You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2679 lines
85KB

  1. /*
  2. * VC-1 and WMV3 decoder
  3. * Copyright (c) 2006 Konstantin Shishkov
  4. * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
  5. *
  6. * This library is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2 of the License, or (at your option) any later version.
  10. *
  11. * This library is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with this library; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. *
  20. */
  21. /**
  22. * @file vc1.c
  23. * VC-1 and WMV3 decoder
  24. *
  25. */
  26. #include "common.h"
  27. #include "dsputil.h"
  28. #include "avcodec.h"
  29. #include "mpegvideo.h"
  30. #include "vc1data.h"
  31. #include "vc1acdata.h"
  32. #undef NDEBUG
  33. #include <assert.h>
  34. extern const uint32_t ff_table0_dc_lum[120][2], ff_table1_dc_lum[120][2];
  35. extern const uint32_t ff_table0_dc_chroma[120][2], ff_table1_dc_chroma[120][2];
  36. extern VLC ff_msmp4_dc_luma_vlc[2], ff_msmp4_dc_chroma_vlc[2];
  37. #define MB_INTRA_VLC_BITS 9
  38. extern VLC ff_msmp4_mb_i_vlc;
  39. extern const uint16_t ff_msmp4_mb_i_table[64][2];
  40. #define DC_VLC_BITS 9
  41. #define AC_VLC_BITS 9
  42. static const uint16_t table_mb_intra[64][2];
  43. /** Available Profiles */
  44. //@{
  45. enum Profile {
  46. PROFILE_SIMPLE,
  47. PROFILE_MAIN,
  48. PROFILE_COMPLEX, ///< TODO: WMV9 specific
  49. PROFILE_ADVANCED
  50. };
  51. //@}
  52. /** Sequence quantizer mode */
  53. //@{
  54. enum QuantMode {
  55. QUANT_FRAME_IMPLICIT, ///< Implicitly specified at frame level
  56. QUANT_FRAME_EXPLICIT, ///< Explicitly specified at frame level
  57. QUANT_NON_UNIFORM, ///< Non-uniform quant used for all frames
  58. QUANT_UNIFORM ///< Uniform quant used for all frames
  59. };
  60. //@}
  61. /** Where quant can be changed */
  62. //@{
  63. enum DQProfile {
  64. DQPROFILE_FOUR_EDGES,
  65. DQPROFILE_DOUBLE_EDGES,
  66. DQPROFILE_SINGLE_EDGE,
  67. DQPROFILE_ALL_MBS
  68. };
  69. //@}
  70. /** @name Where quant can be changed
  71. */
  72. //@{
  73. enum DQSingleEdge {
  74. DQSINGLE_BEDGE_LEFT,
  75. DQSINGLE_BEDGE_TOP,
  76. DQSINGLE_BEDGE_RIGHT,
  77. DQSINGLE_BEDGE_BOTTOM
  78. };
  79. //@}
  80. /** Which pair of edges is quantized with ALTPQUANT */
  81. //@{
  82. enum DQDoubleEdge {
  83. DQDOUBLE_BEDGE_TOPLEFT,
  84. DQDOUBLE_BEDGE_TOPRIGHT,
  85. DQDOUBLE_BEDGE_BOTTOMRIGHT,
  86. DQDOUBLE_BEDGE_BOTTOMLEFT
  87. };
  88. //@}
  89. /** MV modes for P frames */
  90. //@{
  91. enum MVModes {
  92. MV_PMODE_1MV_HPEL_BILIN,
  93. MV_PMODE_1MV,
  94. MV_PMODE_1MV_HPEL,
  95. MV_PMODE_MIXED_MV,
  96. MV_PMODE_INTENSITY_COMP
  97. };
  98. //@}
  99. /** @name MV types for B frames */
  100. //@{
  101. enum BMVTypes {
  102. BMV_TYPE_BACKWARD,
  103. BMV_TYPE_FORWARD,
  104. BMV_TYPE_INTERPOLATED = 3 //XXX: ??
  105. };
  106. //@}
  107. /** @name Block types for P/B frames */
  108. //@{
  109. enum TransformTypes {
  110. TT_8X8,
  111. TT_8X4_BOTTOM,
  112. TT_8X4_TOP,
  113. TT_8X4, //Both halves
  114. TT_4X8_RIGHT,
  115. TT_4X8_LEFT,
  116. TT_4X8, //Both halves
  117. TT_4X4
  118. };
  119. //@}
  120. /** Table for conversion between TTBLK and TTMB */
  121. static const int ttblk_to_tt[3][8] = {
  122. { TT_8X4, TT_4X8, TT_8X8, TT_4X4, TT_8X4_TOP, TT_8X4_BOTTOM, TT_4X8_RIGHT, TT_4X8_LEFT },
  123. { TT_8X8, TT_4X8_RIGHT, TT_4X8_LEFT, TT_4X4, TT_8X4, TT_4X8, TT_8X4_BOTTOM, TT_8X4_TOP },
  124. { TT_8X8, TT_4X8, TT_4X4, TT_8X4_BOTTOM, TT_4X8_RIGHT, TT_4X8_LEFT, TT_8X4, TT_8X4_TOP }
  125. };
  126. /** MV P mode - the 5th element is only used for mode 1 */
  127. static const uint8_t mv_pmode_table[2][5] = {
  128. { MV_PMODE_1MV_HPEL_BILIN, MV_PMODE_1MV, MV_PMODE_1MV_HPEL, MV_PMODE_INTENSITY_COMP, MV_PMODE_MIXED_MV },
  129. { MV_PMODE_1MV, MV_PMODE_MIXED_MV, MV_PMODE_1MV_HPEL, MV_PMODE_INTENSITY_COMP, MV_PMODE_1MV_HPEL_BILIN }
  130. };
  131. /** One more frame type */
  132. #define BI_TYPE 7
  133. static const int fps_nr[5] = { 24, 25, 30, 50, 60 },
  134. fps_dr[2] = { 1000, 1001 };
  135. static const uint8_t pquant_table[3][32] = {
  136. { /* Implicit quantizer */
  137. 0, 1, 2, 3, 4, 5, 6, 7, 8, 6, 7, 8, 9, 10, 11, 12,
  138. 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 29, 31
  139. },
  140. { /* Explicit quantizer, pquantizer uniform */
  141. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
  142. 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31
  143. },
  144. { /* Explicit quantizer, pquantizer non-uniform */
  145. 0, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
  146. 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 31
  147. }
  148. };
  149. /** @name VC-1 VLC tables and defines
  150. * @todo TODO move this into the context
  151. */
  152. //@{
  153. #define VC1_BFRACTION_VLC_BITS 7
  154. static VLC vc1_bfraction_vlc;
  155. #define VC1_IMODE_VLC_BITS 4
  156. static VLC vc1_imode_vlc;
  157. #define VC1_NORM2_VLC_BITS 3
  158. static VLC vc1_norm2_vlc;
  159. #define VC1_NORM6_VLC_BITS 9
  160. static VLC vc1_norm6_vlc;
  161. /* Could be optimized, one table only needs 8 bits */
  162. #define VC1_TTMB_VLC_BITS 9 //12
  163. static VLC vc1_ttmb_vlc[3];
  164. #define VC1_MV_DIFF_VLC_BITS 9 //15
  165. static VLC vc1_mv_diff_vlc[4];
  166. #define VC1_CBPCY_P_VLC_BITS 9 //14
  167. static VLC vc1_cbpcy_p_vlc[4];
  168. #define VC1_4MV_BLOCK_PATTERN_VLC_BITS 6
  169. static VLC vc1_4mv_block_pattern_vlc[4];
  170. #define VC1_TTBLK_VLC_BITS 5
  171. static VLC vc1_ttblk_vlc[3];
  172. #define VC1_SUBBLKPAT_VLC_BITS 6
  173. static VLC vc1_subblkpat_vlc[3];
  174. static VLC vc1_ac_coeff_table[8];
  175. //@}
  176. enum CodingSet {
  177. CS_HIGH_MOT_INTRA = 0,
  178. CS_HIGH_MOT_INTER,
  179. CS_LOW_MOT_INTRA,
  180. CS_LOW_MOT_INTER,
  181. CS_MID_RATE_INTRA,
  182. CS_MID_RATE_INTER,
  183. CS_HIGH_RATE_INTRA,
  184. CS_HIGH_RATE_INTER
  185. };
  186. /** The VC1 Context
  187. * @fixme Change size wherever another size is more efficient
  188. * Many members are only used for Advanced Profile
  189. */
  190. typedef struct VC1Context{
  191. MpegEncContext s;
  192. int bits;
  193. /** Simple/Main Profile sequence header */
  194. //@{
  195. int res_sm; ///< reserved, 2b
  196. int res_x8; ///< reserved
  197. int multires; ///< frame-level RESPIC syntax element present
  198. int res_fasttx; ///< reserved, always 1
  199. int res_transtab; ///< reserved, always 0
  200. int rangered; ///< RANGEREDFRM (range reduction) syntax element present
  201. ///< at frame level
  202. int res_rtm_flag; ///< reserved, set to 1
  203. int reserved; ///< reserved
  204. //@}
  205. /** Advanced Profile */
  206. //@{
  207. int level; ///< 3bits, for Advanced/Simple Profile, provided by TS layer
  208. int chromaformat; ///< 2bits, 2=4:2:0, only defined
  209. int postprocflag; ///< Per-frame processing suggestion flag present
  210. int broadcast; ///< TFF/RFF present
  211. int interlace; ///< Progressive/interlaced (RPTFTM syntax element)
  212. int tfcntrflag; ///< TFCNTR present
  213. int panscanflag; ///< NUMPANSCANWIN, TOPLEFT{X,Y}, BOTRIGHT{X,Y} present
  214. int extended_dmv; ///< Additional extended dmv range at P/B frame-level
  215. int color_prim; ///< 8bits, chroma coordinates of the color primaries
  216. int transfer_char; ///< 8bits, Opto-electronic transfer characteristics
  217. int matrix_coef; ///< 8bits, Color primaries->YCbCr transform matrix
  218. int hrd_param_flag; ///< Presence of Hypothetical Reference
  219. ///< Decoder parameters
  220. //@}
  221. /** Sequence header data for all Profiles
  222. * TODO: choose between ints, uint8_ts and monobit flags
  223. */
  224. //@{
  225. int profile; ///< 2bits, Profile
  226. int frmrtq_postproc; ///< 3bits,
  227. int bitrtq_postproc; ///< 5bits, quantized framerate-based postprocessing strength
  228. int fastuvmc; ///< Rounding of qpel vector to hpel ? (not in Simple)
  229. int extended_mv; ///< Ext MV in P/B (not in Simple)
  230. int dquant; ///< How qscale varies with MBs, 2bits (not in Simple)
  231. int vstransform; ///< variable-size [48]x[48] transform type + info
  232. int overlap; ///< overlapped transforms in use
  233. int quantizer_mode; ///< 2bits, quantizer mode used for sequence, see QUANT_*
  234. int finterpflag; ///< INTERPFRM present
  235. //@}
  236. /** Frame decoding info for all profiles */
  237. //@{
  238. uint8_t mv_mode; ///< MV coding monde
  239. uint8_t mv_mode2; ///< Secondary MV coding mode (B frames)
  240. int k_x; ///< Number of bits for MVs (depends on MV range)
  241. int k_y; ///< Number of bits for MVs (depends on MV range)
  242. int range_x, range_y; ///< MV range
  243. uint8_t pq, altpq; ///< Current/alternate frame quantizer scale
  244. /** pquant parameters */
  245. //@{
  246. uint8_t dquantfrm;
  247. uint8_t dqprofile;
  248. uint8_t dqsbedge;
  249. uint8_t dqbilevel;
  250. //@}
  251. /** AC coding set indexes
  252. * @see 8.1.1.10, p(1)10
  253. */
  254. //@{
  255. int c_ac_table_index; ///< Chroma index from ACFRM element
  256. int y_ac_table_index; ///< Luma index from AC2FRM element
  257. //@}
  258. int ttfrm; ///< Transform type info present at frame level
  259. uint8_t ttmbf; ///< Transform type flag
  260. int ttmb; ///< Transform type
  261. uint8_t ttblk4x4; ///< Value of ttblk which indicates a 4x4 transform
  262. int codingset; ///< index of current table set from 11.8 to use for luma block decoding
  263. int codingset2; ///< index of current table set from 11.8 to use for chroma block decoding
  264. int pqindex; ///< raw pqindex used in coding set selection
  265. int a_avail, c_avail;
  266. /** Luma compensation parameters */
  267. //@{
  268. uint8_t lumscale;
  269. uint8_t lumshift;
  270. //@}
  271. int16_t bfraction; ///< Relative position % anchors=> how to scale MVs
  272. uint8_t halfpq; ///< Uniform quant over image and qp+.5
  273. uint8_t respic; ///< Frame-level flag for resized images
  274. int buffer_fullness; ///< HRD info
  275. /** Ranges:
  276. * -# 0 -> [-64n 63.f] x [-32, 31.f]
  277. * -# 1 -> [-128, 127.f] x [-64, 63.f]
  278. * -# 2 -> [-512, 511.f] x [-128, 127.f]
  279. * -# 3 -> [-1024, 1023.f] x [-256, 255.f]
  280. */
  281. uint8_t mvrange;
  282. uint8_t pquantizer; ///< Uniform (over sequence) quantizer in use
  283. uint8_t *previous_line_cbpcy; ///< To use for predicted CBPCY
  284. VLC *cbpcy_vlc; ///< CBPCY VLC table
  285. int tt_index; ///< Index for Transform Type tables
  286. uint8_t* mv_type_mb_plane; ///< bitplane for mv_type == (4MV)
  287. uint8_t* skip_mb_plane; ///< bitplane for skipped MBs
  288. // BitPlane direct_mb_plane; ///< bitplane for "direct" MBs
  289. int mv_type_is_raw; ///< mv type mb plane is not coded
  290. int skip_is_raw; ///< skip mb plane is not coded
  291. /** Frame decoding info for S/M profiles only */
  292. //@{
  293. uint8_t rangeredfrm; ///< out_sample = CLIP((in_sample-128)*2+128)
  294. uint8_t interpfrm;
  295. //@}
  296. /** Frame decoding info for Advanced profile */
  297. //@{
  298. uint8_t fcm; ///< 0->Progressive, 2->Frame-Interlace, 3->Field-Interlace
  299. uint8_t numpanscanwin;
  300. uint8_t tfcntr;
  301. uint8_t rptfrm, tff, rff;
  302. uint16_t topleftx;
  303. uint16_t toplefty;
  304. uint16_t bottomrightx;
  305. uint16_t bottomrighty;
  306. uint8_t uvsamp;
  307. uint8_t postproc;
  308. int hrd_num_leaky_buckets;
  309. uint8_t bit_rate_exponent;
  310. uint8_t buffer_size_exponent;
  311. // BitPlane ac_pred_plane; ///< AC prediction flags bitplane
  312. // BitPlane over_flags_plane; ///< Overflags bitplane
  313. uint8_t condover;
  314. uint16_t *hrd_rate, *hrd_buffer;
  315. uint8_t *hrd_fullness;
  316. uint8_t range_mapy_flag;
  317. uint8_t range_mapuv_flag;
  318. uint8_t range_mapy;
  319. uint8_t range_mapuv;
  320. //@}
  321. } VC1Context;
  322. /**
  323. * Get unary code of limited length
  324. * @fixme FIXME Slow and ugly
  325. * @param gb GetBitContext
  326. * @param[in] stop The bitstop value (unary code of 1's or 0's)
  327. * @param[in] len Maximum length
  328. * @return Unary length/index
  329. */
  330. static int get_prefix(GetBitContext *gb, int stop, int len)
  331. {
  332. #if 1
  333. int i;
  334. for(i = 0; i < len && get_bits1(gb) != stop; i++);
  335. return i;
  336. /* int i = 0, tmp = !stop;
  337. while (i != len && tmp != stop)
  338. {
  339. tmp = get_bits(gb, 1);
  340. i++;
  341. }
  342. if (i == len && tmp != stop) return len+1;
  343. return i;*/
  344. #else
  345. unsigned int buf;
  346. int log;
  347. OPEN_READER(re, gb);
  348. UPDATE_CACHE(re, gb);
  349. buf=GET_CACHE(re, gb); //Still not sure
  350. if (stop) buf = ~buf;
  351. log= av_log2(-buf); //FIXME: -?
  352. if (log < limit){
  353. LAST_SKIP_BITS(re, gb, log+1);
  354. CLOSE_READER(re, gb);
  355. return log;
  356. }
  357. LAST_SKIP_BITS(re, gb, limit);
  358. CLOSE_READER(re, gb);
  359. return limit;
  360. #endif
  361. }
  362. static inline int decode210(GetBitContext *gb){
  363. int n;
  364. n = get_bits1(gb);
  365. if (n == 1)
  366. return 0;
  367. else
  368. return 2 - get_bits1(gb);
  369. }
  370. /**
  371. * Init VC-1 specific tables and VC1Context members
  372. * @param v The VC1Context to initialize
  373. * @return Status
  374. */
  375. static int vc1_init_common(VC1Context *v)
  376. {
  377. static int done = 0;
  378. int i = 0;
  379. v->hrd_rate = v->hrd_buffer = NULL;
  380. /* VLC tables */
  381. if(!done)
  382. {
  383. done = 1;
  384. init_vlc(&vc1_bfraction_vlc, VC1_BFRACTION_VLC_BITS, 23,
  385. vc1_bfraction_bits, 1, 1,
  386. vc1_bfraction_codes, 1, 1, 1);
  387. init_vlc(&vc1_norm2_vlc, VC1_NORM2_VLC_BITS, 4,
  388. vc1_norm2_bits, 1, 1,
  389. vc1_norm2_codes, 1, 1, 1);
  390. init_vlc(&vc1_norm6_vlc, VC1_NORM6_VLC_BITS, 64,
  391. vc1_norm6_bits, 1, 1,
  392. vc1_norm6_codes, 2, 2, 1);
  393. init_vlc(&vc1_imode_vlc, VC1_IMODE_VLC_BITS, 7,
  394. vc1_imode_bits, 1, 1,
  395. vc1_imode_codes, 1, 1, 1);
  396. for (i=0; i<3; i++)
  397. {
  398. init_vlc(&vc1_ttmb_vlc[i], VC1_TTMB_VLC_BITS, 16,
  399. vc1_ttmb_bits[i], 1, 1,
  400. vc1_ttmb_codes[i], 2, 2, 1);
  401. init_vlc(&vc1_ttblk_vlc[i], VC1_TTBLK_VLC_BITS, 8,
  402. vc1_ttblk_bits[i], 1, 1,
  403. vc1_ttblk_codes[i], 1, 1, 1);
  404. init_vlc(&vc1_subblkpat_vlc[i], VC1_SUBBLKPAT_VLC_BITS, 15,
  405. vc1_subblkpat_bits[i], 1, 1,
  406. vc1_subblkpat_codes[i], 1, 1, 1);
  407. }
  408. for(i=0; i<4; i++)
  409. {
  410. init_vlc(&vc1_4mv_block_pattern_vlc[i], VC1_4MV_BLOCK_PATTERN_VLC_BITS, 16,
  411. vc1_4mv_block_pattern_bits[i], 1, 1,
  412. vc1_4mv_block_pattern_codes[i], 1, 1, 1);
  413. init_vlc(&vc1_cbpcy_p_vlc[i], VC1_CBPCY_P_VLC_BITS, 64,
  414. vc1_cbpcy_p_bits[i], 1, 1,
  415. vc1_cbpcy_p_codes[i], 2, 2, 1);
  416. init_vlc(&vc1_mv_diff_vlc[i], VC1_MV_DIFF_VLC_BITS, 73,
  417. vc1_mv_diff_bits[i], 1, 1,
  418. vc1_mv_diff_codes[i], 2, 2, 1);
  419. }
  420. for(i=0; i<8; i++)
  421. init_vlc(&vc1_ac_coeff_table[i], AC_VLC_BITS, vc1_ac_sizes[i],
  422. &vc1_ac_tables[i][0][1], 8, 4,
  423. &vc1_ac_tables[i][0][0], 8, 4, 1);
  424. init_vlc(&ff_msmp4_mb_i_vlc, MB_INTRA_VLC_BITS, 64,
  425. &ff_msmp4_mb_i_table[0][1], 4, 2,
  426. &ff_msmp4_mb_i_table[0][0], 4, 2, 1);
  427. }
  428. /* Other defaults */
  429. v->pq = -1;
  430. v->mvrange = 0; /* 7.1.1.18, p80 */
  431. return 0;
  432. }
  433. /***********************************************************************/
  434. /**
  435. * @defgroup bitplane VC9 Bitplane decoding
  436. * @see 8.7, p56
  437. * @{
  438. */
  439. /** @addtogroup bitplane
  440. * Imode types
  441. * @{
  442. */
  443. enum Imode {
  444. IMODE_RAW,
  445. IMODE_NORM2,
  446. IMODE_DIFF2,
  447. IMODE_NORM6,
  448. IMODE_DIFF6,
  449. IMODE_ROWSKIP,
  450. IMODE_COLSKIP
  451. };
  452. /** @} */ //imode defines
  453. /** Decode rows by checking if they are skipped
  454. * @param plane Buffer to store decoded bits
  455. * @param[in] width Width of this buffer
  456. * @param[in] height Height of this buffer
  457. * @param[in] stride of this buffer
  458. */
  459. static void decode_rowskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  460. int x, y;
  461. for (y=0; y<height; y++){
  462. if (!get_bits(gb, 1)) //rowskip
  463. memset(plane, 0, width);
  464. else
  465. for (x=0; x<width; x++)
  466. plane[x] = get_bits(gb, 1);
  467. plane += stride;
  468. }
  469. }
  470. /** Decode columns by checking if they are skipped
  471. * @param plane Buffer to store decoded bits
  472. * @param[in] width Width of this buffer
  473. * @param[in] height Height of this buffer
  474. * @param[in] stride of this buffer
  475. * @fixme FIXME: Optimize
  476. */
  477. static void decode_colskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  478. int x, y;
  479. for (x=0; x<width; x++){
  480. if (!get_bits(gb, 1)) //colskip
  481. for (y=0; y<height; y++)
  482. plane[y*stride] = 0;
  483. else
  484. for (y=0; y<height; y++)
  485. plane[y*stride] = get_bits(gb, 1);
  486. plane ++;
  487. }
  488. }
  489. /** Decode a bitplane's bits
  490. * @param bp Bitplane where to store the decode bits
  491. * @param v VC-1 context for bit reading and logging
  492. * @return Status
  493. * @fixme FIXME: Optimize
  494. * @todo TODO: Decide if a struct is needed
  495. */
  496. static int bitplane_decoding(uint8_t* data, int *raw_flag, VC1Context *v)
  497. {
  498. GetBitContext *gb = &v->s.gb;
  499. int imode, x, y, code, offset;
  500. uint8_t invert, *planep = data;
  501. int width, height, stride;
  502. width = v->s.mb_width;
  503. height = v->s.mb_height;
  504. stride = v->s.mb_stride;
  505. invert = get_bits(gb, 1);
  506. imode = get_vlc2(gb, vc1_imode_vlc.table, VC1_IMODE_VLC_BITS, 1);
  507. *raw_flag = 0;
  508. switch (imode)
  509. {
  510. case IMODE_RAW:
  511. //Data is actually read in the MB layer (same for all tests == "raw")
  512. *raw_flag = 1; //invert ignored
  513. return invert;
  514. case IMODE_DIFF2:
  515. case IMODE_NORM2:
  516. if ((height * width) & 1)
  517. {
  518. *planep++ = get_bits(gb, 1);
  519. offset = 1;
  520. }
  521. else offset = 0;
  522. // decode bitplane as one long line
  523. for (y = offset; y < height * width; y += 2) {
  524. code = get_vlc2(gb, vc1_norm2_vlc.table, VC1_NORM2_VLC_BITS, 1);
  525. *planep++ = code & 1;
  526. offset++;
  527. if(offset == width) {
  528. offset = 0;
  529. planep += stride - width;
  530. }
  531. *planep++ = code >> 1;
  532. offset++;
  533. if(offset == width) {
  534. offset = 0;
  535. planep += stride - width;
  536. }
  537. }
  538. break;
  539. case IMODE_DIFF6:
  540. case IMODE_NORM6:
  541. if(!(height % 3) && (width % 3)) { // use 2x3 decoding
  542. for(y = 0; y < height; y+= 3) {
  543. for(x = width & 1; x < width; x += 2) {
  544. code = get_vlc2(gb, vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  545. if(code < 0){
  546. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  547. return -1;
  548. }
  549. planep[x + 0] = (code >> 0) & 1;
  550. planep[x + 1] = (code >> 1) & 1;
  551. planep[x + 0 + stride] = (code >> 2) & 1;
  552. planep[x + 1 + stride] = (code >> 3) & 1;
  553. planep[x + 0 + stride * 2] = (code >> 4) & 1;
  554. planep[x + 1 + stride * 2] = (code >> 5) & 1;
  555. }
  556. planep += stride * 3;
  557. }
  558. if(width & 1) decode_colskip(data, 1, height, stride, &v->s.gb);
  559. } else { // 3x2
  560. for(y = height & 1; y < height; y += 2) {
  561. for(x = width % 3; x < width; x += 3) {
  562. code = get_vlc2(gb, vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  563. if(code < 0){
  564. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  565. return -1;
  566. }
  567. planep[x + 0] = (code >> 0) & 1;
  568. planep[x + 1] = (code >> 1) & 1;
  569. planep[x + 2] = (code >> 2) & 1;
  570. planep[x + 0 + stride] = (code >> 3) & 1;
  571. planep[x + 1 + stride] = (code >> 4) & 1;
  572. planep[x + 2 + stride] = (code >> 5) & 1;
  573. }
  574. planep += stride * 2;
  575. }
  576. x = width % 3;
  577. if(x) decode_colskip(data , x, height , stride, &v->s.gb);
  578. if(height & 1) decode_rowskip(data+x, width - x, 1, stride, &v->s.gb);
  579. }
  580. break;
  581. case IMODE_ROWSKIP:
  582. decode_rowskip(data, width, height, stride, &v->s.gb);
  583. break;
  584. case IMODE_COLSKIP:
  585. decode_colskip(data, width, height, stride, &v->s.gb);
  586. break;
  587. default: break;
  588. }
  589. /* Applying diff operator */
  590. if (imode == IMODE_DIFF2 || imode == IMODE_DIFF6)
  591. {
  592. planep = data;
  593. planep[0] ^= invert;
  594. for (x=1; x<width; x++)
  595. planep[x] ^= planep[x-1];
  596. for (y=1; y<height; y++)
  597. {
  598. planep += stride;
  599. planep[0] ^= planep[-stride];
  600. for (x=1; x<width; x++)
  601. {
  602. if (planep[x-1] != planep[x-stride]) planep[x] ^= invert;
  603. else planep[x] ^= planep[x-1];
  604. }
  605. }
  606. }
  607. else if (invert)
  608. {
  609. planep = data;
  610. for (x=0; x<stride*height; x++) planep[x] = !planep[x]; //FIXME stride
  611. }
  612. return (imode<<1) + invert;
  613. }
  614. /** @} */ //Bitplane group
  615. /***********************************************************************/
  616. /** VOP Dquant decoding
  617. * @param v VC-1 Context
  618. */
  619. static int vop_dquant_decoding(VC1Context *v)
  620. {
  621. GetBitContext *gb = &v->s.gb;
  622. int pqdiff;
  623. //variable size
  624. if (v->dquant == 2)
  625. {
  626. pqdiff = get_bits(gb, 3);
  627. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  628. else v->altpq = v->pq + pqdiff + 1;
  629. }
  630. else
  631. {
  632. v->dquantfrm = get_bits(gb, 1);
  633. if ( v->dquantfrm )
  634. {
  635. v->dqprofile = get_bits(gb, 2);
  636. switch (v->dqprofile)
  637. {
  638. case DQPROFILE_SINGLE_EDGE:
  639. case DQPROFILE_DOUBLE_EDGES:
  640. v->dqsbedge = get_bits(gb, 2);
  641. break;
  642. case DQPROFILE_ALL_MBS:
  643. v->dqbilevel = get_bits(gb, 1);
  644. default: break; //Forbidden ?
  645. }
  646. if (!v->dqbilevel || v->dqprofile != DQPROFILE_ALL_MBS)
  647. {
  648. pqdiff = get_bits(gb, 3);
  649. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  650. else v->altpq = v->pq + pqdiff + 1;
  651. }
  652. }
  653. }
  654. return 0;
  655. }
  656. /** Do inverse transform
  657. */
  658. static void vc1_inv_trans(DCTELEM block[64], int M, int N)
  659. {
  660. int i;
  661. register int t1,t2,t3,t4,t5,t6,t7,t8;
  662. DCTELEM *src, *dst;
  663. src = block;
  664. dst = block;
  665. if(M==4){
  666. for(i = 0; i < N; i++){
  667. t1 = 17 * (src[0] + src[2]);
  668. t2 = 17 * (src[0] - src[2]);
  669. t3 = 22 * src[1];
  670. t4 = 22 * src[3];
  671. t5 = 10 * src[1];
  672. t6 = 10 * src[3];
  673. dst[0] = (t1 + t3 + t6 + 4) >> 3;
  674. dst[1] = (t2 - t4 + t5 + 4) >> 3;
  675. dst[2] = (t2 + t4 - t5 + 4) >> 3;
  676. dst[3] = (t1 - t3 - t6 + 4) >> 3;
  677. src += 8;
  678. dst += 8;
  679. }
  680. }else{
  681. for(i = 0; i < N; i++){
  682. t1 = 12 * (src[0] + src[4]);
  683. t2 = 12 * (src[0] - src[4]);
  684. t3 = 16 * src[2] + 6 * src[6];
  685. t4 = 6 * src[2] - 16 * src[6];
  686. t5 = t1 + t3;
  687. t6 = t2 + t4;
  688. t7 = t2 - t4;
  689. t8 = t1 - t3;
  690. t1 = 16 * src[1] + 15 * src[3] + 9 * src[5] + 4 * src[7];
  691. t2 = 15 * src[1] - 4 * src[3] - 16 * src[5] - 9 * src[7];
  692. t3 = 9 * src[1] - 16 * src[3] + 4 * src[5] + 15 * src[7];
  693. t4 = 4 * src[1] - 9 * src[3] + 15 * src[5] - 16 * src[7];
  694. dst[0] = (t5 + t1 + 4) >> 3;
  695. dst[1] = (t6 + t2 + 4) >> 3;
  696. dst[2] = (t7 + t3 + 4) >> 3;
  697. dst[3] = (t8 + t4 + 4) >> 3;
  698. dst[4] = (t8 - t4 + 4) >> 3;
  699. dst[5] = (t7 - t3 + 4) >> 3;
  700. dst[6] = (t6 - t2 + 4) >> 3;
  701. dst[7] = (t5 - t1 + 4) >> 3;
  702. src += 8;
  703. dst += 8;
  704. }
  705. }
  706. src = block;
  707. dst = block;
  708. if(N==4){
  709. for(i = 0; i < M; i++){
  710. t1 = 17 * (src[ 0] + src[16]);
  711. t2 = 17 * (src[ 0] - src[16]);
  712. t3 = 22 * src[ 8];
  713. t4 = 22 * src[24];
  714. t5 = 10 * src[ 8];
  715. t6 = 10 * src[24];
  716. dst[ 0] = (t1 + t3 + t6 + 64) >> 7;
  717. dst[ 8] = (t2 - t4 + t5 + 64) >> 7;
  718. dst[16] = (t2 + t4 - t5 + 64) >> 7;
  719. dst[24] = (t1 - t3 - t6 + 64) >> 7;
  720. src ++;
  721. dst ++;
  722. }
  723. }else{
  724. for(i = 0; i < M; i++){
  725. t1 = 12 * (src[ 0] + src[32]);
  726. t2 = 12 * (src[ 0] - src[32]);
  727. t3 = 16 * src[16] + 6 * src[48];
  728. t4 = 6 * src[16] - 16 * src[48];
  729. t5 = t1 + t3;
  730. t6 = t2 + t4;
  731. t7 = t2 - t4;
  732. t8 = t1 - t3;
  733. t1 = 16 * src[ 8] + 15 * src[24] + 9 * src[40] + 4 * src[56];
  734. t2 = 15 * src[ 8] - 4 * src[24] - 16 * src[40] - 9 * src[56];
  735. t3 = 9 * src[ 8] - 16 * src[24] + 4 * src[40] + 15 * src[56];
  736. t4 = 4 * src[ 8] - 9 * src[24] + 15 * src[40] - 16 * src[56];
  737. dst[ 0] = (t5 + t1 + 64) >> 7;
  738. dst[ 8] = (t6 + t2 + 64) >> 7;
  739. dst[16] = (t7 + t3 + 64) >> 7;
  740. dst[24] = (t8 + t4 + 64) >> 7;
  741. dst[32] = (t8 - t4 + 64 + 1) >> 7;
  742. dst[40] = (t7 - t3 + 64 + 1) >> 7;
  743. dst[48] = (t6 - t2 + 64 + 1) >> 7;
  744. dst[56] = (t5 - t1 + 64 + 1) >> 7;
  745. src++;
  746. dst++;
  747. }
  748. }
  749. }
  750. /** Apply overlap transform
  751. * @todo optimize
  752. * @todo move to DSPContext
  753. */
  754. static void vc1_overlap_block(MpegEncContext *s, DCTELEM block[64], int n, int do_hor, int do_vert)
  755. {
  756. int i;
  757. if(do_hor) { //TODO
  758. }
  759. if(do_vert) { //TODO
  760. }
  761. for(i = 0; i < 64; i++)
  762. block[i] += 128;
  763. }
  764. static void vc1_v_overlap(uint8_t* src, int stride)
  765. {
  766. int i;
  767. int a, b, c, d;
  768. for(i = 0; i < 8; i++) {
  769. a = src[-2*stride];
  770. b = src[-stride];
  771. c = src[0];
  772. d = src[stride];
  773. src[-2*stride] = (7*a + d) >> 3;
  774. src[-stride] = (-a + 7*b + c + d) >> 3;
  775. src[0] = (a + b + 7*c - d) >> 3;
  776. src[stride] = (a + 7*d) >> 3;
  777. src++;
  778. }
  779. }
  780. static void vc1_h_overlap(uint8_t* src, int stride)
  781. {
  782. int i;
  783. int a, b, c, d;
  784. for(i = 0; i < 8; i++) {
  785. a = src[-2];
  786. b = src[-1];
  787. c = src[0];
  788. d = src[1];
  789. src[-2] = (7*a + d) >> 3;
  790. src[-1] = (-a + 7*b + c + d) >> 3;
  791. src[0] = (a + b + 7*c - d) >> 3;
  792. src[1] = (a + 7*d) >> 3;
  793. src += stride;
  794. }
  795. }
  796. /** Put block onto picture
  797. * @todo move to DSPContext
  798. */
  799. static void vc1_put_block(VC1Context *v, DCTELEM block[6][64])
  800. {
  801. uint8_t *Y;
  802. int ys, us, vs;
  803. DSPContext *dsp = &v->s.dsp;
  804. ys = v->s.current_picture.linesize[0];
  805. us = v->s.current_picture.linesize[1];
  806. vs = v->s.current_picture.linesize[2];
  807. Y = v->s.dest[0];
  808. dsp->put_pixels_clamped(block[0], Y, ys);
  809. dsp->put_pixels_clamped(block[1], Y + 8, ys);
  810. Y += ys * 8;
  811. dsp->put_pixels_clamped(block[2], Y, ys);
  812. dsp->put_pixels_clamped(block[3], Y + 8, ys);
  813. dsp->put_pixels_clamped(block[4], v->s.dest[1], us);
  814. dsp->put_pixels_clamped(block[5], v->s.dest[2], vs);
  815. }
  816. /* clip motion vector as specified in 8.3.6.5 */
  817. #define CLIP_RANGE(mv, src, lim, bs) \
  818. if(mv < -bs) mv = -bs - src * bs; \
  819. if(mv > lim) mv = lim - src * bs;
  820. /** Do motion compensation over 1 macroblock
  821. * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
  822. */
  823. static void vc1_mc_1mv(VC1Context *v)
  824. {
  825. MpegEncContext *s = &v->s;
  826. DSPContext *dsp = &v->s.dsp;
  827. uint8_t *srcY, *srcU, *srcV;
  828. int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  829. if(!v->s.last_picture.data[0])return;
  830. mx = s->mv[0][0][0];
  831. my = s->mv[0][0][1];
  832. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  833. uvmy = (my + ((my & 3) == 3)) >> 1;
  834. srcY = s->last_picture.data[0];
  835. srcU = s->last_picture.data[1];
  836. srcV = s->last_picture.data[2];
  837. if(v->fastuvmc) { // XXX: 8.3.5.4.5 specifies something different
  838. uvmx = (uvmx + 1) & ~1;
  839. uvmy = (uvmy + 1) & ~1;
  840. }
  841. src_x = s->mb_x * 16 + (mx >> 2);
  842. src_y = s->mb_y * 16 + (my >> 2);
  843. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  844. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  845. CLIP_RANGE( src_x, s->mb_x, s->mb_width * 16, 16);
  846. CLIP_RANGE( src_y, s->mb_y, s->mb_height * 16, 16);
  847. CLIP_RANGE(uvsrc_x, s->mb_x, s->mb_width * 8, 8);
  848. CLIP_RANGE(uvsrc_y, s->mb_y, s->mb_height * 8, 8);
  849. srcY += src_y * s->linesize + src_x;
  850. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  851. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  852. if((unsigned)src_x > s->h_edge_pos - (mx&3) - 16
  853. || (unsigned)src_y > s->v_edge_pos - (my&3) - 16){
  854. uint8_t *uvbuf= s->edge_emu_buffer + 18 * s->linesize;
  855. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 16+1, 16+1,
  856. src_x, src_y, s->h_edge_pos, s->v_edge_pos);
  857. srcY = s->edge_emu_buffer;
  858. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  859. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  860. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  861. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  862. srcU = uvbuf;
  863. srcV = uvbuf + 16;
  864. }
  865. if(!s->quarter_sample) { // hpel mc
  866. mx >>= 1;
  867. my >>= 1;
  868. dxy = ((my & 1) << 1) | (mx & 1);
  869. uvdxy = 0;
  870. dsp->put_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  871. } else {
  872. dxy = ((my & 3) << 2) | (mx & 3);
  873. uvdxy = ((uvmy & 1) << 1) | (uvmx & 1);
  874. dsp->put_no_rnd_qpel_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize);
  875. }
  876. dsp->put_no_rnd_pixels_tab[1][uvdxy](s->dest[1], srcU, s->uvlinesize, 8);
  877. dsp->put_no_rnd_pixels_tab[1][uvdxy](s->dest[2], srcV, s->uvlinesize, 8);
  878. // dsp->put_mspel_pixels_tab[uvdxy](s->dest[1], srcU, s->uvlinesize);
  879. // dsp->put_mspel_pixels_tab[uvdxy](s->dest[2], srcV, s->uvlinesize);
  880. }
  881. /**
  882. * Decode Simple/Main Profiles sequence header
  883. * @see Figure 7-8, p16-17
  884. * @param avctx Codec context
  885. * @param gb GetBit context initialized from Codec context extra_data
  886. * @return Status
  887. */
  888. static int decode_sequence_header(AVCodecContext *avctx, GetBitContext *gb)
  889. {
  890. VC1Context *v = avctx->priv_data;
  891. av_log(avctx, AV_LOG_INFO, "Header: %0X\n", show_bits(gb, 32));
  892. v->profile = get_bits(gb, 2);
  893. if (v->profile == 2)
  894. {
  895. av_log(avctx, AV_LOG_ERROR, "Profile value 2 is forbidden (and WMV3 Complex Profile is unsupported)\n");
  896. return -1;
  897. }
  898. if (v->profile == PROFILE_ADVANCED)
  899. {
  900. v->level = get_bits(gb, 3);
  901. if(v->level >= 5)
  902. {
  903. av_log(avctx, AV_LOG_ERROR, "Reserved LEVEL %i\n",v->level);
  904. }
  905. v->chromaformat = get_bits(gb, 2);
  906. if (v->chromaformat != 1)
  907. {
  908. av_log(avctx, AV_LOG_ERROR,
  909. "Only 4:2:0 chroma format supported\n");
  910. return -1;
  911. }
  912. }
  913. else
  914. {
  915. v->res_sm = get_bits(gb, 2); //reserved
  916. if (v->res_sm)
  917. {
  918. av_log(avctx, AV_LOG_ERROR,
  919. "Reserved RES_SM=%i is forbidden\n", v->res_sm);
  920. return -1;
  921. }
  922. }
  923. // (fps-2)/4 (->30)
  924. v->frmrtq_postproc = get_bits(gb, 3); //common
  925. // (bitrate-32kbps)/64kbps
  926. v->bitrtq_postproc = get_bits(gb, 5); //common
  927. v->s.loop_filter = get_bits(gb, 1); //common
  928. if(v->s.loop_filter == 1 && v->profile == PROFILE_SIMPLE)
  929. {
  930. av_log(avctx, AV_LOG_ERROR,
  931. "LOOPFILTER shell not be enabled in simple profile\n");
  932. }
  933. if (v->profile < PROFILE_ADVANCED)
  934. {
  935. v->res_x8 = get_bits(gb, 1); //reserved
  936. if (v->res_x8)
  937. {
  938. av_log(avctx, AV_LOG_ERROR,
  939. "1 for reserved RES_X8 is forbidden\n");
  940. //return -1;
  941. }
  942. v->multires = get_bits(gb, 1);
  943. v->res_fasttx = get_bits(gb, 1);
  944. if (!v->res_fasttx)
  945. {
  946. av_log(avctx, AV_LOG_ERROR,
  947. "0 for reserved RES_FASTTX is forbidden\n");
  948. //return -1;
  949. }
  950. }
  951. v->fastuvmc = get_bits(gb, 1); //common
  952. if (!v->profile && !v->fastuvmc)
  953. {
  954. av_log(avctx, AV_LOG_ERROR,
  955. "FASTUVMC unavailable in Simple Profile\n");
  956. return -1;
  957. }
  958. v->extended_mv = get_bits(gb, 1); //common
  959. if (!v->profile && v->extended_mv)
  960. {
  961. av_log(avctx, AV_LOG_ERROR,
  962. "Extended MVs unavailable in Simple Profile\n");
  963. return -1;
  964. }
  965. v->dquant = get_bits(gb, 2); //common
  966. v->vstransform = get_bits(gb, 1); //common
  967. if (v->profile < PROFILE_ADVANCED)
  968. {
  969. v->res_transtab = get_bits(gb, 1);
  970. if (v->res_transtab)
  971. {
  972. av_log(avctx, AV_LOG_ERROR,
  973. "1 for reserved RES_TRANSTAB is forbidden\n");
  974. return -1;
  975. }
  976. }
  977. v->overlap = get_bits(gb, 1); //common
  978. if (v->profile < PROFILE_ADVANCED)
  979. {
  980. v->s.resync_marker = get_bits(gb, 1);
  981. v->rangered = get_bits(gb, 1);
  982. if (v->rangered && v->profile == PROFILE_SIMPLE)
  983. {
  984. av_log(avctx, AV_LOG_INFO,
  985. "RANGERED should be set to 0 in simple profile\n");
  986. }
  987. }
  988. v->s.max_b_frames = avctx->max_b_frames = get_bits(gb, 3); //common
  989. v->quantizer_mode = get_bits(gb, 2); //common
  990. if (v->profile < PROFILE_ADVANCED)
  991. {
  992. v->finterpflag = get_bits(gb, 1); //common
  993. v->res_rtm_flag = get_bits(gb, 1); //reserved
  994. if (!v->res_rtm_flag)
  995. {
  996. av_log(avctx, AV_LOG_ERROR,
  997. "0 for reserved RES_RTM_FLAG is forbidden\n");
  998. //return -1;
  999. }
  1000. av_log(avctx, AV_LOG_DEBUG,
  1001. "Profile %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  1002. "LoopFilter=%i, MultiRes=%i, FastUVMV=%i, Extended MV=%i\n"
  1003. "Rangered=%i, VSTransform=%i, Overlap=%i, SyncMarker=%i\n"
  1004. "DQuant=%i, Quantizer mode=%i, Max B frames=%i\n",
  1005. v->profile, v->frmrtq_postproc, v->bitrtq_postproc,
  1006. v->s.loop_filter, v->multires, v->fastuvmc, v->extended_mv,
  1007. v->rangered, v->vstransform, v->overlap, v->s.resync_marker,
  1008. v->dquant, v->quantizer_mode, avctx->max_b_frames
  1009. );
  1010. return 0;
  1011. }
  1012. return -1;
  1013. }
  1014. static int vc1_parse_frame_header(VC1Context *v, GetBitContext* gb)
  1015. {
  1016. int pqindex, lowquant, status;
  1017. if(v->finterpflag) v->interpfrm = get_bits(gb, 1);
  1018. skip_bits(gb, 2); //framecnt unused
  1019. v->rangeredfrm = 0;
  1020. if (v->rangered) v->rangeredfrm = get_bits(gb, 1);
  1021. v->s.pict_type = get_bits(gb, 1);
  1022. if (v->s.avctx->max_b_frames) {
  1023. if (!v->s.pict_type) {
  1024. if (get_bits(gb, 1)) v->s.pict_type = I_TYPE;
  1025. else v->s.pict_type = B_TYPE;
  1026. } else v->s.pict_type = P_TYPE;
  1027. } else v->s.pict_type = v->s.pict_type ? P_TYPE : I_TYPE;
  1028. if(v->s.pict_type == I_TYPE)
  1029. get_bits(gb, 7); // skip buffer fullness
  1030. /* Quantizer stuff */
  1031. pqindex = get_bits(gb, 5);
  1032. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1033. v->pq = pquant_table[0][pqindex];
  1034. else
  1035. v->pq = pquant_table[v->quantizer_mode-1][pqindex];
  1036. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1037. v->pquantizer = pqindex < 9;
  1038. if (v->quantizer_mode == QUANT_UNIFORM || v->quantizer_mode == QUANT_NON_UNIFORM)
  1039. v->pquantizer = v->quantizer_mode == QUANT_UNIFORM;
  1040. v->pqindex = pqindex;
  1041. if (pqindex < 9) v->halfpq = get_bits(gb, 1);
  1042. else v->halfpq = 0;
  1043. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  1044. v->pquantizer = get_bits(gb, 1);
  1045. v->dquantfrm = 0;
  1046. //av_log(v->s.avctx, AV_LOG_INFO, "%c Frame: QP=[%i]%i (+%i/2) %i\n",
  1047. // (v->s.pict_type == P_TYPE) ? 'P' : ((v->s.pict_type == I_TYPE) ? 'I' : 'B'), pqindex, v->pq, v->halfpq, v->rangeredfrm);
  1048. //TODO: complete parsing for P/B/BI frames
  1049. switch(v->s.pict_type) {
  1050. case P_TYPE:
  1051. if (v->pq < 5) v->tt_index = 0;
  1052. else if(v->pq < 13) v->tt_index = 1;
  1053. else v->tt_index = 2;
  1054. if (v->extended_mv == 1) v->mvrange = get_prefix(gb, 0, 3);
  1055. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1056. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1057. v->range_x = 1 << (v->k_x - 1);
  1058. v->range_y = 1 << (v->k_y - 1);
  1059. if (v->profile == PROFILE_ADVANCED)
  1060. {
  1061. if (v->postprocflag) v->postproc = get_bits(gb, 1);
  1062. }
  1063. else
  1064. if (v->multires) v->respic = get_bits(gb, 2);
  1065. lowquant = (v->pq > 12) ? 0 : 1;
  1066. v->mv_mode = mv_pmode_table[lowquant][get_prefix(gb, 1, 4)];
  1067. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1068. {
  1069. v->mv_mode2 = mv_pmode_table[lowquant][get_prefix(gb, 1, 3)];
  1070. v->lumscale = get_bits(gb, 6);
  1071. v->lumshift = get_bits(gb, 6);
  1072. }
  1073. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1074. v->s.quarter_sample = 0;
  1075. else
  1076. v->s.quarter_sample = 1;
  1077. if(v->mv_mode != MV_PMODE_1MV && v->mv_mode != MV_PMODE_1MV_HPEL && v->mv_mode != MV_PMODE_1MV_HPEL_BILIN) {
  1078. av_log(v->s.avctx, AV_LOG_ERROR, "Only 1MV P-frames are supported by now\n");
  1079. return -1;
  1080. }
  1081. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1082. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1083. || v->mv_mode == MV_PMODE_MIXED_MV)
  1084. {
  1085. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1086. if (status < 0) return -1;
  1087. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1088. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1089. } else {
  1090. v->mv_type_is_raw = 0;
  1091. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1092. }
  1093. status = bitplane_decoding(v->skip_mb_plane, &v->skip_is_raw, v);
  1094. if (status < 0) return -1;
  1095. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1096. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1097. /* Hopefully this is correct for P frames */
  1098. v->s.mv_table_index = get_bits(gb, 2); //but using vc1_ tables
  1099. v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1100. if (v->dquant)
  1101. {
  1102. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1103. vop_dquant_decoding(v);
  1104. }
  1105. v->ttfrm = 0; //FIXME Is that so ?
  1106. if (v->vstransform)
  1107. {
  1108. v->ttmbf = get_bits(gb, 1);
  1109. if (v->ttmbf)
  1110. {
  1111. v->ttfrm = get_bits(gb, 2);
  1112. }
  1113. }
  1114. break;
  1115. case B_TYPE:
  1116. break;
  1117. }
  1118. /* AC Syntax */
  1119. v->c_ac_table_index = decode012(gb);
  1120. if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1121. {
  1122. v->y_ac_table_index = decode012(gb);
  1123. }
  1124. /* DC Syntax */
  1125. v->s.dc_table_index = get_bits(gb, 1);
  1126. return 0;
  1127. }
  1128. /***********************************************************************/
  1129. /**
  1130. * @defgroup block VC-1 Block-level functions
  1131. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  1132. * @todo TODO: Integrate to MpegEncContext facilities
  1133. * @{
  1134. */
  1135. /**
  1136. * @def GET_MQUANT
  1137. * @brief Get macroblock-level quantizer scale
  1138. * @warning XXX: qdiff to the frame quant, not previous quant ?
  1139. * @fixme XXX: Don't know how to initialize mquant otherwise in last case
  1140. */
  1141. #define GET_MQUANT() \
  1142. if (v->dquantfrm) \
  1143. { \
  1144. if (v->dqprofile == DQPROFILE_ALL_MBS) \
  1145. { \
  1146. if (v->dqbilevel) \
  1147. { \
  1148. mquant = (get_bits(gb, 1)) ? v->pq : v->altpq; \
  1149. } \
  1150. else \
  1151. { \
  1152. mqdiff = get_bits(gb, 3); \
  1153. if (mqdiff != 7) mquant = v->pq + mqdiff; \
  1154. else mquant = get_bits(gb, 5); \
  1155. } \
  1156. } \
  1157. else mquant = v->pq; \
  1158. }
  1159. /**
  1160. * @def GET_MVDATA(_dmv_x, _dmv_y)
  1161. * @brief Get MV differentials
  1162. * @see MVDATA decoding from 8.3.5.2, p(1)20
  1163. * @param _dmv_x Horizontal differential for decoded MV
  1164. * @param _dmv_y Vertical differential for decoded MV
  1165. * @todo TODO: Use MpegEncContext arrays to store them
  1166. */
  1167. #define GET_MVDATA(_dmv_x, _dmv_y) \
  1168. index = 1 + get_vlc2(gb, vc1_mv_diff_vlc[s->mv_table_index].table,\
  1169. VC1_MV_DIFF_VLC_BITS, 2); \
  1170. if (index > 36) \
  1171. { \
  1172. mb_has_coeffs = 1; \
  1173. index -= 37; \
  1174. } \
  1175. else mb_has_coeffs = 0; \
  1176. s->mb_intra = 0; \
  1177. if (!index) { _dmv_x = _dmv_y = 0; } \
  1178. else if (index == 35) \
  1179. { \
  1180. _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
  1181. _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
  1182. } \
  1183. else if (index == 36) \
  1184. { \
  1185. _dmv_x = 0; \
  1186. _dmv_y = 0; \
  1187. s->mb_intra = 1; \
  1188. } \
  1189. else \
  1190. { \
  1191. index1 = index%6; \
  1192. if (!s->quarter_sample && index1 == 5) val = 1; \
  1193. else val = 0; \
  1194. if(size_table[index1] - val > 0) \
  1195. val = get_bits(gb, size_table[index1] - val); \
  1196. else val = 0; \
  1197. sign = 0 - (val&1); \
  1198. _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1199. \
  1200. index1 = index/6; \
  1201. if (!s->quarter_sample && index1 == 5) val = 1; \
  1202. else val = 0; \
  1203. if(size_table[index1] - val > 0) \
  1204. val = get_bits(gb, size_table[index1] - val); \
  1205. else val = 0; \
  1206. sign = 0 - (val&1); \
  1207. _dmv_y = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1208. }
  1209. /** Predict and set motion vector
  1210. */
  1211. static inline void vc1_pred_mv(MpegEncContext *s, int dmv_x, int dmv_y, int mv1, int r_x, int r_y)
  1212. {
  1213. int xy, wrap, off;
  1214. int16_t *A, *B, *C;
  1215. int px, py;
  1216. int sum;
  1217. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1218. /* scale MV difference to be quad-pel */
  1219. dmv_x <<= 1 - s->quarter_sample;
  1220. dmv_y <<= 1 - s->quarter_sample;
  1221. wrap = s->b8_stride;
  1222. xy = s->block_index[0];
  1223. C = s->current_picture.motion_val[0][xy - (1 << mv1)];
  1224. A = s->current_picture.motion_val[0][xy - (wrap << mv1)];
  1225. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
  1226. B = s->current_picture.motion_val[0][xy + ((off - wrap) << mv1)];
  1227. if(!s->first_slice_line) { // predictor A is not out of bounds
  1228. if(s->mb_width == 1) {
  1229. px = A[0];
  1230. py = A[1];
  1231. } else {
  1232. px = mid_pred(A[0], B[0], C[0]);
  1233. py = mid_pred(A[1], B[1], C[1]);
  1234. }
  1235. } else if(s->mb_x) { // predictor C is not out of bounds
  1236. px = C[0];
  1237. py = C[1];
  1238. } else {
  1239. px = py = 0;
  1240. }
  1241. if(s->mb_intra) px = py = 0;
  1242. /* Pullback MV as specified in 8.3.5.3.4 */
  1243. {
  1244. int qx, qy, X, Y;
  1245. qx = s->mb_x << 6; //FIXME: add real block coords for 4MV mode
  1246. qy = s->mb_y << 6;
  1247. X = (s->mb_width << 6) - 4;
  1248. Y = (s->mb_height << 6) - 4;
  1249. if(mv1) {
  1250. if(qx + px < -60) px = -60 - qx;
  1251. if(qy + py < -60) py = -60 - qy;
  1252. } else {
  1253. if(qx + px < -28) px = -28 - qx;
  1254. if(qy + py < -28) py = -28 - qy;
  1255. }
  1256. if(qx + px > X) px = X - qx;
  1257. if(qy + py > Y) py = Y - qy;
  1258. }
  1259. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1260. if(!s->mb_intra && !s->first_slice_line && s->mb_x) {
  1261. if(IS_INTRA(s->current_picture.mb_type[mb_pos - s->mb_stride]))
  1262. sum = ABS(px) + ABS(py);
  1263. else
  1264. sum = ABS(px - A[0]) + ABS(py - A[1]);
  1265. if(sum > 32) {
  1266. if(get_bits1(&s->gb)) {
  1267. px = A[0];
  1268. py = A[1];
  1269. } else {
  1270. px = C[0];
  1271. py = C[1];
  1272. }
  1273. } else {
  1274. if(IS_INTRA(s->current_picture.mb_type[mb_pos - 1]))
  1275. sum = ABS(px) + ABS(py);
  1276. else
  1277. sum = ABS(px - C[0]) + ABS(py - C[1]);
  1278. if(sum > 32) {
  1279. if(get_bits1(&s->gb)) {
  1280. px = A[0];
  1281. py = A[1];
  1282. } else {
  1283. px = C[0];
  1284. py = C[1];
  1285. }
  1286. }
  1287. }
  1288. }
  1289. /* store MV using signed modulus of MV range defined in 4.11 */
  1290. s->mv[0][0][0] = s->current_picture.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
  1291. s->mv[0][0][1] = s->current_picture.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
  1292. }
  1293. /** Get predicted DC value for I-frames only
  1294. * prediction dir: left=0, top=1
  1295. * @param s MpegEncContext
  1296. * @param[in] n block index in the current MB
  1297. * @param dc_val_ptr Pointer to DC predictor
  1298. * @param dir_ptr Prediction direction for use in AC prediction
  1299. */
  1300. static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  1301. int16_t **dc_val_ptr, int *dir_ptr)
  1302. {
  1303. int a, b, c, wrap, pred, scale;
  1304. int16_t *dc_val;
  1305. static const uint16_t dcpred[32] = {
  1306. -1, 1024, 512, 341, 256, 205, 171, 146, 128,
  1307. 114, 102, 93, 85, 79, 73, 68, 64,
  1308. 60, 57, 54, 51, 49, 47, 45, 43,
  1309. 41, 39, 38, 37, 35, 34, 33
  1310. };
  1311. /* find prediction - wmv3_dc_scale always used here in fact */
  1312. if (n < 4) scale = s->y_dc_scale;
  1313. else scale = s->c_dc_scale;
  1314. wrap = s->block_wrap[n];
  1315. dc_val= s->dc_val[0] + s->block_index[n];
  1316. /* B A
  1317. * C X
  1318. */
  1319. c = dc_val[ - 1];
  1320. b = dc_val[ - 1 - wrap];
  1321. a = dc_val[ - wrap];
  1322. if (pq < 9 || !overlap)
  1323. {
  1324. /* Set outer values */
  1325. if (!s->mb_y && (n!=2 && n!=3)) b=a=dcpred[scale];
  1326. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=dcpred[scale];
  1327. }
  1328. else
  1329. {
  1330. /* Set outer values */
  1331. if (!s->mb_y && (n!=2 && n!=3)) b=a=0;
  1332. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=0;
  1333. }
  1334. if (abs(a - b) <= abs(b - c)) {
  1335. pred = c;
  1336. *dir_ptr = 1;//left
  1337. } else {
  1338. pred = a;
  1339. *dir_ptr = 0;//top
  1340. }
  1341. /* update predictor */
  1342. *dc_val_ptr = &dc_val[0];
  1343. return pred;
  1344. }
  1345. /** Get predicted DC value
  1346. * prediction dir: left=0, top=1
  1347. * @param s MpegEncContext
  1348. * @param[in] n block index in the current MB
  1349. * @param dc_val_ptr Pointer to DC predictor
  1350. * @param dir_ptr Prediction direction for use in AC prediction
  1351. */
  1352. static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  1353. int a_avail, int c_avail,
  1354. int16_t **dc_val_ptr, int *dir_ptr)
  1355. {
  1356. int a, b, c, wrap, pred, scale;
  1357. int16_t *dc_val;
  1358. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1359. int mb_pos2, q1, q2;
  1360. /* find prediction - wmv3_dc_scale always used here in fact */
  1361. if (n < 4) scale = s->y_dc_scale;
  1362. else scale = s->c_dc_scale;
  1363. wrap = s->block_wrap[n];
  1364. dc_val= s->dc_val[0] + s->block_index[n];
  1365. /* B A
  1366. * C X
  1367. */
  1368. c = dc_val[ - 1];
  1369. b = dc_val[ - 1 - wrap];
  1370. a = dc_val[ - wrap];
  1371. if(a_avail && c_avail) {
  1372. if(abs(a - b) <= abs(b - c)) {
  1373. pred = c;
  1374. *dir_ptr = 1;//left
  1375. } else {
  1376. pred = a;
  1377. *dir_ptr = 0;//top
  1378. }
  1379. } else if(a_avail) {
  1380. pred = a;
  1381. *dir_ptr = 0;//top
  1382. } else if(c_avail) {
  1383. pred = c;
  1384. *dir_ptr = 1;//left
  1385. } else {
  1386. pred = 0;
  1387. *dir_ptr = 1;//left
  1388. }
  1389. /* scale coeffs if needed */
  1390. mb_pos2 = mb_pos - *dir_ptr - (1 - *dir_ptr) * s->mb_stride;
  1391. q1 = s->current_picture.qscale_table[mb_pos];
  1392. q2 = s->current_picture.qscale_table[mb_pos2];
  1393. if(0 && q1 && q2 && q1 != q2) {
  1394. q1 = s->y_dc_scale_table[q1];
  1395. q2 = s->y_dc_scale_table[q2];
  1396. pred = (pred * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1397. }
  1398. /* update predictor */
  1399. *dc_val_ptr = &dc_val[0];
  1400. return pred;
  1401. }
  1402. /**
  1403. * @defgroup std_mb VC1 Macroblock-level functions in Simple/Main Profiles
  1404. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  1405. * @todo TODO: Integrate to MpegEncContext facilities
  1406. * @{
  1407. */
  1408. static inline int vc1_coded_block_pred(MpegEncContext * s, int n, uint8_t **coded_block_ptr)
  1409. {
  1410. int xy, wrap, pred, a, b, c;
  1411. xy = s->block_index[n];
  1412. wrap = s->b8_stride;
  1413. /* B C
  1414. * A X
  1415. */
  1416. a = s->coded_block[xy - 1 ];
  1417. b = s->coded_block[xy - 1 - wrap];
  1418. c = s->coded_block[xy - wrap];
  1419. if (b == c) {
  1420. pred = a;
  1421. } else {
  1422. pred = c;
  1423. }
  1424. /* store value */
  1425. *coded_block_ptr = &s->coded_block[xy];
  1426. return pred;
  1427. }
  1428. /**
  1429. * Decode one AC coefficient
  1430. * @param v The VC1 context
  1431. * @param last Last coefficient
  1432. * @param skip How much zero coefficients to skip
  1433. * @param value Decoded AC coefficient value
  1434. * @see 8.1.3.4
  1435. */
  1436. static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip, int *value, int codingset)
  1437. {
  1438. GetBitContext *gb = &v->s.gb;
  1439. int index, escape, run = 0, level = 0, lst = 0;
  1440. index = get_vlc2(gb, vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  1441. if (index != vc1_ac_sizes[codingset] - 1) {
  1442. run = vc1_index_decode_table[codingset][index][0];
  1443. level = vc1_index_decode_table[codingset][index][1];
  1444. lst = index >= vc1_last_decode_table[codingset];
  1445. if(get_bits(gb, 1))
  1446. level = -level;
  1447. } else {
  1448. escape = decode210(gb);
  1449. if (escape != 2) {
  1450. index = get_vlc2(gb, vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  1451. run = vc1_index_decode_table[codingset][index][0];
  1452. level = vc1_index_decode_table[codingset][index][1];
  1453. lst = index >= vc1_last_decode_table[codingset];
  1454. if(escape == 0) {
  1455. if(lst)
  1456. level += vc1_last_delta_level_table[codingset][run];
  1457. else
  1458. level += vc1_delta_level_table[codingset][run];
  1459. } else {
  1460. if(lst)
  1461. run += vc1_last_delta_run_table[codingset][level] + 1;
  1462. else
  1463. run += vc1_delta_run_table[codingset][level] + 1;
  1464. }
  1465. if(get_bits(gb, 1))
  1466. level = -level;
  1467. } else {
  1468. int sign;
  1469. lst = get_bits(gb, 1);
  1470. if(v->s.esc3_level_length == 0) {
  1471. if(v->pq < 8 || v->dquantfrm) { // table 59
  1472. v->s.esc3_level_length = get_bits(gb, 3);
  1473. if(!v->s.esc3_level_length)
  1474. v->s.esc3_level_length = get_bits(gb, 2) + 8;
  1475. } else { //table 60
  1476. v->s.esc3_level_length = get_prefix(gb, 1, 6) + 2;
  1477. }
  1478. v->s.esc3_run_length = 3 + get_bits(gb, 2);
  1479. }
  1480. run = get_bits(gb, v->s.esc3_run_length);
  1481. sign = get_bits(gb, 1);
  1482. level = get_bits(gb, v->s.esc3_level_length);
  1483. if(sign)
  1484. level = -level;
  1485. }
  1486. }
  1487. *last = lst;
  1488. *skip = run;
  1489. *value = level;
  1490. }
  1491. /** Decode intra block in intra frames - should be faster than decode_intra_block
  1492. * @param v VC1Context
  1493. * @param block block to decode
  1494. * @param coded are AC coeffs present or not
  1495. * @param codingset set of VLC to decode data
  1496. */
  1497. static int vc1_decode_i_block(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset)
  1498. {
  1499. GetBitContext *gb = &v->s.gb;
  1500. MpegEncContext *s = &v->s;
  1501. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  1502. int run_diff, i;
  1503. int16_t *dc_val;
  1504. int16_t *ac_val, *ac_val2;
  1505. int dcdiff;
  1506. /* Get DC differential */
  1507. if (n < 4) {
  1508. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1509. } else {
  1510. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1511. }
  1512. if (dcdiff < 0){
  1513. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  1514. return -1;
  1515. }
  1516. if (dcdiff)
  1517. {
  1518. if (dcdiff == 119 /* ESC index value */)
  1519. {
  1520. /* TODO: Optimize */
  1521. if (v->pq == 1) dcdiff = get_bits(gb, 10);
  1522. else if (v->pq == 2) dcdiff = get_bits(gb, 9);
  1523. else dcdiff = get_bits(gb, 8);
  1524. }
  1525. else
  1526. {
  1527. if (v->pq == 1)
  1528. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  1529. else if (v->pq == 2)
  1530. dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
  1531. }
  1532. if (get_bits(gb, 1))
  1533. dcdiff = -dcdiff;
  1534. }
  1535. /* Prediction */
  1536. dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
  1537. *dc_val = dcdiff;
  1538. /* Store the quantized DC coeff, used for prediction */
  1539. if (n < 4) {
  1540. block[0] = dcdiff * s->y_dc_scale;
  1541. } else {
  1542. block[0] = dcdiff * s->c_dc_scale;
  1543. }
  1544. /* Skip ? */
  1545. run_diff = 0;
  1546. i = 0;
  1547. if (!coded) {
  1548. goto not_coded;
  1549. }
  1550. //AC Decoding
  1551. i = 1;
  1552. {
  1553. int last = 0, skip, value;
  1554. const int8_t *zz_table;
  1555. int scale;
  1556. int k;
  1557. scale = v->pq * 2 + v->halfpq;
  1558. if(v->s.ac_pred) {
  1559. if(!dc_pred_dir)
  1560. zz_table = vc1_horizontal_zz;
  1561. else
  1562. zz_table = vc1_vertical_zz;
  1563. } else
  1564. zz_table = vc1_normal_zz;
  1565. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  1566. ac_val2 = ac_val;
  1567. if(dc_pred_dir) //left
  1568. ac_val -= 16;
  1569. else //top
  1570. ac_val -= 16 * s->block_wrap[n];
  1571. while (!last) {
  1572. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  1573. i += skip;
  1574. if(i > 63)
  1575. break;
  1576. block[zz_table[i++]] = value;
  1577. }
  1578. /* apply AC prediction if needed */
  1579. if(s->ac_pred) {
  1580. if(dc_pred_dir) { //left
  1581. for(k = 1; k < 8; k++)
  1582. block[k << 3] += ac_val[k];
  1583. } else { //top
  1584. for(k = 1; k < 8; k++)
  1585. block[k] += ac_val[k + 8];
  1586. }
  1587. }
  1588. /* save AC coeffs for further prediction */
  1589. for(k = 1; k < 8; k++) {
  1590. ac_val2[k] = block[k << 3];
  1591. ac_val2[k + 8] = block[k];
  1592. }
  1593. /* scale AC coeffs */
  1594. for(k = 1; k < 64; k++)
  1595. if(block[k]) {
  1596. block[k] *= scale;
  1597. if(!v->pquantizer)
  1598. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  1599. }
  1600. if(s->ac_pred) i = 63;
  1601. }
  1602. not_coded:
  1603. if(!coded) {
  1604. int k, scale;
  1605. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  1606. ac_val2 = ac_val;
  1607. scale = v->pq * 2 + v->halfpq;
  1608. memset(ac_val2, 0, 16 * 2);
  1609. if(dc_pred_dir) {//left
  1610. ac_val -= 16;
  1611. if(s->ac_pred)
  1612. memcpy(ac_val2, ac_val, 8 * 2);
  1613. } else {//top
  1614. ac_val -= 16 * s->block_wrap[n];
  1615. if(s->ac_pred)
  1616. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  1617. }
  1618. /* apply AC prediction if needed */
  1619. if(s->ac_pred) {
  1620. if(dc_pred_dir) { //left
  1621. for(k = 1; k < 8; k++) {
  1622. block[k << 3] = ac_val[k] * scale;
  1623. if(!v->pquantizer)
  1624. block[k << 3] += (block[k << 3] < 0) ? -v->pq : v->pq;
  1625. }
  1626. } else { //top
  1627. for(k = 1; k < 8; k++) {
  1628. block[k] = ac_val[k + 8] * scale;
  1629. if(!v->pquantizer)
  1630. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  1631. }
  1632. }
  1633. i = 63;
  1634. }
  1635. }
  1636. s->block_last_index[n] = i;
  1637. return 0;
  1638. }
  1639. /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
  1640. * @param v VC1Context
  1641. * @param block block to decode
  1642. * @param coded are AC coeffs present or not
  1643. * @param mquant block quantizer
  1644. * @param codingset set of VLC to decode data
  1645. */
  1646. static int vc1_decode_intra_block(VC1Context *v, DCTELEM block[64], int n, int coded, int mquant, int codingset)
  1647. {
  1648. GetBitContext *gb = &v->s.gb;
  1649. MpegEncContext *s = &v->s;
  1650. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  1651. int run_diff, i;
  1652. int16_t *dc_val;
  1653. int16_t *ac_val, *ac_val2;
  1654. int dcdiff;
  1655. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1656. int a_avail = v->a_avail, c_avail = v->c_avail;
  1657. /* XXX: Guard against dumb values of mquant */
  1658. mquant = (mquant < 1) ? 0 : ( (mquant>31) ? 31 : mquant );
  1659. /* Set DC scale - y and c use the same */
  1660. s->y_dc_scale = s->y_dc_scale_table[mquant];
  1661. s->c_dc_scale = s->c_dc_scale_table[mquant];
  1662. /* Get DC differential */
  1663. if (n < 4) {
  1664. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1665. } else {
  1666. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1667. }
  1668. if (dcdiff < 0){
  1669. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  1670. return -1;
  1671. }
  1672. if (dcdiff)
  1673. {
  1674. if (dcdiff == 119 /* ESC index value */)
  1675. {
  1676. /* TODO: Optimize */
  1677. if (mquant == 1) dcdiff = get_bits(gb, 10);
  1678. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  1679. else dcdiff = get_bits(gb, 8);
  1680. }
  1681. else
  1682. {
  1683. if (mquant == 1)
  1684. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  1685. else if (mquant == 2)
  1686. dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
  1687. }
  1688. if (get_bits(gb, 1))
  1689. dcdiff = -dcdiff;
  1690. }
  1691. /* Prediction */
  1692. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
  1693. *dc_val = dcdiff;
  1694. /* Store the quantized DC coeff, used for prediction */
  1695. if (n < 4) {
  1696. block[0] = dcdiff * s->y_dc_scale;
  1697. } else {
  1698. block[0] = dcdiff * s->c_dc_scale;
  1699. }
  1700. /* Skip ? */
  1701. run_diff = 0;
  1702. i = 0;
  1703. if (!coded) {
  1704. goto not_coded;
  1705. }
  1706. //AC Decoding
  1707. i = 1;
  1708. {
  1709. int last = 0, skip, value;
  1710. const int8_t *zz_table;
  1711. int scale;
  1712. int k;
  1713. scale = mquant * 2;
  1714. zz_table = vc1_simple_progressive_8x8_zz;
  1715. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  1716. ac_val2 = ac_val;
  1717. if(dc_pred_dir) //left
  1718. ac_val -= 16;
  1719. else //top
  1720. ac_val -= 16 * s->block_wrap[n];
  1721. while (!last) {
  1722. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  1723. i += skip;
  1724. if(i > 63)
  1725. break;
  1726. block[zz_table[i++]] = value;
  1727. }
  1728. /* apply AC prediction if needed */
  1729. if(s->ac_pred && (v->a_avail || v->c_avail)) {
  1730. /* scale predictors if needed*/
  1731. int mb_pos2, q1, q2;
  1732. mb_pos2 = mb_pos - dc_pred_dir - (1 - dc_pred_dir) * s->mb_stride;
  1733. q1 = s->current_picture.qscale_table[mb_pos];
  1734. q2 = s->current_picture.qscale_table[mb_pos2];
  1735. if(!c_avail) {
  1736. memset(ac_val, 0, 8 * sizeof(ac_val[0]));
  1737. dc_pred_dir = 0;
  1738. }
  1739. if(!a_avail) {
  1740. memset(ac_val + 8, 0, 8 * sizeof(ac_val[0]));
  1741. dc_pred_dir = 1;
  1742. }
  1743. if(q2 && q1 != q2) {
  1744. q1 = q1 * 2 - 1;
  1745. q2 = q2 * 2 - 1;
  1746. if(dc_pred_dir) { //left
  1747. for(k = 1; k < 8; k++)
  1748. block[k << 3] += (ac_val[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1749. } else { //top
  1750. for(k = 1; k < 8; k++)
  1751. block[k] += (ac_val[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1752. }
  1753. } else {
  1754. if(dc_pred_dir) { //left
  1755. for(k = 1; k < 8; k++)
  1756. block[k << 3] += ac_val[k];
  1757. } else { //top
  1758. for(k = 1; k < 8; k++)
  1759. block[k] += ac_val[k + 8];
  1760. }
  1761. }
  1762. }
  1763. /* save AC coeffs for further prediction */
  1764. for(k = 1; k < 8; k++) {
  1765. ac_val2[k] = block[k << 3];
  1766. ac_val2[k + 8] = block[k];
  1767. }
  1768. /* scale AC coeffs */
  1769. for(k = 1; k < 64; k++)
  1770. if(block[k]) {
  1771. block[k] *= scale;
  1772. if(!v->pquantizer)
  1773. block[k] += (block[k] < 0) ? -mquant : mquant;
  1774. }
  1775. if(s->ac_pred) i = 63;
  1776. }
  1777. not_coded:
  1778. if(!coded) {
  1779. int k, scale;
  1780. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  1781. ac_val2 = ac_val;
  1782. if(!c_avail) {
  1783. memset(ac_val, 0, 8 * sizeof(ac_val[0]));
  1784. dc_pred_dir = 0;
  1785. }
  1786. if(!a_avail) {
  1787. memset(ac_val + 8, 0, 8 * sizeof(ac_val[0]));
  1788. dc_pred_dir = 1;
  1789. }
  1790. scale = mquant * 2;
  1791. memset(ac_val2, 0, 16 * 2);
  1792. if(dc_pred_dir) {//left
  1793. ac_val -= 16;
  1794. if(s->ac_pred && (v->a_avail || v->c_avail))
  1795. memcpy(ac_val2, ac_val, 8 * 2);
  1796. } else {//top
  1797. ac_val -= 16 * s->block_wrap[n];
  1798. if(s->ac_pred && (v->a_avail || v->c_avail))
  1799. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  1800. }
  1801. /* apply AC prediction if needed */
  1802. if(s->ac_pred && (v->a_avail || v->c_avail)) {
  1803. if(dc_pred_dir) { //left
  1804. for(k = 1; k < 8; k++) {
  1805. block[k << 3] = ac_val[k] * scale;
  1806. if(!v->pquantizer)
  1807. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  1808. }
  1809. } else { //top
  1810. for(k = 1; k < 8; k++) {
  1811. block[k] = ac_val[k + 8] * scale;
  1812. if(!v->pquantizer)
  1813. block[k] += (block[k] < 0) ? -mquant : mquant;
  1814. }
  1815. }
  1816. i = 63;
  1817. }
  1818. }
  1819. s->block_last_index[n] = i;
  1820. return 0;
  1821. }
  1822. /** Decode P block
  1823. */
  1824. static int vc1_decode_p_block(VC1Context *v, DCTELEM block[64], int n, int mquant, int ttmb, int first_block)
  1825. {
  1826. MpegEncContext *s = &v->s;
  1827. GetBitContext *gb = &s->gb;
  1828. int i, j;
  1829. int subblkpat = 0;
  1830. int scale, off, idx, last, skip, value;
  1831. int ttblk = ttmb & 7;
  1832. if(ttmb == -1) {
  1833. ttblk = ttblk_to_tt[v->tt_index][get_vlc2(gb, vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
  1834. }
  1835. if(ttblk == TT_4X4) {
  1836. subblkpat = ~(get_vlc2(gb, vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
  1837. }
  1838. if((ttblk != TT_8X8 && ttblk != TT_4X4) && (v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))) {
  1839. subblkpat = decode012(gb);
  1840. if(subblkpat) subblkpat ^= 3; //swap decoded pattern bits
  1841. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) ttblk = TT_8X4;
  1842. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) ttblk = TT_4X8;
  1843. }
  1844. scale = 2 * mquant;
  1845. // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
  1846. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
  1847. ttblk = TT_8X4;
  1848. subblkpat = 2 - (ttblk == TT_8X4_TOP);
  1849. }
  1850. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
  1851. ttblk = TT_4X8;
  1852. subblkpat = 2 - (ttblk == TT_4X8_LEFT);
  1853. }
  1854. switch(ttblk) {
  1855. case TT_8X8:
  1856. i = 0;
  1857. last = 0;
  1858. while (!last) {
  1859. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  1860. i += skip;
  1861. if(i > 63)
  1862. break;
  1863. idx = vc1_simple_progressive_8x8_zz[i++];
  1864. block[idx] = value * scale;
  1865. }
  1866. vc1_inv_trans(block, 8, 8);
  1867. break;
  1868. case TT_4X4:
  1869. for(j = 0; j < 4; j++) {
  1870. last = subblkpat & (1 << (3 - j));
  1871. i = 0;
  1872. off = (j & 1) * 4 + (j & 2) * 16;
  1873. while (!last) {
  1874. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  1875. i += skip;
  1876. if(i > 15)
  1877. break;
  1878. idx = vc1_simple_progressive_4x4_zz[i++];
  1879. block[idx + off] = value * scale;
  1880. }
  1881. if(!(subblkpat & (1 << (3 - j))))
  1882. vc1_inv_trans(block + off, 4, 4);
  1883. }
  1884. break;
  1885. case TT_8X4:
  1886. for(j = 0; j < 2; j++) {
  1887. last = subblkpat & (1 << (1 - j));
  1888. i = 0;
  1889. off = j * 32;
  1890. while (!last) {
  1891. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  1892. i += skip;
  1893. if(i > 31)
  1894. break;
  1895. idx = vc1_simple_progressive_8x4_zz[i++];
  1896. block[idx + off] = value * scale;
  1897. }
  1898. if(!(subblkpat & (1 << (1 - j))))
  1899. vc1_inv_trans(block + off, 8, 4);
  1900. }
  1901. break;
  1902. case TT_4X8:
  1903. for(j = 0; j < 2; j++) {
  1904. last = subblkpat & (1 << (1 - j));
  1905. i = 0;
  1906. off = j * 4;
  1907. while (!last) {
  1908. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  1909. i += skip;
  1910. if(i > 31)
  1911. break;
  1912. idx = vc1_simple_progressive_4x8_zz[i++];
  1913. block[idx + off] = value * scale;
  1914. }
  1915. if(!(subblkpat & (1 << (1 - j))))
  1916. vc1_inv_trans(block + off, 4, 8);
  1917. }
  1918. break;
  1919. }
  1920. return 0;
  1921. }
  1922. /** Decode one P-frame MB (in Simple/Main profile)
  1923. * @todo TODO: Extend to AP
  1924. * @fixme FIXME: DC value for inter blocks not set
  1925. */
  1926. static int vc1_decode_p_mb(VC1Context *v, DCTELEM block[6][64])
  1927. {
  1928. MpegEncContext *s = &v->s;
  1929. GetBitContext *gb = &s->gb;
  1930. int i, j;
  1931. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1932. int cbp; /* cbp decoding stuff */
  1933. int hybrid_pred; /* Prediction types */
  1934. int mqdiff, mquant; /* MB quantization */
  1935. int ttmb = v->ttmb; /* MB Transform type */
  1936. int status;
  1937. static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
  1938. offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  1939. int mb_has_coeffs = 1; /* last_flag */
  1940. int dmv_x, dmv_y; /* Differential MV components */
  1941. int index, index1; /* LUT indices */
  1942. int val, sign; /* temp values */
  1943. int first_block = 1;
  1944. int dst_idx, off;
  1945. int skipped, fourmv;
  1946. mquant = v->pq; /* Loosy initialization */
  1947. if (v->mv_type_is_raw)
  1948. fourmv = get_bits1(gb);
  1949. else
  1950. fourmv = v->mv_type_mb_plane[mb_pos];
  1951. if (v->skip_is_raw)
  1952. skipped = get_bits1(gb);
  1953. else
  1954. skipped = v->skip_mb_plane[mb_pos];
  1955. if (!fourmv) /* 1MV mode */
  1956. {
  1957. if (!skipped)
  1958. {
  1959. GET_MVDATA(dmv_x, dmv_y);
  1960. s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
  1961. vc1_pred_mv(s, dmv_x, dmv_y, 1, v->range_x, v->range_y);
  1962. /* FIXME Set DC val for inter block ? */
  1963. if (s->mb_intra && !mb_has_coeffs)
  1964. {
  1965. GET_MQUANT();
  1966. s->ac_pred = get_bits(gb, 1);
  1967. cbp = 0;
  1968. }
  1969. else if (mb_has_coeffs)
  1970. {
  1971. if (s->mb_intra) s->ac_pred = get_bits(gb, 1);
  1972. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  1973. GET_MQUANT();
  1974. }
  1975. else
  1976. {
  1977. mquant = v->pq;
  1978. cbp = 0;
  1979. }
  1980. s->current_picture.qscale_table[mb_pos] = mquant;
  1981. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  1982. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table,
  1983. VC1_TTMB_VLC_BITS, 2);
  1984. s->dsp.clear_blocks(block[0]);
  1985. vc1_mc_1mv(v);
  1986. dst_idx = 0;
  1987. for (i=0; i<6; i++)
  1988. {
  1989. s->dc_val[0][s->block_index[i]] = 0;
  1990. dst_idx += i >> 2;
  1991. val = ((cbp >> (5 - i)) & 1);
  1992. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  1993. if(s->mb_intra) {
  1994. /* check if prediction blocks A and C are available */
  1995. v->a_avail = v->c_avail = 0;
  1996. if((i == 2 || i == 3) || (s->mb_y && IS_INTRA(s->current_picture.mb_type[mb_pos - s->mb_stride])))
  1997. v->a_avail = 1;
  1998. if((i == 1 || i == 3) || (s->mb_x && IS_INTRA(s->current_picture.mb_type[mb_pos - 1])))
  1999. v->c_avail = 1;
  2000. vc1_decode_intra_block(v, block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  2001. vc1_inv_trans(block[i], 8, 8);
  2002. for(j = 0; j < 64; j++) block[i][j] += 128;
  2003. s->dsp.put_pixels_clamped(block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2004. /* TODO: proper loop filtering */
  2005. if(v->pq >= 9 && v->overlap) {
  2006. if(v->a_avail)
  2007. s->dsp.h263_v_loop_filter(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2), s->y_dc_scale);
  2008. if(v->c_avail)
  2009. s->dsp.h263_h_loop_filter(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2), s->y_dc_scale);
  2010. }
  2011. } else if(val) {
  2012. vc1_decode_p_block(v, block[i], i, mquant, ttmb, first_block);
  2013. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2014. first_block = 0;
  2015. s->dsp.add_pixels_clamped(block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  2016. }
  2017. }
  2018. }
  2019. else //Skipped
  2020. {
  2021. s->mb_intra = 0;
  2022. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  2023. vc1_pred_mv(s, 0, 0, 1, v->range_x, v->range_y);
  2024. vc1_mc_1mv(v);
  2025. return 0;
  2026. }
  2027. } //1MV mode
  2028. else //4MV mode
  2029. {//FIXME: looks not conforming to standard and is not even theoretically complete
  2030. if (!skipped /* unskipped MB */)
  2031. {
  2032. int blk_intra[4], blk_coded[4];
  2033. /* Get CBPCY */
  2034. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2035. for (i=0; i<4; i++)
  2036. {
  2037. val = ((cbp >> (5 - i)) & 1);
  2038. blk_intra[i] = 0;
  2039. blk_coded[i] = val;
  2040. if(val) {
  2041. GET_MVDATA(dmv_x, dmv_y);
  2042. blk_intra[i] = s->mb_intra;
  2043. }
  2044. if (v->mv_mode == MV_PMODE_MIXED_MV /* Hybrid pred */)
  2045. hybrid_pred = get_bits(gb, 1);
  2046. }
  2047. if((blk_intra[0] | blk_intra[1] | blk_intra[2] | blk_intra[3]) ||
  2048. (blk_coded[0] | blk_coded[1] | blk_coded[2] | blk_coded[3])) {
  2049. GET_MQUANT();
  2050. if (s->mb_intra /* One of the 4 blocks is intra */
  2051. /* non-zero pred for that block */)
  2052. s->ac_pred = get_bits(gb, 1);
  2053. if (!v->ttmbf)
  2054. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table,
  2055. VC1_TTMB_VLC_BITS, 12);
  2056. for(i = 0; i < 6; i++) {
  2057. val = ((cbp >> (5 - i)) & 1);
  2058. if(i & 4 || blk_intra[i] || val) {
  2059. if(i < 4 && blk_intra[i])
  2060. status = vc1_decode_intra_block(v, block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  2061. else
  2062. status = vc1_decode_p_block(v, block[i], i, mquant, ttmb, 0);
  2063. }
  2064. }
  2065. }
  2066. return status;
  2067. }
  2068. else //Skipped MB
  2069. {
  2070. /* XXX: Skipped => cbp=0 and mquant doesn't matter ? */
  2071. for (i=0; i<4; i++)
  2072. {
  2073. if (v->mv_mode == MV_PMODE_MIXED_MV /* Hybrid pred */)
  2074. hybrid_pred = get_bits(gb, 1);
  2075. }
  2076. /* TODO: blah */
  2077. return 0;
  2078. }
  2079. }
  2080. /* Should never happen */
  2081. return -1;
  2082. }
  2083. /** Decode blocks of I-frame
  2084. */
  2085. static void vc1_decode_i_blocks(VC1Context *v)
  2086. {
  2087. int k;
  2088. MpegEncContext *s = &v->s;
  2089. int cbp, val;
  2090. uint8_t *coded_val;
  2091. int mb_pos;
  2092. /* select codingmode used for VLC tables selection */
  2093. switch(v->y_ac_table_index){
  2094. case 0:
  2095. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2096. break;
  2097. case 1:
  2098. v->codingset = CS_HIGH_MOT_INTRA;
  2099. break;
  2100. case 2:
  2101. v->codingset = CS_MID_RATE_INTRA;
  2102. break;
  2103. }
  2104. switch(v->c_ac_table_index){
  2105. case 0:
  2106. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2107. break;
  2108. case 1:
  2109. v->codingset2 = CS_HIGH_MOT_INTER;
  2110. break;
  2111. case 2:
  2112. v->codingset2 = CS_MID_RATE_INTER;
  2113. break;
  2114. }
  2115. /* Set DC scale - y and c use the same */
  2116. s->y_dc_scale = s->y_dc_scale_table[v->pq];
  2117. s->c_dc_scale = s->c_dc_scale_table[v->pq];
  2118. //do frame decode
  2119. s->mb_x = s->mb_y = 0;
  2120. s->mb_intra = 1;
  2121. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  2122. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  2123. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  2124. ff_init_block_index(s);
  2125. ff_update_block_index(s);
  2126. s->dsp.clear_blocks(s->block[0]);
  2127. mb_pos = s->mb_x + s->mb_y * s->mb_width;
  2128. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  2129. s->current_picture.qscale_table[mb_pos] = v->pq;
  2130. // do actual MB decoding and displaying
  2131. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  2132. v->s.ac_pred = get_bits(&v->s.gb, 1);
  2133. for(k = 0; k < 6; k++) {
  2134. val = ((cbp >> (5 - k)) & 1);
  2135. if (k < 4) {
  2136. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  2137. val = val ^ pred;
  2138. *coded_val = val;
  2139. }
  2140. cbp |= val << (5 - k);
  2141. vc1_decode_i_block(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2);
  2142. vc1_inv_trans(s->block[k], 8, 8);
  2143. if(v->pq >= 9 && v->overlap) {
  2144. vc1_overlap_block(s, s->block[k], k, (s->mb_y || k>1), (s->mb_x || (k != 0 && k != 2)));
  2145. }
  2146. }
  2147. vc1_put_block(v, s->block);
  2148. if(v->pq >= 9 && v->overlap) { /* XXX: do proper overlapping insted of loop filter */
  2149. if(s->mb_y) {
  2150. s->dsp.h263_v_loop_filter(s->dest[0], s->linesize, s->y_dc_scale);
  2151. s->dsp.h263_v_loop_filter(s->dest[0] + 8, s->linesize, s->y_dc_scale);
  2152. s->dsp.h263_v_loop_filter(s->dest[1], s->uvlinesize, s->y_dc_scale);
  2153. s->dsp.h263_v_loop_filter(s->dest[2], s->uvlinesize, s->y_dc_scale);
  2154. }
  2155. s->dsp.h263_v_loop_filter(s->dest[0] + 8 * s->linesize, s->linesize, s->y_dc_scale);
  2156. s->dsp.h263_v_loop_filter(s->dest[0] + 8 * s->linesize + 8, s->linesize, s->y_dc_scale);
  2157. if(s->mb_x) {
  2158. s->dsp.h263_h_loop_filter(s->dest[0], s->linesize, s->y_dc_scale);
  2159. s->dsp.h263_h_loop_filter(s->dest[0] + 8 * s->linesize, s->linesize, s->y_dc_scale);
  2160. s->dsp.h263_h_loop_filter(s->dest[1], s->uvlinesize, s->y_dc_scale);
  2161. s->dsp.h263_h_loop_filter(s->dest[2], s->uvlinesize, s->y_dc_scale);
  2162. }
  2163. s->dsp.h263_h_loop_filter(s->dest[0] + 8, s->linesize, s->y_dc_scale);
  2164. s->dsp.h263_h_loop_filter(s->dest[0] + 8 * s->linesize + 8, s->linesize, s->y_dc_scale);
  2165. }
  2166. if(get_bits_count(&s->gb) > v->bits) {
  2167. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  2168. return;
  2169. }
  2170. }
  2171. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  2172. }
  2173. }
  2174. static void vc1_decode_p_blocks(VC1Context *v)
  2175. {
  2176. MpegEncContext *s = &v->s;
  2177. /* select codingmode used for VLC tables selection */
  2178. switch(v->c_ac_table_index){
  2179. case 0:
  2180. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2181. break;
  2182. case 1:
  2183. v->codingset = CS_HIGH_MOT_INTRA;
  2184. break;
  2185. case 2:
  2186. v->codingset = CS_MID_RATE_INTRA;
  2187. break;
  2188. }
  2189. switch(v->c_ac_table_index){
  2190. case 0:
  2191. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2192. break;
  2193. case 1:
  2194. v->codingset2 = CS_HIGH_MOT_INTER;
  2195. break;
  2196. case 2:
  2197. v->codingset2 = CS_MID_RATE_INTER;
  2198. break;
  2199. }
  2200. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  2201. s->first_slice_line = 1;
  2202. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  2203. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  2204. ff_init_block_index(s);
  2205. ff_update_block_index(s);
  2206. s->dsp.clear_blocks(s->block[0]);
  2207. vc1_decode_p_mb(v, s->block);
  2208. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  2209. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  2210. return;
  2211. }
  2212. }
  2213. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  2214. s->first_slice_line = 0;
  2215. }
  2216. }
  2217. static void vc1_decode_blocks(VC1Context *v)
  2218. {
  2219. v->s.esc3_level_length = 0;
  2220. switch(v->s.pict_type) {
  2221. case I_TYPE:
  2222. vc1_decode_i_blocks(v);
  2223. break;
  2224. case P_TYPE:
  2225. vc1_decode_p_blocks(v);
  2226. break;
  2227. }
  2228. }
  2229. /** Initialize a VC1/WMV3 decoder
  2230. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  2231. * @todo TODO: Decypher remaining bits in extra_data
  2232. */
  2233. static int vc1_decode_init(AVCodecContext *avctx)
  2234. {
  2235. VC1Context *v = avctx->priv_data;
  2236. MpegEncContext *s = &v->s;
  2237. GetBitContext gb;
  2238. if (!avctx->extradata_size || !avctx->extradata) return -1;
  2239. avctx->pix_fmt = PIX_FMT_YUV420P;
  2240. v->s.avctx = avctx;
  2241. avctx->flags |= CODEC_FLAG_EMU_EDGE;
  2242. v->s.flags |= CODEC_FLAG_EMU_EDGE;
  2243. if(ff_h263_decode_init(avctx) < 0)
  2244. return -1;
  2245. if (vc1_init_common(v) < 0) return -1;
  2246. av_log(avctx, AV_LOG_INFO, "This decoder is not supposed to produce picture. Dont report this as a bug!\n");
  2247. av_log(avctx, AV_LOG_INFO, "If you see a picture, don't believe your eyes.\n");
  2248. avctx->coded_width = avctx->width;
  2249. avctx->coded_height = avctx->height;
  2250. if (avctx->codec_id == CODEC_ID_WMV3)
  2251. {
  2252. int count = 0;
  2253. // looks like WMV3 has a sequence header stored in the extradata
  2254. // advanced sequence header may be before the first frame
  2255. // the last byte of the extradata is a version number, 1 for the
  2256. // samples we can decode
  2257. init_get_bits(&gb, avctx->extradata, avctx->extradata_size*8);
  2258. if (decode_sequence_header(avctx, &gb) < 0)
  2259. return -1;
  2260. count = avctx->extradata_size*8 - get_bits_count(&gb);
  2261. if (count>0)
  2262. {
  2263. av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n",
  2264. count, get_bits(&gb, count));
  2265. }
  2266. else if (count < 0)
  2267. {
  2268. av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count);
  2269. }
  2270. }
  2271. avctx->has_b_frames= !!(avctx->max_b_frames);
  2272. s->mb_width = (avctx->coded_width+15)>>4;
  2273. s->mb_height = (avctx->coded_height+15)>>4;
  2274. /* Allocate mb bitplanes */
  2275. v->mv_type_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  2276. v->skip_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  2277. /* For predictors */
  2278. v->previous_line_cbpcy = (uint8_t *)av_malloc(s->mb_stride*4);
  2279. if (!v->previous_line_cbpcy) return -1;
  2280. /* Init coded blocks info */
  2281. if (v->profile == PROFILE_ADVANCED)
  2282. {
  2283. // if (alloc_bitplane(&v->over_flags_plane, s->mb_width, s->mb_height) < 0)
  2284. // return -1;
  2285. // if (alloc_bitplane(&v->ac_pred_plane, s->mb_width, s->mb_height) < 0)
  2286. // return -1;
  2287. }
  2288. return 0;
  2289. }
  2290. /** Decode a VC1/WMV3 frame
  2291. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  2292. * @warning Initial try at using MpegEncContext stuff
  2293. */
  2294. static int vc1_decode_frame(AVCodecContext *avctx,
  2295. void *data, int *data_size,
  2296. uint8_t *buf, int buf_size)
  2297. {
  2298. VC1Context *v = avctx->priv_data;
  2299. MpegEncContext *s = &v->s;
  2300. AVFrame *pict = data;
  2301. /* no supplementary picture */
  2302. if (buf_size == 0) {
  2303. /* special case for last picture */
  2304. if (s->low_delay==0 && s->next_picture_ptr) {
  2305. *pict= *(AVFrame*)s->next_picture_ptr;
  2306. s->next_picture_ptr= NULL;
  2307. *data_size = sizeof(AVFrame);
  2308. }
  2309. return 0;
  2310. }
  2311. //we need to set current_picture_ptr before reading the header, otherwise we cant store anyting im there
  2312. if(s->current_picture_ptr==NULL || s->current_picture_ptr->data[0]){
  2313. int i= ff_find_unused_picture(s, 0);
  2314. s->current_picture_ptr= &s->picture[i];
  2315. }
  2316. avctx->has_b_frames= !s->low_delay;
  2317. init_get_bits(&s->gb, buf, buf_size*8);
  2318. // do parse frame header
  2319. if(vc1_parse_frame_header(v, &s->gb) == -1)
  2320. return -1;
  2321. if(s->pict_type != I_TYPE && s->pict_type != P_TYPE)return -1;
  2322. // for hurry_up==5
  2323. s->current_picture.pict_type= s->pict_type;
  2324. s->current_picture.key_frame= s->pict_type == I_TYPE;
  2325. /* skip B-frames if we don't have reference frames */
  2326. if(s->last_picture_ptr==NULL && (s->pict_type==B_TYPE || s->dropable)) return -1;//buf_size;
  2327. /* skip b frames if we are in a hurry */
  2328. if(avctx->hurry_up && s->pict_type==B_TYPE) return -1;//buf_size;
  2329. if( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type==B_TYPE)
  2330. || (avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type!=I_TYPE)
  2331. || avctx->skip_frame >= AVDISCARD_ALL)
  2332. return buf_size;
  2333. /* skip everything if we are in a hurry>=5 */
  2334. if(avctx->hurry_up>=5) return -1;//buf_size;
  2335. if(s->next_p_frame_damaged){
  2336. if(s->pict_type==B_TYPE)
  2337. return buf_size;
  2338. else
  2339. s->next_p_frame_damaged=0;
  2340. }
  2341. if(MPV_frame_start(s, avctx) < 0)
  2342. return -1;
  2343. ff_er_frame_start(s);
  2344. v->bits = buf_size * 8;
  2345. vc1_decode_blocks(v);
  2346. //av_log(s->avctx, AV_LOG_INFO, "Consumed %i/%i bits\n", get_bits_count(&s->gb), buf_size*8);
  2347. // if(get_bits_count(&s->gb) > buf_size * 8)
  2348. // return -1;
  2349. ff_er_frame_end(s);
  2350. MPV_frame_end(s);
  2351. assert(s->current_picture.pict_type == s->current_picture_ptr->pict_type);
  2352. assert(s->current_picture.pict_type == s->pict_type);
  2353. if (s->pict_type == B_TYPE || s->low_delay) {
  2354. *pict= *(AVFrame*)s->current_picture_ptr;
  2355. } else if (s->last_picture_ptr != NULL) {
  2356. *pict= *(AVFrame*)s->last_picture_ptr;
  2357. }
  2358. if(s->last_picture_ptr || s->low_delay){
  2359. *data_size = sizeof(AVFrame);
  2360. ff_print_debug_info(s, pict);
  2361. }
  2362. /* Return the Picture timestamp as the frame number */
  2363. /* we substract 1 because it is added on utils.c */
  2364. avctx->frame_number = s->picture_number - 1;
  2365. return buf_size;
  2366. }
  2367. /** Close a VC1/WMV3 decoder
  2368. * @warning Initial try at using MpegEncContext stuff
  2369. */
  2370. static int vc1_decode_end(AVCodecContext *avctx)
  2371. {
  2372. VC1Context *v = avctx->priv_data;
  2373. av_freep(&v->hrd_rate);
  2374. av_freep(&v->hrd_buffer);
  2375. MPV_common_end(&v->s);
  2376. av_freep(&v->mv_type_mb_plane);
  2377. av_freep(&v->skip_mb_plane);
  2378. return 0;
  2379. }
  2380. AVCodec vc1_decoder = {
  2381. "vc1",
  2382. CODEC_TYPE_VIDEO,
  2383. CODEC_ID_VC1,
  2384. sizeof(VC1Context),
  2385. vc1_decode_init,
  2386. NULL,
  2387. vc1_decode_end,
  2388. vc1_decode_frame,
  2389. CODEC_CAP_DELAY,
  2390. NULL
  2391. };
  2392. AVCodec wmv3_decoder = {
  2393. "wmv3",
  2394. CODEC_TYPE_VIDEO,
  2395. CODEC_ID_WMV3,
  2396. sizeof(VC1Context),
  2397. vc1_decode_init,
  2398. NULL,
  2399. vc1_decode_end,
  2400. vc1_decode_frame,
  2401. CODEC_CAP_DELAY,
  2402. NULL
  2403. };