You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3113 lines
104KB

  1. /*
  2. * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. *
  20. * the C code (not assembly, mmx, ...) of this file can be used
  21. * under the LGPL license too
  22. */
  23. /*
  24. supported Input formats: YV12, I420/IYUV, YUY2, UYVY, BGR32, BGR32_1, BGR24, BGR16, BGR15, RGB32, RGB32_1, RGB24, Y8/Y800, YVU9/IF09, PAL8
  25. supported output formats: YV12, I420/IYUV, YUY2, UYVY, {BGR,RGB}{1,4,8,15,16,24,32}, Y8/Y800, YVU9/IF09
  26. {BGR,RGB}{1,4,8,15,16} support dithering
  27. unscaled special converters (YV12=I420=IYUV, Y800=Y8)
  28. YV12 -> {BGR,RGB}{1,4,8,15,16,24,32}
  29. x -> x
  30. YUV9 -> YV12
  31. YUV9/YV12 -> Y800
  32. Y800 -> YUV9/YV12
  33. BGR24 -> BGR32 & RGB24 -> RGB32
  34. BGR32 -> BGR24 & RGB32 -> RGB24
  35. BGR15 -> BGR16
  36. */
  37. /*
  38. tested special converters (most are tested actually, but I did not write it down ...)
  39. YV12 -> BGR16
  40. YV12 -> YV12
  41. BGR15 -> BGR16
  42. BGR16 -> BGR16
  43. YVU9 -> YV12
  44. untested special converters
  45. YV12/I420 -> BGR15/BGR24/BGR32 (it is the yuv2rgb stuff, so it should be ok)
  46. YV12/I420 -> YV12/I420
  47. YUY2/BGR15/BGR24/BGR32/RGB24/RGB32 -> same format
  48. BGR24 -> BGR32 & RGB24 -> RGB32
  49. BGR32 -> BGR24 & RGB32 -> RGB24
  50. BGR24 -> YV12
  51. */
  52. #define _SVID_SOURCE //needed for MAP_ANONYMOUS
  53. #include <inttypes.h>
  54. #include <string.h>
  55. #include <math.h>
  56. #include <stdio.h>
  57. #include <unistd.h>
  58. #include "config.h"
  59. #include <assert.h>
  60. #ifdef HAVE_SYS_MMAN_H
  61. #include <sys/mman.h>
  62. #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
  63. #define MAP_ANONYMOUS MAP_ANON
  64. #endif
  65. #endif
  66. #include "swscale.h"
  67. #include "swscale_internal.h"
  68. #include "rgb2rgb.h"
  69. #include "libavutil/x86_cpu.h"
  70. #include "libavutil/bswap.h"
  71. unsigned swscale_version(void)
  72. {
  73. return LIBSWSCALE_VERSION_INT;
  74. }
  75. #undef MOVNTQ
  76. #undef PAVGB
  77. //#undef HAVE_MMX2
  78. //#define HAVE_3DNOW
  79. //#undef HAVE_MMX
  80. //#undef ARCH_X86
  81. //#define WORDS_BIGENDIAN
  82. #define DITHER1XBPP
  83. #define FAST_BGR2YV12 // use 7 bit coeffs instead of 15bit
  84. #define RET 0xC3 //near return opcode for X86
  85. #ifdef M_PI
  86. #define PI M_PI
  87. #else
  88. #define PI 3.14159265358979323846
  89. #endif
  90. #define isSupportedIn(x) ( \
  91. (x)==PIX_FMT_YUV420P \
  92. || (x)==PIX_FMT_YUVA420P \
  93. || (x)==PIX_FMT_YUYV422 \
  94. || (x)==PIX_FMT_UYVY422 \
  95. || (x)==PIX_FMT_RGB32 \
  96. || (x)==PIX_FMT_RGB32_1 \
  97. || (x)==PIX_FMT_BGR24 \
  98. || (x)==PIX_FMT_BGR565 \
  99. || (x)==PIX_FMT_BGR555 \
  100. || (x)==PIX_FMT_BGR32 \
  101. || (x)==PIX_FMT_BGR32_1 \
  102. || (x)==PIX_FMT_RGB24 \
  103. || (x)==PIX_FMT_RGB565 \
  104. || (x)==PIX_FMT_RGB555 \
  105. || (x)==PIX_FMT_GRAY8 \
  106. || (x)==PIX_FMT_YUV410P \
  107. || (x)==PIX_FMT_YUV440P \
  108. || (x)==PIX_FMT_GRAY16BE \
  109. || (x)==PIX_FMT_GRAY16LE \
  110. || (x)==PIX_FMT_YUV444P \
  111. || (x)==PIX_FMT_YUV422P \
  112. || (x)==PIX_FMT_YUV411P \
  113. || (x)==PIX_FMT_PAL8 \
  114. || (x)==PIX_FMT_BGR8 \
  115. || (x)==PIX_FMT_RGB8 \
  116. || (x)==PIX_FMT_BGR4_BYTE \
  117. || (x)==PIX_FMT_RGB4_BYTE \
  118. || (x)==PIX_FMT_YUV440P \
  119. || (x)==PIX_FMT_MONOWHITE \
  120. || (x)==PIX_FMT_MONOBLACK \
  121. )
  122. #define isSupportedOut(x) ( \
  123. (x)==PIX_FMT_YUV420P \
  124. || (x)==PIX_FMT_YUYV422 \
  125. || (x)==PIX_FMT_UYVY422 \
  126. || (x)==PIX_FMT_YUV444P \
  127. || (x)==PIX_FMT_YUV422P \
  128. || (x)==PIX_FMT_YUV411P \
  129. || isRGB(x) \
  130. || isBGR(x) \
  131. || (x)==PIX_FMT_NV12 \
  132. || (x)==PIX_FMT_NV21 \
  133. || (x)==PIX_FMT_GRAY16BE \
  134. || (x)==PIX_FMT_GRAY16LE \
  135. || (x)==PIX_FMT_GRAY8 \
  136. || (x)==PIX_FMT_YUV410P \
  137. || (x)==PIX_FMT_YUV440P \
  138. )
  139. #define isPacked(x) ( \
  140. (x)==PIX_FMT_PAL8 \
  141. || (x)==PIX_FMT_YUYV422 \
  142. || (x)==PIX_FMT_UYVY422 \
  143. || isRGB(x) \
  144. || isBGR(x) \
  145. )
  146. #define RGB2YUV_SHIFT 15
  147. #define BY ( (int)(0.114*219/255*(1<<RGB2YUV_SHIFT)+0.5))
  148. #define BV (-(int)(0.081*224/255*(1<<RGB2YUV_SHIFT)+0.5))
  149. #define BU ( (int)(0.500*224/255*(1<<RGB2YUV_SHIFT)+0.5))
  150. #define GY ( (int)(0.587*219/255*(1<<RGB2YUV_SHIFT)+0.5))
  151. #define GV (-(int)(0.419*224/255*(1<<RGB2YUV_SHIFT)+0.5))
  152. #define GU (-(int)(0.331*224/255*(1<<RGB2YUV_SHIFT)+0.5))
  153. #define RY ( (int)(0.299*219/255*(1<<RGB2YUV_SHIFT)+0.5))
  154. #define RV ( (int)(0.500*224/255*(1<<RGB2YUV_SHIFT)+0.5))
  155. #define RU (-(int)(0.169*224/255*(1<<RGB2YUV_SHIFT)+0.5))
  156. extern const int32_t Inverse_Table_6_9[8][4];
  157. static const double rgb2yuv_table[8][9]={
  158. {0.7152, 0.0722, 0.2126, -0.386, 0.5, -0.115, -0.454, -0.046, 0.5},
  159. {0.7152, 0.0722, 0.2126, -0.386, 0.5, -0.115, -0.454, -0.046, 0.5},
  160. {0.587 , 0.114 , 0.299 , -0.331, 0.5, -0.169, -0.419, -0.081, 0.5},
  161. {0.587 , 0.114 , 0.299 , -0.331, 0.5, -0.169, -0.419, -0.081, 0.5},
  162. {0.59 , 0.11 , 0.30 , -0.331, 0.5, -0.169, -0.421, -0.079, 0.5}, //FCC
  163. {0.587 , 0.114 , 0.299 , -0.331, 0.5, -0.169, -0.419, -0.081, 0.5},
  164. {0.587 , 0.114 , 0.299 , -0.331, 0.5, -0.169, -0.419, -0.081, 0.5}, //SMPTE 170M
  165. {0.701 , 0.087 , 0.212 , -0.384, 0.5 -0.116, -0.445, -0.055, 0.5}, //SMPTE 240M
  166. };
  167. /*
  168. NOTES
  169. Special versions: fast Y 1:1 scaling (no interpolation in y direction)
  170. TODO
  171. more intelligent misalignment avoidance for the horizontal scaler
  172. write special vertical cubic upscale version
  173. Optimize C code (yv12 / minmax)
  174. add support for packed pixel yuv input & output
  175. add support for Y8 output
  176. optimize bgr24 & bgr32
  177. add BGR4 output support
  178. write special BGR->BGR scaler
  179. */
  180. #if defined(ARCH_X86) && defined (CONFIG_GPL)
  181. DECLARE_ASM_CONST(8, uint64_t, bF8)= 0xF8F8F8F8F8F8F8F8LL;
  182. DECLARE_ASM_CONST(8, uint64_t, bFC)= 0xFCFCFCFCFCFCFCFCLL;
  183. DECLARE_ASM_CONST(8, uint64_t, w10)= 0x0010001000100010LL;
  184. DECLARE_ASM_CONST(8, uint64_t, w02)= 0x0002000200020002LL;
  185. DECLARE_ASM_CONST(8, uint64_t, bm00001111)=0x00000000FFFFFFFFLL;
  186. DECLARE_ASM_CONST(8, uint64_t, bm00000111)=0x0000000000FFFFFFLL;
  187. DECLARE_ASM_CONST(8, uint64_t, bm11111000)=0xFFFFFFFFFF000000LL;
  188. DECLARE_ASM_CONST(8, uint64_t, bm01010101)=0x00FF00FF00FF00FFLL;
  189. const DECLARE_ALIGNED(8, uint64_t, ff_dither4[2]) = {
  190. 0x0103010301030103LL,
  191. 0x0200020002000200LL,};
  192. const DECLARE_ALIGNED(8, uint64_t, ff_dither8[2]) = {
  193. 0x0602060206020602LL,
  194. 0x0004000400040004LL,};
  195. DECLARE_ASM_CONST(8, uint64_t, b16Mask)= 0x001F001F001F001FLL;
  196. DECLARE_ASM_CONST(8, uint64_t, g16Mask)= 0x07E007E007E007E0LL;
  197. DECLARE_ASM_CONST(8, uint64_t, r16Mask)= 0xF800F800F800F800LL;
  198. DECLARE_ASM_CONST(8, uint64_t, b15Mask)= 0x001F001F001F001FLL;
  199. DECLARE_ASM_CONST(8, uint64_t, g15Mask)= 0x03E003E003E003E0LL;
  200. DECLARE_ASM_CONST(8, uint64_t, r15Mask)= 0x7C007C007C007C00LL;
  201. DECLARE_ALIGNED(8, const uint64_t, ff_M24A) = 0x00FF0000FF0000FFLL;
  202. DECLARE_ALIGNED(8, const uint64_t, ff_M24B) = 0xFF0000FF0000FF00LL;
  203. DECLARE_ALIGNED(8, const uint64_t, ff_M24C) = 0x0000FF0000FF0000LL;
  204. #ifdef FAST_BGR2YV12
  205. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2YCoeff) = 0x000000210041000DULL;
  206. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2UCoeff) = 0x0000FFEEFFDC0038ULL;
  207. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2VCoeff) = 0x00000038FFD2FFF8ULL;
  208. #else
  209. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2YCoeff) = 0x000020E540830C8BULL;
  210. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2UCoeff) = 0x0000ED0FDAC23831ULL;
  211. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2VCoeff) = 0x00003831D0E6F6EAULL;
  212. #endif /* FAST_BGR2YV12 */
  213. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2YOffset) = 0x1010101010101010ULL;
  214. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2UVOffset) = 0x8080808080808080ULL;
  215. DECLARE_ALIGNED(8, const uint64_t, ff_w1111) = 0x0001000100010001ULL;
  216. DECLARE_ALIGNED(8, const uint64_t, ff_bgr24toY1Coeff) = 0x0C88000040870C88ULL;
  217. DECLARE_ALIGNED(8, const uint64_t, ff_bgr24toY2Coeff) = 0x20DE4087000020DEULL;
  218. DECLARE_ALIGNED(8, const uint64_t, ff_rgb24toY1Coeff) = 0x20DE0000408720DEULL;
  219. DECLARE_ALIGNED(8, const uint64_t, ff_rgb24toY2Coeff) = 0x0C88408700000C88ULL;
  220. DECLARE_ALIGNED(8, const uint64_t, ff_bgr24toYOffset) = 0x0008400000084000ULL;
  221. DECLARE_ALIGNED(8, const uint64_t, ff_bgr24toUV[2][4]) = {
  222. {0x38380000DAC83838ULL, 0xECFFDAC80000ECFFULL, 0xF6E40000D0E3F6E4ULL, 0x3838D0E300003838ULL},
  223. {0xECFF0000DAC8ECFFULL, 0x3838DAC800003838ULL, 0x38380000D0E33838ULL, 0xF6E4D0E30000F6E4ULL},
  224. };
  225. DECLARE_ALIGNED(8, const uint64_t, ff_bgr24toUVOffset)= 0x0040400000404000ULL;
  226. #endif /* defined(ARCH_X86) */
  227. // clipping helper table for C implementations:
  228. static unsigned char clip_table[768];
  229. static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b);
  230. const uint8_t __attribute__((aligned(8))) dither_2x2_4[2][8]={
  231. { 1, 3, 1, 3, 1, 3, 1, 3, },
  232. { 2, 0, 2, 0, 2, 0, 2, 0, },
  233. };
  234. const uint8_t __attribute__((aligned(8))) dither_2x2_8[2][8]={
  235. { 6, 2, 6, 2, 6, 2, 6, 2, },
  236. { 0, 4, 0, 4, 0, 4, 0, 4, },
  237. };
  238. const uint8_t __attribute__((aligned(8))) dither_8x8_32[8][8]={
  239. { 17, 9, 23, 15, 16, 8, 22, 14, },
  240. { 5, 29, 3, 27, 4, 28, 2, 26, },
  241. { 21, 13, 19, 11, 20, 12, 18, 10, },
  242. { 0, 24, 6, 30, 1, 25, 7, 31, },
  243. { 16, 8, 22, 14, 17, 9, 23, 15, },
  244. { 4, 28, 2, 26, 5, 29, 3, 27, },
  245. { 20, 12, 18, 10, 21, 13, 19, 11, },
  246. { 1, 25, 7, 31, 0, 24, 6, 30, },
  247. };
  248. #if 0
  249. const uint8_t __attribute__((aligned(8))) dither_8x8_64[8][8]={
  250. { 0, 48, 12, 60, 3, 51, 15, 63, },
  251. { 32, 16, 44, 28, 35, 19, 47, 31, },
  252. { 8, 56, 4, 52, 11, 59, 7, 55, },
  253. { 40, 24, 36, 20, 43, 27, 39, 23, },
  254. { 2, 50, 14, 62, 1, 49, 13, 61, },
  255. { 34, 18, 46, 30, 33, 17, 45, 29, },
  256. { 10, 58, 6, 54, 9, 57, 5, 53, },
  257. { 42, 26, 38, 22, 41, 25, 37, 21, },
  258. };
  259. #endif
  260. const uint8_t __attribute__((aligned(8))) dither_8x8_73[8][8]={
  261. { 0, 55, 14, 68, 3, 58, 17, 72, },
  262. { 37, 18, 50, 32, 40, 22, 54, 35, },
  263. { 9, 64, 5, 59, 13, 67, 8, 63, },
  264. { 46, 27, 41, 23, 49, 31, 44, 26, },
  265. { 2, 57, 16, 71, 1, 56, 15, 70, },
  266. { 39, 21, 52, 34, 38, 19, 51, 33, },
  267. { 11, 66, 7, 62, 10, 65, 6, 60, },
  268. { 48, 30, 43, 25, 47, 29, 42, 24, },
  269. };
  270. #if 0
  271. const uint8_t __attribute__((aligned(8))) dither_8x8_128[8][8]={
  272. { 68, 36, 92, 60, 66, 34, 90, 58, },
  273. { 20, 116, 12, 108, 18, 114, 10, 106, },
  274. { 84, 52, 76, 44, 82, 50, 74, 42, },
  275. { 0, 96, 24, 120, 6, 102, 30, 126, },
  276. { 64, 32, 88, 56, 70, 38, 94, 62, },
  277. { 16, 112, 8, 104, 22, 118, 14, 110, },
  278. { 80, 48, 72, 40, 86, 54, 78, 46, },
  279. { 4, 100, 28, 124, 2, 98, 26, 122, },
  280. };
  281. #endif
  282. #if 1
  283. const uint8_t __attribute__((aligned(8))) dither_8x8_220[8][8]={
  284. {117, 62, 158, 103, 113, 58, 155, 100, },
  285. { 34, 199, 21, 186, 31, 196, 17, 182, },
  286. {144, 89, 131, 76, 141, 86, 127, 72, },
  287. { 0, 165, 41, 206, 10, 175, 52, 217, },
  288. {110, 55, 151, 96, 120, 65, 162, 107, },
  289. { 28, 193, 14, 179, 38, 203, 24, 189, },
  290. {138, 83, 124, 69, 148, 93, 134, 79, },
  291. { 7, 172, 48, 213, 3, 168, 45, 210, },
  292. };
  293. #elif 1
  294. // tries to correct a gamma of 1.5
  295. const uint8_t __attribute__((aligned(8))) dither_8x8_220[8][8]={
  296. { 0, 143, 18, 200, 2, 156, 25, 215, },
  297. { 78, 28, 125, 64, 89, 36, 138, 74, },
  298. { 10, 180, 3, 161, 16, 195, 8, 175, },
  299. {109, 51, 93, 38, 121, 60, 105, 47, },
  300. { 1, 152, 23, 210, 0, 147, 20, 205, },
  301. { 85, 33, 134, 71, 81, 30, 130, 67, },
  302. { 14, 190, 6, 171, 12, 185, 5, 166, },
  303. {117, 57, 101, 44, 113, 54, 97, 41, },
  304. };
  305. #elif 1
  306. // tries to correct a gamma of 2.0
  307. const uint8_t __attribute__((aligned(8))) dither_8x8_220[8][8]={
  308. { 0, 124, 8, 193, 0, 140, 12, 213, },
  309. { 55, 14, 104, 42, 66, 19, 119, 52, },
  310. { 3, 168, 1, 145, 6, 187, 3, 162, },
  311. { 86, 31, 70, 21, 99, 39, 82, 28, },
  312. { 0, 134, 11, 206, 0, 129, 9, 200, },
  313. { 62, 17, 114, 48, 58, 16, 109, 45, },
  314. { 5, 181, 2, 157, 4, 175, 1, 151, },
  315. { 95, 36, 78, 26, 90, 34, 74, 24, },
  316. };
  317. #else
  318. // tries to correct a gamma of 2.5
  319. const uint8_t __attribute__((aligned(8))) dither_8x8_220[8][8]={
  320. { 0, 107, 3, 187, 0, 125, 6, 212, },
  321. { 39, 7, 86, 28, 49, 11, 102, 36, },
  322. { 1, 158, 0, 131, 3, 180, 1, 151, },
  323. { 68, 19, 52, 12, 81, 25, 64, 17, },
  324. { 0, 119, 5, 203, 0, 113, 4, 195, },
  325. { 45, 9, 96, 33, 42, 8, 91, 30, },
  326. { 2, 172, 1, 144, 2, 165, 0, 137, },
  327. { 77, 23, 60, 15, 72, 21, 56, 14, },
  328. };
  329. #endif
  330. const char *sws_format_name(enum PixelFormat format)
  331. {
  332. switch (format) {
  333. case PIX_FMT_YUV420P:
  334. return "yuv420p";
  335. case PIX_FMT_YUVA420P:
  336. return "yuva420p";
  337. case PIX_FMT_YUYV422:
  338. return "yuyv422";
  339. case PIX_FMT_RGB24:
  340. return "rgb24";
  341. case PIX_FMT_BGR24:
  342. return "bgr24";
  343. case PIX_FMT_YUV422P:
  344. return "yuv422p";
  345. case PIX_FMT_YUV444P:
  346. return "yuv444p";
  347. case PIX_FMT_RGB32:
  348. return "rgb32";
  349. case PIX_FMT_YUV410P:
  350. return "yuv410p";
  351. case PIX_FMT_YUV411P:
  352. return "yuv411p";
  353. case PIX_FMT_RGB565:
  354. return "rgb565";
  355. case PIX_FMT_RGB555:
  356. return "rgb555";
  357. case PIX_FMT_GRAY16BE:
  358. return "gray16be";
  359. case PIX_FMT_GRAY16LE:
  360. return "gray16le";
  361. case PIX_FMT_GRAY8:
  362. return "gray8";
  363. case PIX_FMT_MONOWHITE:
  364. return "mono white";
  365. case PIX_FMT_MONOBLACK:
  366. return "mono black";
  367. case PIX_FMT_PAL8:
  368. return "Palette";
  369. case PIX_FMT_YUVJ420P:
  370. return "yuvj420p";
  371. case PIX_FMT_YUVJ422P:
  372. return "yuvj422p";
  373. case PIX_FMT_YUVJ444P:
  374. return "yuvj444p";
  375. case PIX_FMT_XVMC_MPEG2_MC:
  376. return "xvmc_mpeg2_mc";
  377. case PIX_FMT_XVMC_MPEG2_IDCT:
  378. return "xvmc_mpeg2_idct";
  379. case PIX_FMT_UYVY422:
  380. return "uyvy422";
  381. case PIX_FMT_UYYVYY411:
  382. return "uyyvyy411";
  383. case PIX_FMT_RGB32_1:
  384. return "rgb32x";
  385. case PIX_FMT_BGR32_1:
  386. return "bgr32x";
  387. case PIX_FMT_BGR32:
  388. return "bgr32";
  389. case PIX_FMT_BGR565:
  390. return "bgr565";
  391. case PIX_FMT_BGR555:
  392. return "bgr555";
  393. case PIX_FMT_BGR8:
  394. return "bgr8";
  395. case PIX_FMT_BGR4:
  396. return "bgr4";
  397. case PIX_FMT_BGR4_BYTE:
  398. return "bgr4 byte";
  399. case PIX_FMT_RGB8:
  400. return "rgb8";
  401. case PIX_FMT_RGB4:
  402. return "rgb4";
  403. case PIX_FMT_RGB4_BYTE:
  404. return "rgb4 byte";
  405. case PIX_FMT_NV12:
  406. return "nv12";
  407. case PIX_FMT_NV21:
  408. return "nv21";
  409. case PIX_FMT_YUV440P:
  410. return "yuv440p";
  411. default:
  412. return "Unknown format";
  413. }
  414. }
  415. static inline void yuv2yuvXinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
  416. int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
  417. uint8_t *dest, uint8_t *uDest, uint8_t *vDest, int dstW, int chrDstW)
  418. {
  419. //FIXME Optimize (just quickly writen not opti..)
  420. int i;
  421. for (i=0; i<dstW; i++)
  422. {
  423. int val=1<<18;
  424. int j;
  425. for (j=0; j<lumFilterSize; j++)
  426. val += lumSrc[j][i] * lumFilter[j];
  427. dest[i]= av_clip_uint8(val>>19);
  428. }
  429. if (uDest)
  430. for (i=0; i<chrDstW; i++)
  431. {
  432. int u=1<<18;
  433. int v=1<<18;
  434. int j;
  435. for (j=0; j<chrFilterSize; j++)
  436. {
  437. u += chrSrc[j][i] * chrFilter[j];
  438. v += chrSrc[j][i + VOFW] * chrFilter[j];
  439. }
  440. uDest[i]= av_clip_uint8(u>>19);
  441. vDest[i]= av_clip_uint8(v>>19);
  442. }
  443. }
  444. static inline void yuv2nv12XinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
  445. int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
  446. uint8_t *dest, uint8_t *uDest, int dstW, int chrDstW, int dstFormat)
  447. {
  448. //FIXME Optimize (just quickly writen not opti..)
  449. int i;
  450. for (i=0; i<dstW; i++)
  451. {
  452. int val=1<<18;
  453. int j;
  454. for (j=0; j<lumFilterSize; j++)
  455. val += lumSrc[j][i] * lumFilter[j];
  456. dest[i]= av_clip_uint8(val>>19);
  457. }
  458. if (!uDest)
  459. return;
  460. if (dstFormat == PIX_FMT_NV12)
  461. for (i=0; i<chrDstW; i++)
  462. {
  463. int u=1<<18;
  464. int v=1<<18;
  465. int j;
  466. for (j=0; j<chrFilterSize; j++)
  467. {
  468. u += chrSrc[j][i] * chrFilter[j];
  469. v += chrSrc[j][i + VOFW] * chrFilter[j];
  470. }
  471. uDest[2*i]= av_clip_uint8(u>>19);
  472. uDest[2*i+1]= av_clip_uint8(v>>19);
  473. }
  474. else
  475. for (i=0; i<chrDstW; i++)
  476. {
  477. int u=1<<18;
  478. int v=1<<18;
  479. int j;
  480. for (j=0; j<chrFilterSize; j++)
  481. {
  482. u += chrSrc[j][i] * chrFilter[j];
  483. v += chrSrc[j][i + VOFW] * chrFilter[j];
  484. }
  485. uDest[2*i]= av_clip_uint8(v>>19);
  486. uDest[2*i+1]= av_clip_uint8(u>>19);
  487. }
  488. }
  489. #define YSCALE_YUV_2_PACKEDX_NOCLIP_C(type) \
  490. for (i=0; i<(dstW>>1); i++){\
  491. int j;\
  492. int Y1 = 1<<18;\
  493. int Y2 = 1<<18;\
  494. int U = 1<<18;\
  495. int V = 1<<18;\
  496. type av_unused *r, *b, *g;\
  497. const int i2= 2*i;\
  498. \
  499. for (j=0; j<lumFilterSize; j++)\
  500. {\
  501. Y1 += lumSrc[j][i2] * lumFilter[j];\
  502. Y2 += lumSrc[j][i2+1] * lumFilter[j];\
  503. }\
  504. for (j=0; j<chrFilterSize; j++)\
  505. {\
  506. U += chrSrc[j][i] * chrFilter[j];\
  507. V += chrSrc[j][i+VOFW] * chrFilter[j];\
  508. }\
  509. Y1>>=19;\
  510. Y2>>=19;\
  511. U >>=19;\
  512. V >>=19;\
  513. #define YSCALE_YUV_2_PACKEDX_C(type) \
  514. YSCALE_YUV_2_PACKEDX_NOCLIP_C(type)\
  515. if ((Y1|Y2|U|V)&256)\
  516. {\
  517. if (Y1>255) Y1=255; \
  518. else if (Y1<0)Y1=0; \
  519. if (Y2>255) Y2=255; \
  520. else if (Y2<0)Y2=0; \
  521. if (U>255) U=255; \
  522. else if (U<0) U=0; \
  523. if (V>255) V=255; \
  524. else if (V<0) V=0; \
  525. }
  526. #define YSCALE_YUV_2_PACKEDX_FULL_C \
  527. for (i=0; i<dstW; i++){\
  528. int j;\
  529. int Y = 0;\
  530. int U = -128<<19;\
  531. int V = -128<<19;\
  532. int R,G,B;\
  533. \
  534. for (j=0; j<lumFilterSize; j++){\
  535. Y += lumSrc[j][i ] * lumFilter[j];\
  536. }\
  537. for (j=0; j<chrFilterSize; j++){\
  538. U += chrSrc[j][i ] * chrFilter[j];\
  539. V += chrSrc[j][i+VOFW] * chrFilter[j];\
  540. }\
  541. Y >>=10;\
  542. U >>=10;\
  543. V >>=10;\
  544. #define YSCALE_YUV_2_RGBX_FULL_C(rnd) \
  545. YSCALE_YUV_2_PACKEDX_FULL_C\
  546. Y-= c->yuv2rgb_y_offset;\
  547. Y*= c->yuv2rgb_y_coeff;\
  548. Y+= rnd;\
  549. R= Y + V*c->yuv2rgb_v2r_coeff;\
  550. G= Y + V*c->yuv2rgb_v2g_coeff + U*c->yuv2rgb_u2g_coeff;\
  551. B= Y + U*c->yuv2rgb_u2b_coeff;\
  552. if ((R|G|B)&(0xC0000000)){\
  553. if (R>=(256<<22)) R=(256<<22)-1; \
  554. else if (R<0)R=0; \
  555. if (G>=(256<<22)) G=(256<<22)-1; \
  556. else if (G<0)G=0; \
  557. if (B>=(256<<22)) B=(256<<22)-1; \
  558. else if (B<0)B=0; \
  559. }\
  560. #define YSCALE_YUV_2_GRAY16_C \
  561. for (i=0; i<(dstW>>1); i++){\
  562. int j;\
  563. int Y1 = 1<<18;\
  564. int Y2 = 1<<18;\
  565. int U = 1<<18;\
  566. int V = 1<<18;\
  567. \
  568. const int i2= 2*i;\
  569. \
  570. for (j=0; j<lumFilterSize; j++)\
  571. {\
  572. Y1 += lumSrc[j][i2] * lumFilter[j];\
  573. Y2 += lumSrc[j][i2+1] * lumFilter[j];\
  574. }\
  575. Y1>>=11;\
  576. Y2>>=11;\
  577. if ((Y1|Y2|U|V)&65536)\
  578. {\
  579. if (Y1>65535) Y1=65535; \
  580. else if (Y1<0)Y1=0; \
  581. if (Y2>65535) Y2=65535; \
  582. else if (Y2<0)Y2=0; \
  583. }
  584. #define YSCALE_YUV_2_RGBX_C(type) \
  585. YSCALE_YUV_2_PACKEDX_C(type) /* FIXME fix tables so that cliping is not needed and then use _NOCLIP*/\
  586. r = (type *)c->table_rV[V]; \
  587. g = (type *)(c->table_gU[U] + c->table_gV[V]); \
  588. b = (type *)c->table_bU[U]; \
  589. #define YSCALE_YUV_2_PACKED2_C \
  590. for (i=0; i<(dstW>>1); i++){ \
  591. const int i2= 2*i; \
  592. int Y1= (buf0[i2 ]*yalpha1+buf1[i2 ]*yalpha)>>19; \
  593. int Y2= (buf0[i2+1]*yalpha1+buf1[i2+1]*yalpha)>>19; \
  594. int U= (uvbuf0[i ]*uvalpha1+uvbuf1[i ]*uvalpha)>>19; \
  595. int V= (uvbuf0[i+VOFW]*uvalpha1+uvbuf1[i+VOFW]*uvalpha)>>19; \
  596. #define YSCALE_YUV_2_GRAY16_2_C \
  597. for (i=0; i<(dstW>>1); i++){ \
  598. const int i2= 2*i; \
  599. int Y1= (buf0[i2 ]*yalpha1+buf1[i2 ]*yalpha)>>11; \
  600. int Y2= (buf0[i2+1]*yalpha1+buf1[i2+1]*yalpha)>>11; \
  601. #define YSCALE_YUV_2_RGB2_C(type) \
  602. YSCALE_YUV_2_PACKED2_C\
  603. type *r, *b, *g;\
  604. r = (type *)c->table_rV[V];\
  605. g = (type *)(c->table_gU[U] + c->table_gV[V]);\
  606. b = (type *)c->table_bU[U];\
  607. #define YSCALE_YUV_2_PACKED1_C \
  608. for (i=0; i<(dstW>>1); i++){\
  609. const int i2= 2*i;\
  610. int Y1= buf0[i2 ]>>7;\
  611. int Y2= buf0[i2+1]>>7;\
  612. int U= (uvbuf1[i ])>>7;\
  613. int V= (uvbuf1[i+VOFW])>>7;\
  614. #define YSCALE_YUV_2_GRAY16_1_C \
  615. for (i=0; i<(dstW>>1); i++){\
  616. const int i2= 2*i;\
  617. int Y1= buf0[i2 ]<<1;\
  618. int Y2= buf0[i2+1]<<1;\
  619. #define YSCALE_YUV_2_RGB1_C(type) \
  620. YSCALE_YUV_2_PACKED1_C\
  621. type *r, *b, *g;\
  622. r = (type *)c->table_rV[V];\
  623. g = (type *)(c->table_gU[U] + c->table_gV[V]);\
  624. b = (type *)c->table_bU[U];\
  625. #define YSCALE_YUV_2_PACKED1B_C \
  626. for (i=0; i<(dstW>>1); i++){\
  627. const int i2= 2*i;\
  628. int Y1= buf0[i2 ]>>7;\
  629. int Y2= buf0[i2+1]>>7;\
  630. int U= (uvbuf0[i ] + uvbuf1[i ])>>8;\
  631. int V= (uvbuf0[i+VOFW] + uvbuf1[i+VOFW])>>8;\
  632. #define YSCALE_YUV_2_RGB1B_C(type) \
  633. YSCALE_YUV_2_PACKED1B_C\
  634. type *r, *b, *g;\
  635. r = (type *)c->table_rV[V];\
  636. g = (type *)(c->table_gU[U] + c->table_gV[V]);\
  637. b = (type *)c->table_bU[U];\
  638. #define YSCALE_YUV_2_MONO2_C \
  639. const uint8_t * const d128=dither_8x8_220[y&7];\
  640. uint8_t *g= c->table_gU[128] + c->table_gV[128];\
  641. for (i=0; i<dstW-7; i+=8){\
  642. int acc;\
  643. acc = g[((buf0[i ]*yalpha1+buf1[i ]*yalpha)>>19) + d128[0]];\
  644. acc+= acc + g[((buf0[i+1]*yalpha1+buf1[i+1]*yalpha)>>19) + d128[1]];\
  645. acc+= acc + g[((buf0[i+2]*yalpha1+buf1[i+2]*yalpha)>>19) + d128[2]];\
  646. acc+= acc + g[((buf0[i+3]*yalpha1+buf1[i+3]*yalpha)>>19) + d128[3]];\
  647. acc+= acc + g[((buf0[i+4]*yalpha1+buf1[i+4]*yalpha)>>19) + d128[4]];\
  648. acc+= acc + g[((buf0[i+5]*yalpha1+buf1[i+5]*yalpha)>>19) + d128[5]];\
  649. acc+= acc + g[((buf0[i+6]*yalpha1+buf1[i+6]*yalpha)>>19) + d128[6]];\
  650. acc+= acc + g[((buf0[i+7]*yalpha1+buf1[i+7]*yalpha)>>19) + d128[7]];\
  651. ((uint8_t*)dest)[0]= c->dstFormat == PIX_FMT_MONOBLACK ? acc : ~acc;\
  652. dest++;\
  653. }\
  654. #define YSCALE_YUV_2_MONOX_C \
  655. const uint8_t * const d128=dither_8x8_220[y&7];\
  656. uint8_t *g= c->table_gU[128] + c->table_gV[128];\
  657. int acc=0;\
  658. for (i=0; i<dstW-1; i+=2){\
  659. int j;\
  660. int Y1=1<<18;\
  661. int Y2=1<<18;\
  662. \
  663. for (j=0; j<lumFilterSize; j++)\
  664. {\
  665. Y1 += lumSrc[j][i] * lumFilter[j];\
  666. Y2 += lumSrc[j][i+1] * lumFilter[j];\
  667. }\
  668. Y1>>=19;\
  669. Y2>>=19;\
  670. if ((Y1|Y2)&256)\
  671. {\
  672. if (Y1>255) Y1=255;\
  673. else if (Y1<0)Y1=0;\
  674. if (Y2>255) Y2=255;\
  675. else if (Y2<0)Y2=0;\
  676. }\
  677. acc+= acc + g[Y1+d128[(i+0)&7]];\
  678. acc+= acc + g[Y2+d128[(i+1)&7]];\
  679. if ((i&7)==6){\
  680. ((uint8_t*)dest)[0]= c->dstFormat == PIX_FMT_MONOBLACK ? acc : ~acc;\
  681. dest++;\
  682. }\
  683. }
  684. #define YSCALE_YUV_2_ANYRGB_C(func, func2, func_g16, func_monoblack)\
  685. switch(c->dstFormat)\
  686. {\
  687. case PIX_FMT_RGB32:\
  688. case PIX_FMT_BGR32:\
  689. case PIX_FMT_RGB32_1:\
  690. case PIX_FMT_BGR32_1:\
  691. func(uint32_t)\
  692. ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];\
  693. ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];\
  694. } \
  695. break;\
  696. case PIX_FMT_RGB24:\
  697. func(uint8_t)\
  698. ((uint8_t*)dest)[0]= r[Y1];\
  699. ((uint8_t*)dest)[1]= g[Y1];\
  700. ((uint8_t*)dest)[2]= b[Y1];\
  701. ((uint8_t*)dest)[3]= r[Y2];\
  702. ((uint8_t*)dest)[4]= g[Y2];\
  703. ((uint8_t*)dest)[5]= b[Y2];\
  704. dest+=6;\
  705. }\
  706. break;\
  707. case PIX_FMT_BGR24:\
  708. func(uint8_t)\
  709. ((uint8_t*)dest)[0]= b[Y1];\
  710. ((uint8_t*)dest)[1]= g[Y1];\
  711. ((uint8_t*)dest)[2]= r[Y1];\
  712. ((uint8_t*)dest)[3]= b[Y2];\
  713. ((uint8_t*)dest)[4]= g[Y2];\
  714. ((uint8_t*)dest)[5]= r[Y2];\
  715. dest+=6;\
  716. }\
  717. break;\
  718. case PIX_FMT_RGB565:\
  719. case PIX_FMT_BGR565:\
  720. {\
  721. const int dr1= dither_2x2_8[y&1 ][0];\
  722. const int dg1= dither_2x2_4[y&1 ][0];\
  723. const int db1= dither_2x2_8[(y&1)^1][0];\
  724. const int dr2= dither_2x2_8[y&1 ][1];\
  725. const int dg2= dither_2x2_4[y&1 ][1];\
  726. const int db2= dither_2x2_8[(y&1)^1][1];\
  727. func(uint16_t)\
  728. ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
  729. ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
  730. }\
  731. }\
  732. break;\
  733. case PIX_FMT_RGB555:\
  734. case PIX_FMT_BGR555:\
  735. {\
  736. const int dr1= dither_2x2_8[y&1 ][0];\
  737. const int dg1= dither_2x2_8[y&1 ][1];\
  738. const int db1= dither_2x2_8[(y&1)^1][0];\
  739. const int dr2= dither_2x2_8[y&1 ][1];\
  740. const int dg2= dither_2x2_8[y&1 ][0];\
  741. const int db2= dither_2x2_8[(y&1)^1][1];\
  742. func(uint16_t)\
  743. ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
  744. ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
  745. }\
  746. }\
  747. break;\
  748. case PIX_FMT_RGB8:\
  749. case PIX_FMT_BGR8:\
  750. {\
  751. const uint8_t * const d64= dither_8x8_73[y&7];\
  752. const uint8_t * const d32= dither_8x8_32[y&7];\
  753. func(uint8_t)\
  754. ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];\
  755. ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];\
  756. }\
  757. }\
  758. break;\
  759. case PIX_FMT_RGB4:\
  760. case PIX_FMT_BGR4:\
  761. {\
  762. const uint8_t * const d64= dither_8x8_73 [y&7];\
  763. const uint8_t * const d128=dither_8x8_220[y&7];\
  764. func(uint8_t)\
  765. ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]\
  766. + ((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);\
  767. }\
  768. }\
  769. break;\
  770. case PIX_FMT_RGB4_BYTE:\
  771. case PIX_FMT_BGR4_BYTE:\
  772. {\
  773. const uint8_t * const d64= dither_8x8_73 [y&7];\
  774. const uint8_t * const d128=dither_8x8_220[y&7];\
  775. func(uint8_t)\
  776. ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];\
  777. ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];\
  778. }\
  779. }\
  780. break;\
  781. case PIX_FMT_MONOBLACK:\
  782. case PIX_FMT_MONOWHITE:\
  783. {\
  784. func_monoblack\
  785. }\
  786. break;\
  787. case PIX_FMT_YUYV422:\
  788. func2\
  789. ((uint8_t*)dest)[2*i2+0]= Y1;\
  790. ((uint8_t*)dest)[2*i2+1]= U;\
  791. ((uint8_t*)dest)[2*i2+2]= Y2;\
  792. ((uint8_t*)dest)[2*i2+3]= V;\
  793. } \
  794. break;\
  795. case PIX_FMT_UYVY422:\
  796. func2\
  797. ((uint8_t*)dest)[2*i2+0]= U;\
  798. ((uint8_t*)dest)[2*i2+1]= Y1;\
  799. ((uint8_t*)dest)[2*i2+2]= V;\
  800. ((uint8_t*)dest)[2*i2+3]= Y2;\
  801. } \
  802. break;\
  803. case PIX_FMT_GRAY16BE:\
  804. func_g16\
  805. ((uint8_t*)dest)[2*i2+0]= Y1>>8;\
  806. ((uint8_t*)dest)[2*i2+1]= Y1;\
  807. ((uint8_t*)dest)[2*i2+2]= Y2>>8;\
  808. ((uint8_t*)dest)[2*i2+3]= Y2;\
  809. } \
  810. break;\
  811. case PIX_FMT_GRAY16LE:\
  812. func_g16\
  813. ((uint8_t*)dest)[2*i2+0]= Y1;\
  814. ((uint8_t*)dest)[2*i2+1]= Y1>>8;\
  815. ((uint8_t*)dest)[2*i2+2]= Y2;\
  816. ((uint8_t*)dest)[2*i2+3]= Y2>>8;\
  817. } \
  818. break;\
  819. }\
  820. static inline void yuv2packedXinC(SwsContext *c, int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
  821. int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
  822. uint8_t *dest, int dstW, int y)
  823. {
  824. int i;
  825. YSCALE_YUV_2_ANYRGB_C(YSCALE_YUV_2_RGBX_C, YSCALE_YUV_2_PACKEDX_C(void), YSCALE_YUV_2_GRAY16_C, YSCALE_YUV_2_MONOX_C)
  826. }
  827. static inline void yuv2rgbXinC_full(SwsContext *c, int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
  828. int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
  829. uint8_t *dest, int dstW, int y)
  830. {
  831. int i;
  832. int step= fmt_depth(c->dstFormat)/8;
  833. int aidx= 3;
  834. switch(c->dstFormat){
  835. case PIX_FMT_ARGB:
  836. dest++;
  837. aidx= 0;
  838. case PIX_FMT_RGB24:
  839. aidx--;
  840. case PIX_FMT_RGBA:
  841. YSCALE_YUV_2_RGBX_FULL_C(1<<21)
  842. dest[aidx]= 0;
  843. dest[0]= R>>22;
  844. dest[1]= G>>22;
  845. dest[2]= B>>22;
  846. dest+= step;
  847. }
  848. break;
  849. case PIX_FMT_ABGR:
  850. dest++;
  851. aidx= 0;
  852. case PIX_FMT_BGR24:
  853. aidx--;
  854. case PIX_FMT_BGRA:
  855. YSCALE_YUV_2_RGBX_FULL_C(1<<21)
  856. dest[aidx]= 0;
  857. dest[0]= B>>22;
  858. dest[1]= G>>22;
  859. dest[2]= R>>22;
  860. dest+= step;
  861. }
  862. break;
  863. default:
  864. assert(0);
  865. }
  866. }
  867. //Note: we have C, X86, MMX, MMX2, 3DNOW version therse no 3DNOW+MMX2 one
  868. //Plain C versions
  869. #if !defined (HAVE_MMX) || defined (RUNTIME_CPUDETECT) || !defined(CONFIG_GPL)
  870. #define COMPILE_C
  871. #endif
  872. #ifdef ARCH_POWERPC
  873. #if (defined (HAVE_ALTIVEC) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
  874. #define COMPILE_ALTIVEC
  875. #endif //HAVE_ALTIVEC
  876. #endif //ARCH_POWERPC
  877. #if defined(ARCH_X86)
  878. #if ((defined (HAVE_MMX) && !defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
  879. #define COMPILE_MMX
  880. #endif
  881. #if (defined (HAVE_MMX2) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
  882. #define COMPILE_MMX2
  883. #endif
  884. #if ((defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
  885. #define COMPILE_3DNOW
  886. #endif
  887. #endif //ARCH_X86 || ARCH_X86_64
  888. #undef HAVE_MMX
  889. #undef HAVE_MMX2
  890. #undef HAVE_3DNOW
  891. #ifdef COMPILE_C
  892. #undef HAVE_MMX
  893. #undef HAVE_MMX2
  894. #undef HAVE_3DNOW
  895. #undef HAVE_ALTIVEC
  896. #define RENAME(a) a ## _C
  897. #include "swscale_template.c"
  898. #endif
  899. #ifdef COMPILE_ALTIVEC
  900. #undef RENAME
  901. #define HAVE_ALTIVEC
  902. #define RENAME(a) a ## _altivec
  903. #include "swscale_template.c"
  904. #endif
  905. #if defined(ARCH_X86)
  906. //X86 versions
  907. /*
  908. #undef RENAME
  909. #undef HAVE_MMX
  910. #undef HAVE_MMX2
  911. #undef HAVE_3DNOW
  912. #define ARCH_X86
  913. #define RENAME(a) a ## _X86
  914. #include "swscale_template.c"
  915. */
  916. //MMX versions
  917. #ifdef COMPILE_MMX
  918. #undef RENAME
  919. #define HAVE_MMX
  920. #undef HAVE_MMX2
  921. #undef HAVE_3DNOW
  922. #define RENAME(a) a ## _MMX
  923. #include "swscale_template.c"
  924. #endif
  925. //MMX2 versions
  926. #ifdef COMPILE_MMX2
  927. #undef RENAME
  928. #define HAVE_MMX
  929. #define HAVE_MMX2
  930. #undef HAVE_3DNOW
  931. #define RENAME(a) a ## _MMX2
  932. #include "swscale_template.c"
  933. #endif
  934. //3DNOW versions
  935. #ifdef COMPILE_3DNOW
  936. #undef RENAME
  937. #define HAVE_MMX
  938. #undef HAVE_MMX2
  939. #define HAVE_3DNOW
  940. #define RENAME(a) a ## _3DNow
  941. #include "swscale_template.c"
  942. #endif
  943. #endif //ARCH_X86 || ARCH_X86_64
  944. // minor note: the HAVE_xyz is messed up after that line so don't use it
  945. static double getSplineCoeff(double a, double b, double c, double d, double dist)
  946. {
  947. // printf("%f %f %f %f %f\n", a,b,c,d,dist);
  948. if (dist<=1.0) return ((d*dist + c)*dist + b)*dist +a;
  949. else return getSplineCoeff( 0.0,
  950. b+ 2.0*c + 3.0*d,
  951. c + 3.0*d,
  952. -b- 3.0*c - 6.0*d,
  953. dist-1.0);
  954. }
  955. static inline int initFilter(int16_t **outFilter, int16_t **filterPos, int *outFilterSize, int xInc,
  956. int srcW, int dstW, int filterAlign, int one, int flags,
  957. SwsVector *srcFilter, SwsVector *dstFilter, double param[2])
  958. {
  959. int i;
  960. int filterSize;
  961. int filter2Size;
  962. int minFilterSize;
  963. int64_t *filter=NULL;
  964. int64_t *filter2=NULL;
  965. const int64_t fone= 1LL<<54;
  966. int ret= -1;
  967. #if defined(ARCH_X86)
  968. if (flags & SWS_CPU_CAPS_MMX)
  969. asm volatile("emms\n\t"::: "memory"); //FIXME this should not be required but it IS (even for non-MMX versions)
  970. #endif
  971. // Note the +1 is for the MMXscaler which reads over the end
  972. *filterPos = av_malloc((dstW+1)*sizeof(int16_t));
  973. if (FFABS(xInc - 0x10000) <10) // unscaled
  974. {
  975. int i;
  976. filterSize= 1;
  977. filter= av_mallocz(dstW*sizeof(*filter)*filterSize);
  978. for (i=0; i<dstW; i++)
  979. {
  980. filter[i*filterSize]= fone;
  981. (*filterPos)[i]=i;
  982. }
  983. }
  984. else if (flags&SWS_POINT) // lame looking point sampling mode
  985. {
  986. int i;
  987. int xDstInSrc;
  988. filterSize= 1;
  989. filter= av_malloc(dstW*sizeof(*filter)*filterSize);
  990. xDstInSrc= xInc/2 - 0x8000;
  991. for (i=0; i<dstW; i++)
  992. {
  993. int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
  994. (*filterPos)[i]= xx;
  995. filter[i]= fone;
  996. xDstInSrc+= xInc;
  997. }
  998. }
  999. else if ((xInc <= (1<<16) && (flags&SWS_AREA)) || (flags&SWS_FAST_BILINEAR)) // bilinear upscale
  1000. {
  1001. int i;
  1002. int xDstInSrc;
  1003. if (flags&SWS_BICUBIC) filterSize= 4;
  1004. else if (flags&SWS_X ) filterSize= 4;
  1005. else filterSize= 2; // SWS_BILINEAR / SWS_AREA
  1006. filter= av_malloc(dstW*sizeof(*filter)*filterSize);
  1007. xDstInSrc= xInc/2 - 0x8000;
  1008. for (i=0; i<dstW; i++)
  1009. {
  1010. int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
  1011. int j;
  1012. (*filterPos)[i]= xx;
  1013. //Bilinear upscale / linear interpolate / Area averaging
  1014. for (j=0; j<filterSize; j++)
  1015. {
  1016. int64_t coeff= fone - FFABS((xx<<16) - xDstInSrc)*(fone>>16);
  1017. if (coeff<0) coeff=0;
  1018. filter[i*filterSize + j]= coeff;
  1019. xx++;
  1020. }
  1021. xDstInSrc+= xInc;
  1022. }
  1023. }
  1024. else
  1025. {
  1026. int xDstInSrc;
  1027. int sizeFactor;
  1028. if (flags&SWS_BICUBIC) sizeFactor= 4;
  1029. else if (flags&SWS_X) sizeFactor= 8;
  1030. else if (flags&SWS_AREA) sizeFactor= 1; //downscale only, for upscale it is bilinear
  1031. else if (flags&SWS_GAUSS) sizeFactor= 8; // infinite ;)
  1032. else if (flags&SWS_LANCZOS) sizeFactor= param[0] != SWS_PARAM_DEFAULT ? ceil(2*param[0]) : 6;
  1033. else if (flags&SWS_SINC) sizeFactor= 20; // infinite ;)
  1034. else if (flags&SWS_SPLINE) sizeFactor= 20; // infinite ;)
  1035. else if (flags&SWS_BILINEAR) sizeFactor= 2;
  1036. else {
  1037. sizeFactor= 0; //GCC warning killer
  1038. assert(0);
  1039. }
  1040. if (xInc <= 1<<16) filterSize= 1 + sizeFactor; // upscale
  1041. else filterSize= 1 + (sizeFactor*srcW + dstW - 1)/ dstW;
  1042. if (filterSize > srcW-2) filterSize=srcW-2;
  1043. filter= av_malloc(dstW*sizeof(*filter)*filterSize);
  1044. xDstInSrc= xInc - 0x10000;
  1045. for (i=0; i<dstW; i++)
  1046. {
  1047. int xx= (xDstInSrc - ((filterSize-2)<<16)) / (1<<17);
  1048. int j;
  1049. (*filterPos)[i]= xx;
  1050. for (j=0; j<filterSize; j++)
  1051. {
  1052. int64_t d= ((int64_t)FFABS((xx<<17) - xDstInSrc))<<13;
  1053. double floatd;
  1054. int64_t coeff;
  1055. if (xInc > 1<<16)
  1056. d= d*dstW/srcW;
  1057. floatd= d * (1.0/(1<<30));
  1058. if (flags & SWS_BICUBIC)
  1059. {
  1060. int64_t B= (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1<<24);
  1061. int64_t C= (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1<<24);
  1062. int64_t dd = ( d*d)>>30;
  1063. int64_t ddd= (dd*d)>>30;
  1064. if (d < 1LL<<30)
  1065. coeff = (12*(1<<24)-9*B-6*C)*ddd + (-18*(1<<24)+12*B+6*C)*dd + (6*(1<<24)-2*B)*(1<<30);
  1066. else if (d < 1LL<<31)
  1067. coeff = (-B-6*C)*ddd + (6*B+30*C)*dd + (-12*B-48*C)*d + (8*B+24*C)*(1<<30);
  1068. else
  1069. coeff=0.0;
  1070. coeff *= fone>>(30+24);
  1071. }
  1072. /* else if (flags & SWS_X)
  1073. {
  1074. double p= param ? param*0.01 : 0.3;
  1075. coeff = d ? sin(d*PI)/(d*PI) : 1.0;
  1076. coeff*= pow(2.0, - p*d*d);
  1077. }*/
  1078. else if (flags & SWS_X)
  1079. {
  1080. double A= param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
  1081. double c;
  1082. if (floatd<1.0)
  1083. c = cos(floatd*PI);
  1084. else
  1085. c=-1.0;
  1086. if (c<0.0) c= -pow(-c, A);
  1087. else c= pow( c, A);
  1088. coeff= (c*0.5 + 0.5)*fone;
  1089. }
  1090. else if (flags & SWS_AREA)
  1091. {
  1092. int64_t d2= d - (1<<29);
  1093. if (d2*xInc < -(1LL<<(29+16))) coeff= 1.0 * (1LL<<(30+16));
  1094. else if (d2*xInc < (1LL<<(29+16))) coeff= -d2*xInc + (1LL<<(29+16));
  1095. else coeff=0.0;
  1096. coeff *= fone>>(30+16);
  1097. }
  1098. else if (flags & SWS_GAUSS)
  1099. {
  1100. double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  1101. coeff = (pow(2.0, - p*floatd*floatd))*fone;
  1102. }
  1103. else if (flags & SWS_SINC)
  1104. {
  1105. coeff = (d ? sin(floatd*PI)/(floatd*PI) : 1.0)*fone;
  1106. }
  1107. else if (flags & SWS_LANCZOS)
  1108. {
  1109. double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  1110. coeff = (d ? sin(floatd*PI)*sin(floatd*PI/p)/(floatd*floatd*PI*PI/p) : 1.0)*fone;
  1111. if (floatd>p) coeff=0;
  1112. }
  1113. else if (flags & SWS_BILINEAR)
  1114. {
  1115. coeff= (1<<30) - d;
  1116. if (coeff<0) coeff=0;
  1117. coeff *= fone >> 30;
  1118. }
  1119. else if (flags & SWS_SPLINE)
  1120. {
  1121. double p=-2.196152422706632;
  1122. coeff = getSplineCoeff(1.0, 0.0, p, -p-1.0, floatd) * fone;
  1123. }
  1124. else {
  1125. coeff= 0.0; //GCC warning killer
  1126. assert(0);
  1127. }
  1128. filter[i*filterSize + j]= coeff;
  1129. xx++;
  1130. }
  1131. xDstInSrc+= 2*xInc;
  1132. }
  1133. }
  1134. /* apply src & dst Filter to filter -> filter2
  1135. av_free(filter);
  1136. */
  1137. assert(filterSize>0);
  1138. filter2Size= filterSize;
  1139. if (srcFilter) filter2Size+= srcFilter->length - 1;
  1140. if (dstFilter) filter2Size+= dstFilter->length - 1;
  1141. assert(filter2Size>0);
  1142. filter2= av_mallocz(filter2Size*dstW*sizeof(*filter2));
  1143. for (i=0; i<dstW; i++)
  1144. {
  1145. int j, k;
  1146. if(srcFilter){
  1147. for (k=0; k<srcFilter->length; k++){
  1148. for (j=0; j<filterSize; j++)
  1149. filter2[i*filter2Size + k + j] += srcFilter->coeff[k]*filter[i*filterSize + j];
  1150. }
  1151. }else{
  1152. for (j=0; j<filterSize; j++)
  1153. filter2[i*filter2Size + j]= filter[i*filterSize + j];
  1154. }
  1155. //FIXME dstFilter
  1156. (*filterPos)[i]+= (filterSize-1)/2 - (filter2Size-1)/2;
  1157. }
  1158. av_freep(&filter);
  1159. /* try to reduce the filter-size (step1 find size and shift left) */
  1160. // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
  1161. minFilterSize= 0;
  1162. for (i=dstW-1; i>=0; i--)
  1163. {
  1164. int min= filter2Size;
  1165. int j;
  1166. int64_t cutOff=0.0;
  1167. /* get rid off near zero elements on the left by shifting left */
  1168. for (j=0; j<filter2Size; j++)
  1169. {
  1170. int k;
  1171. cutOff += FFABS(filter2[i*filter2Size]);
  1172. if (cutOff > SWS_MAX_REDUCE_CUTOFF*fone) break;
  1173. /* preserve monotonicity because the core can't handle the filter otherwise */
  1174. if (i<dstW-1 && (*filterPos)[i] >= (*filterPos)[i+1]) break;
  1175. // Move filter coeffs left
  1176. for (k=1; k<filter2Size; k++)
  1177. filter2[i*filter2Size + k - 1]= filter2[i*filter2Size + k];
  1178. filter2[i*filter2Size + k - 1]= 0;
  1179. (*filterPos)[i]++;
  1180. }
  1181. cutOff=0;
  1182. /* count near zeros on the right */
  1183. for (j=filter2Size-1; j>0; j--)
  1184. {
  1185. cutOff += FFABS(filter2[i*filter2Size + j]);
  1186. if (cutOff > SWS_MAX_REDUCE_CUTOFF*fone) break;
  1187. min--;
  1188. }
  1189. if (min>minFilterSize) minFilterSize= min;
  1190. }
  1191. if (flags & SWS_CPU_CAPS_ALTIVEC) {
  1192. // we can handle the special case 4,
  1193. // so we don't want to go to the full 8
  1194. if (minFilterSize < 5)
  1195. filterAlign = 4;
  1196. // we really don't want to waste our time
  1197. // doing useless computation, so fall-back on
  1198. // the scalar C code for very small filter.
  1199. // vectorizing is worth it only if you have
  1200. // decent-sized vector.
  1201. if (minFilterSize < 3)
  1202. filterAlign = 1;
  1203. }
  1204. if (flags & SWS_CPU_CAPS_MMX) {
  1205. // special case for unscaled vertical filtering
  1206. if (minFilterSize == 1 && filterAlign == 2)
  1207. filterAlign= 1;
  1208. }
  1209. assert(minFilterSize > 0);
  1210. filterSize= (minFilterSize +(filterAlign-1)) & (~(filterAlign-1));
  1211. assert(filterSize > 0);
  1212. filter= av_malloc(filterSize*dstW*sizeof(*filter));
  1213. if (filterSize >= MAX_FILTER_SIZE*16/((flags&SWS_ACCURATE_RND) ? APCK_SIZE : 16) || !filter)
  1214. goto error;
  1215. *outFilterSize= filterSize;
  1216. if (flags&SWS_PRINT_INFO)
  1217. av_log(NULL, AV_LOG_VERBOSE, "SwScaler: reducing / aligning filtersize %d -> %d\n", filter2Size, filterSize);
  1218. /* try to reduce the filter-size (step2 reduce it) */
  1219. for (i=0; i<dstW; i++)
  1220. {
  1221. int j;
  1222. for (j=0; j<filterSize; j++)
  1223. {
  1224. if (j>=filter2Size) filter[i*filterSize + j]= 0;
  1225. else filter[i*filterSize + j]= filter2[i*filter2Size + j];
  1226. if((flags & SWS_BITEXACT) && j>=minFilterSize)
  1227. filter[i*filterSize + j]= 0;
  1228. }
  1229. }
  1230. //FIXME try to align filterpos if possible
  1231. //fix borders
  1232. for (i=0; i<dstW; i++)
  1233. {
  1234. int j;
  1235. if ((*filterPos)[i] < 0)
  1236. {
  1237. // Move filter coeffs left to compensate for filterPos
  1238. for (j=1; j<filterSize; j++)
  1239. {
  1240. int left= FFMAX(j + (*filterPos)[i], 0);
  1241. filter[i*filterSize + left] += filter[i*filterSize + j];
  1242. filter[i*filterSize + j]=0;
  1243. }
  1244. (*filterPos)[i]= 0;
  1245. }
  1246. if ((*filterPos)[i] + filterSize > srcW)
  1247. {
  1248. int shift= (*filterPos)[i] + filterSize - srcW;
  1249. // Move filter coeffs right to compensate for filterPos
  1250. for (j=filterSize-2; j>=0; j--)
  1251. {
  1252. int right= FFMIN(j + shift, filterSize-1);
  1253. filter[i*filterSize +right] += filter[i*filterSize +j];
  1254. filter[i*filterSize +j]=0;
  1255. }
  1256. (*filterPos)[i]= srcW - filterSize;
  1257. }
  1258. }
  1259. // Note the +1 is for the MMXscaler which reads over the end
  1260. /* align at 16 for AltiVec (needed by hScale_altivec_real) */
  1261. *outFilter= av_mallocz(*outFilterSize*(dstW+1)*sizeof(int16_t));
  1262. /* Normalize & Store in outFilter */
  1263. for (i=0; i<dstW; i++)
  1264. {
  1265. int j;
  1266. int64_t error=0;
  1267. int64_t sum=0;
  1268. for (j=0; j<filterSize; j++)
  1269. {
  1270. sum+= filter[i*filterSize + j];
  1271. }
  1272. sum= (sum + one/2)/ one;
  1273. for (j=0; j<*outFilterSize; j++)
  1274. {
  1275. int64_t v= filter[i*filterSize + j] + error;
  1276. int intV= ROUNDED_DIV(v, sum);
  1277. (*outFilter)[i*(*outFilterSize) + j]= intV;
  1278. error= v - intV*sum;
  1279. }
  1280. }
  1281. (*filterPos)[dstW]= (*filterPos)[dstW-1]; // the MMX scaler will read over the end
  1282. for (i=0; i<*outFilterSize; i++)
  1283. {
  1284. int j= dstW*(*outFilterSize);
  1285. (*outFilter)[j + i]= (*outFilter)[j + i - (*outFilterSize)];
  1286. }
  1287. ret=0;
  1288. error:
  1289. av_free(filter);
  1290. av_free(filter2);
  1291. return ret;
  1292. }
  1293. #ifdef COMPILE_MMX2
  1294. static void initMMX2HScaler(int dstW, int xInc, uint8_t *funnyCode, int16_t *filter, int32_t *filterPos, int numSplits)
  1295. {
  1296. uint8_t *fragmentA;
  1297. long imm8OfPShufW1A;
  1298. long imm8OfPShufW2A;
  1299. long fragmentLengthA;
  1300. uint8_t *fragmentB;
  1301. long imm8OfPShufW1B;
  1302. long imm8OfPShufW2B;
  1303. long fragmentLengthB;
  1304. int fragmentPos;
  1305. int xpos, i;
  1306. // create an optimized horizontal scaling routine
  1307. //code fragment
  1308. asm volatile(
  1309. "jmp 9f \n\t"
  1310. // Begin
  1311. "0: \n\t"
  1312. "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
  1313. "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
  1314. "movd 1(%%"REG_c", %%"REG_S"), %%mm1 \n\t"
  1315. "punpcklbw %%mm7, %%mm1 \n\t"
  1316. "punpcklbw %%mm7, %%mm0 \n\t"
  1317. "pshufw $0xFF, %%mm1, %%mm1 \n\t"
  1318. "1: \n\t"
  1319. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  1320. "2: \n\t"
  1321. "psubw %%mm1, %%mm0 \n\t"
  1322. "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
  1323. "pmullw %%mm3, %%mm0 \n\t"
  1324. "psllw $7, %%mm1 \n\t"
  1325. "paddw %%mm1, %%mm0 \n\t"
  1326. "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
  1327. "add $8, %%"REG_a" \n\t"
  1328. // End
  1329. "9: \n\t"
  1330. // "int $3 \n\t"
  1331. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  1332. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  1333. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  1334. "dec %1 \n\t"
  1335. "dec %2 \n\t"
  1336. "sub %0, %1 \n\t"
  1337. "sub %0, %2 \n\t"
  1338. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  1339. "sub %0, %3 \n\t"
  1340. :"=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
  1341. "=r" (fragmentLengthA)
  1342. );
  1343. asm volatile(
  1344. "jmp 9f \n\t"
  1345. // Begin
  1346. "0: \n\t"
  1347. "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
  1348. "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
  1349. "punpcklbw %%mm7, %%mm0 \n\t"
  1350. "pshufw $0xFF, %%mm0, %%mm1 \n\t"
  1351. "1: \n\t"
  1352. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  1353. "2: \n\t"
  1354. "psubw %%mm1, %%mm0 \n\t"
  1355. "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
  1356. "pmullw %%mm3, %%mm0 \n\t"
  1357. "psllw $7, %%mm1 \n\t"
  1358. "paddw %%mm1, %%mm0 \n\t"
  1359. "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
  1360. "add $8, %%"REG_a" \n\t"
  1361. // End
  1362. "9: \n\t"
  1363. // "int $3 \n\t"
  1364. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  1365. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  1366. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  1367. "dec %1 \n\t"
  1368. "dec %2 \n\t"
  1369. "sub %0, %1 \n\t"
  1370. "sub %0, %2 \n\t"
  1371. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  1372. "sub %0, %3 \n\t"
  1373. :"=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
  1374. "=r" (fragmentLengthB)
  1375. );
  1376. xpos= 0; //lumXInc/2 - 0x8000; // difference between pixel centers
  1377. fragmentPos=0;
  1378. for (i=0; i<dstW/numSplits; i++)
  1379. {
  1380. int xx=xpos>>16;
  1381. if ((i&3) == 0)
  1382. {
  1383. int a=0;
  1384. int b=((xpos+xInc)>>16) - xx;
  1385. int c=((xpos+xInc*2)>>16) - xx;
  1386. int d=((xpos+xInc*3)>>16) - xx;
  1387. filter[i ] = (( xpos & 0xFFFF) ^ 0xFFFF)>>9;
  1388. filter[i+1] = (((xpos+xInc ) & 0xFFFF) ^ 0xFFFF)>>9;
  1389. filter[i+2] = (((xpos+xInc*2) & 0xFFFF) ^ 0xFFFF)>>9;
  1390. filter[i+3] = (((xpos+xInc*3) & 0xFFFF) ^ 0xFFFF)>>9;
  1391. filterPos[i/2]= xx;
  1392. if (d+1<4)
  1393. {
  1394. int maxShift= 3-(d+1);
  1395. int shift=0;
  1396. memcpy(funnyCode + fragmentPos, fragmentB, fragmentLengthB);
  1397. funnyCode[fragmentPos + imm8OfPShufW1B]=
  1398. (a+1) | ((b+1)<<2) | ((c+1)<<4) | ((d+1)<<6);
  1399. funnyCode[fragmentPos + imm8OfPShufW2B]=
  1400. a | (b<<2) | (c<<4) | (d<<6);
  1401. if (i+3>=dstW) shift=maxShift; //avoid overread
  1402. else if ((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //Align
  1403. if (shift && i>=shift)
  1404. {
  1405. funnyCode[fragmentPos + imm8OfPShufW1B]+= 0x55*shift;
  1406. funnyCode[fragmentPos + imm8OfPShufW2B]+= 0x55*shift;
  1407. filterPos[i/2]-=shift;
  1408. }
  1409. fragmentPos+= fragmentLengthB;
  1410. }
  1411. else
  1412. {
  1413. int maxShift= 3-d;
  1414. int shift=0;
  1415. memcpy(funnyCode + fragmentPos, fragmentA, fragmentLengthA);
  1416. funnyCode[fragmentPos + imm8OfPShufW1A]=
  1417. funnyCode[fragmentPos + imm8OfPShufW2A]=
  1418. a | (b<<2) | (c<<4) | (d<<6);
  1419. if (i+4>=dstW) shift=maxShift; //avoid overread
  1420. else if ((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //partial align
  1421. if (shift && i>=shift)
  1422. {
  1423. funnyCode[fragmentPos + imm8OfPShufW1A]+= 0x55*shift;
  1424. funnyCode[fragmentPos + imm8OfPShufW2A]+= 0x55*shift;
  1425. filterPos[i/2]-=shift;
  1426. }
  1427. fragmentPos+= fragmentLengthA;
  1428. }
  1429. funnyCode[fragmentPos]= RET;
  1430. }
  1431. xpos+=xInc;
  1432. }
  1433. filterPos[i/2]= xpos>>16; // needed to jump to the next part
  1434. }
  1435. #endif /* COMPILE_MMX2 */
  1436. static void globalInit(void){
  1437. // generating tables:
  1438. int i;
  1439. for (i=0; i<768; i++){
  1440. int c= av_clip_uint8(i-256);
  1441. clip_table[i]=c;
  1442. }
  1443. }
  1444. static SwsFunc getSwsFunc(int flags){
  1445. #if defined(RUNTIME_CPUDETECT) && defined (CONFIG_GPL)
  1446. #if defined(ARCH_X86)
  1447. // ordered per speed fastest first
  1448. if (flags & SWS_CPU_CAPS_MMX2)
  1449. return swScale_MMX2;
  1450. else if (flags & SWS_CPU_CAPS_3DNOW)
  1451. return swScale_3DNow;
  1452. else if (flags & SWS_CPU_CAPS_MMX)
  1453. return swScale_MMX;
  1454. else
  1455. return swScale_C;
  1456. #else
  1457. #ifdef ARCH_POWERPC
  1458. if (flags & SWS_CPU_CAPS_ALTIVEC)
  1459. return swScale_altivec;
  1460. else
  1461. return swScale_C;
  1462. #endif
  1463. return swScale_C;
  1464. #endif /* defined(ARCH_X86) */
  1465. #else //RUNTIME_CPUDETECT
  1466. #ifdef HAVE_MMX2
  1467. return swScale_MMX2;
  1468. #elif defined (HAVE_3DNOW)
  1469. return swScale_3DNow;
  1470. #elif defined (HAVE_MMX)
  1471. return swScale_MMX;
  1472. #elif defined (HAVE_ALTIVEC)
  1473. return swScale_altivec;
  1474. #else
  1475. return swScale_C;
  1476. #endif
  1477. #endif //!RUNTIME_CPUDETECT
  1478. }
  1479. static int PlanarToNV12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1480. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1481. uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
  1482. /* Copy Y plane */
  1483. if (dstStride[0]==srcStride[0] && srcStride[0] > 0)
  1484. memcpy(dst, src[0], srcSliceH*dstStride[0]);
  1485. else
  1486. {
  1487. int i;
  1488. uint8_t *srcPtr= src[0];
  1489. uint8_t *dstPtr= dst;
  1490. for (i=0; i<srcSliceH; i++)
  1491. {
  1492. memcpy(dstPtr, srcPtr, c->srcW);
  1493. srcPtr+= srcStride[0];
  1494. dstPtr+= dstStride[0];
  1495. }
  1496. }
  1497. dst = dstParam[1] + dstStride[1]*srcSliceY/2;
  1498. if (c->dstFormat == PIX_FMT_NV12)
  1499. interleaveBytes(src[1], src[2], dst, c->srcW/2, srcSliceH/2, srcStride[1], srcStride[2], dstStride[0]);
  1500. else
  1501. interleaveBytes(src[2], src[1], dst, c->srcW/2, srcSliceH/2, srcStride[2], srcStride[1], dstStride[0]);
  1502. return srcSliceH;
  1503. }
  1504. static int PlanarToYuy2Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1505. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1506. uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
  1507. yv12toyuy2(src[0], src[1], src[2], dst, c->srcW, srcSliceH, srcStride[0], srcStride[1], dstStride[0]);
  1508. return srcSliceH;
  1509. }
  1510. static int PlanarToUyvyWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1511. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1512. uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
  1513. yv12touyvy(src[0], src[1], src[2], dst, c->srcW, srcSliceH, srcStride[0], srcStride[1], dstStride[0]);
  1514. return srcSliceH;
  1515. }
  1516. static int YUV422PToYuy2Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1517. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1518. uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
  1519. yuv422ptoyuy2(src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0]);
  1520. return srcSliceH;
  1521. }
  1522. static int YUV422PToUyvyWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1523. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1524. uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
  1525. yuv422ptouyvy(src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0]);
  1526. return srcSliceH;
  1527. }
  1528. /* {RGB,BGR}{15,16,24,32,32_1} -> {RGB,BGR}{15,16,24,32} */
  1529. static int rgb2rgbWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1530. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1531. const int srcFormat= c->srcFormat;
  1532. const int dstFormat= c->dstFormat;
  1533. const int srcBpp= (fmt_depth(srcFormat) + 7) >> 3;
  1534. const int dstBpp= (fmt_depth(dstFormat) + 7) >> 3;
  1535. const int srcId= fmt_depth(srcFormat) >> 2; /* 1:0, 4:1, 8:2, 15:3, 16:4, 24:6, 32:8 */
  1536. const int dstId= fmt_depth(dstFormat) >> 2;
  1537. void (*conv)(const uint8_t *src, uint8_t *dst, long src_size)=NULL;
  1538. /* BGR -> BGR */
  1539. if ( (isBGR(srcFormat) && isBGR(dstFormat))
  1540. || (isRGB(srcFormat) && isRGB(dstFormat))){
  1541. switch(srcId | (dstId<<4)){
  1542. case 0x34: conv= rgb16to15; break;
  1543. case 0x36: conv= rgb24to15; break;
  1544. case 0x38: conv= rgb32to15; break;
  1545. case 0x43: conv= rgb15to16; break;
  1546. case 0x46: conv= rgb24to16; break;
  1547. case 0x48: conv= rgb32to16; break;
  1548. case 0x63: conv= rgb15to24; break;
  1549. case 0x64: conv= rgb16to24; break;
  1550. case 0x68: conv= rgb32to24; break;
  1551. case 0x83: conv= rgb15to32; break;
  1552. case 0x84: conv= rgb16to32; break;
  1553. case 0x86: conv= rgb24to32; break;
  1554. default: av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
  1555. sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
  1556. }
  1557. }else if ( (isBGR(srcFormat) && isRGB(dstFormat))
  1558. || (isRGB(srcFormat) && isBGR(dstFormat))){
  1559. switch(srcId | (dstId<<4)){
  1560. case 0x33: conv= rgb15tobgr15; break;
  1561. case 0x34: conv= rgb16tobgr15; break;
  1562. case 0x36: conv= rgb24tobgr15; break;
  1563. case 0x38: conv= rgb32tobgr15; break;
  1564. case 0x43: conv= rgb15tobgr16; break;
  1565. case 0x44: conv= rgb16tobgr16; break;
  1566. case 0x46: conv= rgb24tobgr16; break;
  1567. case 0x48: conv= rgb32tobgr16; break;
  1568. case 0x63: conv= rgb15tobgr24; break;
  1569. case 0x64: conv= rgb16tobgr24; break;
  1570. case 0x66: conv= rgb24tobgr24; break;
  1571. case 0x68: conv= rgb32tobgr24; break;
  1572. case 0x83: conv= rgb15tobgr32; break;
  1573. case 0x84: conv= rgb16tobgr32; break;
  1574. case 0x86: conv= rgb24tobgr32; break;
  1575. case 0x88: conv= rgb32tobgr32; break;
  1576. default: av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
  1577. sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
  1578. }
  1579. }else{
  1580. av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
  1581. sws_format_name(srcFormat), sws_format_name(dstFormat));
  1582. }
  1583. if(conv)
  1584. {
  1585. uint8_t *srcPtr= src[0];
  1586. if(srcFormat == PIX_FMT_RGB32_1 || srcFormat == PIX_FMT_BGR32_1)
  1587. srcPtr += ALT32_CORR;
  1588. if (dstStride[0]*srcBpp == srcStride[0]*dstBpp && srcStride[0] > 0)
  1589. conv(srcPtr, dst[0] + dstStride[0]*srcSliceY, srcSliceH*srcStride[0]);
  1590. else
  1591. {
  1592. int i;
  1593. uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
  1594. for (i=0; i<srcSliceH; i++)
  1595. {
  1596. conv(srcPtr, dstPtr, c->srcW*srcBpp);
  1597. srcPtr+= srcStride[0];
  1598. dstPtr+= dstStride[0];
  1599. }
  1600. }
  1601. }
  1602. return srcSliceH;
  1603. }
  1604. static int bgr24toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1605. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1606. rgb24toyv12(
  1607. src[0],
  1608. dst[0]+ srcSliceY *dstStride[0],
  1609. dst[1]+(srcSliceY>>1)*dstStride[1],
  1610. dst[2]+(srcSliceY>>1)*dstStride[2],
  1611. c->srcW, srcSliceH,
  1612. dstStride[0], dstStride[1], srcStride[0]);
  1613. return srcSliceH;
  1614. }
  1615. static int yvu9toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1616. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1617. int i;
  1618. /* copy Y */
  1619. if (srcStride[0]==dstStride[0] && srcStride[0] > 0)
  1620. memcpy(dst[0]+ srcSliceY*dstStride[0], src[0], srcStride[0]*srcSliceH);
  1621. else{
  1622. uint8_t *srcPtr= src[0];
  1623. uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
  1624. for (i=0; i<srcSliceH; i++)
  1625. {
  1626. memcpy(dstPtr, srcPtr, c->srcW);
  1627. srcPtr+= srcStride[0];
  1628. dstPtr+= dstStride[0];
  1629. }
  1630. }
  1631. if (c->dstFormat==PIX_FMT_YUV420P){
  1632. planar2x(src[1], dst[1], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[1]);
  1633. planar2x(src[2], dst[2], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[2]);
  1634. }else{
  1635. planar2x(src[1], dst[2], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[2]);
  1636. planar2x(src[2], dst[1], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[1]);
  1637. }
  1638. return srcSliceH;
  1639. }
  1640. /* unscaled copy like stuff (assumes nearly identical formats) */
  1641. static int packedCopy(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1642. int srcSliceH, uint8_t* dst[], int dstStride[])
  1643. {
  1644. if (dstStride[0]==srcStride[0] && srcStride[0] > 0)
  1645. memcpy(dst[0] + dstStride[0]*srcSliceY, src[0], srcSliceH*dstStride[0]);
  1646. else
  1647. {
  1648. int i;
  1649. uint8_t *srcPtr= src[0];
  1650. uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
  1651. int length=0;
  1652. /* universal length finder */
  1653. while(length+c->srcW <= FFABS(dstStride[0])
  1654. && length+c->srcW <= FFABS(srcStride[0])) length+= c->srcW;
  1655. assert(length!=0);
  1656. for (i=0; i<srcSliceH; i++)
  1657. {
  1658. memcpy(dstPtr, srcPtr, length);
  1659. srcPtr+= srcStride[0];
  1660. dstPtr+= dstStride[0];
  1661. }
  1662. }
  1663. return srcSliceH;
  1664. }
  1665. static int planarCopy(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1666. int srcSliceH, uint8_t* dst[], int dstStride[])
  1667. {
  1668. int plane;
  1669. for (plane=0; plane<3; plane++)
  1670. {
  1671. int length= plane==0 ? c->srcW : -((-c->srcW )>>c->chrDstHSubSample);
  1672. int y= plane==0 ? srcSliceY: -((-srcSliceY)>>c->chrDstVSubSample);
  1673. int height= plane==0 ? srcSliceH: -((-srcSliceH)>>c->chrDstVSubSample);
  1674. if ((isGray(c->srcFormat) || isGray(c->dstFormat)) && plane>0)
  1675. {
  1676. if (!isGray(c->dstFormat))
  1677. memset(dst[plane], 128, dstStride[plane]*height);
  1678. }
  1679. else
  1680. {
  1681. if (dstStride[plane]==srcStride[plane] && srcStride[plane] > 0)
  1682. memcpy(dst[plane] + dstStride[plane]*y, src[plane], height*dstStride[plane]);
  1683. else
  1684. {
  1685. int i;
  1686. uint8_t *srcPtr= src[plane];
  1687. uint8_t *dstPtr= dst[plane] + dstStride[plane]*y;
  1688. for (i=0; i<height; i++)
  1689. {
  1690. memcpy(dstPtr, srcPtr, length);
  1691. srcPtr+= srcStride[plane];
  1692. dstPtr+= dstStride[plane];
  1693. }
  1694. }
  1695. }
  1696. }
  1697. return srcSliceH;
  1698. }
  1699. static int gray16togray(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1700. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1701. int length= c->srcW;
  1702. int y= srcSliceY;
  1703. int height= srcSliceH;
  1704. int i, j;
  1705. uint8_t *srcPtr= src[0];
  1706. uint8_t *dstPtr= dst[0] + dstStride[0]*y;
  1707. if (!isGray(c->dstFormat)){
  1708. int height= -((-srcSliceH)>>c->chrDstVSubSample);
  1709. memset(dst[1], 128, dstStride[1]*height);
  1710. memset(dst[2], 128, dstStride[2]*height);
  1711. }
  1712. if (c->srcFormat == PIX_FMT_GRAY16LE) srcPtr++;
  1713. for (i=0; i<height; i++)
  1714. {
  1715. for (j=0; j<length; j++) dstPtr[j] = srcPtr[j<<1];
  1716. srcPtr+= srcStride[0];
  1717. dstPtr+= dstStride[0];
  1718. }
  1719. return srcSliceH;
  1720. }
  1721. static int graytogray16(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1722. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1723. int length= c->srcW;
  1724. int y= srcSliceY;
  1725. int height= srcSliceH;
  1726. int i, j;
  1727. uint8_t *srcPtr= src[0];
  1728. uint8_t *dstPtr= dst[0] + dstStride[0]*y;
  1729. for (i=0; i<height; i++)
  1730. {
  1731. for (j=0; j<length; j++)
  1732. {
  1733. dstPtr[j<<1] = srcPtr[j];
  1734. dstPtr[(j<<1)+1] = srcPtr[j];
  1735. }
  1736. srcPtr+= srcStride[0];
  1737. dstPtr+= dstStride[0];
  1738. }
  1739. return srcSliceH;
  1740. }
  1741. static int gray16swap(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1742. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1743. int length= c->srcW;
  1744. int y= srcSliceY;
  1745. int height= srcSliceH;
  1746. int i, j;
  1747. uint16_t *srcPtr= (uint16_t*)src[0];
  1748. uint16_t *dstPtr= (uint16_t*)(dst[0] + dstStride[0]*y/2);
  1749. for (i=0; i<height; i++)
  1750. {
  1751. for (j=0; j<length; j++) dstPtr[j] = bswap_16(srcPtr[j]);
  1752. srcPtr+= srcStride[0]/2;
  1753. dstPtr+= dstStride[0]/2;
  1754. }
  1755. return srcSliceH;
  1756. }
  1757. static void getSubSampleFactors(int *h, int *v, int format){
  1758. switch(format){
  1759. case PIX_FMT_UYVY422:
  1760. case PIX_FMT_YUYV422:
  1761. *h=1;
  1762. *v=0;
  1763. break;
  1764. case PIX_FMT_YUV420P:
  1765. case PIX_FMT_YUVA420P:
  1766. case PIX_FMT_GRAY16BE:
  1767. case PIX_FMT_GRAY16LE:
  1768. case PIX_FMT_GRAY8: //FIXME remove after different subsamplings are fully implemented
  1769. case PIX_FMT_NV12:
  1770. case PIX_FMT_NV21:
  1771. *h=1;
  1772. *v=1;
  1773. break;
  1774. case PIX_FMT_YUV440P:
  1775. *h=0;
  1776. *v=1;
  1777. break;
  1778. case PIX_FMT_YUV410P:
  1779. *h=2;
  1780. *v=2;
  1781. break;
  1782. case PIX_FMT_YUV444P:
  1783. *h=0;
  1784. *v=0;
  1785. break;
  1786. case PIX_FMT_YUV422P:
  1787. *h=1;
  1788. *v=0;
  1789. break;
  1790. case PIX_FMT_YUV411P:
  1791. *h=2;
  1792. *v=0;
  1793. break;
  1794. default:
  1795. *h=0;
  1796. *v=0;
  1797. break;
  1798. }
  1799. }
  1800. static uint16_t roundToInt16(int64_t f){
  1801. int r= (f + (1<<15))>>16;
  1802. if (r<-0x7FFF) return 0x8000;
  1803. else if (r> 0x7FFF) return 0x7FFF;
  1804. else return r;
  1805. }
  1806. /**
  1807. * @param inv_table the yuv2rgb coeffs, normally Inverse_Table_6_9[x]
  1808. * @param fullRange if 1 then the luma range is 0..255 if 0 it is 16..235
  1809. * @return -1 if not supported
  1810. */
  1811. int sws_setColorspaceDetails(SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation){
  1812. int64_t crv = inv_table[0];
  1813. int64_t cbu = inv_table[1];
  1814. int64_t cgu = -inv_table[2];
  1815. int64_t cgv = -inv_table[3];
  1816. int64_t cy = 1<<16;
  1817. int64_t oy = 0;
  1818. memcpy(c->srcColorspaceTable, inv_table, sizeof(int)*4);
  1819. memcpy(c->dstColorspaceTable, table, sizeof(int)*4);
  1820. c->brightness= brightness;
  1821. c->contrast = contrast;
  1822. c->saturation= saturation;
  1823. c->srcRange = srcRange;
  1824. c->dstRange = dstRange;
  1825. if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return 0;
  1826. c->uOffset= 0x0400040004000400LL;
  1827. c->vOffset= 0x0400040004000400LL;
  1828. if (!srcRange){
  1829. cy= (cy*255) / 219;
  1830. oy= 16<<16;
  1831. }else{
  1832. crv= (crv*224) / 255;
  1833. cbu= (cbu*224) / 255;
  1834. cgu= (cgu*224) / 255;
  1835. cgv= (cgv*224) / 255;
  1836. }
  1837. cy = (cy *contrast )>>16;
  1838. crv= (crv*contrast * saturation)>>32;
  1839. cbu= (cbu*contrast * saturation)>>32;
  1840. cgu= (cgu*contrast * saturation)>>32;
  1841. cgv= (cgv*contrast * saturation)>>32;
  1842. oy -= 256*brightness;
  1843. c->yCoeff= roundToInt16(cy *8192) * 0x0001000100010001ULL;
  1844. c->vrCoeff= roundToInt16(crv*8192) * 0x0001000100010001ULL;
  1845. c->ubCoeff= roundToInt16(cbu*8192) * 0x0001000100010001ULL;
  1846. c->vgCoeff= roundToInt16(cgv*8192) * 0x0001000100010001ULL;
  1847. c->ugCoeff= roundToInt16(cgu*8192) * 0x0001000100010001ULL;
  1848. c->yOffset= roundToInt16(oy * 8) * 0x0001000100010001ULL;
  1849. c->yuv2rgb_y_coeff = (int16_t)roundToInt16(cy <<13);
  1850. c->yuv2rgb_y_offset = (int16_t)roundToInt16(oy << 9);
  1851. c->yuv2rgb_v2r_coeff= (int16_t)roundToInt16(crv<<13);
  1852. c->yuv2rgb_v2g_coeff= (int16_t)roundToInt16(cgv<<13);
  1853. c->yuv2rgb_u2g_coeff= (int16_t)roundToInt16(cgu<<13);
  1854. c->yuv2rgb_u2b_coeff= (int16_t)roundToInt16(cbu<<13);
  1855. yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness, contrast, saturation);
  1856. //FIXME factorize
  1857. #ifdef COMPILE_ALTIVEC
  1858. if (c->flags & SWS_CPU_CAPS_ALTIVEC)
  1859. yuv2rgb_altivec_init_tables (c, inv_table, brightness, contrast, saturation);
  1860. #endif
  1861. return 0;
  1862. }
  1863. /**
  1864. * @return -1 if not supported
  1865. */
  1866. int sws_getColorspaceDetails(SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation){
  1867. if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
  1868. *inv_table = c->srcColorspaceTable;
  1869. *table = c->dstColorspaceTable;
  1870. *srcRange = c->srcRange;
  1871. *dstRange = c->dstRange;
  1872. *brightness= c->brightness;
  1873. *contrast = c->contrast;
  1874. *saturation= c->saturation;
  1875. return 0;
  1876. }
  1877. static int handle_jpeg(int *format)
  1878. {
  1879. switch (*format) {
  1880. case PIX_FMT_YUVJ420P:
  1881. *format = PIX_FMT_YUV420P;
  1882. return 1;
  1883. case PIX_FMT_YUVJ422P:
  1884. *format = PIX_FMT_YUV422P;
  1885. return 1;
  1886. case PIX_FMT_YUVJ444P:
  1887. *format = PIX_FMT_YUV444P;
  1888. return 1;
  1889. case PIX_FMT_YUVJ440P:
  1890. *format = PIX_FMT_YUV440P;
  1891. return 1;
  1892. default:
  1893. return 0;
  1894. }
  1895. }
  1896. SwsContext *sws_getContext(int srcW, int srcH, int srcFormat, int dstW, int dstH, int dstFormat, int flags,
  1897. SwsFilter *srcFilter, SwsFilter *dstFilter, double *param){
  1898. SwsContext *c;
  1899. int i;
  1900. int usesVFilter, usesHFilter;
  1901. int unscaled, needsDither;
  1902. int srcRange, dstRange;
  1903. SwsFilter dummyFilter= {NULL, NULL, NULL, NULL};
  1904. #if defined(ARCH_X86)
  1905. if (flags & SWS_CPU_CAPS_MMX)
  1906. asm volatile("emms\n\t"::: "memory");
  1907. #endif
  1908. #if !defined(RUNTIME_CPUDETECT) || !defined (CONFIG_GPL) //ensure that the flags match the compiled variant if cpudetect is off
  1909. flags &= ~(SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2|SWS_CPU_CAPS_3DNOW|SWS_CPU_CAPS_ALTIVEC|SWS_CPU_CAPS_BFIN);
  1910. #ifdef HAVE_MMX2
  1911. flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2;
  1912. #elif defined (HAVE_3DNOW)
  1913. flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_3DNOW;
  1914. #elif defined (HAVE_MMX)
  1915. flags |= SWS_CPU_CAPS_MMX;
  1916. #elif defined (HAVE_ALTIVEC)
  1917. flags |= SWS_CPU_CAPS_ALTIVEC;
  1918. #elif defined (ARCH_BFIN)
  1919. flags |= SWS_CPU_CAPS_BFIN;
  1920. #endif
  1921. #endif /* RUNTIME_CPUDETECT */
  1922. if (clip_table[512] != 255) globalInit();
  1923. if (!rgb15to16) sws_rgb2rgb_init(flags);
  1924. unscaled = (srcW == dstW && srcH == dstH);
  1925. needsDither= (isBGR(dstFormat) || isRGB(dstFormat))
  1926. && (fmt_depth(dstFormat))<24
  1927. && ((fmt_depth(dstFormat))<(fmt_depth(srcFormat)) || (!(isRGB(srcFormat) || isBGR(srcFormat))));
  1928. srcRange = handle_jpeg(&srcFormat);
  1929. dstRange = handle_jpeg(&dstFormat);
  1930. if (!isSupportedIn(srcFormat))
  1931. {
  1932. av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as input pixel format\n", sws_format_name(srcFormat));
  1933. return NULL;
  1934. }
  1935. if (!isSupportedOut(dstFormat))
  1936. {
  1937. av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as output pixel format\n", sws_format_name(dstFormat));
  1938. return NULL;
  1939. }
  1940. i= flags & ( SWS_POINT
  1941. |SWS_AREA
  1942. |SWS_BILINEAR
  1943. |SWS_FAST_BILINEAR
  1944. |SWS_BICUBIC
  1945. |SWS_X
  1946. |SWS_GAUSS
  1947. |SWS_LANCZOS
  1948. |SWS_SINC
  1949. |SWS_SPLINE
  1950. |SWS_BICUBLIN);
  1951. if(!i || (i & (i-1)))
  1952. {
  1953. av_log(NULL, AV_LOG_ERROR, "swScaler: Exactly one scaler algorithm must be choosen\n");
  1954. return NULL;
  1955. }
  1956. /* sanity check */
  1957. if (srcW<4 || srcH<1 || dstW<8 || dstH<1) //FIXME check if these are enough and try to lowwer them after fixing the relevant parts of the code
  1958. {
  1959. av_log(NULL, AV_LOG_ERROR, "swScaler: %dx%d -> %dx%d is invalid scaling dimension\n",
  1960. srcW, srcH, dstW, dstH);
  1961. return NULL;
  1962. }
  1963. if(srcW > VOFW || dstW > VOFW){
  1964. av_log(NULL, AV_LOG_ERROR, "swScaler: Compile time max width is "AV_STRINGIFY(VOFW)" change VOF/VOFW and recompile\n");
  1965. return NULL;
  1966. }
  1967. if (!dstFilter) dstFilter= &dummyFilter;
  1968. if (!srcFilter) srcFilter= &dummyFilter;
  1969. c= av_mallocz(sizeof(SwsContext));
  1970. c->av_class = &sws_context_class;
  1971. c->srcW= srcW;
  1972. c->srcH= srcH;
  1973. c->dstW= dstW;
  1974. c->dstH= dstH;
  1975. c->lumXInc= ((srcW<<16) + (dstW>>1))/dstW;
  1976. c->lumYInc= ((srcH<<16) + (dstH>>1))/dstH;
  1977. c->flags= flags;
  1978. c->dstFormat= dstFormat;
  1979. c->srcFormat= srcFormat;
  1980. c->vRounder= 4* 0x0001000100010001ULL;
  1981. usesHFilter= usesVFilter= 0;
  1982. if (dstFilter->lumV && dstFilter->lumV->length>1) usesVFilter=1;
  1983. if (dstFilter->lumH && dstFilter->lumH->length>1) usesHFilter=1;
  1984. if (dstFilter->chrV && dstFilter->chrV->length>1) usesVFilter=1;
  1985. if (dstFilter->chrH && dstFilter->chrH->length>1) usesHFilter=1;
  1986. if (srcFilter->lumV && srcFilter->lumV->length>1) usesVFilter=1;
  1987. if (srcFilter->lumH && srcFilter->lumH->length>1) usesHFilter=1;
  1988. if (srcFilter->chrV && srcFilter->chrV->length>1) usesVFilter=1;
  1989. if (srcFilter->chrH && srcFilter->chrH->length>1) usesHFilter=1;
  1990. getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
  1991. getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
  1992. // reuse chroma for 2 pixles rgb/bgr unless user wants full chroma interpolation
  1993. if ((isBGR(dstFormat) || isRGB(dstFormat)) && !(flags&SWS_FULL_CHR_H_INT)) c->chrDstHSubSample=1;
  1994. // drop some chroma lines if the user wants it
  1995. c->vChrDrop= (flags&SWS_SRC_V_CHR_DROP_MASK)>>SWS_SRC_V_CHR_DROP_SHIFT;
  1996. c->chrSrcVSubSample+= c->vChrDrop;
  1997. // drop every 2. pixel for chroma calculation unless user wants full chroma
  1998. if ((isBGR(srcFormat) || isRGB(srcFormat)) && !(flags&SWS_FULL_CHR_H_INP)
  1999. && srcFormat!=PIX_FMT_RGB8 && srcFormat!=PIX_FMT_BGR8
  2000. && srcFormat!=PIX_FMT_RGB4 && srcFormat!=PIX_FMT_BGR4
  2001. && srcFormat!=PIX_FMT_RGB4_BYTE && srcFormat!=PIX_FMT_BGR4_BYTE
  2002. && ((dstW>>c->chrDstHSubSample) <= (srcW>>1) || (flags&(SWS_FAST_BILINEAR|SWS_POINT))))
  2003. c->chrSrcHSubSample=1;
  2004. if (param){
  2005. c->param[0] = param[0];
  2006. c->param[1] = param[1];
  2007. }else{
  2008. c->param[0] =
  2009. c->param[1] = SWS_PARAM_DEFAULT;
  2010. }
  2011. c->chrIntHSubSample= c->chrDstHSubSample;
  2012. c->chrIntVSubSample= c->chrSrcVSubSample;
  2013. // Note the -((-x)>>y) is so that we always round toward +inf.
  2014. c->chrSrcW= -((-srcW) >> c->chrSrcHSubSample);
  2015. c->chrSrcH= -((-srcH) >> c->chrSrcVSubSample);
  2016. c->chrDstW= -((-dstW) >> c->chrDstHSubSample);
  2017. c->chrDstH= -((-dstH) >> c->chrDstVSubSample);
  2018. sws_setColorspaceDetails(c, Inverse_Table_6_9[SWS_CS_DEFAULT], srcRange, Inverse_Table_6_9[SWS_CS_DEFAULT] /* FIXME*/, dstRange, 0, 1<<16, 1<<16);
  2019. /* unscaled special Cases */
  2020. if (unscaled && !usesHFilter && !usesVFilter && (srcRange == dstRange || isBGR(dstFormat) || isRGB(dstFormat)))
  2021. {
  2022. /* yv12_to_nv12 */
  2023. if (srcFormat == PIX_FMT_YUV420P && (dstFormat == PIX_FMT_NV12 || dstFormat == PIX_FMT_NV21))
  2024. {
  2025. c->swScale= PlanarToNV12Wrapper;
  2026. }
  2027. #ifdef CONFIG_GPL
  2028. /* yuv2bgr */
  2029. if ((srcFormat==PIX_FMT_YUV420P || srcFormat==PIX_FMT_YUV422P) && (isBGR(dstFormat) || isRGB(dstFormat))
  2030. && !(flags & SWS_ACCURATE_RND))
  2031. {
  2032. c->swScale= yuv2rgb_get_func_ptr(c);
  2033. }
  2034. #endif
  2035. if (srcFormat==PIX_FMT_YUV410P && dstFormat==PIX_FMT_YUV420P && !(flags & SWS_BITEXACT))
  2036. {
  2037. c->swScale= yvu9toyv12Wrapper;
  2038. }
  2039. /* bgr24toYV12 */
  2040. if (srcFormat==PIX_FMT_BGR24 && dstFormat==PIX_FMT_YUV420P && !(flags & SWS_ACCURATE_RND))
  2041. c->swScale= bgr24toyv12Wrapper;
  2042. /* rgb/bgr -> rgb/bgr (no dither needed forms) */
  2043. if ( (isBGR(srcFormat) || isRGB(srcFormat))
  2044. && (isBGR(dstFormat) || isRGB(dstFormat))
  2045. && srcFormat != PIX_FMT_BGR8 && dstFormat != PIX_FMT_BGR8
  2046. && srcFormat != PIX_FMT_RGB8 && dstFormat != PIX_FMT_RGB8
  2047. && srcFormat != PIX_FMT_BGR4 && dstFormat != PIX_FMT_BGR4
  2048. && srcFormat != PIX_FMT_RGB4 && dstFormat != PIX_FMT_RGB4
  2049. && srcFormat != PIX_FMT_BGR4_BYTE && dstFormat != PIX_FMT_BGR4_BYTE
  2050. && srcFormat != PIX_FMT_RGB4_BYTE && dstFormat != PIX_FMT_RGB4_BYTE
  2051. && srcFormat != PIX_FMT_MONOBLACK && dstFormat != PIX_FMT_MONOBLACK
  2052. && srcFormat != PIX_FMT_MONOWHITE && dstFormat != PIX_FMT_MONOWHITE
  2053. && dstFormat != PIX_FMT_RGB32_1
  2054. && dstFormat != PIX_FMT_BGR32_1
  2055. && (!needsDither || (c->flags&(SWS_FAST_BILINEAR|SWS_POINT))))
  2056. c->swScale= rgb2rgbWrapper;
  2057. if (srcFormat == PIX_FMT_YUV422P)
  2058. {
  2059. if (dstFormat == PIX_FMT_YUYV422)
  2060. c->swScale= YUV422PToYuy2Wrapper;
  2061. else if (dstFormat == PIX_FMT_UYVY422)
  2062. c->swScale= YUV422PToUyvyWrapper;
  2063. }
  2064. /* LQ converters if -sws 0 or -sws 4*/
  2065. if (c->flags&(SWS_FAST_BILINEAR|SWS_POINT)){
  2066. /* yv12_to_yuy2 */
  2067. if (srcFormat == PIX_FMT_YUV420P)
  2068. {
  2069. if (dstFormat == PIX_FMT_YUYV422)
  2070. c->swScale= PlanarToYuy2Wrapper;
  2071. else if (dstFormat == PIX_FMT_UYVY422)
  2072. c->swScale= PlanarToUyvyWrapper;
  2073. }
  2074. }
  2075. #ifdef COMPILE_ALTIVEC
  2076. if ((c->flags & SWS_CPU_CAPS_ALTIVEC) &&
  2077. srcFormat == PIX_FMT_YUV420P) {
  2078. // unscaled YV12 -> packed YUV, we want speed
  2079. if (dstFormat == PIX_FMT_YUYV422)
  2080. c->swScale= yv12toyuy2_unscaled_altivec;
  2081. else if (dstFormat == PIX_FMT_UYVY422)
  2082. c->swScale= yv12touyvy_unscaled_altivec;
  2083. }
  2084. #endif
  2085. /* simple copy */
  2086. if ( srcFormat == dstFormat
  2087. || (isPlanarYUV(srcFormat) && isGray(dstFormat))
  2088. || (isPlanarYUV(dstFormat) && isGray(srcFormat)))
  2089. {
  2090. if (isPacked(c->srcFormat))
  2091. c->swScale= packedCopy;
  2092. else /* Planar YUV or gray */
  2093. c->swScale= planarCopy;
  2094. }
  2095. /* gray16{le,be} conversions */
  2096. if (isGray16(srcFormat) && (isPlanarYUV(dstFormat) || (dstFormat == PIX_FMT_GRAY8)))
  2097. {
  2098. c->swScale= gray16togray;
  2099. }
  2100. if ((isPlanarYUV(srcFormat) || (srcFormat == PIX_FMT_GRAY8)) && isGray16(dstFormat))
  2101. {
  2102. c->swScale= graytogray16;
  2103. }
  2104. if (srcFormat != dstFormat && isGray16(srcFormat) && isGray16(dstFormat))
  2105. {
  2106. c->swScale= gray16swap;
  2107. }
  2108. #ifdef ARCH_BFIN
  2109. if (flags & SWS_CPU_CAPS_BFIN)
  2110. ff_bfin_get_unscaled_swscale (c);
  2111. #endif
  2112. if (c->swScale){
  2113. if (flags&SWS_PRINT_INFO)
  2114. av_log(c, AV_LOG_INFO, "using unscaled %s -> %s special converter\n",
  2115. sws_format_name(srcFormat), sws_format_name(dstFormat));
  2116. return c;
  2117. }
  2118. }
  2119. if (flags & SWS_CPU_CAPS_MMX2)
  2120. {
  2121. c->canMMX2BeUsed= (dstW >=srcW && (dstW&31)==0 && (srcW&15)==0) ? 1 : 0;
  2122. if (!c->canMMX2BeUsed && dstW >=srcW && (srcW&15)==0 && (flags&SWS_FAST_BILINEAR))
  2123. {
  2124. if (flags&SWS_PRINT_INFO)
  2125. av_log(c, AV_LOG_INFO, "output Width is not a multiple of 32 -> no MMX2 scaler\n");
  2126. }
  2127. if (usesHFilter) c->canMMX2BeUsed=0;
  2128. }
  2129. else
  2130. c->canMMX2BeUsed=0;
  2131. c->chrXInc= ((c->chrSrcW<<16) + (c->chrDstW>>1))/c->chrDstW;
  2132. c->chrYInc= ((c->chrSrcH<<16) + (c->chrDstH>>1))/c->chrDstH;
  2133. // match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst
  2134. // but only for the FAST_BILINEAR mode otherwise do correct scaling
  2135. // n-2 is the last chrominance sample available
  2136. // this is not perfect, but no one should notice the difference, the more correct variant
  2137. // would be like the vertical one, but that would require some special code for the
  2138. // first and last pixel
  2139. if (flags&SWS_FAST_BILINEAR)
  2140. {
  2141. if (c->canMMX2BeUsed)
  2142. {
  2143. c->lumXInc+= 20;
  2144. c->chrXInc+= 20;
  2145. }
  2146. //we don't use the x86asm scaler if mmx is available
  2147. else if (flags & SWS_CPU_CAPS_MMX)
  2148. {
  2149. c->lumXInc = ((srcW-2)<<16)/(dstW-2) - 20;
  2150. c->chrXInc = ((c->chrSrcW-2)<<16)/(c->chrDstW-2) - 20;
  2151. }
  2152. }
  2153. /* precalculate horizontal scaler filter coefficients */
  2154. {
  2155. const int filterAlign=
  2156. (flags & SWS_CPU_CAPS_MMX) ? 4 :
  2157. (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
  2158. 1;
  2159. initFilter(&c->hLumFilter, &c->hLumFilterPos, &c->hLumFilterSize, c->lumXInc,
  2160. srcW , dstW, filterAlign, 1<<14,
  2161. (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags,
  2162. srcFilter->lumH, dstFilter->lumH, c->param);
  2163. initFilter(&c->hChrFilter, &c->hChrFilterPos, &c->hChrFilterSize, c->chrXInc,
  2164. c->chrSrcW, c->chrDstW, filterAlign, 1<<14,
  2165. (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
  2166. srcFilter->chrH, dstFilter->chrH, c->param);
  2167. #define MAX_FUNNY_CODE_SIZE 10000
  2168. #if defined(COMPILE_MMX2)
  2169. // can't downscale !!!
  2170. if (c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR))
  2171. {
  2172. #ifdef MAP_ANONYMOUS
  2173. c->funnyYCode = (uint8_t*)mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
  2174. c->funnyUVCode = (uint8_t*)mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
  2175. #else
  2176. c->funnyYCode = av_malloc(MAX_FUNNY_CODE_SIZE);
  2177. c->funnyUVCode = av_malloc(MAX_FUNNY_CODE_SIZE);
  2178. #endif
  2179. c->lumMmx2Filter = av_malloc((dstW /8+8)*sizeof(int16_t));
  2180. c->chrMmx2Filter = av_malloc((c->chrDstW /4+8)*sizeof(int16_t));
  2181. c->lumMmx2FilterPos= av_malloc((dstW /2/8+8)*sizeof(int32_t));
  2182. c->chrMmx2FilterPos= av_malloc((c->chrDstW/2/4+8)*sizeof(int32_t));
  2183. initMMX2HScaler( dstW, c->lumXInc, c->funnyYCode , c->lumMmx2Filter, c->lumMmx2FilterPos, 8);
  2184. initMMX2HScaler(c->chrDstW, c->chrXInc, c->funnyUVCode, c->chrMmx2Filter, c->chrMmx2FilterPos, 4);
  2185. }
  2186. #endif /* defined(COMPILE_MMX2) */
  2187. } // Init Horizontal stuff
  2188. /* precalculate vertical scaler filter coefficients */
  2189. {
  2190. const int filterAlign=
  2191. (flags & SWS_CPU_CAPS_MMX) && (flags & SWS_ACCURATE_RND) ? 2 :
  2192. (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
  2193. 1;
  2194. initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize, c->lumYInc,
  2195. srcH , dstH, filterAlign, (1<<12),
  2196. (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags,
  2197. srcFilter->lumV, dstFilter->lumV, c->param);
  2198. initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize, c->chrYInc,
  2199. c->chrSrcH, c->chrDstH, filterAlign, (1<<12),
  2200. (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
  2201. srcFilter->chrV, dstFilter->chrV, c->param);
  2202. #ifdef HAVE_ALTIVEC
  2203. c->vYCoeffsBank = av_malloc(sizeof (vector signed short)*c->vLumFilterSize*c->dstH);
  2204. c->vCCoeffsBank = av_malloc(sizeof (vector signed short)*c->vChrFilterSize*c->chrDstH);
  2205. for (i=0;i<c->vLumFilterSize*c->dstH;i++) {
  2206. int j;
  2207. short *p = (short *)&c->vYCoeffsBank[i];
  2208. for (j=0;j<8;j++)
  2209. p[j] = c->vLumFilter[i];
  2210. }
  2211. for (i=0;i<c->vChrFilterSize*c->chrDstH;i++) {
  2212. int j;
  2213. short *p = (short *)&c->vCCoeffsBank[i];
  2214. for (j=0;j<8;j++)
  2215. p[j] = c->vChrFilter[i];
  2216. }
  2217. #endif
  2218. }
  2219. // Calculate Buffer Sizes so that they won't run out while handling these damn slices
  2220. c->vLumBufSize= c->vLumFilterSize;
  2221. c->vChrBufSize= c->vChrFilterSize;
  2222. for (i=0; i<dstH; i++)
  2223. {
  2224. int chrI= i*c->chrDstH / dstH;
  2225. int nextSlice= FFMAX(c->vLumFilterPos[i ] + c->vLumFilterSize - 1,
  2226. ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)<<c->chrSrcVSubSample));
  2227. nextSlice>>= c->chrSrcVSubSample;
  2228. nextSlice<<= c->chrSrcVSubSample;
  2229. if (c->vLumFilterPos[i ] + c->vLumBufSize < nextSlice)
  2230. c->vLumBufSize= nextSlice - c->vLumFilterPos[i];
  2231. if (c->vChrFilterPos[chrI] + c->vChrBufSize < (nextSlice>>c->chrSrcVSubSample))
  2232. c->vChrBufSize= (nextSlice>>c->chrSrcVSubSample) - c->vChrFilterPos[chrI];
  2233. }
  2234. // allocate pixbufs (we use dynamic allocation because otherwise we would need to
  2235. c->lumPixBuf= av_malloc(c->vLumBufSize*2*sizeof(int16_t*));
  2236. c->chrPixBuf= av_malloc(c->vChrBufSize*2*sizeof(int16_t*));
  2237. //Note we need at least one pixel more at the end because of the mmx code (just in case someone wanna replace the 4000/8000)
  2238. /* align at 16 bytes for AltiVec */
  2239. for (i=0; i<c->vLumBufSize; i++)
  2240. c->lumPixBuf[i]= c->lumPixBuf[i+c->vLumBufSize]= av_mallocz(VOF+1);
  2241. for (i=0; i<c->vChrBufSize; i++)
  2242. c->chrPixBuf[i]= c->chrPixBuf[i+c->vChrBufSize]= av_malloc((VOF+1)*2);
  2243. //try to avoid drawing green stuff between the right end and the stride end
  2244. for (i=0; i<c->vChrBufSize; i++) memset(c->chrPixBuf[i], 64, (VOF+1)*2);
  2245. assert(2*VOFW == VOF);
  2246. assert(c->chrDstH <= dstH);
  2247. if (flags&SWS_PRINT_INFO)
  2248. {
  2249. #ifdef DITHER1XBPP
  2250. const char *dither= " dithered";
  2251. #else
  2252. const char *dither= "";
  2253. #endif
  2254. if (flags&SWS_FAST_BILINEAR)
  2255. av_log(c, AV_LOG_INFO, "FAST_BILINEAR scaler, ");
  2256. else if (flags&SWS_BILINEAR)
  2257. av_log(c, AV_LOG_INFO, "BILINEAR scaler, ");
  2258. else if (flags&SWS_BICUBIC)
  2259. av_log(c, AV_LOG_INFO, "BICUBIC scaler, ");
  2260. else if (flags&SWS_X)
  2261. av_log(c, AV_LOG_INFO, "Experimental scaler, ");
  2262. else if (flags&SWS_POINT)
  2263. av_log(c, AV_LOG_INFO, "Nearest Neighbor / POINT scaler, ");
  2264. else if (flags&SWS_AREA)
  2265. av_log(c, AV_LOG_INFO, "Area Averageing scaler, ");
  2266. else if (flags&SWS_BICUBLIN)
  2267. av_log(c, AV_LOG_INFO, "luma BICUBIC / chroma BILINEAR scaler, ");
  2268. else if (flags&SWS_GAUSS)
  2269. av_log(c, AV_LOG_INFO, "Gaussian scaler, ");
  2270. else if (flags&SWS_SINC)
  2271. av_log(c, AV_LOG_INFO, "Sinc scaler, ");
  2272. else if (flags&SWS_LANCZOS)
  2273. av_log(c, AV_LOG_INFO, "Lanczos scaler, ");
  2274. else if (flags&SWS_SPLINE)
  2275. av_log(c, AV_LOG_INFO, "Bicubic spline scaler, ");
  2276. else
  2277. av_log(c, AV_LOG_INFO, "ehh flags invalid?! ");
  2278. if (dstFormat==PIX_FMT_BGR555 || dstFormat==PIX_FMT_BGR565)
  2279. av_log(c, AV_LOG_INFO, "from %s to%s %s ",
  2280. sws_format_name(srcFormat), dither, sws_format_name(dstFormat));
  2281. else
  2282. av_log(c, AV_LOG_INFO, "from %s to %s ",
  2283. sws_format_name(srcFormat), sws_format_name(dstFormat));
  2284. if (flags & SWS_CPU_CAPS_MMX2)
  2285. av_log(c, AV_LOG_INFO, "using MMX2\n");
  2286. else if (flags & SWS_CPU_CAPS_3DNOW)
  2287. av_log(c, AV_LOG_INFO, "using 3DNOW\n");
  2288. else if (flags & SWS_CPU_CAPS_MMX)
  2289. av_log(c, AV_LOG_INFO, "using MMX\n");
  2290. else if (flags & SWS_CPU_CAPS_ALTIVEC)
  2291. av_log(c, AV_LOG_INFO, "using AltiVec\n");
  2292. else
  2293. av_log(c, AV_LOG_INFO, "using C\n");
  2294. }
  2295. if (flags & SWS_PRINT_INFO)
  2296. {
  2297. if (flags & SWS_CPU_CAPS_MMX)
  2298. {
  2299. if (c->canMMX2BeUsed && (flags&SWS_FAST_BILINEAR))
  2300. av_log(c, AV_LOG_VERBOSE, "using FAST_BILINEAR MMX2 scaler for horizontal scaling\n");
  2301. else
  2302. {
  2303. if (c->hLumFilterSize==4)
  2304. av_log(c, AV_LOG_VERBOSE, "using 4-tap MMX scaler for horizontal luminance scaling\n");
  2305. else if (c->hLumFilterSize==8)
  2306. av_log(c, AV_LOG_VERBOSE, "using 8-tap MMX scaler for horizontal luminance scaling\n");
  2307. else
  2308. av_log(c, AV_LOG_VERBOSE, "using n-tap MMX scaler for horizontal luminance scaling\n");
  2309. if (c->hChrFilterSize==4)
  2310. av_log(c, AV_LOG_VERBOSE, "using 4-tap MMX scaler for horizontal chrominance scaling\n");
  2311. else if (c->hChrFilterSize==8)
  2312. av_log(c, AV_LOG_VERBOSE, "using 8-tap MMX scaler for horizontal chrominance scaling\n");
  2313. else
  2314. av_log(c, AV_LOG_VERBOSE, "using n-tap MMX scaler for horizontal chrominance scaling\n");
  2315. }
  2316. }
  2317. else
  2318. {
  2319. #if defined(ARCH_X86)
  2320. av_log(c, AV_LOG_VERBOSE, "using X86-Asm scaler for horizontal scaling\n");
  2321. #else
  2322. if (flags & SWS_FAST_BILINEAR)
  2323. av_log(c, AV_LOG_VERBOSE, "using FAST_BILINEAR C scaler for horizontal scaling\n");
  2324. else
  2325. av_log(c, AV_LOG_VERBOSE, "using C scaler for horizontal scaling\n");
  2326. #endif
  2327. }
  2328. if (isPlanarYUV(dstFormat))
  2329. {
  2330. if (c->vLumFilterSize==1)
  2331. av_log(c, AV_LOG_VERBOSE, "using 1-tap %s \"scaler\" for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2332. else
  2333. av_log(c, AV_LOG_VERBOSE, "using n-tap %s scaler for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2334. }
  2335. else
  2336. {
  2337. if (c->vLumFilterSize==1 && c->vChrFilterSize==2)
  2338. av_log(c, AV_LOG_VERBOSE, "using 1-tap %s \"scaler\" for vertical luminance scaling (BGR)\n"
  2339. " 2-tap scaler for vertical chrominance scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2340. else if (c->vLumFilterSize==2 && c->vChrFilterSize==2)
  2341. av_log(c, AV_LOG_VERBOSE, "using 2-tap linear %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2342. else
  2343. av_log(c, AV_LOG_VERBOSE, "using n-tap %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2344. }
  2345. if (dstFormat==PIX_FMT_BGR24)
  2346. av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR24 Converter\n",
  2347. (flags & SWS_CPU_CAPS_MMX2) ? "MMX2" : ((flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C"));
  2348. else if (dstFormat==PIX_FMT_RGB32)
  2349. av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR32 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2350. else if (dstFormat==PIX_FMT_BGR565)
  2351. av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR16 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2352. else if (dstFormat==PIX_FMT_BGR555)
  2353. av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR15 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2354. av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
  2355. }
  2356. if (flags & SWS_PRINT_INFO)
  2357. {
  2358. av_log(c, AV_LOG_DEBUG, "Lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  2359. c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
  2360. av_log(c, AV_LOG_DEBUG, "Chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  2361. c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH, c->chrXInc, c->chrYInc);
  2362. }
  2363. c->swScale= getSwsFunc(flags);
  2364. return c;
  2365. }
  2366. /**
  2367. * swscale wrapper, so we don't need to export the SwsContext.
  2368. * assumes planar YUV to be in YUV order instead of YVU
  2369. */
  2370. int sws_scale(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  2371. int srcSliceH, uint8_t* dst[], int dstStride[]){
  2372. int i;
  2373. uint8_t* src2[4]= {src[0], src[1], src[2]};
  2374. uint32_t pal[256];
  2375. int use_pal= c->srcFormat == PIX_FMT_PAL8
  2376. || c->srcFormat == PIX_FMT_BGR4_BYTE
  2377. || c->srcFormat == PIX_FMT_RGB4_BYTE
  2378. || c->srcFormat == PIX_FMT_BGR8
  2379. || c->srcFormat == PIX_FMT_RGB8;
  2380. if (c->sliceDir == 0 && srcSliceY != 0 && srcSliceY + srcSliceH != c->srcH) {
  2381. av_log(c, AV_LOG_ERROR, "Slices start in the middle!\n");
  2382. return 0;
  2383. }
  2384. if (c->sliceDir == 0) {
  2385. if (srcSliceY == 0) c->sliceDir = 1; else c->sliceDir = -1;
  2386. }
  2387. if (use_pal){
  2388. for (i=0; i<256; i++){
  2389. int p, r, g, b,y,u,v;
  2390. if(c->srcFormat == PIX_FMT_PAL8){
  2391. p=((uint32_t*)(src[1]))[i];
  2392. r= (p>>16)&0xFF;
  2393. g= (p>> 8)&0xFF;
  2394. b= p &0xFF;
  2395. }else if(c->srcFormat == PIX_FMT_RGB8){
  2396. r= (i>>5 )*36;
  2397. g= ((i>>2)&7)*36;
  2398. b= (i&3 )*85;
  2399. }else if(c->srcFormat == PIX_FMT_BGR8){
  2400. b= (i>>6 )*85;
  2401. g= ((i>>3)&7)*36;
  2402. r= (i&7 )*36;
  2403. }else if(c->srcFormat == PIX_FMT_RGB4_BYTE){
  2404. r= (i>>3 )*255;
  2405. g= ((i>>1)&3)*85;
  2406. b= (i&1 )*255;
  2407. }else if(c->srcFormat == PIX_FMT_BGR4_BYTE){
  2408. b= (i>>3 )*255;
  2409. g= ((i>>1)&3)*85;
  2410. r= (i&1 )*255;
  2411. }
  2412. y= av_clip_uint8((RY*r + GY*g + BY*b + ( 33<<(RGB2YUV_SHIFT-1)))>>RGB2YUV_SHIFT);
  2413. u= av_clip_uint8((RU*r + GU*g + BU*b + (257<<(RGB2YUV_SHIFT-1)))>>RGB2YUV_SHIFT);
  2414. v= av_clip_uint8((RV*r + GV*g + BV*b + (257<<(RGB2YUV_SHIFT-1)))>>RGB2YUV_SHIFT);
  2415. pal[i]= y + (u<<8) + (v<<16);
  2416. }
  2417. src2[1]= (uint8_t*)pal;
  2418. }
  2419. // copy strides, so they can safely be modified
  2420. if (c->sliceDir == 1) {
  2421. // slices go from top to bottom
  2422. int srcStride2[4]= {srcStride[0], srcStride[1], srcStride[2]};
  2423. int dstStride2[4]= {dstStride[0], dstStride[1], dstStride[2]};
  2424. return c->swScale(c, src2, srcStride2, srcSliceY, srcSliceH, dst, dstStride2);
  2425. } else {
  2426. // slices go from bottom to top => we flip the image internally
  2427. uint8_t* dst2[4]= {dst[0] + (c->dstH-1)*dstStride[0],
  2428. dst[1] + ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[1],
  2429. dst[2] + ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[2]};
  2430. int srcStride2[4]= {-srcStride[0], -srcStride[1], -srcStride[2]};
  2431. int dstStride2[4]= {-dstStride[0], -dstStride[1], -dstStride[2]};
  2432. src2[0] += (srcSliceH-1)*srcStride[0];
  2433. if (!use_pal)
  2434. src2[1] += ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[1];
  2435. src2[2] += ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[2];
  2436. return c->swScale(c, src2, srcStride2, c->srcH-srcSliceY-srcSliceH, srcSliceH, dst2, dstStride2);
  2437. }
  2438. }
  2439. /**
  2440. * swscale wrapper, so we don't need to export the SwsContext
  2441. */
  2442. int sws_scale_ordered(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  2443. int srcSliceH, uint8_t* dst[], int dstStride[]){
  2444. return sws_scale(c, src, srcStride, srcSliceY, srcSliceH, dst, dstStride);
  2445. }
  2446. SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
  2447. float lumaSharpen, float chromaSharpen,
  2448. float chromaHShift, float chromaVShift,
  2449. int verbose)
  2450. {
  2451. SwsFilter *filter= av_malloc(sizeof(SwsFilter));
  2452. if (lumaGBlur!=0.0){
  2453. filter->lumH= sws_getGaussianVec(lumaGBlur, 3.0);
  2454. filter->lumV= sws_getGaussianVec(lumaGBlur, 3.0);
  2455. }else{
  2456. filter->lumH= sws_getIdentityVec();
  2457. filter->lumV= sws_getIdentityVec();
  2458. }
  2459. if (chromaGBlur!=0.0){
  2460. filter->chrH= sws_getGaussianVec(chromaGBlur, 3.0);
  2461. filter->chrV= sws_getGaussianVec(chromaGBlur, 3.0);
  2462. }else{
  2463. filter->chrH= sws_getIdentityVec();
  2464. filter->chrV= sws_getIdentityVec();
  2465. }
  2466. if (chromaSharpen!=0.0){
  2467. SwsVector *id= sws_getIdentityVec();
  2468. sws_scaleVec(filter->chrH, -chromaSharpen);
  2469. sws_scaleVec(filter->chrV, -chromaSharpen);
  2470. sws_addVec(filter->chrH, id);
  2471. sws_addVec(filter->chrV, id);
  2472. sws_freeVec(id);
  2473. }
  2474. if (lumaSharpen!=0.0){
  2475. SwsVector *id= sws_getIdentityVec();
  2476. sws_scaleVec(filter->lumH, -lumaSharpen);
  2477. sws_scaleVec(filter->lumV, -lumaSharpen);
  2478. sws_addVec(filter->lumH, id);
  2479. sws_addVec(filter->lumV, id);
  2480. sws_freeVec(id);
  2481. }
  2482. if (chromaHShift != 0.0)
  2483. sws_shiftVec(filter->chrH, (int)(chromaHShift+0.5));
  2484. if (chromaVShift != 0.0)
  2485. sws_shiftVec(filter->chrV, (int)(chromaVShift+0.5));
  2486. sws_normalizeVec(filter->chrH, 1.0);
  2487. sws_normalizeVec(filter->chrV, 1.0);
  2488. sws_normalizeVec(filter->lumH, 1.0);
  2489. sws_normalizeVec(filter->lumV, 1.0);
  2490. if (verbose) sws_printVec(filter->chrH);
  2491. if (verbose) sws_printVec(filter->lumH);
  2492. return filter;
  2493. }
  2494. /**
  2495. * returns a normalized gaussian curve used to filter stuff
  2496. * quality=3 is high quality, lowwer is lowwer quality
  2497. */
  2498. SwsVector *sws_getGaussianVec(double variance, double quality){
  2499. const int length= (int)(variance*quality + 0.5) | 1;
  2500. int i;
  2501. double *coeff= av_malloc(length*sizeof(double));
  2502. double middle= (length-1)*0.5;
  2503. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2504. vec->coeff= coeff;
  2505. vec->length= length;
  2506. for (i=0; i<length; i++)
  2507. {
  2508. double dist= i-middle;
  2509. coeff[i]= exp(-dist*dist/(2*variance*variance)) / sqrt(2*variance*PI);
  2510. }
  2511. sws_normalizeVec(vec, 1.0);
  2512. return vec;
  2513. }
  2514. SwsVector *sws_getConstVec(double c, int length){
  2515. int i;
  2516. double *coeff= av_malloc(length*sizeof(double));
  2517. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2518. vec->coeff= coeff;
  2519. vec->length= length;
  2520. for (i=0; i<length; i++)
  2521. coeff[i]= c;
  2522. return vec;
  2523. }
  2524. SwsVector *sws_getIdentityVec(void){
  2525. return sws_getConstVec(1.0, 1);
  2526. }
  2527. double sws_dcVec(SwsVector *a){
  2528. int i;
  2529. double sum=0;
  2530. for (i=0; i<a->length; i++)
  2531. sum+= a->coeff[i];
  2532. return sum;
  2533. }
  2534. void sws_scaleVec(SwsVector *a, double scalar){
  2535. int i;
  2536. for (i=0; i<a->length; i++)
  2537. a->coeff[i]*= scalar;
  2538. }
  2539. void sws_normalizeVec(SwsVector *a, double height){
  2540. sws_scaleVec(a, height/sws_dcVec(a));
  2541. }
  2542. static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b){
  2543. int length= a->length + b->length - 1;
  2544. double *coeff= av_malloc(length*sizeof(double));
  2545. int i, j;
  2546. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2547. vec->coeff= coeff;
  2548. vec->length= length;
  2549. for (i=0; i<length; i++) coeff[i]= 0.0;
  2550. for (i=0; i<a->length; i++)
  2551. {
  2552. for (j=0; j<b->length; j++)
  2553. {
  2554. coeff[i+j]+= a->coeff[i]*b->coeff[j];
  2555. }
  2556. }
  2557. return vec;
  2558. }
  2559. static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b){
  2560. int length= FFMAX(a->length, b->length);
  2561. double *coeff= av_malloc(length*sizeof(double));
  2562. int i;
  2563. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2564. vec->coeff= coeff;
  2565. vec->length= length;
  2566. for (i=0; i<length; i++) coeff[i]= 0.0;
  2567. for (i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
  2568. for (i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]+= b->coeff[i];
  2569. return vec;
  2570. }
  2571. static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b){
  2572. int length= FFMAX(a->length, b->length);
  2573. double *coeff= av_malloc(length*sizeof(double));
  2574. int i;
  2575. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2576. vec->coeff= coeff;
  2577. vec->length= length;
  2578. for (i=0; i<length; i++) coeff[i]= 0.0;
  2579. for (i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
  2580. for (i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]-= b->coeff[i];
  2581. return vec;
  2582. }
  2583. /* shift left / or right if "shift" is negative */
  2584. static SwsVector *sws_getShiftedVec(SwsVector *a, int shift){
  2585. int length= a->length + FFABS(shift)*2;
  2586. double *coeff= av_malloc(length*sizeof(double));
  2587. int i;
  2588. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2589. vec->coeff= coeff;
  2590. vec->length= length;
  2591. for (i=0; i<length; i++) coeff[i]= 0.0;
  2592. for (i=0; i<a->length; i++)
  2593. {
  2594. coeff[i + (length-1)/2 - (a->length-1)/2 - shift]= a->coeff[i];
  2595. }
  2596. return vec;
  2597. }
  2598. void sws_shiftVec(SwsVector *a, int shift){
  2599. SwsVector *shifted= sws_getShiftedVec(a, shift);
  2600. av_free(a->coeff);
  2601. a->coeff= shifted->coeff;
  2602. a->length= shifted->length;
  2603. av_free(shifted);
  2604. }
  2605. void sws_addVec(SwsVector *a, SwsVector *b){
  2606. SwsVector *sum= sws_sumVec(a, b);
  2607. av_free(a->coeff);
  2608. a->coeff= sum->coeff;
  2609. a->length= sum->length;
  2610. av_free(sum);
  2611. }
  2612. void sws_subVec(SwsVector *a, SwsVector *b){
  2613. SwsVector *diff= sws_diffVec(a, b);
  2614. av_free(a->coeff);
  2615. a->coeff= diff->coeff;
  2616. a->length= diff->length;
  2617. av_free(diff);
  2618. }
  2619. void sws_convVec(SwsVector *a, SwsVector *b){
  2620. SwsVector *conv= sws_getConvVec(a, b);
  2621. av_free(a->coeff);
  2622. a->coeff= conv->coeff;
  2623. a->length= conv->length;
  2624. av_free(conv);
  2625. }
  2626. SwsVector *sws_cloneVec(SwsVector *a){
  2627. double *coeff= av_malloc(a->length*sizeof(double));
  2628. int i;
  2629. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2630. vec->coeff= coeff;
  2631. vec->length= a->length;
  2632. for (i=0; i<a->length; i++) coeff[i]= a->coeff[i];
  2633. return vec;
  2634. }
  2635. void sws_printVec(SwsVector *a){
  2636. int i;
  2637. double max=0;
  2638. double min=0;
  2639. double range;
  2640. for (i=0; i<a->length; i++)
  2641. if (a->coeff[i]>max) max= a->coeff[i];
  2642. for (i=0; i<a->length; i++)
  2643. if (a->coeff[i]<min) min= a->coeff[i];
  2644. range= max - min;
  2645. for (i=0; i<a->length; i++)
  2646. {
  2647. int x= (int)((a->coeff[i]-min)*60.0/range +0.5);
  2648. av_log(NULL, AV_LOG_DEBUG, "%1.3f ", a->coeff[i]);
  2649. for (;x>0; x--) av_log(NULL, AV_LOG_DEBUG, " ");
  2650. av_log(NULL, AV_LOG_DEBUG, "|\n");
  2651. }
  2652. }
  2653. void sws_freeVec(SwsVector *a){
  2654. if (!a) return;
  2655. av_freep(&a->coeff);
  2656. a->length=0;
  2657. av_free(a);
  2658. }
  2659. void sws_freeFilter(SwsFilter *filter){
  2660. if (!filter) return;
  2661. if (filter->lumH) sws_freeVec(filter->lumH);
  2662. if (filter->lumV) sws_freeVec(filter->lumV);
  2663. if (filter->chrH) sws_freeVec(filter->chrH);
  2664. if (filter->chrV) sws_freeVec(filter->chrV);
  2665. av_free(filter);
  2666. }
  2667. void sws_freeContext(SwsContext *c){
  2668. int i;
  2669. if (!c) return;
  2670. if (c->lumPixBuf)
  2671. {
  2672. for (i=0; i<c->vLumBufSize; i++)
  2673. av_freep(&c->lumPixBuf[i]);
  2674. av_freep(&c->lumPixBuf);
  2675. }
  2676. if (c->chrPixBuf)
  2677. {
  2678. for (i=0; i<c->vChrBufSize; i++)
  2679. av_freep(&c->chrPixBuf[i]);
  2680. av_freep(&c->chrPixBuf);
  2681. }
  2682. av_freep(&c->vLumFilter);
  2683. av_freep(&c->vChrFilter);
  2684. av_freep(&c->hLumFilter);
  2685. av_freep(&c->hChrFilter);
  2686. #ifdef HAVE_ALTIVEC
  2687. av_freep(&c->vYCoeffsBank);
  2688. av_freep(&c->vCCoeffsBank);
  2689. #endif
  2690. av_freep(&c->vLumFilterPos);
  2691. av_freep(&c->vChrFilterPos);
  2692. av_freep(&c->hLumFilterPos);
  2693. av_freep(&c->hChrFilterPos);
  2694. #if defined(ARCH_X86) && defined(CONFIG_GPL)
  2695. #ifdef MAP_ANONYMOUS
  2696. if (c->funnyYCode) munmap(c->funnyYCode, MAX_FUNNY_CODE_SIZE);
  2697. if (c->funnyUVCode) munmap(c->funnyUVCode, MAX_FUNNY_CODE_SIZE);
  2698. #else
  2699. av_free(c->funnyYCode);
  2700. av_free(c->funnyUVCode);
  2701. #endif
  2702. c->funnyYCode=NULL;
  2703. c->funnyUVCode=NULL;
  2704. #endif /* defined(ARCH_X86) */
  2705. av_freep(&c->lumMmx2Filter);
  2706. av_freep(&c->chrMmx2Filter);
  2707. av_freep(&c->lumMmx2FilterPos);
  2708. av_freep(&c->chrMmx2FilterPos);
  2709. av_freep(&c->yuvTable);
  2710. av_free(c);
  2711. }
  2712. /**
  2713. * Checks if context is valid or reallocs a new one instead.
  2714. * If context is NULL, just calls sws_getContext() to get a new one.
  2715. * Otherwise, checks if the parameters are the same already saved in context.
  2716. * If that is the case, returns the current context.
  2717. * Otherwise, frees context and gets a new one.
  2718. *
  2719. * Be warned that srcFilter, dstFilter are not checked, they are
  2720. * asumed to remain valid.
  2721. */
  2722. struct SwsContext *sws_getCachedContext(struct SwsContext *context,
  2723. int srcW, int srcH, int srcFormat,
  2724. int dstW, int dstH, int dstFormat, int flags,
  2725. SwsFilter *srcFilter, SwsFilter *dstFilter, double *param)
  2726. {
  2727. static const double default_param[2] = {SWS_PARAM_DEFAULT, SWS_PARAM_DEFAULT};
  2728. if (!param)
  2729. param = default_param;
  2730. if (context) {
  2731. if (context->srcW != srcW || context->srcH != srcH ||
  2732. context->srcFormat != srcFormat ||
  2733. context->dstW != dstW || context->dstH != dstH ||
  2734. context->dstFormat != dstFormat || context->flags != flags ||
  2735. context->param[0] != param[0] || context->param[1] != param[1])
  2736. {
  2737. sws_freeContext(context);
  2738. context = NULL;
  2739. }
  2740. }
  2741. if (!context) {
  2742. return sws_getContext(srcW, srcH, srcFormat,
  2743. dstW, dstH, dstFormat, flags,
  2744. srcFilter, dstFilter, param);
  2745. }
  2746. return context;
  2747. }