You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3186 lines
107KB

  1. /*
  2. * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. *
  20. * the C code (not assembly, mmx, ...) of this file can be used
  21. * under the LGPL license too
  22. */
  23. /*
  24. supported Input formats: YV12, I420/IYUV, YUY2, UYVY, BGR32, BGR32_1, BGR24, BGR16, BGR15, RGB32, RGB32_1, RGB24, Y8/Y800, YVU9/IF09, PAL8
  25. supported output formats: YV12, I420/IYUV, YUY2, UYVY, {BGR,RGB}{1,4,8,15,16,24,32}, Y8/Y800, YVU9/IF09
  26. {BGR,RGB}{1,4,8,15,16} support dithering
  27. unscaled special converters (YV12=I420=IYUV, Y800=Y8)
  28. YV12 -> {BGR,RGB}{1,4,8,15,16,24,32}
  29. x -> x
  30. YUV9 -> YV12
  31. YUV9/YV12 -> Y800
  32. Y800 -> YUV9/YV12
  33. BGR24 -> BGR32 & RGB24 -> RGB32
  34. BGR32 -> BGR24 & RGB32 -> RGB24
  35. BGR15 -> BGR16
  36. */
  37. /*
  38. tested special converters (most are tested actually, but I did not write it down ...)
  39. YV12 -> BGR16
  40. YV12 -> YV12
  41. BGR15 -> BGR16
  42. BGR16 -> BGR16
  43. YVU9 -> YV12
  44. untested special converters
  45. YV12/I420 -> BGR15/BGR24/BGR32 (it is the yuv2rgb stuff, so it should be ok)
  46. YV12/I420 -> YV12/I420
  47. YUY2/BGR15/BGR24/BGR32/RGB24/RGB32 -> same format
  48. BGR24 -> BGR32 & RGB24 -> RGB32
  49. BGR32 -> BGR24 & RGB32 -> RGB24
  50. BGR24 -> YV12
  51. */
  52. #define _SVID_SOURCE //needed for MAP_ANONYMOUS
  53. #include <inttypes.h>
  54. #include <string.h>
  55. #include <math.h>
  56. #include <stdio.h>
  57. #include <unistd.h>
  58. #include "config.h"
  59. #include <assert.h>
  60. #ifdef HAVE_SYS_MMAN_H
  61. #include <sys/mman.h>
  62. #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
  63. #define MAP_ANONYMOUS MAP_ANON
  64. #endif
  65. #endif
  66. #include "swscale.h"
  67. #include "swscale_internal.h"
  68. #include "rgb2rgb.h"
  69. #include "libavutil/x86_cpu.h"
  70. #include "libavutil/bswap.h"
  71. unsigned swscale_version(void)
  72. {
  73. return LIBSWSCALE_VERSION_INT;
  74. }
  75. #undef MOVNTQ
  76. #undef PAVGB
  77. //#undef HAVE_MMX2
  78. //#define HAVE_3DNOW
  79. //#undef HAVE_MMX
  80. //#undef ARCH_X86
  81. //#define WORDS_BIGENDIAN
  82. #define DITHER1XBPP
  83. #define FAST_BGR2YV12 // use 7 bit coeffs instead of 15bit
  84. #define RET 0xC3 //near return opcode for X86
  85. #ifdef M_PI
  86. #define PI M_PI
  87. #else
  88. #define PI 3.14159265358979323846
  89. #endif
  90. #define isSupportedIn(x) ( \
  91. (x)==PIX_FMT_YUV420P \
  92. || (x)==PIX_FMT_YUVA420P \
  93. || (x)==PIX_FMT_YUYV422 \
  94. || (x)==PIX_FMT_UYVY422 \
  95. || (x)==PIX_FMT_RGB32 \
  96. || (x)==PIX_FMT_RGB32_1 \
  97. || (x)==PIX_FMT_BGR24 \
  98. || (x)==PIX_FMT_BGR565 \
  99. || (x)==PIX_FMT_BGR555 \
  100. || (x)==PIX_FMT_BGR32 \
  101. || (x)==PIX_FMT_BGR32_1 \
  102. || (x)==PIX_FMT_RGB24 \
  103. || (x)==PIX_FMT_RGB565 \
  104. || (x)==PIX_FMT_RGB555 \
  105. || (x)==PIX_FMT_GRAY8 \
  106. || (x)==PIX_FMT_YUV410P \
  107. || (x)==PIX_FMT_YUV440P \
  108. || (x)==PIX_FMT_GRAY16BE \
  109. || (x)==PIX_FMT_GRAY16LE \
  110. || (x)==PIX_FMT_YUV444P \
  111. || (x)==PIX_FMT_YUV422P \
  112. || (x)==PIX_FMT_YUV411P \
  113. || (x)==PIX_FMT_PAL8 \
  114. || (x)==PIX_FMT_BGR8 \
  115. || (x)==PIX_FMT_RGB8 \
  116. || (x)==PIX_FMT_BGR4_BYTE \
  117. || (x)==PIX_FMT_RGB4_BYTE \
  118. || (x)==PIX_FMT_YUV440P \
  119. || (x)==PIX_FMT_MONOWHITE \
  120. || (x)==PIX_FMT_MONOBLACK \
  121. )
  122. #define isSupportedOut(x) ( \
  123. (x)==PIX_FMT_YUV420P \
  124. || (x)==PIX_FMT_YUYV422 \
  125. || (x)==PIX_FMT_UYVY422 \
  126. || (x)==PIX_FMT_YUV444P \
  127. || (x)==PIX_FMT_YUV422P \
  128. || (x)==PIX_FMT_YUV411P \
  129. || isRGB(x) \
  130. || isBGR(x) \
  131. || (x)==PIX_FMT_NV12 \
  132. || (x)==PIX_FMT_NV21 \
  133. || (x)==PIX_FMT_GRAY16BE \
  134. || (x)==PIX_FMT_GRAY16LE \
  135. || (x)==PIX_FMT_GRAY8 \
  136. || (x)==PIX_FMT_YUV410P \
  137. || (x)==PIX_FMT_YUV440P \
  138. )
  139. #define isPacked(x) ( \
  140. (x)==PIX_FMT_PAL8 \
  141. || (x)==PIX_FMT_YUYV422 \
  142. || (x)==PIX_FMT_UYVY422 \
  143. || isRGB(x) \
  144. || isBGR(x) \
  145. )
  146. #define usePal(x) ( \
  147. (x)==PIX_FMT_PAL8 \
  148. || (x)==PIX_FMT_BGR4_BYTE \
  149. || (x)==PIX_FMT_RGB4_BYTE \
  150. || (x)==PIX_FMT_BGR8 \
  151. || (x)==PIX_FMT_RGB8 \
  152. )
  153. #define RGB2YUV_SHIFT 15
  154. #define BY ( (int)(0.114*219/255*(1<<RGB2YUV_SHIFT)+0.5))
  155. #define BV (-(int)(0.081*224/255*(1<<RGB2YUV_SHIFT)+0.5))
  156. #define BU ( (int)(0.500*224/255*(1<<RGB2YUV_SHIFT)+0.5))
  157. #define GY ( (int)(0.587*219/255*(1<<RGB2YUV_SHIFT)+0.5))
  158. #define GV (-(int)(0.419*224/255*(1<<RGB2YUV_SHIFT)+0.5))
  159. #define GU (-(int)(0.331*224/255*(1<<RGB2YUV_SHIFT)+0.5))
  160. #define RY ( (int)(0.299*219/255*(1<<RGB2YUV_SHIFT)+0.5))
  161. #define RV ( (int)(0.500*224/255*(1<<RGB2YUV_SHIFT)+0.5))
  162. #define RU (-(int)(0.169*224/255*(1<<RGB2YUV_SHIFT)+0.5))
  163. extern const int32_t Inverse_Table_6_9[8][4];
  164. static const double rgb2yuv_table[8][9]={
  165. {0.7152, 0.0722, 0.2126, -0.386, 0.5, -0.115, -0.454, -0.046, 0.5},
  166. {0.7152, 0.0722, 0.2126, -0.386, 0.5, -0.115, -0.454, -0.046, 0.5},
  167. {0.587 , 0.114 , 0.299 , -0.331, 0.5, -0.169, -0.419, -0.081, 0.5},
  168. {0.587 , 0.114 , 0.299 , -0.331, 0.5, -0.169, -0.419, -0.081, 0.5},
  169. {0.59 , 0.11 , 0.30 , -0.331, 0.5, -0.169, -0.421, -0.079, 0.5}, //FCC
  170. {0.587 , 0.114 , 0.299 , -0.331, 0.5, -0.169, -0.419, -0.081, 0.5},
  171. {0.587 , 0.114 , 0.299 , -0.331, 0.5, -0.169, -0.419, -0.081, 0.5}, //SMPTE 170M
  172. {0.701 , 0.087 , 0.212 , -0.384, 0.5 -0.116, -0.445, -0.055, 0.5}, //SMPTE 240M
  173. };
  174. /*
  175. NOTES
  176. Special versions: fast Y 1:1 scaling (no interpolation in y direction)
  177. TODO
  178. more intelligent misalignment avoidance for the horizontal scaler
  179. write special vertical cubic upscale version
  180. Optimize C code (yv12 / minmax)
  181. add support for packed pixel yuv input & output
  182. add support for Y8 output
  183. optimize bgr24 & bgr32
  184. add BGR4 output support
  185. write special BGR->BGR scaler
  186. */
  187. #if defined(ARCH_X86) && defined (CONFIG_GPL)
  188. DECLARE_ASM_CONST(8, uint64_t, bF8)= 0xF8F8F8F8F8F8F8F8LL;
  189. DECLARE_ASM_CONST(8, uint64_t, bFC)= 0xFCFCFCFCFCFCFCFCLL;
  190. DECLARE_ASM_CONST(8, uint64_t, w10)= 0x0010001000100010LL;
  191. DECLARE_ASM_CONST(8, uint64_t, w02)= 0x0002000200020002LL;
  192. DECLARE_ASM_CONST(8, uint64_t, bm00001111)=0x00000000FFFFFFFFLL;
  193. DECLARE_ASM_CONST(8, uint64_t, bm00000111)=0x0000000000FFFFFFLL;
  194. DECLARE_ASM_CONST(8, uint64_t, bm11111000)=0xFFFFFFFFFF000000LL;
  195. DECLARE_ASM_CONST(8, uint64_t, bm01010101)=0x00FF00FF00FF00FFLL;
  196. const DECLARE_ALIGNED(8, uint64_t, ff_dither4[2]) = {
  197. 0x0103010301030103LL,
  198. 0x0200020002000200LL,};
  199. const DECLARE_ALIGNED(8, uint64_t, ff_dither8[2]) = {
  200. 0x0602060206020602LL,
  201. 0x0004000400040004LL,};
  202. DECLARE_ASM_CONST(8, uint64_t, b16Mask)= 0x001F001F001F001FLL;
  203. DECLARE_ASM_CONST(8, uint64_t, g16Mask)= 0x07E007E007E007E0LL;
  204. DECLARE_ASM_CONST(8, uint64_t, r16Mask)= 0xF800F800F800F800LL;
  205. DECLARE_ASM_CONST(8, uint64_t, b15Mask)= 0x001F001F001F001FLL;
  206. DECLARE_ASM_CONST(8, uint64_t, g15Mask)= 0x03E003E003E003E0LL;
  207. DECLARE_ASM_CONST(8, uint64_t, r15Mask)= 0x7C007C007C007C00LL;
  208. DECLARE_ALIGNED(8, const uint64_t, ff_M24A) = 0x00FF0000FF0000FFLL;
  209. DECLARE_ALIGNED(8, const uint64_t, ff_M24B) = 0xFF0000FF0000FF00LL;
  210. DECLARE_ALIGNED(8, const uint64_t, ff_M24C) = 0x0000FF0000FF0000LL;
  211. #ifdef FAST_BGR2YV12
  212. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2YCoeff) = 0x000000210041000DULL;
  213. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2UCoeff) = 0x0000FFEEFFDC0038ULL;
  214. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2VCoeff) = 0x00000038FFD2FFF8ULL;
  215. #else
  216. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2YCoeff) = 0x000020E540830C8BULL;
  217. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2UCoeff) = 0x0000ED0FDAC23831ULL;
  218. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2VCoeff) = 0x00003831D0E6F6EAULL;
  219. #endif /* FAST_BGR2YV12 */
  220. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2YOffset) = 0x1010101010101010ULL;
  221. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2UVOffset) = 0x8080808080808080ULL;
  222. DECLARE_ALIGNED(8, const uint64_t, ff_w1111) = 0x0001000100010001ULL;
  223. DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toY1Coeff) = 0x0C88000040870C88ULL;
  224. DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toY2Coeff) = 0x20DE4087000020DEULL;
  225. DECLARE_ASM_CONST(8, uint64_t, ff_rgb24toY1Coeff) = 0x20DE0000408720DEULL;
  226. DECLARE_ASM_CONST(8, uint64_t, ff_rgb24toY2Coeff) = 0x0C88408700000C88ULL;
  227. DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toYOffset) = 0x0008400000084000ULL;
  228. DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toUV[2][4]) = {
  229. {0x38380000DAC83838ULL, 0xECFFDAC80000ECFFULL, 0xF6E40000D0E3F6E4ULL, 0x3838D0E300003838ULL},
  230. {0xECFF0000DAC8ECFFULL, 0x3838DAC800003838ULL, 0x38380000D0E33838ULL, 0xF6E4D0E30000F6E4ULL},
  231. };
  232. DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toUVOffset)= 0x0040400000404000ULL;
  233. #endif /* defined(ARCH_X86) */
  234. // clipping helper table for C implementations:
  235. static unsigned char clip_table[768];
  236. static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b);
  237. static const uint8_t __attribute__((aligned(8))) dither_2x2_4[2][8]={
  238. { 1, 3, 1, 3, 1, 3, 1, 3, },
  239. { 2, 0, 2, 0, 2, 0, 2, 0, },
  240. };
  241. static const uint8_t __attribute__((aligned(8))) dither_2x2_8[2][8]={
  242. { 6, 2, 6, 2, 6, 2, 6, 2, },
  243. { 0, 4, 0, 4, 0, 4, 0, 4, },
  244. };
  245. const uint8_t __attribute__((aligned(8))) dither_8x8_32[8][8]={
  246. { 17, 9, 23, 15, 16, 8, 22, 14, },
  247. { 5, 29, 3, 27, 4, 28, 2, 26, },
  248. { 21, 13, 19, 11, 20, 12, 18, 10, },
  249. { 0, 24, 6, 30, 1, 25, 7, 31, },
  250. { 16, 8, 22, 14, 17, 9, 23, 15, },
  251. { 4, 28, 2, 26, 5, 29, 3, 27, },
  252. { 20, 12, 18, 10, 21, 13, 19, 11, },
  253. { 1, 25, 7, 31, 0, 24, 6, 30, },
  254. };
  255. #if 0
  256. const uint8_t __attribute__((aligned(8))) dither_8x8_64[8][8]={
  257. { 0, 48, 12, 60, 3, 51, 15, 63, },
  258. { 32, 16, 44, 28, 35, 19, 47, 31, },
  259. { 8, 56, 4, 52, 11, 59, 7, 55, },
  260. { 40, 24, 36, 20, 43, 27, 39, 23, },
  261. { 2, 50, 14, 62, 1, 49, 13, 61, },
  262. { 34, 18, 46, 30, 33, 17, 45, 29, },
  263. { 10, 58, 6, 54, 9, 57, 5, 53, },
  264. { 42, 26, 38, 22, 41, 25, 37, 21, },
  265. };
  266. #endif
  267. const uint8_t __attribute__((aligned(8))) dither_8x8_73[8][8]={
  268. { 0, 55, 14, 68, 3, 58, 17, 72, },
  269. { 37, 18, 50, 32, 40, 22, 54, 35, },
  270. { 9, 64, 5, 59, 13, 67, 8, 63, },
  271. { 46, 27, 41, 23, 49, 31, 44, 26, },
  272. { 2, 57, 16, 71, 1, 56, 15, 70, },
  273. { 39, 21, 52, 34, 38, 19, 51, 33, },
  274. { 11, 66, 7, 62, 10, 65, 6, 60, },
  275. { 48, 30, 43, 25, 47, 29, 42, 24, },
  276. };
  277. #if 0
  278. const uint8_t __attribute__((aligned(8))) dither_8x8_128[8][8]={
  279. { 68, 36, 92, 60, 66, 34, 90, 58, },
  280. { 20, 116, 12, 108, 18, 114, 10, 106, },
  281. { 84, 52, 76, 44, 82, 50, 74, 42, },
  282. { 0, 96, 24, 120, 6, 102, 30, 126, },
  283. { 64, 32, 88, 56, 70, 38, 94, 62, },
  284. { 16, 112, 8, 104, 22, 118, 14, 110, },
  285. { 80, 48, 72, 40, 86, 54, 78, 46, },
  286. { 4, 100, 28, 124, 2, 98, 26, 122, },
  287. };
  288. #endif
  289. #if 1
  290. const uint8_t __attribute__((aligned(8))) dither_8x8_220[8][8]={
  291. {117, 62, 158, 103, 113, 58, 155, 100, },
  292. { 34, 199, 21, 186, 31, 196, 17, 182, },
  293. {144, 89, 131, 76, 141, 86, 127, 72, },
  294. { 0, 165, 41, 206, 10, 175, 52, 217, },
  295. {110, 55, 151, 96, 120, 65, 162, 107, },
  296. { 28, 193, 14, 179, 38, 203, 24, 189, },
  297. {138, 83, 124, 69, 148, 93, 134, 79, },
  298. { 7, 172, 48, 213, 3, 168, 45, 210, },
  299. };
  300. #elif 1
  301. // tries to correct a gamma of 1.5
  302. const uint8_t __attribute__((aligned(8))) dither_8x8_220[8][8]={
  303. { 0, 143, 18, 200, 2, 156, 25, 215, },
  304. { 78, 28, 125, 64, 89, 36, 138, 74, },
  305. { 10, 180, 3, 161, 16, 195, 8, 175, },
  306. {109, 51, 93, 38, 121, 60, 105, 47, },
  307. { 1, 152, 23, 210, 0, 147, 20, 205, },
  308. { 85, 33, 134, 71, 81, 30, 130, 67, },
  309. { 14, 190, 6, 171, 12, 185, 5, 166, },
  310. {117, 57, 101, 44, 113, 54, 97, 41, },
  311. };
  312. #elif 1
  313. // tries to correct a gamma of 2.0
  314. const uint8_t __attribute__((aligned(8))) dither_8x8_220[8][8]={
  315. { 0, 124, 8, 193, 0, 140, 12, 213, },
  316. { 55, 14, 104, 42, 66, 19, 119, 52, },
  317. { 3, 168, 1, 145, 6, 187, 3, 162, },
  318. { 86, 31, 70, 21, 99, 39, 82, 28, },
  319. { 0, 134, 11, 206, 0, 129, 9, 200, },
  320. { 62, 17, 114, 48, 58, 16, 109, 45, },
  321. { 5, 181, 2, 157, 4, 175, 1, 151, },
  322. { 95, 36, 78, 26, 90, 34, 74, 24, },
  323. };
  324. #else
  325. // tries to correct a gamma of 2.5
  326. const uint8_t __attribute__((aligned(8))) dither_8x8_220[8][8]={
  327. { 0, 107, 3, 187, 0, 125, 6, 212, },
  328. { 39, 7, 86, 28, 49, 11, 102, 36, },
  329. { 1, 158, 0, 131, 3, 180, 1, 151, },
  330. { 68, 19, 52, 12, 81, 25, 64, 17, },
  331. { 0, 119, 5, 203, 0, 113, 4, 195, },
  332. { 45, 9, 96, 33, 42, 8, 91, 30, },
  333. { 2, 172, 1, 144, 2, 165, 0, 137, },
  334. { 77, 23, 60, 15, 72, 21, 56, 14, },
  335. };
  336. #endif
  337. const char *sws_format_name(enum PixelFormat format)
  338. {
  339. switch (format) {
  340. case PIX_FMT_YUV420P:
  341. return "yuv420p";
  342. case PIX_FMT_YUVA420P:
  343. return "yuva420p";
  344. case PIX_FMT_YUYV422:
  345. return "yuyv422";
  346. case PIX_FMT_RGB24:
  347. return "rgb24";
  348. case PIX_FMT_BGR24:
  349. return "bgr24";
  350. case PIX_FMT_YUV422P:
  351. return "yuv422p";
  352. case PIX_FMT_YUV444P:
  353. return "yuv444p";
  354. case PIX_FMT_RGB32:
  355. return "rgb32";
  356. case PIX_FMT_YUV410P:
  357. return "yuv410p";
  358. case PIX_FMT_YUV411P:
  359. return "yuv411p";
  360. case PIX_FMT_RGB565:
  361. return "rgb565";
  362. case PIX_FMT_RGB555:
  363. return "rgb555";
  364. case PIX_FMT_GRAY16BE:
  365. return "gray16be";
  366. case PIX_FMT_GRAY16LE:
  367. return "gray16le";
  368. case PIX_FMT_GRAY8:
  369. return "gray8";
  370. case PIX_FMT_MONOWHITE:
  371. return "mono white";
  372. case PIX_FMT_MONOBLACK:
  373. return "mono black";
  374. case PIX_FMT_PAL8:
  375. return "Palette";
  376. case PIX_FMT_YUVJ420P:
  377. return "yuvj420p";
  378. case PIX_FMT_YUVJ422P:
  379. return "yuvj422p";
  380. case PIX_FMT_YUVJ444P:
  381. return "yuvj444p";
  382. case PIX_FMT_XVMC_MPEG2_MC:
  383. return "xvmc_mpeg2_mc";
  384. case PIX_FMT_XVMC_MPEG2_IDCT:
  385. return "xvmc_mpeg2_idct";
  386. case PIX_FMT_UYVY422:
  387. return "uyvy422";
  388. case PIX_FMT_UYYVYY411:
  389. return "uyyvyy411";
  390. case PIX_FMT_RGB32_1:
  391. return "rgb32x";
  392. case PIX_FMT_BGR32_1:
  393. return "bgr32x";
  394. case PIX_FMT_BGR32:
  395. return "bgr32";
  396. case PIX_FMT_BGR565:
  397. return "bgr565";
  398. case PIX_FMT_BGR555:
  399. return "bgr555";
  400. case PIX_FMT_BGR8:
  401. return "bgr8";
  402. case PIX_FMT_BGR4:
  403. return "bgr4";
  404. case PIX_FMT_BGR4_BYTE:
  405. return "bgr4 byte";
  406. case PIX_FMT_RGB8:
  407. return "rgb8";
  408. case PIX_FMT_RGB4:
  409. return "rgb4";
  410. case PIX_FMT_RGB4_BYTE:
  411. return "rgb4 byte";
  412. case PIX_FMT_NV12:
  413. return "nv12";
  414. case PIX_FMT_NV21:
  415. return "nv21";
  416. case PIX_FMT_YUV440P:
  417. return "yuv440p";
  418. default:
  419. return "Unknown format";
  420. }
  421. }
  422. static inline void yuv2yuvXinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
  423. int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
  424. uint8_t *dest, uint8_t *uDest, uint8_t *vDest, int dstW, int chrDstW)
  425. {
  426. //FIXME Optimize (just quickly writen not opti..)
  427. int i;
  428. for (i=0; i<dstW; i++)
  429. {
  430. int val=1<<18;
  431. int j;
  432. for (j=0; j<lumFilterSize; j++)
  433. val += lumSrc[j][i] * lumFilter[j];
  434. dest[i]= av_clip_uint8(val>>19);
  435. }
  436. if (uDest)
  437. for (i=0; i<chrDstW; i++)
  438. {
  439. int u=1<<18;
  440. int v=1<<18;
  441. int j;
  442. for (j=0; j<chrFilterSize; j++)
  443. {
  444. u += chrSrc[j][i] * chrFilter[j];
  445. v += chrSrc[j][i + VOFW] * chrFilter[j];
  446. }
  447. uDest[i]= av_clip_uint8(u>>19);
  448. vDest[i]= av_clip_uint8(v>>19);
  449. }
  450. }
  451. static inline void yuv2nv12XinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
  452. int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
  453. uint8_t *dest, uint8_t *uDest, int dstW, int chrDstW, int dstFormat)
  454. {
  455. //FIXME Optimize (just quickly writen not opti..)
  456. int i;
  457. for (i=0; i<dstW; i++)
  458. {
  459. int val=1<<18;
  460. int j;
  461. for (j=0; j<lumFilterSize; j++)
  462. val += lumSrc[j][i] * lumFilter[j];
  463. dest[i]= av_clip_uint8(val>>19);
  464. }
  465. if (!uDest)
  466. return;
  467. if (dstFormat == PIX_FMT_NV12)
  468. for (i=0; i<chrDstW; i++)
  469. {
  470. int u=1<<18;
  471. int v=1<<18;
  472. int j;
  473. for (j=0; j<chrFilterSize; j++)
  474. {
  475. u += chrSrc[j][i] * chrFilter[j];
  476. v += chrSrc[j][i + VOFW] * chrFilter[j];
  477. }
  478. uDest[2*i]= av_clip_uint8(u>>19);
  479. uDest[2*i+1]= av_clip_uint8(v>>19);
  480. }
  481. else
  482. for (i=0; i<chrDstW; i++)
  483. {
  484. int u=1<<18;
  485. int v=1<<18;
  486. int j;
  487. for (j=0; j<chrFilterSize; j++)
  488. {
  489. u += chrSrc[j][i] * chrFilter[j];
  490. v += chrSrc[j][i + VOFW] * chrFilter[j];
  491. }
  492. uDest[2*i]= av_clip_uint8(v>>19);
  493. uDest[2*i+1]= av_clip_uint8(u>>19);
  494. }
  495. }
  496. #define YSCALE_YUV_2_PACKEDX_NOCLIP_C(type) \
  497. for (i=0; i<(dstW>>1); i++){\
  498. int j;\
  499. int Y1 = 1<<18;\
  500. int Y2 = 1<<18;\
  501. int U = 1<<18;\
  502. int V = 1<<18;\
  503. type av_unused *r, *b, *g;\
  504. const int i2= 2*i;\
  505. \
  506. for (j=0; j<lumFilterSize; j++)\
  507. {\
  508. Y1 += lumSrc[j][i2] * lumFilter[j];\
  509. Y2 += lumSrc[j][i2+1] * lumFilter[j];\
  510. }\
  511. for (j=0; j<chrFilterSize; j++)\
  512. {\
  513. U += chrSrc[j][i] * chrFilter[j];\
  514. V += chrSrc[j][i+VOFW] * chrFilter[j];\
  515. }\
  516. Y1>>=19;\
  517. Y2>>=19;\
  518. U >>=19;\
  519. V >>=19;\
  520. #define YSCALE_YUV_2_PACKEDX_C(type) \
  521. YSCALE_YUV_2_PACKEDX_NOCLIP_C(type)\
  522. if ((Y1|Y2|U|V)&256)\
  523. {\
  524. if (Y1>255) Y1=255; \
  525. else if (Y1<0)Y1=0; \
  526. if (Y2>255) Y2=255; \
  527. else if (Y2<0)Y2=0; \
  528. if (U>255) U=255; \
  529. else if (U<0) U=0; \
  530. if (V>255) V=255; \
  531. else if (V<0) V=0; \
  532. }
  533. #define YSCALE_YUV_2_PACKEDX_FULL_C \
  534. for (i=0; i<dstW; i++){\
  535. int j;\
  536. int Y = 0;\
  537. int U = -128<<19;\
  538. int V = -128<<19;\
  539. int R,G,B;\
  540. \
  541. for (j=0; j<lumFilterSize; j++){\
  542. Y += lumSrc[j][i ] * lumFilter[j];\
  543. }\
  544. for (j=0; j<chrFilterSize; j++){\
  545. U += chrSrc[j][i ] * chrFilter[j];\
  546. V += chrSrc[j][i+VOFW] * chrFilter[j];\
  547. }\
  548. Y >>=10;\
  549. U >>=10;\
  550. V >>=10;\
  551. #define YSCALE_YUV_2_RGBX_FULL_C(rnd) \
  552. YSCALE_YUV_2_PACKEDX_FULL_C\
  553. Y-= c->yuv2rgb_y_offset;\
  554. Y*= c->yuv2rgb_y_coeff;\
  555. Y+= rnd;\
  556. R= Y + V*c->yuv2rgb_v2r_coeff;\
  557. G= Y + V*c->yuv2rgb_v2g_coeff + U*c->yuv2rgb_u2g_coeff;\
  558. B= Y + U*c->yuv2rgb_u2b_coeff;\
  559. if ((R|G|B)&(0xC0000000)){\
  560. if (R>=(256<<22)) R=(256<<22)-1; \
  561. else if (R<0)R=0; \
  562. if (G>=(256<<22)) G=(256<<22)-1; \
  563. else if (G<0)G=0; \
  564. if (B>=(256<<22)) B=(256<<22)-1; \
  565. else if (B<0)B=0; \
  566. }\
  567. #define YSCALE_YUV_2_GRAY16_C \
  568. for (i=0; i<(dstW>>1); i++){\
  569. int j;\
  570. int Y1 = 1<<18;\
  571. int Y2 = 1<<18;\
  572. int U = 1<<18;\
  573. int V = 1<<18;\
  574. \
  575. const int i2= 2*i;\
  576. \
  577. for (j=0; j<lumFilterSize; j++)\
  578. {\
  579. Y1 += lumSrc[j][i2] * lumFilter[j];\
  580. Y2 += lumSrc[j][i2+1] * lumFilter[j];\
  581. }\
  582. Y1>>=11;\
  583. Y2>>=11;\
  584. if ((Y1|Y2|U|V)&65536)\
  585. {\
  586. if (Y1>65535) Y1=65535; \
  587. else if (Y1<0)Y1=0; \
  588. if (Y2>65535) Y2=65535; \
  589. else if (Y2<0)Y2=0; \
  590. }
  591. #define YSCALE_YUV_2_RGBX_C(type) \
  592. YSCALE_YUV_2_PACKEDX_C(type) /* FIXME fix tables so that cliping is not needed and then use _NOCLIP*/\
  593. r = (type *)c->table_rV[V]; \
  594. g = (type *)(c->table_gU[U] + c->table_gV[V]); \
  595. b = (type *)c->table_bU[U]; \
  596. #define YSCALE_YUV_2_PACKED2_C \
  597. for (i=0; i<(dstW>>1); i++){ \
  598. const int i2= 2*i; \
  599. int Y1= (buf0[i2 ]*yalpha1+buf1[i2 ]*yalpha)>>19; \
  600. int Y2= (buf0[i2+1]*yalpha1+buf1[i2+1]*yalpha)>>19; \
  601. int U= (uvbuf0[i ]*uvalpha1+uvbuf1[i ]*uvalpha)>>19; \
  602. int V= (uvbuf0[i+VOFW]*uvalpha1+uvbuf1[i+VOFW]*uvalpha)>>19; \
  603. #define YSCALE_YUV_2_GRAY16_2_C \
  604. for (i=0; i<(dstW>>1); i++){ \
  605. const int i2= 2*i; \
  606. int Y1= (buf0[i2 ]*yalpha1+buf1[i2 ]*yalpha)>>11; \
  607. int Y2= (buf0[i2+1]*yalpha1+buf1[i2+1]*yalpha)>>11; \
  608. #define YSCALE_YUV_2_RGB2_C(type) \
  609. YSCALE_YUV_2_PACKED2_C\
  610. type *r, *b, *g;\
  611. r = (type *)c->table_rV[V];\
  612. g = (type *)(c->table_gU[U] + c->table_gV[V]);\
  613. b = (type *)c->table_bU[U];\
  614. #define YSCALE_YUV_2_PACKED1_C \
  615. for (i=0; i<(dstW>>1); i++){\
  616. const int i2= 2*i;\
  617. int Y1= buf0[i2 ]>>7;\
  618. int Y2= buf0[i2+1]>>7;\
  619. int U= (uvbuf1[i ])>>7;\
  620. int V= (uvbuf1[i+VOFW])>>7;\
  621. #define YSCALE_YUV_2_GRAY16_1_C \
  622. for (i=0; i<(dstW>>1); i++){\
  623. const int i2= 2*i;\
  624. int Y1= buf0[i2 ]<<1;\
  625. int Y2= buf0[i2+1]<<1;\
  626. #define YSCALE_YUV_2_RGB1_C(type) \
  627. YSCALE_YUV_2_PACKED1_C\
  628. type *r, *b, *g;\
  629. r = (type *)c->table_rV[V];\
  630. g = (type *)(c->table_gU[U] + c->table_gV[V]);\
  631. b = (type *)c->table_bU[U];\
  632. #define YSCALE_YUV_2_PACKED1B_C \
  633. for (i=0; i<(dstW>>1); i++){\
  634. const int i2= 2*i;\
  635. int Y1= buf0[i2 ]>>7;\
  636. int Y2= buf0[i2+1]>>7;\
  637. int U= (uvbuf0[i ] + uvbuf1[i ])>>8;\
  638. int V= (uvbuf0[i+VOFW] + uvbuf1[i+VOFW])>>8;\
  639. #define YSCALE_YUV_2_RGB1B_C(type) \
  640. YSCALE_YUV_2_PACKED1B_C\
  641. type *r, *b, *g;\
  642. r = (type *)c->table_rV[V];\
  643. g = (type *)(c->table_gU[U] + c->table_gV[V]);\
  644. b = (type *)c->table_bU[U];\
  645. #define YSCALE_YUV_2_MONO2_C \
  646. const uint8_t * const d128=dither_8x8_220[y&7];\
  647. uint8_t *g= c->table_gU[128] + c->table_gV[128];\
  648. for (i=0; i<dstW-7; i+=8){\
  649. int acc;\
  650. acc = g[((buf0[i ]*yalpha1+buf1[i ]*yalpha)>>19) + d128[0]];\
  651. acc+= acc + g[((buf0[i+1]*yalpha1+buf1[i+1]*yalpha)>>19) + d128[1]];\
  652. acc+= acc + g[((buf0[i+2]*yalpha1+buf1[i+2]*yalpha)>>19) + d128[2]];\
  653. acc+= acc + g[((buf0[i+3]*yalpha1+buf1[i+3]*yalpha)>>19) + d128[3]];\
  654. acc+= acc + g[((buf0[i+4]*yalpha1+buf1[i+4]*yalpha)>>19) + d128[4]];\
  655. acc+= acc + g[((buf0[i+5]*yalpha1+buf1[i+5]*yalpha)>>19) + d128[5]];\
  656. acc+= acc + g[((buf0[i+6]*yalpha1+buf1[i+6]*yalpha)>>19) + d128[6]];\
  657. acc+= acc + g[((buf0[i+7]*yalpha1+buf1[i+7]*yalpha)>>19) + d128[7]];\
  658. ((uint8_t*)dest)[0]= c->dstFormat == PIX_FMT_MONOBLACK ? acc : ~acc;\
  659. dest++;\
  660. }\
  661. #define YSCALE_YUV_2_MONOX_C \
  662. const uint8_t * const d128=dither_8x8_220[y&7];\
  663. uint8_t *g= c->table_gU[128] + c->table_gV[128];\
  664. int acc=0;\
  665. for (i=0; i<dstW-1; i+=2){\
  666. int j;\
  667. int Y1=1<<18;\
  668. int Y2=1<<18;\
  669. \
  670. for (j=0; j<lumFilterSize; j++)\
  671. {\
  672. Y1 += lumSrc[j][i] * lumFilter[j];\
  673. Y2 += lumSrc[j][i+1] * lumFilter[j];\
  674. }\
  675. Y1>>=19;\
  676. Y2>>=19;\
  677. if ((Y1|Y2)&256)\
  678. {\
  679. if (Y1>255) Y1=255;\
  680. else if (Y1<0)Y1=0;\
  681. if (Y2>255) Y2=255;\
  682. else if (Y2<0)Y2=0;\
  683. }\
  684. acc+= acc + g[Y1+d128[(i+0)&7]];\
  685. acc+= acc + g[Y2+d128[(i+1)&7]];\
  686. if ((i&7)==6){\
  687. ((uint8_t*)dest)[0]= c->dstFormat == PIX_FMT_MONOBLACK ? acc : ~acc;\
  688. dest++;\
  689. }\
  690. }
  691. #define YSCALE_YUV_2_ANYRGB_C(func, func2, func_g16, func_monoblack)\
  692. switch(c->dstFormat)\
  693. {\
  694. case PIX_FMT_RGB32:\
  695. case PIX_FMT_BGR32:\
  696. case PIX_FMT_RGB32_1:\
  697. case PIX_FMT_BGR32_1:\
  698. func(uint32_t)\
  699. ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];\
  700. ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];\
  701. } \
  702. break;\
  703. case PIX_FMT_RGB24:\
  704. func(uint8_t)\
  705. ((uint8_t*)dest)[0]= r[Y1];\
  706. ((uint8_t*)dest)[1]= g[Y1];\
  707. ((uint8_t*)dest)[2]= b[Y1];\
  708. ((uint8_t*)dest)[3]= r[Y2];\
  709. ((uint8_t*)dest)[4]= g[Y2];\
  710. ((uint8_t*)dest)[5]= b[Y2];\
  711. dest+=6;\
  712. }\
  713. break;\
  714. case PIX_FMT_BGR24:\
  715. func(uint8_t)\
  716. ((uint8_t*)dest)[0]= b[Y1];\
  717. ((uint8_t*)dest)[1]= g[Y1];\
  718. ((uint8_t*)dest)[2]= r[Y1];\
  719. ((uint8_t*)dest)[3]= b[Y2];\
  720. ((uint8_t*)dest)[4]= g[Y2];\
  721. ((uint8_t*)dest)[5]= r[Y2];\
  722. dest+=6;\
  723. }\
  724. break;\
  725. case PIX_FMT_RGB565:\
  726. case PIX_FMT_BGR565:\
  727. {\
  728. const int dr1= dither_2x2_8[y&1 ][0];\
  729. const int dg1= dither_2x2_4[y&1 ][0];\
  730. const int db1= dither_2x2_8[(y&1)^1][0];\
  731. const int dr2= dither_2x2_8[y&1 ][1];\
  732. const int dg2= dither_2x2_4[y&1 ][1];\
  733. const int db2= dither_2x2_8[(y&1)^1][1];\
  734. func(uint16_t)\
  735. ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
  736. ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
  737. }\
  738. }\
  739. break;\
  740. case PIX_FMT_RGB555:\
  741. case PIX_FMT_BGR555:\
  742. {\
  743. const int dr1= dither_2x2_8[y&1 ][0];\
  744. const int dg1= dither_2x2_8[y&1 ][1];\
  745. const int db1= dither_2x2_8[(y&1)^1][0];\
  746. const int dr2= dither_2x2_8[y&1 ][1];\
  747. const int dg2= dither_2x2_8[y&1 ][0];\
  748. const int db2= dither_2x2_8[(y&1)^1][1];\
  749. func(uint16_t)\
  750. ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
  751. ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
  752. }\
  753. }\
  754. break;\
  755. case PIX_FMT_RGB8:\
  756. case PIX_FMT_BGR8:\
  757. {\
  758. const uint8_t * const d64= dither_8x8_73[y&7];\
  759. const uint8_t * const d32= dither_8x8_32[y&7];\
  760. func(uint8_t)\
  761. ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];\
  762. ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];\
  763. }\
  764. }\
  765. break;\
  766. case PIX_FMT_RGB4:\
  767. case PIX_FMT_BGR4:\
  768. {\
  769. const uint8_t * const d64= dither_8x8_73 [y&7];\
  770. const uint8_t * const d128=dither_8x8_220[y&7];\
  771. func(uint8_t)\
  772. ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]\
  773. + ((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);\
  774. }\
  775. }\
  776. break;\
  777. case PIX_FMT_RGB4_BYTE:\
  778. case PIX_FMT_BGR4_BYTE:\
  779. {\
  780. const uint8_t * const d64= dither_8x8_73 [y&7];\
  781. const uint8_t * const d128=dither_8x8_220[y&7];\
  782. func(uint8_t)\
  783. ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];\
  784. ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];\
  785. }\
  786. }\
  787. break;\
  788. case PIX_FMT_MONOBLACK:\
  789. case PIX_FMT_MONOWHITE:\
  790. {\
  791. func_monoblack\
  792. }\
  793. break;\
  794. case PIX_FMT_YUYV422:\
  795. func2\
  796. ((uint8_t*)dest)[2*i2+0]= Y1;\
  797. ((uint8_t*)dest)[2*i2+1]= U;\
  798. ((uint8_t*)dest)[2*i2+2]= Y2;\
  799. ((uint8_t*)dest)[2*i2+3]= V;\
  800. } \
  801. break;\
  802. case PIX_FMT_UYVY422:\
  803. func2\
  804. ((uint8_t*)dest)[2*i2+0]= U;\
  805. ((uint8_t*)dest)[2*i2+1]= Y1;\
  806. ((uint8_t*)dest)[2*i2+2]= V;\
  807. ((uint8_t*)dest)[2*i2+3]= Y2;\
  808. } \
  809. break;\
  810. case PIX_FMT_GRAY16BE:\
  811. func_g16\
  812. ((uint8_t*)dest)[2*i2+0]= Y1>>8;\
  813. ((uint8_t*)dest)[2*i2+1]= Y1;\
  814. ((uint8_t*)dest)[2*i2+2]= Y2>>8;\
  815. ((uint8_t*)dest)[2*i2+3]= Y2;\
  816. } \
  817. break;\
  818. case PIX_FMT_GRAY16LE:\
  819. func_g16\
  820. ((uint8_t*)dest)[2*i2+0]= Y1;\
  821. ((uint8_t*)dest)[2*i2+1]= Y1>>8;\
  822. ((uint8_t*)dest)[2*i2+2]= Y2;\
  823. ((uint8_t*)dest)[2*i2+3]= Y2>>8;\
  824. } \
  825. break;\
  826. }\
  827. static inline void yuv2packedXinC(SwsContext *c, int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
  828. int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
  829. uint8_t *dest, int dstW, int y)
  830. {
  831. int i;
  832. YSCALE_YUV_2_ANYRGB_C(YSCALE_YUV_2_RGBX_C, YSCALE_YUV_2_PACKEDX_C(void), YSCALE_YUV_2_GRAY16_C, YSCALE_YUV_2_MONOX_C)
  833. }
  834. static inline void yuv2rgbXinC_full(SwsContext *c, int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
  835. int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
  836. uint8_t *dest, int dstW, int y)
  837. {
  838. int i;
  839. int step= fmt_depth(c->dstFormat)/8;
  840. int aidx= 3;
  841. switch(c->dstFormat){
  842. case PIX_FMT_ARGB:
  843. dest++;
  844. aidx= 0;
  845. case PIX_FMT_RGB24:
  846. aidx--;
  847. case PIX_FMT_RGBA:
  848. YSCALE_YUV_2_RGBX_FULL_C(1<<21)
  849. dest[aidx]= 0;
  850. dest[0]= R>>22;
  851. dest[1]= G>>22;
  852. dest[2]= B>>22;
  853. dest+= step;
  854. }
  855. break;
  856. case PIX_FMT_ABGR:
  857. dest++;
  858. aidx= 0;
  859. case PIX_FMT_BGR24:
  860. aidx--;
  861. case PIX_FMT_BGRA:
  862. YSCALE_YUV_2_RGBX_FULL_C(1<<21)
  863. dest[aidx]= 0;
  864. dest[0]= B>>22;
  865. dest[1]= G>>22;
  866. dest[2]= R>>22;
  867. dest+= step;
  868. }
  869. break;
  870. default:
  871. assert(0);
  872. }
  873. }
  874. //Note: we have C, X86, MMX, MMX2, 3DNOW version therse no 3DNOW+MMX2 one
  875. //Plain C versions
  876. #if !defined (HAVE_MMX) || defined (RUNTIME_CPUDETECT) || !defined(CONFIG_GPL)
  877. #define COMPILE_C
  878. #endif
  879. #ifdef ARCH_POWERPC
  880. #if (defined (HAVE_ALTIVEC) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
  881. #define COMPILE_ALTIVEC
  882. #endif //HAVE_ALTIVEC
  883. #endif //ARCH_POWERPC
  884. #if defined(ARCH_X86)
  885. #if ((defined (HAVE_MMX) && !defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
  886. #define COMPILE_MMX
  887. #endif
  888. #if (defined (HAVE_MMX2) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
  889. #define COMPILE_MMX2
  890. #endif
  891. #if ((defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
  892. #define COMPILE_3DNOW
  893. #endif
  894. #endif //ARCH_X86 || ARCH_X86_64
  895. #undef HAVE_MMX
  896. #undef HAVE_MMX2
  897. #undef HAVE_3DNOW
  898. #ifdef COMPILE_C
  899. #undef HAVE_MMX
  900. #undef HAVE_MMX2
  901. #undef HAVE_3DNOW
  902. #undef HAVE_ALTIVEC
  903. #define RENAME(a) a ## _C
  904. #include "swscale_template.c"
  905. #endif
  906. #ifdef COMPILE_ALTIVEC
  907. #undef RENAME
  908. #define HAVE_ALTIVEC
  909. #define RENAME(a) a ## _altivec
  910. #include "swscale_template.c"
  911. #endif
  912. #if defined(ARCH_X86)
  913. //X86 versions
  914. /*
  915. #undef RENAME
  916. #undef HAVE_MMX
  917. #undef HAVE_MMX2
  918. #undef HAVE_3DNOW
  919. #define ARCH_X86
  920. #define RENAME(a) a ## _X86
  921. #include "swscale_template.c"
  922. */
  923. //MMX versions
  924. #ifdef COMPILE_MMX
  925. #undef RENAME
  926. #define HAVE_MMX
  927. #undef HAVE_MMX2
  928. #undef HAVE_3DNOW
  929. #define RENAME(a) a ## _MMX
  930. #include "swscale_template.c"
  931. #endif
  932. //MMX2 versions
  933. #ifdef COMPILE_MMX2
  934. #undef RENAME
  935. #define HAVE_MMX
  936. #define HAVE_MMX2
  937. #undef HAVE_3DNOW
  938. #define RENAME(a) a ## _MMX2
  939. #include "swscale_template.c"
  940. #endif
  941. //3DNOW versions
  942. #ifdef COMPILE_3DNOW
  943. #undef RENAME
  944. #define HAVE_MMX
  945. #undef HAVE_MMX2
  946. #define HAVE_3DNOW
  947. #define RENAME(a) a ## _3DNow
  948. #include "swscale_template.c"
  949. #endif
  950. #endif //ARCH_X86 || ARCH_X86_64
  951. // minor note: the HAVE_xyz is messed up after that line so don't use it
  952. static double getSplineCoeff(double a, double b, double c, double d, double dist)
  953. {
  954. // printf("%f %f %f %f %f\n", a,b,c,d,dist);
  955. if (dist<=1.0) return ((d*dist + c)*dist + b)*dist +a;
  956. else return getSplineCoeff( 0.0,
  957. b+ 2.0*c + 3.0*d,
  958. c + 3.0*d,
  959. -b- 3.0*c - 6.0*d,
  960. dist-1.0);
  961. }
  962. static inline int initFilter(int16_t **outFilter, int16_t **filterPos, int *outFilterSize, int xInc,
  963. int srcW, int dstW, int filterAlign, int one, int flags,
  964. SwsVector *srcFilter, SwsVector *dstFilter, double param[2])
  965. {
  966. int i;
  967. int filterSize;
  968. int filter2Size;
  969. int minFilterSize;
  970. int64_t *filter=NULL;
  971. int64_t *filter2=NULL;
  972. const int64_t fone= 1LL<<54;
  973. int ret= -1;
  974. #if defined(ARCH_X86)
  975. if (flags & SWS_CPU_CAPS_MMX)
  976. __asm__ volatile("emms\n\t"::: "memory"); //FIXME this should not be required but it IS (even for non-MMX versions)
  977. #endif
  978. // Note the +1 is for the MMXscaler which reads over the end
  979. *filterPos = av_malloc((dstW+1)*sizeof(int16_t));
  980. if (FFABS(xInc - 0x10000) <10) // unscaled
  981. {
  982. int i;
  983. filterSize= 1;
  984. filter= av_mallocz(dstW*sizeof(*filter)*filterSize);
  985. for (i=0; i<dstW; i++)
  986. {
  987. filter[i*filterSize]= fone;
  988. (*filterPos)[i]=i;
  989. }
  990. }
  991. else if (flags&SWS_POINT) // lame looking point sampling mode
  992. {
  993. int i;
  994. int xDstInSrc;
  995. filterSize= 1;
  996. filter= av_malloc(dstW*sizeof(*filter)*filterSize);
  997. xDstInSrc= xInc/2 - 0x8000;
  998. for (i=0; i<dstW; i++)
  999. {
  1000. int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
  1001. (*filterPos)[i]= xx;
  1002. filter[i]= fone;
  1003. xDstInSrc+= xInc;
  1004. }
  1005. }
  1006. else if ((xInc <= (1<<16) && (flags&SWS_AREA)) || (flags&SWS_FAST_BILINEAR)) // bilinear upscale
  1007. {
  1008. int i;
  1009. int xDstInSrc;
  1010. if (flags&SWS_BICUBIC) filterSize= 4;
  1011. else if (flags&SWS_X ) filterSize= 4;
  1012. else filterSize= 2; // SWS_BILINEAR / SWS_AREA
  1013. filter= av_malloc(dstW*sizeof(*filter)*filterSize);
  1014. xDstInSrc= xInc/2 - 0x8000;
  1015. for (i=0; i<dstW; i++)
  1016. {
  1017. int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
  1018. int j;
  1019. (*filterPos)[i]= xx;
  1020. //Bilinear upscale / linear interpolate / Area averaging
  1021. for (j=0; j<filterSize; j++)
  1022. {
  1023. int64_t coeff= fone - FFABS((xx<<16) - xDstInSrc)*(fone>>16);
  1024. if (coeff<0) coeff=0;
  1025. filter[i*filterSize + j]= coeff;
  1026. xx++;
  1027. }
  1028. xDstInSrc+= xInc;
  1029. }
  1030. }
  1031. else
  1032. {
  1033. int xDstInSrc;
  1034. int sizeFactor;
  1035. if (flags&SWS_BICUBIC) sizeFactor= 4;
  1036. else if (flags&SWS_X) sizeFactor= 8;
  1037. else if (flags&SWS_AREA) sizeFactor= 1; //downscale only, for upscale it is bilinear
  1038. else if (flags&SWS_GAUSS) sizeFactor= 8; // infinite ;)
  1039. else if (flags&SWS_LANCZOS) sizeFactor= param[0] != SWS_PARAM_DEFAULT ? ceil(2*param[0]) : 6;
  1040. else if (flags&SWS_SINC) sizeFactor= 20; // infinite ;)
  1041. else if (flags&SWS_SPLINE) sizeFactor= 20; // infinite ;)
  1042. else if (flags&SWS_BILINEAR) sizeFactor= 2;
  1043. else {
  1044. sizeFactor= 0; //GCC warning killer
  1045. assert(0);
  1046. }
  1047. if (xInc <= 1<<16) filterSize= 1 + sizeFactor; // upscale
  1048. else filterSize= 1 + (sizeFactor*srcW + dstW - 1)/ dstW;
  1049. if (filterSize > srcW-2) filterSize=srcW-2;
  1050. filter= av_malloc(dstW*sizeof(*filter)*filterSize);
  1051. xDstInSrc= xInc - 0x10000;
  1052. for (i=0; i<dstW; i++)
  1053. {
  1054. int xx= (xDstInSrc - ((filterSize-2)<<16)) / (1<<17);
  1055. int j;
  1056. (*filterPos)[i]= xx;
  1057. for (j=0; j<filterSize; j++)
  1058. {
  1059. int64_t d= ((int64_t)FFABS((xx<<17) - xDstInSrc))<<13;
  1060. double floatd;
  1061. int64_t coeff;
  1062. if (xInc > 1<<16)
  1063. d= d*dstW/srcW;
  1064. floatd= d * (1.0/(1<<30));
  1065. if (flags & SWS_BICUBIC)
  1066. {
  1067. int64_t B= (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1<<24);
  1068. int64_t C= (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1<<24);
  1069. int64_t dd = ( d*d)>>30;
  1070. int64_t ddd= (dd*d)>>30;
  1071. if (d < 1LL<<30)
  1072. coeff = (12*(1<<24)-9*B-6*C)*ddd + (-18*(1<<24)+12*B+6*C)*dd + (6*(1<<24)-2*B)*(1<<30);
  1073. else if (d < 1LL<<31)
  1074. coeff = (-B-6*C)*ddd + (6*B+30*C)*dd + (-12*B-48*C)*d + (8*B+24*C)*(1<<30);
  1075. else
  1076. coeff=0.0;
  1077. coeff *= fone>>(30+24);
  1078. }
  1079. /* else if (flags & SWS_X)
  1080. {
  1081. double p= param ? param*0.01 : 0.3;
  1082. coeff = d ? sin(d*PI)/(d*PI) : 1.0;
  1083. coeff*= pow(2.0, - p*d*d);
  1084. }*/
  1085. else if (flags & SWS_X)
  1086. {
  1087. double A= param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
  1088. double c;
  1089. if (floatd<1.0)
  1090. c = cos(floatd*PI);
  1091. else
  1092. c=-1.0;
  1093. if (c<0.0) c= -pow(-c, A);
  1094. else c= pow( c, A);
  1095. coeff= (c*0.5 + 0.5)*fone;
  1096. }
  1097. else if (flags & SWS_AREA)
  1098. {
  1099. int64_t d2= d - (1<<29);
  1100. if (d2*xInc < -(1LL<<(29+16))) coeff= 1.0 * (1LL<<(30+16));
  1101. else if (d2*xInc < (1LL<<(29+16))) coeff= -d2*xInc + (1LL<<(29+16));
  1102. else coeff=0.0;
  1103. coeff *= fone>>(30+16);
  1104. }
  1105. else if (flags & SWS_GAUSS)
  1106. {
  1107. double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  1108. coeff = (pow(2.0, - p*floatd*floatd))*fone;
  1109. }
  1110. else if (flags & SWS_SINC)
  1111. {
  1112. coeff = (d ? sin(floatd*PI)/(floatd*PI) : 1.0)*fone;
  1113. }
  1114. else if (flags & SWS_LANCZOS)
  1115. {
  1116. double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  1117. coeff = (d ? sin(floatd*PI)*sin(floatd*PI/p)/(floatd*floatd*PI*PI/p) : 1.0)*fone;
  1118. if (floatd>p) coeff=0;
  1119. }
  1120. else if (flags & SWS_BILINEAR)
  1121. {
  1122. coeff= (1<<30) - d;
  1123. if (coeff<0) coeff=0;
  1124. coeff *= fone >> 30;
  1125. }
  1126. else if (flags & SWS_SPLINE)
  1127. {
  1128. double p=-2.196152422706632;
  1129. coeff = getSplineCoeff(1.0, 0.0, p, -p-1.0, floatd) * fone;
  1130. }
  1131. else {
  1132. coeff= 0.0; //GCC warning killer
  1133. assert(0);
  1134. }
  1135. filter[i*filterSize + j]= coeff;
  1136. xx++;
  1137. }
  1138. xDstInSrc+= 2*xInc;
  1139. }
  1140. }
  1141. /* apply src & dst Filter to filter -> filter2
  1142. av_free(filter);
  1143. */
  1144. assert(filterSize>0);
  1145. filter2Size= filterSize;
  1146. if (srcFilter) filter2Size+= srcFilter->length - 1;
  1147. if (dstFilter) filter2Size+= dstFilter->length - 1;
  1148. assert(filter2Size>0);
  1149. filter2= av_mallocz(filter2Size*dstW*sizeof(*filter2));
  1150. for (i=0; i<dstW; i++)
  1151. {
  1152. int j, k;
  1153. if(srcFilter){
  1154. for (k=0; k<srcFilter->length; k++){
  1155. for (j=0; j<filterSize; j++)
  1156. filter2[i*filter2Size + k + j] += srcFilter->coeff[k]*filter[i*filterSize + j];
  1157. }
  1158. }else{
  1159. for (j=0; j<filterSize; j++)
  1160. filter2[i*filter2Size + j]= filter[i*filterSize + j];
  1161. }
  1162. //FIXME dstFilter
  1163. (*filterPos)[i]+= (filterSize-1)/2 - (filter2Size-1)/2;
  1164. }
  1165. av_freep(&filter);
  1166. /* try to reduce the filter-size (step1 find size and shift left) */
  1167. // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
  1168. minFilterSize= 0;
  1169. for (i=dstW-1; i>=0; i--)
  1170. {
  1171. int min= filter2Size;
  1172. int j;
  1173. int64_t cutOff=0.0;
  1174. /* get rid off near zero elements on the left by shifting left */
  1175. for (j=0; j<filter2Size; j++)
  1176. {
  1177. int k;
  1178. cutOff += FFABS(filter2[i*filter2Size]);
  1179. if (cutOff > SWS_MAX_REDUCE_CUTOFF*fone) break;
  1180. /* preserve monotonicity because the core can't handle the filter otherwise */
  1181. if (i<dstW-1 && (*filterPos)[i] >= (*filterPos)[i+1]) break;
  1182. // Move filter coeffs left
  1183. for (k=1; k<filter2Size; k++)
  1184. filter2[i*filter2Size + k - 1]= filter2[i*filter2Size + k];
  1185. filter2[i*filter2Size + k - 1]= 0;
  1186. (*filterPos)[i]++;
  1187. }
  1188. cutOff=0;
  1189. /* count near zeros on the right */
  1190. for (j=filter2Size-1; j>0; j--)
  1191. {
  1192. cutOff += FFABS(filter2[i*filter2Size + j]);
  1193. if (cutOff > SWS_MAX_REDUCE_CUTOFF*fone) break;
  1194. min--;
  1195. }
  1196. if (min>minFilterSize) minFilterSize= min;
  1197. }
  1198. if (flags & SWS_CPU_CAPS_ALTIVEC) {
  1199. // we can handle the special case 4,
  1200. // so we don't want to go to the full 8
  1201. if (minFilterSize < 5)
  1202. filterAlign = 4;
  1203. // we really don't want to waste our time
  1204. // doing useless computation, so fall-back on
  1205. // the scalar C code for very small filter.
  1206. // vectorizing is worth it only if you have
  1207. // decent-sized vector.
  1208. if (minFilterSize < 3)
  1209. filterAlign = 1;
  1210. }
  1211. if (flags & SWS_CPU_CAPS_MMX) {
  1212. // special case for unscaled vertical filtering
  1213. if (minFilterSize == 1 && filterAlign == 2)
  1214. filterAlign= 1;
  1215. }
  1216. assert(minFilterSize > 0);
  1217. filterSize= (minFilterSize +(filterAlign-1)) & (~(filterAlign-1));
  1218. assert(filterSize > 0);
  1219. filter= av_malloc(filterSize*dstW*sizeof(*filter));
  1220. if (filterSize >= MAX_FILTER_SIZE*16/((flags&SWS_ACCURATE_RND) ? APCK_SIZE : 16) || !filter)
  1221. goto error;
  1222. *outFilterSize= filterSize;
  1223. if (flags&SWS_PRINT_INFO)
  1224. av_log(NULL, AV_LOG_VERBOSE, "SwScaler: reducing / aligning filtersize %d -> %d\n", filter2Size, filterSize);
  1225. /* try to reduce the filter-size (step2 reduce it) */
  1226. for (i=0; i<dstW; i++)
  1227. {
  1228. int j;
  1229. for (j=0; j<filterSize; j++)
  1230. {
  1231. if (j>=filter2Size) filter[i*filterSize + j]= 0;
  1232. else filter[i*filterSize + j]= filter2[i*filter2Size + j];
  1233. if((flags & SWS_BITEXACT) && j>=minFilterSize)
  1234. filter[i*filterSize + j]= 0;
  1235. }
  1236. }
  1237. //FIXME try to align filterpos if possible
  1238. //fix borders
  1239. for (i=0; i<dstW; i++)
  1240. {
  1241. int j;
  1242. if ((*filterPos)[i] < 0)
  1243. {
  1244. // Move filter coeffs left to compensate for filterPos
  1245. for (j=1; j<filterSize; j++)
  1246. {
  1247. int left= FFMAX(j + (*filterPos)[i], 0);
  1248. filter[i*filterSize + left] += filter[i*filterSize + j];
  1249. filter[i*filterSize + j]=0;
  1250. }
  1251. (*filterPos)[i]= 0;
  1252. }
  1253. if ((*filterPos)[i] + filterSize > srcW)
  1254. {
  1255. int shift= (*filterPos)[i] + filterSize - srcW;
  1256. // Move filter coeffs right to compensate for filterPos
  1257. for (j=filterSize-2; j>=0; j--)
  1258. {
  1259. int right= FFMIN(j + shift, filterSize-1);
  1260. filter[i*filterSize +right] += filter[i*filterSize +j];
  1261. filter[i*filterSize +j]=0;
  1262. }
  1263. (*filterPos)[i]= srcW - filterSize;
  1264. }
  1265. }
  1266. // Note the +1 is for the MMXscaler which reads over the end
  1267. /* align at 16 for AltiVec (needed by hScale_altivec_real) */
  1268. *outFilter= av_mallocz(*outFilterSize*(dstW+1)*sizeof(int16_t));
  1269. /* Normalize & Store in outFilter */
  1270. for (i=0; i<dstW; i++)
  1271. {
  1272. int j;
  1273. int64_t error=0;
  1274. int64_t sum=0;
  1275. for (j=0; j<filterSize; j++)
  1276. {
  1277. sum+= filter[i*filterSize + j];
  1278. }
  1279. sum= (sum + one/2)/ one;
  1280. for (j=0; j<*outFilterSize; j++)
  1281. {
  1282. int64_t v= filter[i*filterSize + j] + error;
  1283. int intV= ROUNDED_DIV(v, sum);
  1284. (*outFilter)[i*(*outFilterSize) + j]= intV;
  1285. error= v - intV*sum;
  1286. }
  1287. }
  1288. (*filterPos)[dstW]= (*filterPos)[dstW-1]; // the MMX scaler will read over the end
  1289. for (i=0; i<*outFilterSize; i++)
  1290. {
  1291. int j= dstW*(*outFilterSize);
  1292. (*outFilter)[j + i]= (*outFilter)[j + i - (*outFilterSize)];
  1293. }
  1294. ret=0;
  1295. error:
  1296. av_free(filter);
  1297. av_free(filter2);
  1298. return ret;
  1299. }
  1300. #ifdef COMPILE_MMX2
  1301. static void initMMX2HScaler(int dstW, int xInc, uint8_t *funnyCode, int16_t *filter, int32_t *filterPos, int numSplits)
  1302. {
  1303. uint8_t *fragmentA;
  1304. long imm8OfPShufW1A;
  1305. long imm8OfPShufW2A;
  1306. long fragmentLengthA;
  1307. uint8_t *fragmentB;
  1308. long imm8OfPShufW1B;
  1309. long imm8OfPShufW2B;
  1310. long fragmentLengthB;
  1311. int fragmentPos;
  1312. int xpos, i;
  1313. // create an optimized horizontal scaling routine
  1314. //code fragment
  1315. __asm__ volatile(
  1316. "jmp 9f \n\t"
  1317. // Begin
  1318. "0: \n\t"
  1319. "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
  1320. "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
  1321. "movd 1(%%"REG_c", %%"REG_S"), %%mm1 \n\t"
  1322. "punpcklbw %%mm7, %%mm1 \n\t"
  1323. "punpcklbw %%mm7, %%mm0 \n\t"
  1324. "pshufw $0xFF, %%mm1, %%mm1 \n\t"
  1325. "1: \n\t"
  1326. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  1327. "2: \n\t"
  1328. "psubw %%mm1, %%mm0 \n\t"
  1329. "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
  1330. "pmullw %%mm3, %%mm0 \n\t"
  1331. "psllw $7, %%mm1 \n\t"
  1332. "paddw %%mm1, %%mm0 \n\t"
  1333. "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
  1334. "add $8, %%"REG_a" \n\t"
  1335. // End
  1336. "9: \n\t"
  1337. // "int $3 \n\t"
  1338. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  1339. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  1340. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  1341. "dec %1 \n\t"
  1342. "dec %2 \n\t"
  1343. "sub %0, %1 \n\t"
  1344. "sub %0, %2 \n\t"
  1345. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  1346. "sub %0, %3 \n\t"
  1347. :"=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
  1348. "=r" (fragmentLengthA)
  1349. );
  1350. __asm__ volatile(
  1351. "jmp 9f \n\t"
  1352. // Begin
  1353. "0: \n\t"
  1354. "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
  1355. "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
  1356. "punpcklbw %%mm7, %%mm0 \n\t"
  1357. "pshufw $0xFF, %%mm0, %%mm1 \n\t"
  1358. "1: \n\t"
  1359. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  1360. "2: \n\t"
  1361. "psubw %%mm1, %%mm0 \n\t"
  1362. "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
  1363. "pmullw %%mm3, %%mm0 \n\t"
  1364. "psllw $7, %%mm1 \n\t"
  1365. "paddw %%mm1, %%mm0 \n\t"
  1366. "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
  1367. "add $8, %%"REG_a" \n\t"
  1368. // End
  1369. "9: \n\t"
  1370. // "int $3 \n\t"
  1371. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  1372. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  1373. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  1374. "dec %1 \n\t"
  1375. "dec %2 \n\t"
  1376. "sub %0, %1 \n\t"
  1377. "sub %0, %2 \n\t"
  1378. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  1379. "sub %0, %3 \n\t"
  1380. :"=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
  1381. "=r" (fragmentLengthB)
  1382. );
  1383. xpos= 0; //lumXInc/2 - 0x8000; // difference between pixel centers
  1384. fragmentPos=0;
  1385. for (i=0; i<dstW/numSplits; i++)
  1386. {
  1387. int xx=xpos>>16;
  1388. if ((i&3) == 0)
  1389. {
  1390. int a=0;
  1391. int b=((xpos+xInc)>>16) - xx;
  1392. int c=((xpos+xInc*2)>>16) - xx;
  1393. int d=((xpos+xInc*3)>>16) - xx;
  1394. filter[i ] = (( xpos & 0xFFFF) ^ 0xFFFF)>>9;
  1395. filter[i+1] = (((xpos+xInc ) & 0xFFFF) ^ 0xFFFF)>>9;
  1396. filter[i+2] = (((xpos+xInc*2) & 0xFFFF) ^ 0xFFFF)>>9;
  1397. filter[i+3] = (((xpos+xInc*3) & 0xFFFF) ^ 0xFFFF)>>9;
  1398. filterPos[i/2]= xx;
  1399. if (d+1<4)
  1400. {
  1401. int maxShift= 3-(d+1);
  1402. int shift=0;
  1403. memcpy(funnyCode + fragmentPos, fragmentB, fragmentLengthB);
  1404. funnyCode[fragmentPos + imm8OfPShufW1B]=
  1405. (a+1) | ((b+1)<<2) | ((c+1)<<4) | ((d+1)<<6);
  1406. funnyCode[fragmentPos + imm8OfPShufW2B]=
  1407. a | (b<<2) | (c<<4) | (d<<6);
  1408. if (i+3>=dstW) shift=maxShift; //avoid overread
  1409. else if ((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //Align
  1410. if (shift && i>=shift)
  1411. {
  1412. funnyCode[fragmentPos + imm8OfPShufW1B]+= 0x55*shift;
  1413. funnyCode[fragmentPos + imm8OfPShufW2B]+= 0x55*shift;
  1414. filterPos[i/2]-=shift;
  1415. }
  1416. fragmentPos+= fragmentLengthB;
  1417. }
  1418. else
  1419. {
  1420. int maxShift= 3-d;
  1421. int shift=0;
  1422. memcpy(funnyCode + fragmentPos, fragmentA, fragmentLengthA);
  1423. funnyCode[fragmentPos + imm8OfPShufW1A]=
  1424. funnyCode[fragmentPos + imm8OfPShufW2A]=
  1425. a | (b<<2) | (c<<4) | (d<<6);
  1426. if (i+4>=dstW) shift=maxShift; //avoid overread
  1427. else if ((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //partial align
  1428. if (shift && i>=shift)
  1429. {
  1430. funnyCode[fragmentPos + imm8OfPShufW1A]+= 0x55*shift;
  1431. funnyCode[fragmentPos + imm8OfPShufW2A]+= 0x55*shift;
  1432. filterPos[i/2]-=shift;
  1433. }
  1434. fragmentPos+= fragmentLengthA;
  1435. }
  1436. funnyCode[fragmentPos]= RET;
  1437. }
  1438. xpos+=xInc;
  1439. }
  1440. filterPos[i/2]= xpos>>16; // needed to jump to the next part
  1441. }
  1442. #endif /* COMPILE_MMX2 */
  1443. static void globalInit(void){
  1444. // generating tables:
  1445. int i;
  1446. for (i=0; i<768; i++){
  1447. int c= av_clip_uint8(i-256);
  1448. clip_table[i]=c;
  1449. }
  1450. }
  1451. static SwsFunc getSwsFunc(int flags){
  1452. #if defined(RUNTIME_CPUDETECT) && defined (CONFIG_GPL)
  1453. #if defined(ARCH_X86)
  1454. // ordered per speed fastest first
  1455. if (flags & SWS_CPU_CAPS_MMX2)
  1456. return swScale_MMX2;
  1457. else if (flags & SWS_CPU_CAPS_3DNOW)
  1458. return swScale_3DNow;
  1459. else if (flags & SWS_CPU_CAPS_MMX)
  1460. return swScale_MMX;
  1461. else
  1462. return swScale_C;
  1463. #else
  1464. #ifdef ARCH_POWERPC
  1465. if (flags & SWS_CPU_CAPS_ALTIVEC)
  1466. return swScale_altivec;
  1467. else
  1468. return swScale_C;
  1469. #endif
  1470. return swScale_C;
  1471. #endif /* defined(ARCH_X86) */
  1472. #else //RUNTIME_CPUDETECT
  1473. #ifdef HAVE_MMX2
  1474. return swScale_MMX2;
  1475. #elif defined (HAVE_3DNOW)
  1476. return swScale_3DNow;
  1477. #elif defined (HAVE_MMX)
  1478. return swScale_MMX;
  1479. #elif defined (HAVE_ALTIVEC)
  1480. return swScale_altivec;
  1481. #else
  1482. return swScale_C;
  1483. #endif
  1484. #endif //!RUNTIME_CPUDETECT
  1485. }
  1486. static int PlanarToNV12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1487. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1488. uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
  1489. /* Copy Y plane */
  1490. if (dstStride[0]==srcStride[0] && srcStride[0] > 0)
  1491. memcpy(dst, src[0], srcSliceH*dstStride[0]);
  1492. else
  1493. {
  1494. int i;
  1495. uint8_t *srcPtr= src[0];
  1496. uint8_t *dstPtr= dst;
  1497. for (i=0; i<srcSliceH; i++)
  1498. {
  1499. memcpy(dstPtr, srcPtr, c->srcW);
  1500. srcPtr+= srcStride[0];
  1501. dstPtr+= dstStride[0];
  1502. }
  1503. }
  1504. dst = dstParam[1] + dstStride[1]*srcSliceY/2;
  1505. if (c->dstFormat == PIX_FMT_NV12)
  1506. interleaveBytes(src[1], src[2], dst, c->srcW/2, srcSliceH/2, srcStride[1], srcStride[2], dstStride[0]);
  1507. else
  1508. interleaveBytes(src[2], src[1], dst, c->srcW/2, srcSliceH/2, srcStride[2], srcStride[1], dstStride[0]);
  1509. return srcSliceH;
  1510. }
  1511. static int PlanarToYuy2Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1512. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1513. uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
  1514. yv12toyuy2(src[0], src[1], src[2], dst, c->srcW, srcSliceH, srcStride[0], srcStride[1], dstStride[0]);
  1515. return srcSliceH;
  1516. }
  1517. static int PlanarToUyvyWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1518. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1519. uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
  1520. yv12touyvy(src[0], src[1], src[2], dst, c->srcW, srcSliceH, srcStride[0], srcStride[1], dstStride[0]);
  1521. return srcSliceH;
  1522. }
  1523. static int YUV422PToYuy2Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1524. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1525. uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
  1526. yuv422ptoyuy2(src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0]);
  1527. return srcSliceH;
  1528. }
  1529. static int YUV422PToUyvyWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1530. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1531. uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
  1532. yuv422ptouyvy(src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0]);
  1533. return srcSliceH;
  1534. }
  1535. static int pal2rgbWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1536. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1537. const enum PixelFormat srcFormat= c->srcFormat;
  1538. const enum PixelFormat dstFormat= c->dstFormat;
  1539. void (*conv)(const uint8_t *src, uint8_t *dst, long num_pixels,
  1540. const uint8_t *palette)=NULL;
  1541. int i;
  1542. uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
  1543. uint8_t *srcPtr= src[0];
  1544. if (!usePal(srcFormat))
  1545. av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
  1546. sws_format_name(srcFormat), sws_format_name(dstFormat));
  1547. switch(dstFormat){
  1548. case PIX_FMT_RGB32 : conv = palette8topacked32; break;
  1549. case PIX_FMT_BGR32 : conv = palette8topacked32; break;
  1550. case PIX_FMT_BGR32_1: conv = palette8topacked32; break;
  1551. case PIX_FMT_RGB32_1: conv = palette8topacked32; break;
  1552. case PIX_FMT_RGB24 : conv = palette8topacked24; break;
  1553. case PIX_FMT_BGR24 : conv = palette8topacked24; break;
  1554. default: av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
  1555. sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
  1556. }
  1557. for (i=0; i<srcSliceH; i++) {
  1558. conv(srcPtr, dstPtr, c->srcW, (uint8_t *) c->pal_rgb);
  1559. srcPtr+= srcStride[0];
  1560. dstPtr+= dstStride[0];
  1561. }
  1562. return srcSliceH;
  1563. }
  1564. /* {RGB,BGR}{15,16,24,32,32_1} -> {RGB,BGR}{15,16,24,32} */
  1565. static int rgb2rgbWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1566. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1567. const enum PixelFormat srcFormat= c->srcFormat;
  1568. const enum PixelFormat dstFormat= c->dstFormat;
  1569. const int srcBpp= (fmt_depth(srcFormat) + 7) >> 3;
  1570. const int dstBpp= (fmt_depth(dstFormat) + 7) >> 3;
  1571. const int srcId= fmt_depth(srcFormat) >> 2; /* 1:0, 4:1, 8:2, 15:3, 16:4, 24:6, 32:8 */
  1572. const int dstId= fmt_depth(dstFormat) >> 2;
  1573. void (*conv)(const uint8_t *src, uint8_t *dst, long src_size)=NULL;
  1574. /* BGR -> BGR */
  1575. if ( (isBGR(srcFormat) && isBGR(dstFormat))
  1576. || (isRGB(srcFormat) && isRGB(dstFormat))){
  1577. switch(srcId | (dstId<<4)){
  1578. case 0x34: conv= rgb16to15; break;
  1579. case 0x36: conv= rgb24to15; break;
  1580. case 0x38: conv= rgb32to15; break;
  1581. case 0x43: conv= rgb15to16; break;
  1582. case 0x46: conv= rgb24to16; break;
  1583. case 0x48: conv= rgb32to16; break;
  1584. case 0x63: conv= rgb15to24; break;
  1585. case 0x64: conv= rgb16to24; break;
  1586. case 0x68: conv= rgb32to24; break;
  1587. case 0x83: conv= rgb15to32; break;
  1588. case 0x84: conv= rgb16to32; break;
  1589. case 0x86: conv= rgb24to32; break;
  1590. default: av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
  1591. sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
  1592. }
  1593. }else if ( (isBGR(srcFormat) && isRGB(dstFormat))
  1594. || (isRGB(srcFormat) && isBGR(dstFormat))){
  1595. switch(srcId | (dstId<<4)){
  1596. case 0x33: conv= rgb15tobgr15; break;
  1597. case 0x34: conv= rgb16tobgr15; break;
  1598. case 0x36: conv= rgb24tobgr15; break;
  1599. case 0x38: conv= rgb32tobgr15; break;
  1600. case 0x43: conv= rgb15tobgr16; break;
  1601. case 0x44: conv= rgb16tobgr16; break;
  1602. case 0x46: conv= rgb24tobgr16; break;
  1603. case 0x48: conv= rgb32tobgr16; break;
  1604. case 0x63: conv= rgb15tobgr24; break;
  1605. case 0x64: conv= rgb16tobgr24; break;
  1606. case 0x66: conv= rgb24tobgr24; break;
  1607. case 0x68: conv= rgb32tobgr24; break;
  1608. case 0x83: conv= rgb15tobgr32; break;
  1609. case 0x84: conv= rgb16tobgr32; break;
  1610. case 0x86: conv= rgb24tobgr32; break;
  1611. case 0x88: conv= rgb32tobgr32; break;
  1612. default: av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
  1613. sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
  1614. }
  1615. }else{
  1616. av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
  1617. sws_format_name(srcFormat), sws_format_name(dstFormat));
  1618. }
  1619. if(conv)
  1620. {
  1621. uint8_t *srcPtr= src[0];
  1622. if(srcFormat == PIX_FMT_RGB32_1 || srcFormat == PIX_FMT_BGR32_1)
  1623. srcPtr += ALT32_CORR;
  1624. if (dstStride[0]*srcBpp == srcStride[0]*dstBpp && srcStride[0] > 0)
  1625. conv(srcPtr, dst[0] + dstStride[0]*srcSliceY, srcSliceH*srcStride[0]);
  1626. else
  1627. {
  1628. int i;
  1629. uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
  1630. for (i=0; i<srcSliceH; i++)
  1631. {
  1632. conv(srcPtr, dstPtr, c->srcW*srcBpp);
  1633. srcPtr+= srcStride[0];
  1634. dstPtr+= dstStride[0];
  1635. }
  1636. }
  1637. }
  1638. return srcSliceH;
  1639. }
  1640. static int bgr24toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1641. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1642. rgb24toyv12(
  1643. src[0],
  1644. dst[0]+ srcSliceY *dstStride[0],
  1645. dst[1]+(srcSliceY>>1)*dstStride[1],
  1646. dst[2]+(srcSliceY>>1)*dstStride[2],
  1647. c->srcW, srcSliceH,
  1648. dstStride[0], dstStride[1], srcStride[0]);
  1649. return srcSliceH;
  1650. }
  1651. static int yvu9toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1652. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1653. int i;
  1654. /* copy Y */
  1655. if (srcStride[0]==dstStride[0] && srcStride[0] > 0)
  1656. memcpy(dst[0]+ srcSliceY*dstStride[0], src[0], srcStride[0]*srcSliceH);
  1657. else{
  1658. uint8_t *srcPtr= src[0];
  1659. uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
  1660. for (i=0; i<srcSliceH; i++)
  1661. {
  1662. memcpy(dstPtr, srcPtr, c->srcW);
  1663. srcPtr+= srcStride[0];
  1664. dstPtr+= dstStride[0];
  1665. }
  1666. }
  1667. if (c->dstFormat==PIX_FMT_YUV420P){
  1668. planar2x(src[1], dst[1], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[1]);
  1669. planar2x(src[2], dst[2], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[2]);
  1670. }else{
  1671. planar2x(src[1], dst[2], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[2]);
  1672. planar2x(src[2], dst[1], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[1]);
  1673. }
  1674. return srcSliceH;
  1675. }
  1676. /* unscaled copy like stuff (assumes nearly identical formats) */
  1677. static int packedCopy(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1678. int srcSliceH, uint8_t* dst[], int dstStride[])
  1679. {
  1680. if (dstStride[0]==srcStride[0] && srcStride[0] > 0)
  1681. memcpy(dst[0] + dstStride[0]*srcSliceY, src[0], srcSliceH*dstStride[0]);
  1682. else
  1683. {
  1684. int i;
  1685. uint8_t *srcPtr= src[0];
  1686. uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
  1687. int length=0;
  1688. /* universal length finder */
  1689. while(length+c->srcW <= FFABS(dstStride[0])
  1690. && length+c->srcW <= FFABS(srcStride[0])) length+= c->srcW;
  1691. assert(length!=0);
  1692. for (i=0; i<srcSliceH; i++)
  1693. {
  1694. memcpy(dstPtr, srcPtr, length);
  1695. srcPtr+= srcStride[0];
  1696. dstPtr+= dstStride[0];
  1697. }
  1698. }
  1699. return srcSliceH;
  1700. }
  1701. static int planarCopy(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1702. int srcSliceH, uint8_t* dst[], int dstStride[])
  1703. {
  1704. int plane;
  1705. for (plane=0; plane<3; plane++)
  1706. {
  1707. int length= plane==0 ? c->srcW : -((-c->srcW )>>c->chrDstHSubSample);
  1708. int y= plane==0 ? srcSliceY: -((-srcSliceY)>>c->chrDstVSubSample);
  1709. int height= plane==0 ? srcSliceH: -((-srcSliceH)>>c->chrDstVSubSample);
  1710. if ((isGray(c->srcFormat) || isGray(c->dstFormat)) && plane>0)
  1711. {
  1712. if (!isGray(c->dstFormat))
  1713. memset(dst[plane], 128, dstStride[plane]*height);
  1714. }
  1715. else
  1716. {
  1717. if (dstStride[plane]==srcStride[plane] && srcStride[plane] > 0)
  1718. memcpy(dst[plane] + dstStride[plane]*y, src[plane], height*dstStride[plane]);
  1719. else
  1720. {
  1721. int i;
  1722. uint8_t *srcPtr= src[plane];
  1723. uint8_t *dstPtr= dst[plane] + dstStride[plane]*y;
  1724. for (i=0; i<height; i++)
  1725. {
  1726. memcpy(dstPtr, srcPtr, length);
  1727. srcPtr+= srcStride[plane];
  1728. dstPtr+= dstStride[plane];
  1729. }
  1730. }
  1731. }
  1732. }
  1733. return srcSliceH;
  1734. }
  1735. static int gray16togray(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1736. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1737. int length= c->srcW;
  1738. int y= srcSliceY;
  1739. int height= srcSliceH;
  1740. int i, j;
  1741. uint8_t *srcPtr= src[0];
  1742. uint8_t *dstPtr= dst[0] + dstStride[0]*y;
  1743. if (!isGray(c->dstFormat)){
  1744. int height= -((-srcSliceH)>>c->chrDstVSubSample);
  1745. memset(dst[1], 128, dstStride[1]*height);
  1746. memset(dst[2], 128, dstStride[2]*height);
  1747. }
  1748. if (c->srcFormat == PIX_FMT_GRAY16LE) srcPtr++;
  1749. for (i=0; i<height; i++)
  1750. {
  1751. for (j=0; j<length; j++) dstPtr[j] = srcPtr[j<<1];
  1752. srcPtr+= srcStride[0];
  1753. dstPtr+= dstStride[0];
  1754. }
  1755. return srcSliceH;
  1756. }
  1757. static int graytogray16(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1758. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1759. int length= c->srcW;
  1760. int y= srcSliceY;
  1761. int height= srcSliceH;
  1762. int i, j;
  1763. uint8_t *srcPtr= src[0];
  1764. uint8_t *dstPtr= dst[0] + dstStride[0]*y;
  1765. for (i=0; i<height; i++)
  1766. {
  1767. for (j=0; j<length; j++)
  1768. {
  1769. dstPtr[j<<1] = srcPtr[j];
  1770. dstPtr[(j<<1)+1] = srcPtr[j];
  1771. }
  1772. srcPtr+= srcStride[0];
  1773. dstPtr+= dstStride[0];
  1774. }
  1775. return srcSliceH;
  1776. }
  1777. static int gray16swap(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1778. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1779. int length= c->srcW;
  1780. int y= srcSliceY;
  1781. int height= srcSliceH;
  1782. int i, j;
  1783. uint16_t *srcPtr= (uint16_t*)src[0];
  1784. uint16_t *dstPtr= (uint16_t*)(dst[0] + dstStride[0]*y/2);
  1785. for (i=0; i<height; i++)
  1786. {
  1787. for (j=0; j<length; j++) dstPtr[j] = bswap_16(srcPtr[j]);
  1788. srcPtr+= srcStride[0]/2;
  1789. dstPtr+= dstStride[0]/2;
  1790. }
  1791. return srcSliceH;
  1792. }
  1793. static void getSubSampleFactors(int *h, int *v, int format){
  1794. switch(format){
  1795. case PIX_FMT_UYVY422:
  1796. case PIX_FMT_YUYV422:
  1797. *h=1;
  1798. *v=0;
  1799. break;
  1800. case PIX_FMT_YUV420P:
  1801. case PIX_FMT_YUVA420P:
  1802. case PIX_FMT_GRAY16BE:
  1803. case PIX_FMT_GRAY16LE:
  1804. case PIX_FMT_GRAY8: //FIXME remove after different subsamplings are fully implemented
  1805. case PIX_FMT_NV12:
  1806. case PIX_FMT_NV21:
  1807. *h=1;
  1808. *v=1;
  1809. break;
  1810. case PIX_FMT_YUV440P:
  1811. *h=0;
  1812. *v=1;
  1813. break;
  1814. case PIX_FMT_YUV410P:
  1815. *h=2;
  1816. *v=2;
  1817. break;
  1818. case PIX_FMT_YUV444P:
  1819. *h=0;
  1820. *v=0;
  1821. break;
  1822. case PIX_FMT_YUV422P:
  1823. *h=1;
  1824. *v=0;
  1825. break;
  1826. case PIX_FMT_YUV411P:
  1827. *h=2;
  1828. *v=0;
  1829. break;
  1830. default:
  1831. *h=0;
  1832. *v=0;
  1833. break;
  1834. }
  1835. }
  1836. static uint16_t roundToInt16(int64_t f){
  1837. int r= (f + (1<<15))>>16;
  1838. if (r<-0x7FFF) return 0x8000;
  1839. else if (r> 0x7FFF) return 0x7FFF;
  1840. else return r;
  1841. }
  1842. /**
  1843. * @param inv_table the yuv2rgb coeffs, normally Inverse_Table_6_9[x]
  1844. * @param fullRange if 1 then the luma range is 0..255 if 0 it is 16..235
  1845. * @return -1 if not supported
  1846. */
  1847. int sws_setColorspaceDetails(SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation){
  1848. int64_t crv = inv_table[0];
  1849. int64_t cbu = inv_table[1];
  1850. int64_t cgu = -inv_table[2];
  1851. int64_t cgv = -inv_table[3];
  1852. int64_t cy = 1<<16;
  1853. int64_t oy = 0;
  1854. memcpy(c->srcColorspaceTable, inv_table, sizeof(int)*4);
  1855. memcpy(c->dstColorspaceTable, table, sizeof(int)*4);
  1856. c->brightness= brightness;
  1857. c->contrast = contrast;
  1858. c->saturation= saturation;
  1859. c->srcRange = srcRange;
  1860. c->dstRange = dstRange;
  1861. if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return 0;
  1862. c->uOffset= 0x0400040004000400LL;
  1863. c->vOffset= 0x0400040004000400LL;
  1864. if (!srcRange){
  1865. cy= (cy*255) / 219;
  1866. oy= 16<<16;
  1867. }else{
  1868. crv= (crv*224) / 255;
  1869. cbu= (cbu*224) / 255;
  1870. cgu= (cgu*224) / 255;
  1871. cgv= (cgv*224) / 255;
  1872. }
  1873. cy = (cy *contrast )>>16;
  1874. crv= (crv*contrast * saturation)>>32;
  1875. cbu= (cbu*contrast * saturation)>>32;
  1876. cgu= (cgu*contrast * saturation)>>32;
  1877. cgv= (cgv*contrast * saturation)>>32;
  1878. oy -= 256*brightness;
  1879. c->yCoeff= roundToInt16(cy *8192) * 0x0001000100010001ULL;
  1880. c->vrCoeff= roundToInt16(crv*8192) * 0x0001000100010001ULL;
  1881. c->ubCoeff= roundToInt16(cbu*8192) * 0x0001000100010001ULL;
  1882. c->vgCoeff= roundToInt16(cgv*8192) * 0x0001000100010001ULL;
  1883. c->ugCoeff= roundToInt16(cgu*8192) * 0x0001000100010001ULL;
  1884. c->yOffset= roundToInt16(oy * 8) * 0x0001000100010001ULL;
  1885. c->yuv2rgb_y_coeff = (int16_t)roundToInt16(cy <<13);
  1886. c->yuv2rgb_y_offset = (int16_t)roundToInt16(oy << 9);
  1887. c->yuv2rgb_v2r_coeff= (int16_t)roundToInt16(crv<<13);
  1888. c->yuv2rgb_v2g_coeff= (int16_t)roundToInt16(cgv<<13);
  1889. c->yuv2rgb_u2g_coeff= (int16_t)roundToInt16(cgu<<13);
  1890. c->yuv2rgb_u2b_coeff= (int16_t)roundToInt16(cbu<<13);
  1891. yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness, contrast, saturation);
  1892. //FIXME factorize
  1893. #ifdef COMPILE_ALTIVEC
  1894. if (c->flags & SWS_CPU_CAPS_ALTIVEC)
  1895. yuv2rgb_altivec_init_tables (c, inv_table, brightness, contrast, saturation);
  1896. #endif
  1897. return 0;
  1898. }
  1899. /**
  1900. * @return -1 if not supported
  1901. */
  1902. int sws_getColorspaceDetails(SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation){
  1903. if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
  1904. *inv_table = c->srcColorspaceTable;
  1905. *table = c->dstColorspaceTable;
  1906. *srcRange = c->srcRange;
  1907. *dstRange = c->dstRange;
  1908. *brightness= c->brightness;
  1909. *contrast = c->contrast;
  1910. *saturation= c->saturation;
  1911. return 0;
  1912. }
  1913. static int handle_jpeg(enum PixelFormat *format)
  1914. {
  1915. switch (*format) {
  1916. case PIX_FMT_YUVJ420P:
  1917. *format = PIX_FMT_YUV420P;
  1918. return 1;
  1919. case PIX_FMT_YUVJ422P:
  1920. *format = PIX_FMT_YUV422P;
  1921. return 1;
  1922. case PIX_FMT_YUVJ444P:
  1923. *format = PIX_FMT_YUV444P;
  1924. return 1;
  1925. case PIX_FMT_YUVJ440P:
  1926. *format = PIX_FMT_YUV440P;
  1927. return 1;
  1928. default:
  1929. return 0;
  1930. }
  1931. }
  1932. SwsContext *sws_getContext(int srcW, int srcH, enum PixelFormat srcFormat, int dstW, int dstH, enum PixelFormat dstFormat, int flags,
  1933. SwsFilter *srcFilter, SwsFilter *dstFilter, double *param){
  1934. SwsContext *c;
  1935. int i;
  1936. int usesVFilter, usesHFilter;
  1937. int unscaled, needsDither;
  1938. int srcRange, dstRange;
  1939. SwsFilter dummyFilter= {NULL, NULL, NULL, NULL};
  1940. #if defined(ARCH_X86)
  1941. if (flags & SWS_CPU_CAPS_MMX)
  1942. __asm__ volatile("emms\n\t"::: "memory");
  1943. #endif
  1944. #if !defined(RUNTIME_CPUDETECT) || !defined (CONFIG_GPL) //ensure that the flags match the compiled variant if cpudetect is off
  1945. flags &= ~(SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2|SWS_CPU_CAPS_3DNOW|SWS_CPU_CAPS_ALTIVEC|SWS_CPU_CAPS_BFIN);
  1946. #ifdef HAVE_MMX2
  1947. flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2;
  1948. #elif defined (HAVE_3DNOW)
  1949. flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_3DNOW;
  1950. #elif defined (HAVE_MMX)
  1951. flags |= SWS_CPU_CAPS_MMX;
  1952. #elif defined (HAVE_ALTIVEC)
  1953. flags |= SWS_CPU_CAPS_ALTIVEC;
  1954. #elif defined (ARCH_BFIN)
  1955. flags |= SWS_CPU_CAPS_BFIN;
  1956. #endif
  1957. #endif /* RUNTIME_CPUDETECT */
  1958. if (clip_table[512] != 255) globalInit();
  1959. if (!rgb15to16) sws_rgb2rgb_init(flags);
  1960. unscaled = (srcW == dstW && srcH == dstH);
  1961. needsDither= (isBGR(dstFormat) || isRGB(dstFormat))
  1962. && (fmt_depth(dstFormat))<24
  1963. && ((fmt_depth(dstFormat))<(fmt_depth(srcFormat)) || (!(isRGB(srcFormat) || isBGR(srcFormat))));
  1964. srcRange = handle_jpeg(&srcFormat);
  1965. dstRange = handle_jpeg(&dstFormat);
  1966. if (!isSupportedIn(srcFormat))
  1967. {
  1968. av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as input pixel format\n", sws_format_name(srcFormat));
  1969. return NULL;
  1970. }
  1971. if (!isSupportedOut(dstFormat))
  1972. {
  1973. av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as output pixel format\n", sws_format_name(dstFormat));
  1974. return NULL;
  1975. }
  1976. i= flags & ( SWS_POINT
  1977. |SWS_AREA
  1978. |SWS_BILINEAR
  1979. |SWS_FAST_BILINEAR
  1980. |SWS_BICUBIC
  1981. |SWS_X
  1982. |SWS_GAUSS
  1983. |SWS_LANCZOS
  1984. |SWS_SINC
  1985. |SWS_SPLINE
  1986. |SWS_BICUBLIN);
  1987. if(!i || (i & (i-1)))
  1988. {
  1989. av_log(NULL, AV_LOG_ERROR, "swScaler: Exactly one scaler algorithm must be choosen\n");
  1990. return NULL;
  1991. }
  1992. /* sanity check */
  1993. if (srcW<4 || srcH<1 || dstW<8 || dstH<1) //FIXME check if these are enough and try to lowwer them after fixing the relevant parts of the code
  1994. {
  1995. av_log(NULL, AV_LOG_ERROR, "swScaler: %dx%d -> %dx%d is invalid scaling dimension\n",
  1996. srcW, srcH, dstW, dstH);
  1997. return NULL;
  1998. }
  1999. if(srcW > VOFW || dstW > VOFW){
  2000. av_log(NULL, AV_LOG_ERROR, "swScaler: Compile time max width is "AV_STRINGIFY(VOFW)" change VOF/VOFW and recompile\n");
  2001. return NULL;
  2002. }
  2003. if (!dstFilter) dstFilter= &dummyFilter;
  2004. if (!srcFilter) srcFilter= &dummyFilter;
  2005. c= av_mallocz(sizeof(SwsContext));
  2006. c->av_class = &sws_context_class;
  2007. c->srcW= srcW;
  2008. c->srcH= srcH;
  2009. c->dstW= dstW;
  2010. c->dstH= dstH;
  2011. c->lumXInc= ((srcW<<16) + (dstW>>1))/dstW;
  2012. c->lumYInc= ((srcH<<16) + (dstH>>1))/dstH;
  2013. c->flags= flags;
  2014. c->dstFormat= dstFormat;
  2015. c->srcFormat= srcFormat;
  2016. c->vRounder= 4* 0x0001000100010001ULL;
  2017. usesHFilter= usesVFilter= 0;
  2018. if (dstFilter->lumV && dstFilter->lumV->length>1) usesVFilter=1;
  2019. if (dstFilter->lumH && dstFilter->lumH->length>1) usesHFilter=1;
  2020. if (dstFilter->chrV && dstFilter->chrV->length>1) usesVFilter=1;
  2021. if (dstFilter->chrH && dstFilter->chrH->length>1) usesHFilter=1;
  2022. if (srcFilter->lumV && srcFilter->lumV->length>1) usesVFilter=1;
  2023. if (srcFilter->lumH && srcFilter->lumH->length>1) usesHFilter=1;
  2024. if (srcFilter->chrV && srcFilter->chrV->length>1) usesVFilter=1;
  2025. if (srcFilter->chrH && srcFilter->chrH->length>1) usesHFilter=1;
  2026. getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
  2027. getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
  2028. // reuse chroma for 2 pixles rgb/bgr unless user wants full chroma interpolation
  2029. if ((isBGR(dstFormat) || isRGB(dstFormat)) && !(flags&SWS_FULL_CHR_H_INT)) c->chrDstHSubSample=1;
  2030. // drop some chroma lines if the user wants it
  2031. c->vChrDrop= (flags&SWS_SRC_V_CHR_DROP_MASK)>>SWS_SRC_V_CHR_DROP_SHIFT;
  2032. c->chrSrcVSubSample+= c->vChrDrop;
  2033. // drop every 2. pixel for chroma calculation unless user wants full chroma
  2034. if ((isBGR(srcFormat) || isRGB(srcFormat)) && !(flags&SWS_FULL_CHR_H_INP)
  2035. && srcFormat!=PIX_FMT_RGB8 && srcFormat!=PIX_FMT_BGR8
  2036. && srcFormat!=PIX_FMT_RGB4 && srcFormat!=PIX_FMT_BGR4
  2037. && srcFormat!=PIX_FMT_RGB4_BYTE && srcFormat!=PIX_FMT_BGR4_BYTE
  2038. && ((dstW>>c->chrDstHSubSample) <= (srcW>>1) || (flags&(SWS_FAST_BILINEAR|SWS_POINT))))
  2039. c->chrSrcHSubSample=1;
  2040. if (param){
  2041. c->param[0] = param[0];
  2042. c->param[1] = param[1];
  2043. }else{
  2044. c->param[0] =
  2045. c->param[1] = SWS_PARAM_DEFAULT;
  2046. }
  2047. c->chrIntHSubSample= c->chrDstHSubSample;
  2048. c->chrIntVSubSample= c->chrSrcVSubSample;
  2049. // Note the -((-x)>>y) is so that we always round toward +inf.
  2050. c->chrSrcW= -((-srcW) >> c->chrSrcHSubSample);
  2051. c->chrSrcH= -((-srcH) >> c->chrSrcVSubSample);
  2052. c->chrDstW= -((-dstW) >> c->chrDstHSubSample);
  2053. c->chrDstH= -((-dstH) >> c->chrDstVSubSample);
  2054. sws_setColorspaceDetails(c, Inverse_Table_6_9[SWS_CS_DEFAULT], srcRange, Inverse_Table_6_9[SWS_CS_DEFAULT] /* FIXME*/, dstRange, 0, 1<<16, 1<<16);
  2055. /* unscaled special Cases */
  2056. if (unscaled && !usesHFilter && !usesVFilter && (srcRange == dstRange || isBGR(dstFormat) || isRGB(dstFormat)))
  2057. {
  2058. /* yv12_to_nv12 */
  2059. if (srcFormat == PIX_FMT_YUV420P && (dstFormat == PIX_FMT_NV12 || dstFormat == PIX_FMT_NV21))
  2060. {
  2061. c->swScale= PlanarToNV12Wrapper;
  2062. }
  2063. #ifdef CONFIG_GPL
  2064. /* yuv2bgr */
  2065. if ((srcFormat==PIX_FMT_YUV420P || srcFormat==PIX_FMT_YUV422P) && (isBGR(dstFormat) || isRGB(dstFormat))
  2066. && !(flags & SWS_ACCURATE_RND) && !(dstH&1))
  2067. {
  2068. c->swScale= yuv2rgb_get_func_ptr(c);
  2069. }
  2070. #endif
  2071. if (srcFormat==PIX_FMT_YUV410P && dstFormat==PIX_FMT_YUV420P && !(flags & SWS_BITEXACT))
  2072. {
  2073. c->swScale= yvu9toyv12Wrapper;
  2074. }
  2075. /* bgr24toYV12 */
  2076. if (srcFormat==PIX_FMT_BGR24 && dstFormat==PIX_FMT_YUV420P && !(flags & SWS_ACCURATE_RND))
  2077. c->swScale= bgr24toyv12Wrapper;
  2078. /* rgb/bgr -> rgb/bgr (no dither needed forms) */
  2079. if ( (isBGR(srcFormat) || isRGB(srcFormat))
  2080. && (isBGR(dstFormat) || isRGB(dstFormat))
  2081. && srcFormat != PIX_FMT_BGR8 && dstFormat != PIX_FMT_BGR8
  2082. && srcFormat != PIX_FMT_RGB8 && dstFormat != PIX_FMT_RGB8
  2083. && srcFormat != PIX_FMT_BGR4 && dstFormat != PIX_FMT_BGR4
  2084. && srcFormat != PIX_FMT_RGB4 && dstFormat != PIX_FMT_RGB4
  2085. && srcFormat != PIX_FMT_BGR4_BYTE && dstFormat != PIX_FMT_BGR4_BYTE
  2086. && srcFormat != PIX_FMT_RGB4_BYTE && dstFormat != PIX_FMT_RGB4_BYTE
  2087. && srcFormat != PIX_FMT_MONOBLACK && dstFormat != PIX_FMT_MONOBLACK
  2088. && srcFormat != PIX_FMT_MONOWHITE && dstFormat != PIX_FMT_MONOWHITE
  2089. && dstFormat != PIX_FMT_RGB32_1
  2090. && dstFormat != PIX_FMT_BGR32_1
  2091. && (!needsDither || (c->flags&(SWS_FAST_BILINEAR|SWS_POINT))))
  2092. c->swScale= rgb2rgbWrapper;
  2093. if ((usePal(srcFormat) && (
  2094. dstFormat == PIX_FMT_RGB32 ||
  2095. dstFormat == PIX_FMT_RGB32_1 ||
  2096. dstFormat == PIX_FMT_RGB24 ||
  2097. dstFormat == PIX_FMT_BGR32 ||
  2098. dstFormat == PIX_FMT_BGR32_1 ||
  2099. dstFormat == PIX_FMT_BGR24)))
  2100. c->swScale= pal2rgbWrapper;
  2101. if (srcFormat == PIX_FMT_YUV422P)
  2102. {
  2103. if (dstFormat == PIX_FMT_YUYV422)
  2104. c->swScale= YUV422PToYuy2Wrapper;
  2105. else if (dstFormat == PIX_FMT_UYVY422)
  2106. c->swScale= YUV422PToUyvyWrapper;
  2107. }
  2108. /* LQ converters if -sws 0 or -sws 4*/
  2109. if (c->flags&(SWS_FAST_BILINEAR|SWS_POINT)){
  2110. /* yv12_to_yuy2 */
  2111. if (srcFormat == PIX_FMT_YUV420P)
  2112. {
  2113. if (dstFormat == PIX_FMT_YUYV422)
  2114. c->swScale= PlanarToYuy2Wrapper;
  2115. else if (dstFormat == PIX_FMT_UYVY422)
  2116. c->swScale= PlanarToUyvyWrapper;
  2117. }
  2118. }
  2119. #ifdef COMPILE_ALTIVEC
  2120. if ((c->flags & SWS_CPU_CAPS_ALTIVEC) &&
  2121. srcFormat == PIX_FMT_YUV420P) {
  2122. // unscaled YV12 -> packed YUV, we want speed
  2123. if (dstFormat == PIX_FMT_YUYV422)
  2124. c->swScale= yv12toyuy2_unscaled_altivec;
  2125. else if (dstFormat == PIX_FMT_UYVY422)
  2126. c->swScale= yv12touyvy_unscaled_altivec;
  2127. }
  2128. #endif
  2129. /* simple copy */
  2130. if ( srcFormat == dstFormat
  2131. || (isPlanarYUV(srcFormat) && isGray(dstFormat))
  2132. || (isPlanarYUV(dstFormat) && isGray(srcFormat)))
  2133. {
  2134. if (isPacked(c->srcFormat))
  2135. c->swScale= packedCopy;
  2136. else /* Planar YUV or gray */
  2137. c->swScale= planarCopy;
  2138. }
  2139. /* gray16{le,be} conversions */
  2140. if (isGray16(srcFormat) && (isPlanarYUV(dstFormat) || (dstFormat == PIX_FMT_GRAY8)))
  2141. {
  2142. c->swScale= gray16togray;
  2143. }
  2144. if ((isPlanarYUV(srcFormat) || (srcFormat == PIX_FMT_GRAY8)) && isGray16(dstFormat))
  2145. {
  2146. c->swScale= graytogray16;
  2147. }
  2148. if (srcFormat != dstFormat && isGray16(srcFormat) && isGray16(dstFormat))
  2149. {
  2150. c->swScale= gray16swap;
  2151. }
  2152. #ifdef ARCH_BFIN
  2153. if (flags & SWS_CPU_CAPS_BFIN)
  2154. ff_bfin_get_unscaled_swscale (c);
  2155. #endif
  2156. if (c->swScale){
  2157. if (flags&SWS_PRINT_INFO)
  2158. av_log(c, AV_LOG_INFO, "using unscaled %s -> %s special converter\n",
  2159. sws_format_name(srcFormat), sws_format_name(dstFormat));
  2160. return c;
  2161. }
  2162. }
  2163. if (flags & SWS_CPU_CAPS_MMX2)
  2164. {
  2165. c->canMMX2BeUsed= (dstW >=srcW && (dstW&31)==0 && (srcW&15)==0) ? 1 : 0;
  2166. if (!c->canMMX2BeUsed && dstW >=srcW && (srcW&15)==0 && (flags&SWS_FAST_BILINEAR))
  2167. {
  2168. if (flags&SWS_PRINT_INFO)
  2169. av_log(c, AV_LOG_INFO, "output Width is not a multiple of 32 -> no MMX2 scaler\n");
  2170. }
  2171. if (usesHFilter) c->canMMX2BeUsed=0;
  2172. }
  2173. else
  2174. c->canMMX2BeUsed=0;
  2175. c->chrXInc= ((c->chrSrcW<<16) + (c->chrDstW>>1))/c->chrDstW;
  2176. c->chrYInc= ((c->chrSrcH<<16) + (c->chrDstH>>1))/c->chrDstH;
  2177. // match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst
  2178. // but only for the FAST_BILINEAR mode otherwise do correct scaling
  2179. // n-2 is the last chrominance sample available
  2180. // this is not perfect, but no one should notice the difference, the more correct variant
  2181. // would be like the vertical one, but that would require some special code for the
  2182. // first and last pixel
  2183. if (flags&SWS_FAST_BILINEAR)
  2184. {
  2185. if (c->canMMX2BeUsed)
  2186. {
  2187. c->lumXInc+= 20;
  2188. c->chrXInc+= 20;
  2189. }
  2190. //we don't use the x86asm scaler if mmx is available
  2191. else if (flags & SWS_CPU_CAPS_MMX)
  2192. {
  2193. c->lumXInc = ((srcW-2)<<16)/(dstW-2) - 20;
  2194. c->chrXInc = ((c->chrSrcW-2)<<16)/(c->chrDstW-2) - 20;
  2195. }
  2196. }
  2197. /* precalculate horizontal scaler filter coefficients */
  2198. {
  2199. const int filterAlign=
  2200. (flags & SWS_CPU_CAPS_MMX) ? 4 :
  2201. (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
  2202. 1;
  2203. initFilter(&c->hLumFilter, &c->hLumFilterPos, &c->hLumFilterSize, c->lumXInc,
  2204. srcW , dstW, filterAlign, 1<<14,
  2205. (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags,
  2206. srcFilter->lumH, dstFilter->lumH, c->param);
  2207. initFilter(&c->hChrFilter, &c->hChrFilterPos, &c->hChrFilterSize, c->chrXInc,
  2208. c->chrSrcW, c->chrDstW, filterAlign, 1<<14,
  2209. (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
  2210. srcFilter->chrH, dstFilter->chrH, c->param);
  2211. #define MAX_FUNNY_CODE_SIZE 10000
  2212. #if defined(COMPILE_MMX2)
  2213. // can't downscale !!!
  2214. if (c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR))
  2215. {
  2216. #ifdef MAP_ANONYMOUS
  2217. c->funnyYCode = (uint8_t*)mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
  2218. c->funnyUVCode = (uint8_t*)mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
  2219. #else
  2220. c->funnyYCode = av_malloc(MAX_FUNNY_CODE_SIZE);
  2221. c->funnyUVCode = av_malloc(MAX_FUNNY_CODE_SIZE);
  2222. #endif
  2223. c->lumMmx2Filter = av_malloc((dstW /8+8)*sizeof(int16_t));
  2224. c->chrMmx2Filter = av_malloc((c->chrDstW /4+8)*sizeof(int16_t));
  2225. c->lumMmx2FilterPos= av_malloc((dstW /2/8+8)*sizeof(int32_t));
  2226. c->chrMmx2FilterPos= av_malloc((c->chrDstW/2/4+8)*sizeof(int32_t));
  2227. initMMX2HScaler( dstW, c->lumXInc, c->funnyYCode , c->lumMmx2Filter, c->lumMmx2FilterPos, 8);
  2228. initMMX2HScaler(c->chrDstW, c->chrXInc, c->funnyUVCode, c->chrMmx2Filter, c->chrMmx2FilterPos, 4);
  2229. }
  2230. #endif /* defined(COMPILE_MMX2) */
  2231. } // Init Horizontal stuff
  2232. /* precalculate vertical scaler filter coefficients */
  2233. {
  2234. const int filterAlign=
  2235. (flags & SWS_CPU_CAPS_MMX) && (flags & SWS_ACCURATE_RND) ? 2 :
  2236. (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
  2237. 1;
  2238. initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize, c->lumYInc,
  2239. srcH , dstH, filterAlign, (1<<12),
  2240. (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags,
  2241. srcFilter->lumV, dstFilter->lumV, c->param);
  2242. initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize, c->chrYInc,
  2243. c->chrSrcH, c->chrDstH, filterAlign, (1<<12),
  2244. (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
  2245. srcFilter->chrV, dstFilter->chrV, c->param);
  2246. #ifdef HAVE_ALTIVEC
  2247. c->vYCoeffsBank = av_malloc(sizeof (vector signed short)*c->vLumFilterSize*c->dstH);
  2248. c->vCCoeffsBank = av_malloc(sizeof (vector signed short)*c->vChrFilterSize*c->chrDstH);
  2249. for (i=0;i<c->vLumFilterSize*c->dstH;i++) {
  2250. int j;
  2251. short *p = (short *)&c->vYCoeffsBank[i];
  2252. for (j=0;j<8;j++)
  2253. p[j] = c->vLumFilter[i];
  2254. }
  2255. for (i=0;i<c->vChrFilterSize*c->chrDstH;i++) {
  2256. int j;
  2257. short *p = (short *)&c->vCCoeffsBank[i];
  2258. for (j=0;j<8;j++)
  2259. p[j] = c->vChrFilter[i];
  2260. }
  2261. #endif
  2262. }
  2263. // Calculate Buffer Sizes so that they won't run out while handling these damn slices
  2264. c->vLumBufSize= c->vLumFilterSize;
  2265. c->vChrBufSize= c->vChrFilterSize;
  2266. for (i=0; i<dstH; i++)
  2267. {
  2268. int chrI= i*c->chrDstH / dstH;
  2269. int nextSlice= FFMAX(c->vLumFilterPos[i ] + c->vLumFilterSize - 1,
  2270. ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)<<c->chrSrcVSubSample));
  2271. nextSlice>>= c->chrSrcVSubSample;
  2272. nextSlice<<= c->chrSrcVSubSample;
  2273. if (c->vLumFilterPos[i ] + c->vLumBufSize < nextSlice)
  2274. c->vLumBufSize= nextSlice - c->vLumFilterPos[i];
  2275. if (c->vChrFilterPos[chrI] + c->vChrBufSize < (nextSlice>>c->chrSrcVSubSample))
  2276. c->vChrBufSize= (nextSlice>>c->chrSrcVSubSample) - c->vChrFilterPos[chrI];
  2277. }
  2278. // allocate pixbufs (we use dynamic allocation because otherwise we would need to
  2279. c->lumPixBuf= av_malloc(c->vLumBufSize*2*sizeof(int16_t*));
  2280. c->chrPixBuf= av_malloc(c->vChrBufSize*2*sizeof(int16_t*));
  2281. //Note we need at least one pixel more at the end because of the mmx code (just in case someone wanna replace the 4000/8000)
  2282. /* align at 16 bytes for AltiVec */
  2283. for (i=0; i<c->vLumBufSize; i++)
  2284. c->lumPixBuf[i]= c->lumPixBuf[i+c->vLumBufSize]= av_mallocz(VOF+1);
  2285. for (i=0; i<c->vChrBufSize; i++)
  2286. c->chrPixBuf[i]= c->chrPixBuf[i+c->vChrBufSize]= av_malloc((VOF+1)*2);
  2287. //try to avoid drawing green stuff between the right end and the stride end
  2288. for (i=0; i<c->vChrBufSize; i++) memset(c->chrPixBuf[i], 64, (VOF+1)*2);
  2289. assert(2*VOFW == VOF);
  2290. assert(c->chrDstH <= dstH);
  2291. if (flags&SWS_PRINT_INFO)
  2292. {
  2293. #ifdef DITHER1XBPP
  2294. const char *dither= " dithered";
  2295. #else
  2296. const char *dither= "";
  2297. #endif
  2298. if (flags&SWS_FAST_BILINEAR)
  2299. av_log(c, AV_LOG_INFO, "FAST_BILINEAR scaler, ");
  2300. else if (flags&SWS_BILINEAR)
  2301. av_log(c, AV_LOG_INFO, "BILINEAR scaler, ");
  2302. else if (flags&SWS_BICUBIC)
  2303. av_log(c, AV_LOG_INFO, "BICUBIC scaler, ");
  2304. else if (flags&SWS_X)
  2305. av_log(c, AV_LOG_INFO, "Experimental scaler, ");
  2306. else if (flags&SWS_POINT)
  2307. av_log(c, AV_LOG_INFO, "Nearest Neighbor / POINT scaler, ");
  2308. else if (flags&SWS_AREA)
  2309. av_log(c, AV_LOG_INFO, "Area Averageing scaler, ");
  2310. else if (flags&SWS_BICUBLIN)
  2311. av_log(c, AV_LOG_INFO, "luma BICUBIC / chroma BILINEAR scaler, ");
  2312. else if (flags&SWS_GAUSS)
  2313. av_log(c, AV_LOG_INFO, "Gaussian scaler, ");
  2314. else if (flags&SWS_SINC)
  2315. av_log(c, AV_LOG_INFO, "Sinc scaler, ");
  2316. else if (flags&SWS_LANCZOS)
  2317. av_log(c, AV_LOG_INFO, "Lanczos scaler, ");
  2318. else if (flags&SWS_SPLINE)
  2319. av_log(c, AV_LOG_INFO, "Bicubic spline scaler, ");
  2320. else
  2321. av_log(c, AV_LOG_INFO, "ehh flags invalid?! ");
  2322. if (dstFormat==PIX_FMT_BGR555 || dstFormat==PIX_FMT_BGR565)
  2323. av_log(c, AV_LOG_INFO, "from %s to%s %s ",
  2324. sws_format_name(srcFormat), dither, sws_format_name(dstFormat));
  2325. else
  2326. av_log(c, AV_LOG_INFO, "from %s to %s ",
  2327. sws_format_name(srcFormat), sws_format_name(dstFormat));
  2328. if (flags & SWS_CPU_CAPS_MMX2)
  2329. av_log(c, AV_LOG_INFO, "using MMX2\n");
  2330. else if (flags & SWS_CPU_CAPS_3DNOW)
  2331. av_log(c, AV_LOG_INFO, "using 3DNOW\n");
  2332. else if (flags & SWS_CPU_CAPS_MMX)
  2333. av_log(c, AV_LOG_INFO, "using MMX\n");
  2334. else if (flags & SWS_CPU_CAPS_ALTIVEC)
  2335. av_log(c, AV_LOG_INFO, "using AltiVec\n");
  2336. else
  2337. av_log(c, AV_LOG_INFO, "using C\n");
  2338. }
  2339. if (flags & SWS_PRINT_INFO)
  2340. {
  2341. if (flags & SWS_CPU_CAPS_MMX)
  2342. {
  2343. if (c->canMMX2BeUsed && (flags&SWS_FAST_BILINEAR))
  2344. av_log(c, AV_LOG_VERBOSE, "using FAST_BILINEAR MMX2 scaler for horizontal scaling\n");
  2345. else
  2346. {
  2347. if (c->hLumFilterSize==4)
  2348. av_log(c, AV_LOG_VERBOSE, "using 4-tap MMX scaler for horizontal luminance scaling\n");
  2349. else if (c->hLumFilterSize==8)
  2350. av_log(c, AV_LOG_VERBOSE, "using 8-tap MMX scaler for horizontal luminance scaling\n");
  2351. else
  2352. av_log(c, AV_LOG_VERBOSE, "using n-tap MMX scaler for horizontal luminance scaling\n");
  2353. if (c->hChrFilterSize==4)
  2354. av_log(c, AV_LOG_VERBOSE, "using 4-tap MMX scaler for horizontal chrominance scaling\n");
  2355. else if (c->hChrFilterSize==8)
  2356. av_log(c, AV_LOG_VERBOSE, "using 8-tap MMX scaler for horizontal chrominance scaling\n");
  2357. else
  2358. av_log(c, AV_LOG_VERBOSE, "using n-tap MMX scaler for horizontal chrominance scaling\n");
  2359. }
  2360. }
  2361. else
  2362. {
  2363. #if defined(ARCH_X86)
  2364. av_log(c, AV_LOG_VERBOSE, "using X86-Asm scaler for horizontal scaling\n");
  2365. #else
  2366. if (flags & SWS_FAST_BILINEAR)
  2367. av_log(c, AV_LOG_VERBOSE, "using FAST_BILINEAR C scaler for horizontal scaling\n");
  2368. else
  2369. av_log(c, AV_LOG_VERBOSE, "using C scaler for horizontal scaling\n");
  2370. #endif
  2371. }
  2372. if (isPlanarYUV(dstFormat))
  2373. {
  2374. if (c->vLumFilterSize==1)
  2375. av_log(c, AV_LOG_VERBOSE, "using 1-tap %s \"scaler\" for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2376. else
  2377. av_log(c, AV_LOG_VERBOSE, "using n-tap %s scaler for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2378. }
  2379. else
  2380. {
  2381. if (c->vLumFilterSize==1 && c->vChrFilterSize==2)
  2382. av_log(c, AV_LOG_VERBOSE, "using 1-tap %s \"scaler\" for vertical luminance scaling (BGR)\n"
  2383. " 2-tap scaler for vertical chrominance scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2384. else if (c->vLumFilterSize==2 && c->vChrFilterSize==2)
  2385. av_log(c, AV_LOG_VERBOSE, "using 2-tap linear %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2386. else
  2387. av_log(c, AV_LOG_VERBOSE, "using n-tap %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2388. }
  2389. if (dstFormat==PIX_FMT_BGR24)
  2390. av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR24 Converter\n",
  2391. (flags & SWS_CPU_CAPS_MMX2) ? "MMX2" : ((flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C"));
  2392. else if (dstFormat==PIX_FMT_RGB32)
  2393. av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR32 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2394. else if (dstFormat==PIX_FMT_BGR565)
  2395. av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR16 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2396. else if (dstFormat==PIX_FMT_BGR555)
  2397. av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR15 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2398. av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
  2399. }
  2400. if (flags & SWS_PRINT_INFO)
  2401. {
  2402. av_log(c, AV_LOG_DEBUG, "Lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  2403. c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
  2404. av_log(c, AV_LOG_DEBUG, "Chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  2405. c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH, c->chrXInc, c->chrYInc);
  2406. }
  2407. c->swScale= getSwsFunc(flags);
  2408. return c;
  2409. }
  2410. /**
  2411. * swscale wrapper, so we don't need to export the SwsContext.
  2412. * assumes planar YUV to be in YUV order instead of YVU
  2413. */
  2414. int sws_scale(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  2415. int srcSliceH, uint8_t* dst[], int dstStride[]){
  2416. int i;
  2417. uint8_t* src2[4]= {src[0], src[1], src[2]};
  2418. if (c->sliceDir == 0 && srcSliceY != 0 && srcSliceY + srcSliceH != c->srcH) {
  2419. av_log(c, AV_LOG_ERROR, "Slices start in the middle!\n");
  2420. return 0;
  2421. }
  2422. if (c->sliceDir == 0) {
  2423. if (srcSliceY == 0) c->sliceDir = 1; else c->sliceDir = -1;
  2424. }
  2425. if (usePal(c->srcFormat)){
  2426. for (i=0; i<256; i++){
  2427. int p, r, g, b,y,u,v;
  2428. if(c->srcFormat == PIX_FMT_PAL8){
  2429. p=((uint32_t*)(src[1]))[i];
  2430. r= (p>>16)&0xFF;
  2431. g= (p>> 8)&0xFF;
  2432. b= p &0xFF;
  2433. }else if(c->srcFormat == PIX_FMT_RGB8){
  2434. r= (i>>5 )*36;
  2435. g= ((i>>2)&7)*36;
  2436. b= (i&3 )*85;
  2437. }else if(c->srcFormat == PIX_FMT_BGR8){
  2438. b= (i>>6 )*85;
  2439. g= ((i>>3)&7)*36;
  2440. r= (i&7 )*36;
  2441. }else if(c->srcFormat == PIX_FMT_RGB4_BYTE){
  2442. r= (i>>3 )*255;
  2443. g= ((i>>1)&3)*85;
  2444. b= (i&1 )*255;
  2445. }else {
  2446. assert(c->srcFormat == PIX_FMT_BGR4_BYTE);
  2447. b= (i>>3 )*255;
  2448. g= ((i>>1)&3)*85;
  2449. r= (i&1 )*255;
  2450. }
  2451. y= av_clip_uint8((RY*r + GY*g + BY*b + ( 33<<(RGB2YUV_SHIFT-1)))>>RGB2YUV_SHIFT);
  2452. u= av_clip_uint8((RU*r + GU*g + BU*b + (257<<(RGB2YUV_SHIFT-1)))>>RGB2YUV_SHIFT);
  2453. v= av_clip_uint8((RV*r + GV*g + BV*b + (257<<(RGB2YUV_SHIFT-1)))>>RGB2YUV_SHIFT);
  2454. c->pal_yuv[i]= y + (u<<8) + (v<<16);
  2455. switch(c->dstFormat) {
  2456. case PIX_FMT_BGR32:
  2457. #ifndef WORDS_BIGENDIAN
  2458. case PIX_FMT_RGB24:
  2459. #endif
  2460. c->pal_rgb[i]= r + (g<<8) + (b<<16);
  2461. break;
  2462. case PIX_FMT_BGR32_1:
  2463. #ifdef WORDS_BIGENDIAN
  2464. case PIX_FMT_BGR24:
  2465. #endif
  2466. c->pal_rgb[i]= (r + (g<<8) + (b<<16)) << 8;
  2467. break;
  2468. case PIX_FMT_RGB32_1:
  2469. #ifdef WORDS_BIGENDIAN
  2470. case PIX_FMT_RGB24:
  2471. #endif
  2472. c->pal_rgb[i]= (b + (g<<8) + (r<<16)) << 8;
  2473. break;
  2474. case PIX_FMT_RGB32:
  2475. #ifndef WORDS_BIGENDIAN
  2476. case PIX_FMT_BGR24:
  2477. #endif
  2478. default:
  2479. c->pal_rgb[i]= b + (g<<8) + (r<<16);
  2480. }
  2481. }
  2482. }
  2483. // copy strides, so they can safely be modified
  2484. if (c->sliceDir == 1) {
  2485. // slices go from top to bottom
  2486. int srcStride2[4]= {srcStride[0], srcStride[1], srcStride[2]};
  2487. int dstStride2[4]= {dstStride[0], dstStride[1], dstStride[2]};
  2488. return c->swScale(c, src2, srcStride2, srcSliceY, srcSliceH, dst, dstStride2);
  2489. } else {
  2490. // slices go from bottom to top => we flip the image internally
  2491. uint8_t* dst2[4]= {dst[0] + (c->dstH-1)*dstStride[0],
  2492. dst[1] + ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[1],
  2493. dst[2] + ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[2]};
  2494. int srcStride2[4]= {-srcStride[0], -srcStride[1], -srcStride[2]};
  2495. int dstStride2[4]= {-dstStride[0], -dstStride[1], -dstStride[2]};
  2496. src2[0] += (srcSliceH-1)*srcStride[0];
  2497. if (!usePal(c->srcFormat))
  2498. src2[1] += ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[1];
  2499. src2[2] += ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[2];
  2500. return c->swScale(c, src2, srcStride2, c->srcH-srcSliceY-srcSliceH, srcSliceH, dst2, dstStride2);
  2501. }
  2502. }
  2503. /**
  2504. * swscale wrapper, so we don't need to export the SwsContext
  2505. */
  2506. int sws_scale_ordered(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  2507. int srcSliceH, uint8_t* dst[], int dstStride[]){
  2508. return sws_scale(c, src, srcStride, srcSliceY, srcSliceH, dst, dstStride);
  2509. }
  2510. SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
  2511. float lumaSharpen, float chromaSharpen,
  2512. float chromaHShift, float chromaVShift,
  2513. int verbose)
  2514. {
  2515. SwsFilter *filter= av_malloc(sizeof(SwsFilter));
  2516. if (lumaGBlur!=0.0){
  2517. filter->lumH= sws_getGaussianVec(lumaGBlur, 3.0);
  2518. filter->lumV= sws_getGaussianVec(lumaGBlur, 3.0);
  2519. }else{
  2520. filter->lumH= sws_getIdentityVec();
  2521. filter->lumV= sws_getIdentityVec();
  2522. }
  2523. if (chromaGBlur!=0.0){
  2524. filter->chrH= sws_getGaussianVec(chromaGBlur, 3.0);
  2525. filter->chrV= sws_getGaussianVec(chromaGBlur, 3.0);
  2526. }else{
  2527. filter->chrH= sws_getIdentityVec();
  2528. filter->chrV= sws_getIdentityVec();
  2529. }
  2530. if (chromaSharpen!=0.0){
  2531. SwsVector *id= sws_getIdentityVec();
  2532. sws_scaleVec(filter->chrH, -chromaSharpen);
  2533. sws_scaleVec(filter->chrV, -chromaSharpen);
  2534. sws_addVec(filter->chrH, id);
  2535. sws_addVec(filter->chrV, id);
  2536. sws_freeVec(id);
  2537. }
  2538. if (lumaSharpen!=0.0){
  2539. SwsVector *id= sws_getIdentityVec();
  2540. sws_scaleVec(filter->lumH, -lumaSharpen);
  2541. sws_scaleVec(filter->lumV, -lumaSharpen);
  2542. sws_addVec(filter->lumH, id);
  2543. sws_addVec(filter->lumV, id);
  2544. sws_freeVec(id);
  2545. }
  2546. if (chromaHShift != 0.0)
  2547. sws_shiftVec(filter->chrH, (int)(chromaHShift+0.5));
  2548. if (chromaVShift != 0.0)
  2549. sws_shiftVec(filter->chrV, (int)(chromaVShift+0.5));
  2550. sws_normalizeVec(filter->chrH, 1.0);
  2551. sws_normalizeVec(filter->chrV, 1.0);
  2552. sws_normalizeVec(filter->lumH, 1.0);
  2553. sws_normalizeVec(filter->lumV, 1.0);
  2554. if (verbose) sws_printVec(filter->chrH);
  2555. if (verbose) sws_printVec(filter->lumH);
  2556. return filter;
  2557. }
  2558. /**
  2559. * returns a normalized gaussian curve used to filter stuff
  2560. * quality=3 is high quality, lowwer is lowwer quality
  2561. */
  2562. SwsVector *sws_getGaussianVec(double variance, double quality){
  2563. const int length= (int)(variance*quality + 0.5) | 1;
  2564. int i;
  2565. double *coeff= av_malloc(length*sizeof(double));
  2566. double middle= (length-1)*0.5;
  2567. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2568. vec->coeff= coeff;
  2569. vec->length= length;
  2570. for (i=0; i<length; i++)
  2571. {
  2572. double dist= i-middle;
  2573. coeff[i]= exp(-dist*dist/(2*variance*variance)) / sqrt(2*variance*PI);
  2574. }
  2575. sws_normalizeVec(vec, 1.0);
  2576. return vec;
  2577. }
  2578. SwsVector *sws_getConstVec(double c, int length){
  2579. int i;
  2580. double *coeff= av_malloc(length*sizeof(double));
  2581. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2582. vec->coeff= coeff;
  2583. vec->length= length;
  2584. for (i=0; i<length; i++)
  2585. coeff[i]= c;
  2586. return vec;
  2587. }
  2588. SwsVector *sws_getIdentityVec(void){
  2589. return sws_getConstVec(1.0, 1);
  2590. }
  2591. double sws_dcVec(SwsVector *a){
  2592. int i;
  2593. double sum=0;
  2594. for (i=0; i<a->length; i++)
  2595. sum+= a->coeff[i];
  2596. return sum;
  2597. }
  2598. void sws_scaleVec(SwsVector *a, double scalar){
  2599. int i;
  2600. for (i=0; i<a->length; i++)
  2601. a->coeff[i]*= scalar;
  2602. }
  2603. void sws_normalizeVec(SwsVector *a, double height){
  2604. sws_scaleVec(a, height/sws_dcVec(a));
  2605. }
  2606. static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b){
  2607. int length= a->length + b->length - 1;
  2608. double *coeff= av_malloc(length*sizeof(double));
  2609. int i, j;
  2610. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2611. vec->coeff= coeff;
  2612. vec->length= length;
  2613. for (i=0; i<length; i++) coeff[i]= 0.0;
  2614. for (i=0; i<a->length; i++)
  2615. {
  2616. for (j=0; j<b->length; j++)
  2617. {
  2618. coeff[i+j]+= a->coeff[i]*b->coeff[j];
  2619. }
  2620. }
  2621. return vec;
  2622. }
  2623. static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b){
  2624. int length= FFMAX(a->length, b->length);
  2625. double *coeff= av_malloc(length*sizeof(double));
  2626. int i;
  2627. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2628. vec->coeff= coeff;
  2629. vec->length= length;
  2630. for (i=0; i<length; i++) coeff[i]= 0.0;
  2631. for (i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
  2632. for (i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]+= b->coeff[i];
  2633. return vec;
  2634. }
  2635. static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b){
  2636. int length= FFMAX(a->length, b->length);
  2637. double *coeff= av_malloc(length*sizeof(double));
  2638. int i;
  2639. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2640. vec->coeff= coeff;
  2641. vec->length= length;
  2642. for (i=0; i<length; i++) coeff[i]= 0.0;
  2643. for (i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
  2644. for (i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]-= b->coeff[i];
  2645. return vec;
  2646. }
  2647. /* shift left / or right if "shift" is negative */
  2648. static SwsVector *sws_getShiftedVec(SwsVector *a, int shift){
  2649. int length= a->length + FFABS(shift)*2;
  2650. double *coeff= av_malloc(length*sizeof(double));
  2651. int i;
  2652. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2653. vec->coeff= coeff;
  2654. vec->length= length;
  2655. for (i=0; i<length; i++) coeff[i]= 0.0;
  2656. for (i=0; i<a->length; i++)
  2657. {
  2658. coeff[i + (length-1)/2 - (a->length-1)/2 - shift]= a->coeff[i];
  2659. }
  2660. return vec;
  2661. }
  2662. void sws_shiftVec(SwsVector *a, int shift){
  2663. SwsVector *shifted= sws_getShiftedVec(a, shift);
  2664. av_free(a->coeff);
  2665. a->coeff= shifted->coeff;
  2666. a->length= shifted->length;
  2667. av_free(shifted);
  2668. }
  2669. void sws_addVec(SwsVector *a, SwsVector *b){
  2670. SwsVector *sum= sws_sumVec(a, b);
  2671. av_free(a->coeff);
  2672. a->coeff= sum->coeff;
  2673. a->length= sum->length;
  2674. av_free(sum);
  2675. }
  2676. void sws_subVec(SwsVector *a, SwsVector *b){
  2677. SwsVector *diff= sws_diffVec(a, b);
  2678. av_free(a->coeff);
  2679. a->coeff= diff->coeff;
  2680. a->length= diff->length;
  2681. av_free(diff);
  2682. }
  2683. void sws_convVec(SwsVector *a, SwsVector *b){
  2684. SwsVector *conv= sws_getConvVec(a, b);
  2685. av_free(a->coeff);
  2686. a->coeff= conv->coeff;
  2687. a->length= conv->length;
  2688. av_free(conv);
  2689. }
  2690. SwsVector *sws_cloneVec(SwsVector *a){
  2691. double *coeff= av_malloc(a->length*sizeof(double));
  2692. int i;
  2693. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2694. vec->coeff= coeff;
  2695. vec->length= a->length;
  2696. for (i=0; i<a->length; i++) coeff[i]= a->coeff[i];
  2697. return vec;
  2698. }
  2699. void sws_printVec(SwsVector *a){
  2700. int i;
  2701. double max=0;
  2702. double min=0;
  2703. double range;
  2704. for (i=0; i<a->length; i++)
  2705. if (a->coeff[i]>max) max= a->coeff[i];
  2706. for (i=0; i<a->length; i++)
  2707. if (a->coeff[i]<min) min= a->coeff[i];
  2708. range= max - min;
  2709. for (i=0; i<a->length; i++)
  2710. {
  2711. int x= (int)((a->coeff[i]-min)*60.0/range +0.5);
  2712. av_log(NULL, AV_LOG_DEBUG, "%1.3f ", a->coeff[i]);
  2713. for (;x>0; x--) av_log(NULL, AV_LOG_DEBUG, " ");
  2714. av_log(NULL, AV_LOG_DEBUG, "|\n");
  2715. }
  2716. }
  2717. void sws_freeVec(SwsVector *a){
  2718. if (!a) return;
  2719. av_freep(&a->coeff);
  2720. a->length=0;
  2721. av_free(a);
  2722. }
  2723. void sws_freeFilter(SwsFilter *filter){
  2724. if (!filter) return;
  2725. if (filter->lumH) sws_freeVec(filter->lumH);
  2726. if (filter->lumV) sws_freeVec(filter->lumV);
  2727. if (filter->chrH) sws_freeVec(filter->chrH);
  2728. if (filter->chrV) sws_freeVec(filter->chrV);
  2729. av_free(filter);
  2730. }
  2731. void sws_freeContext(SwsContext *c){
  2732. int i;
  2733. if (!c) return;
  2734. if (c->lumPixBuf)
  2735. {
  2736. for (i=0; i<c->vLumBufSize; i++)
  2737. av_freep(&c->lumPixBuf[i]);
  2738. av_freep(&c->lumPixBuf);
  2739. }
  2740. if (c->chrPixBuf)
  2741. {
  2742. for (i=0; i<c->vChrBufSize; i++)
  2743. av_freep(&c->chrPixBuf[i]);
  2744. av_freep(&c->chrPixBuf);
  2745. }
  2746. av_freep(&c->vLumFilter);
  2747. av_freep(&c->vChrFilter);
  2748. av_freep(&c->hLumFilter);
  2749. av_freep(&c->hChrFilter);
  2750. #ifdef HAVE_ALTIVEC
  2751. av_freep(&c->vYCoeffsBank);
  2752. av_freep(&c->vCCoeffsBank);
  2753. #endif
  2754. av_freep(&c->vLumFilterPos);
  2755. av_freep(&c->vChrFilterPos);
  2756. av_freep(&c->hLumFilterPos);
  2757. av_freep(&c->hChrFilterPos);
  2758. #if defined(ARCH_X86) && defined(CONFIG_GPL)
  2759. #ifdef MAP_ANONYMOUS
  2760. if (c->funnyYCode) munmap(c->funnyYCode, MAX_FUNNY_CODE_SIZE);
  2761. if (c->funnyUVCode) munmap(c->funnyUVCode, MAX_FUNNY_CODE_SIZE);
  2762. #else
  2763. av_free(c->funnyYCode);
  2764. av_free(c->funnyUVCode);
  2765. #endif
  2766. c->funnyYCode=NULL;
  2767. c->funnyUVCode=NULL;
  2768. #endif /* defined(ARCH_X86) */
  2769. av_freep(&c->lumMmx2Filter);
  2770. av_freep(&c->chrMmx2Filter);
  2771. av_freep(&c->lumMmx2FilterPos);
  2772. av_freep(&c->chrMmx2FilterPos);
  2773. av_freep(&c->yuvTable);
  2774. av_free(c);
  2775. }
  2776. /**
  2777. * Checks if context is valid or reallocs a new one instead.
  2778. * If context is NULL, just calls sws_getContext() to get a new one.
  2779. * Otherwise, checks if the parameters are the same already saved in context.
  2780. * If that is the case, returns the current context.
  2781. * Otherwise, frees context and gets a new one.
  2782. *
  2783. * Be warned that srcFilter, dstFilter are not checked, they are
  2784. * asumed to remain valid.
  2785. */
  2786. struct SwsContext *sws_getCachedContext(struct SwsContext *context,
  2787. int srcW, int srcH, enum PixelFormat srcFormat,
  2788. int dstW, int dstH, enum PixelFormat dstFormat, int flags,
  2789. SwsFilter *srcFilter, SwsFilter *dstFilter, double *param)
  2790. {
  2791. static const double default_param[2] = {SWS_PARAM_DEFAULT, SWS_PARAM_DEFAULT};
  2792. if (!param)
  2793. param = default_param;
  2794. if (context) {
  2795. if (context->srcW != srcW || context->srcH != srcH ||
  2796. context->srcFormat != srcFormat ||
  2797. context->dstW != dstW || context->dstH != dstH ||
  2798. context->dstFormat != dstFormat || context->flags != flags ||
  2799. context->param[0] != param[0] || context->param[1] != param[1])
  2800. {
  2801. sws_freeContext(context);
  2802. context = NULL;
  2803. }
  2804. }
  2805. if (!context) {
  2806. return sws_getContext(srcW, srcH, srcFormat,
  2807. dstW, dstH, dstFormat, flags,
  2808. srcFilter, dstFilter, param);
  2809. }
  2810. return context;
  2811. }