xD4, 0xD7, 0xDA, 0xDE, 0xE1, 0xE4,
  421. 0xE8, 0xEB, 0xEE, 0xF1, 0xF5, 0xF8, 0xFB, 0xFD,
  422. 0x07, 0x0E, 0x15, 0x1A, 0x20, 0x25, 0x2A, 0x2F,
  423. 0x34, 0x39, 0x3D, 0x42, 0x46, 0x4B, 0x4F, 0x53,
  424. 0x58, 0x5C, 0x60, 0x64, 0x68, 0x6C, 0x70, 0x74,
  425. 0x78, 0x7C, 0x7F, 0x83, 0x87, 0x8B, 0x8E, 0x92,
  426. 0x96, 0x99, 0x9D, 0xA1, 0xA4, 0xA8, 0xAB, 0xAF,
  427. 0xB2, 0xB6, 0xB9, 0xBD, 0xC0, 0xC4, 0xC7, 0xCB,
  428. 0xCE, 0xD1, 0xD5, 0xD8, 0xDB, 0xDF, 0xE2, 0xE5,
  429. 0xE9, 0xEC, 0xEF, 0xF2, 0xF6, 0xF9, 0xFC, 0xFD
  430. };
  431. #endif
  432. static int xan_decode_frame(AVCodecContext *avctx,
  433. void *data, int *data_size,
  434. AVPacket *avpkt)
  435. {
  436. const uint8_t *buf = avpkt->data;
  437. int ret, buf_size = avpkt->size;
  438. XanContext *s = avctx->priv_data;
  439. if (avctx->codec->id == AV_CODEC_ID_XAN_WC3) {
  440. const uint8_t *buf_end = buf + buf_size;
  441. int tag = 0;
  442. while (buf_end - buf > 8 && tag != VGA__TAG) {
  443. unsigned *tmpptr;
  444. uint32_t new_pal;
  445. int size;
  446. int i;
  447. tag = bytestream_get_le32(&buf);
  448. size = bytestream_get_be32(&buf);
  449. if(size < 0) {
  450. av_log(avctx, AV_LOG_ERROR, "Invalid tag size %d\n", size);
  451. return AVERROR_INVALIDDATA;
  452. }
  453. size = FFMIN(size, buf_end - buf);
  454. switch (tag) {
  455. case PALT_TAG:
  456. if (size < PALETTE_SIZE)
  457. return AVERROR_INVALIDDATA;
  458. if (s->palettes_count >= PALETTES_MAX)
  459. return AVERROR_INVALIDDATA;
  460. tmpptr = av_realloc(s->palettes,
  461. (s->palettes_count + 1) * AVPALETTE_SIZE);
  462. if (!tmpptr)
  463. return AVERROR(ENOMEM);
  464. s->palettes = tmpptr;
  465. tmpptr += s->palettes_count * AVPALETTE_COUNT;
  466. for (i = 0; i < PALETTE_COUNT; i++) {
  467. #if RUNTIME_GAMMA
  468. int r = gamma_corr(*buf++);
  469. int g = gamma_corr(*buf++);
  470. int b = gamma_corr(*buf++);
  471. #else
  472. int r = gamma_lookup[*buf++];
  473. int g = gamma_lookup[*buf++];
  474. int b = gamma_lookup[*buf++];
  475. #endif
  476. *tmpptr++ = (0xFFU << 24) | (r << 16) | (g << 8) | b;
  477. }
  478. s->palettes_count++;
  479. break;
  480. case SHOT_TAG:
  481. if (size < 4)
  482. return AVERROR_INVALIDDATA;
  483. new_pal = bytestream_get_le32(&buf);
  484. if (new_pal < s->palettes_count) {
  485. s->cur_palette = new_pal;
  486. } else
  487. av_log(avctx, AV_LOG_ERROR, "Invalid palette selected\n");
  488. break;
  489. case VGA__TAG:
  490. break;
  491. default:
  492. buf += size;
  493. break;
  494. }
  495. }
  496. buf_size = buf_end - buf;
  497. }
  498. if (s->palettes_count <= 0) {
  499. av_log(s->avctx, AV_LOG_ERROR, "No palette found\n");
  500. return AVERROR_INVALIDDATA;
  501. }
  502. if ((ret = avctx->get_buffer(avctx, &s->current_frame))) {
  503. av_log(s->avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  504. return ret;
  505. }
  506. s->current_frame.reference = 3;
  507. if (!s->frame_size)
  508. s->frame_size = s->current_frame.linesize[0] * s->avctx->height;
  509. memcpy(s->current_frame.data[1],
  510. s->palettes + s->cur_palette * AVPALETTE_COUNT, AVPALETTE_SIZE);
  511. s->buf = buf;
  512. s->size = buf_size;
  513. if (xan_wc3_decode_frame(s) < 0)
  514. return AVERROR_INVALIDDATA;
  515. /* release the last frame if it is allocated */
  516. if (s->last_frame.data[0])
  517. avctx->release_buffer(avctx, &s->last_frame);
  518. *data_size = sizeof(AVFrame);
  519. *(AVFrame*)data = s->current_frame;
  520. /* shuffle frames */
  521. FFSWAP(AVFrame, s->current_frame, s->last_frame);
  522. /* always report that the buffer was completely consumed */
  523. return buf_size;
  524. }
  525. static av_cold int xan_decode_end(AVCodecContext *avctx)
  526. {
  527. XanContext *s = avctx->priv_data;
  528. /* release the frames */
  529. if (s->last_frame.data[0])
  530. avctx->release_buffer(avctx, &s->last_frame);
  531. if (s->current_frame.data[0])
  532. avctx->release_buffer(avctx, &s->current_frame);
  533. av_freep(&s->buffer1);
  534. av_freep(&s->buffer2);
  535. av_freep(&s->palettes);
  536. return 0;
  537. }
  538. AVCodec ff_xan_wc3_decoder = {
  539. .name = "xan_wc3",
  540. .type = AVMEDIA_TYPE_VIDEO,
  541. .id = AV_CODEC_ID_XAN_WC3,
  542. .priv_data_size = sizeof(XanContext),
  543. .init = xan_decode_init,
  544. .close = xan_decode_end,
  545. .decode = xan_decode_frame,
  546. .capabilities = CODEC_CAP_DR1,
  547. .long_name = NULL_IF_CONFIG_SMALL("Wing Commander III / Xan"),
  548. };