You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

474 lines
14KB

  1. /*
  2. * VC-1 and WMV3 decoder - DSP functions
  3. * Copyright (c) 2006 Konstantin Shishkov
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file vc1dsp.c
  23. * VC-1 and WMV3 decoder
  24. *
  25. */
  26. #include "dsputil.h"
  27. /** Apply overlap transform to horizontal edge
  28. */
  29. static void vc1_v_overlap_c(uint8_t* src, int stride)
  30. {
  31. int i;
  32. int a, b, c, d;
  33. int d1, d2;
  34. int rnd = 1;
  35. for(i = 0; i < 8; i++) {
  36. a = src[-2*stride];
  37. b = src[-stride];
  38. c = src[0];
  39. d = src[stride];
  40. d1 = (a - d + 3 + rnd) >> 3;
  41. d2 = (a - d + b - c + 4 - rnd) >> 3;
  42. src[-2*stride] = a - d1;
  43. src[-stride] = b - d2;
  44. src[0] = c + d2;
  45. src[stride] = d + d1;
  46. src++;
  47. rnd = !rnd;
  48. }
  49. }
  50. /** Apply overlap transform to vertical edge
  51. */
  52. static void vc1_h_overlap_c(uint8_t* src, int stride)
  53. {
  54. int i;
  55. int a, b, c, d;
  56. int d1, d2;
  57. int rnd = 1;
  58. for(i = 0; i < 8; i++) {
  59. a = src[-2];
  60. b = src[-1];
  61. c = src[0];
  62. d = src[1];
  63. d1 = (a - d + 3 + rnd) >> 3;
  64. d2 = (a - d + b - c + 4 - rnd) >> 3;
  65. src[-2] = a - d1;
  66. src[-1] = b - d2;
  67. src[0] = c + d2;
  68. src[1] = d + d1;
  69. src += stride;
  70. rnd = !rnd;
  71. }
  72. }
  73. /** Do inverse transform on 8x8 block
  74. */
  75. static void vc1_inv_trans_8x8_c(DCTELEM block[64])
  76. {
  77. int i;
  78. register int t1,t2,t3,t4,t5,t6,t7,t8;
  79. DCTELEM *src, *dst;
  80. src = block;
  81. dst = block;
  82. for(i = 0; i < 8; i++){
  83. t1 = 12 * (src[0] + src[4]);
  84. t2 = 12 * (src[0] - src[4]);
  85. t3 = 16 * src[2] + 6 * src[6];
  86. t4 = 6 * src[2] - 16 * src[6];
  87. t5 = t1 + t3;
  88. t6 = t2 + t4;
  89. t7 = t2 - t4;
  90. t8 = t1 - t3;
  91. t1 = 16 * src[1] + 15 * src[3] + 9 * src[5] + 4 * src[7];
  92. t2 = 15 * src[1] - 4 * src[3] - 16 * src[5] - 9 * src[7];
  93. t3 = 9 * src[1] - 16 * src[3] + 4 * src[5] + 15 * src[7];
  94. t4 = 4 * src[1] - 9 * src[3] + 15 * src[5] - 16 * src[7];
  95. dst[0] = (t5 + t1 + 4) >> 3;
  96. dst[1] = (t6 + t2 + 4) >> 3;
  97. dst[2] = (t7 + t3 + 4) >> 3;
  98. dst[3] = (t8 + t4 + 4) >> 3;
  99. dst[4] = (t8 - t4 + 4) >> 3;
  100. dst[5] = (t7 - t3 + 4) >> 3;
  101. dst[6] = (t6 - t2 + 4) >> 3;
  102. dst[7] = (t5 - t1 + 4) >> 3;
  103. src += 8;
  104. dst += 8;
  105. }
  106. src = block;
  107. dst = block;
  108. for(i = 0; i < 8; i++){
  109. t1 = 12 * (src[ 0] + src[32]);
  110. t2 = 12 * (src[ 0] - src[32]);
  111. t3 = 16 * src[16] + 6 * src[48];
  112. t4 = 6 * src[16] - 16 * src[48];
  113. t5 = t1 + t3;
  114. t6 = t2 + t4;
  115. t7 = t2 - t4;
  116. t8 = t1 - t3;
  117. t1 = 16 * src[ 8] + 15 * src[24] + 9 * src[40] + 4 * src[56];
  118. t2 = 15 * src[ 8] - 4 * src[24] - 16 * src[40] - 9 * src[56];
  119. t3 = 9 * src[ 8] - 16 * src[24] + 4 * src[40] + 15 * src[56];
  120. t4 = 4 * src[ 8] - 9 * src[24] + 15 * src[40] - 16 * src[56];
  121. dst[ 0] = (t5 + t1 + 64) >> 7;
  122. dst[ 8] = (t6 + t2 + 64) >> 7;
  123. dst[16] = (t7 + t3 + 64) >> 7;
  124. dst[24] = (t8 + t4 + 64) >> 7;
  125. dst[32] = (t8 - t4 + 64 + 1) >> 7;
  126. dst[40] = (t7 - t3 + 64 + 1) >> 7;
  127. dst[48] = (t6 - t2 + 64 + 1) >> 7;
  128. dst[56] = (t5 - t1 + 64 + 1) >> 7;
  129. src++;
  130. dst++;
  131. }
  132. }
  133. /** Do inverse transform on 8x4 part of block
  134. */
  135. static void vc1_inv_trans_8x4_c(DCTELEM block[64], int n)
  136. {
  137. int i;
  138. register int t1,t2,t3,t4,t5,t6,t7,t8;
  139. DCTELEM *src, *dst;
  140. int off;
  141. off = n * 32;
  142. src = block + off;
  143. dst = block + off;
  144. for(i = 0; i < 4; i++){
  145. t1 = 12 * (src[0] + src[4]);
  146. t2 = 12 * (src[0] - src[4]);
  147. t3 = 16 * src[2] + 6 * src[6];
  148. t4 = 6 * src[2] - 16 * src[6];
  149. t5 = t1 + t3;
  150. t6 = t2 + t4;
  151. t7 = t2 - t4;
  152. t8 = t1 - t3;
  153. t1 = 16 * src[1] + 15 * src[3] + 9 * src[5] + 4 * src[7];
  154. t2 = 15 * src[1] - 4 * src[3] - 16 * src[5] - 9 * src[7];
  155. t3 = 9 * src[1] - 16 * src[3] + 4 * src[5] + 15 * src[7];
  156. t4 = 4 * src[1] - 9 * src[3] + 15 * src[5] - 16 * src[7];
  157. dst[0] = (t5 + t1 + 4) >> 3;
  158. dst[1] = (t6 + t2 + 4) >> 3;
  159. dst[2] = (t7 + t3 + 4) >> 3;
  160. dst[3] = (t8 + t4 + 4) >> 3;
  161. dst[4] = (t8 - t4 + 4) >> 3;
  162. dst[5] = (t7 - t3 + 4) >> 3;
  163. dst[6] = (t6 - t2 + 4) >> 3;
  164. dst[7] = (t5 - t1 + 4) >> 3;
  165. src += 8;
  166. dst += 8;
  167. }
  168. src = block + off;
  169. dst = block + off;
  170. for(i = 0; i < 8; i++){
  171. t1 = 17 * (src[ 0] + src[16]);
  172. t2 = 17 * (src[ 0] - src[16]);
  173. t3 = 22 * src[ 8];
  174. t4 = 22 * src[24];
  175. t5 = 10 * src[ 8];
  176. t6 = 10 * src[24];
  177. dst[ 0] = (t1 + t3 + t6 + 64) >> 7;
  178. dst[ 8] = (t2 - t4 + t5 + 64) >> 7;
  179. dst[16] = (t2 + t4 - t5 + 64) >> 7;
  180. dst[24] = (t1 - t3 - t6 + 64) >> 7;
  181. src ++;
  182. dst ++;
  183. }
  184. }
  185. /** Do inverse transform on 4x8 parts of block
  186. */
  187. static void vc1_inv_trans_4x8_c(DCTELEM block[64], int n)
  188. {
  189. int i;
  190. register int t1,t2,t3,t4,t5,t6,t7,t8;
  191. DCTELEM *src, *dst;
  192. int off;
  193. off = n * 4;
  194. src = block + off;
  195. dst = block + off;
  196. for(i = 0; i < 8; i++){
  197. t1 = 17 * (src[0] + src[2]);
  198. t2 = 17 * (src[0] - src[2]);
  199. t3 = 22 * src[1];
  200. t4 = 22 * src[3];
  201. t5 = 10 * src[1];
  202. t6 = 10 * src[3];
  203. dst[0] = (t1 + t3 + t6 + 4) >> 3;
  204. dst[1] = (t2 - t4 + t5 + 4) >> 3;
  205. dst[2] = (t2 + t4 - t5 + 4) >> 3;
  206. dst[3] = (t1 - t3 - t6 + 4) >> 3;
  207. src += 8;
  208. dst += 8;
  209. }
  210. src = block + off;
  211. dst = block + off;
  212. for(i = 0; i < 4; i++){
  213. t1 = 12 * (src[ 0] + src[32]);
  214. t2 = 12 * (src[ 0] - src[32]);
  215. t3 = 16 * src[16] + 6 * src[48];
  216. t4 = 6 * src[16] - 16 * src[48];
  217. t5 = t1 + t3;
  218. t6 = t2 + t4;
  219. t7 = t2 - t4;
  220. t8 = t1 - t3;
  221. t1 = 16 * src[ 8] + 15 * src[24] + 9 * src[40] + 4 * src[56];
  222. t2 = 15 * src[ 8] - 4 * src[24] - 16 * src[40] - 9 * src[56];
  223. t3 = 9 * src[ 8] - 16 * src[24] + 4 * src[40] + 15 * src[56];
  224. t4 = 4 * src[ 8] - 9 * src[24] + 15 * src[40] - 16 * src[56];
  225. dst[ 0] = (t5 + t1 + 64) >> 7;
  226. dst[ 8] = (t6 + t2 + 64) >> 7;
  227. dst[16] = (t7 + t3 + 64) >> 7;
  228. dst[24] = (t8 + t4 + 64) >> 7;
  229. dst[32] = (t8 - t4 + 64 + 1) >> 7;
  230. dst[40] = (t7 - t3 + 64 + 1) >> 7;
  231. dst[48] = (t6 - t2 + 64 + 1) >> 7;
  232. dst[56] = (t5 - t1 + 64 + 1) >> 7;
  233. src++;
  234. dst++;
  235. }
  236. }
  237. /** Do inverse transform on 4x4 part of block
  238. */
  239. static void vc1_inv_trans_4x4_c(DCTELEM block[64], int n)
  240. {
  241. int i;
  242. register int t1,t2,t3,t4,t5,t6;
  243. DCTELEM *src, *dst;
  244. int off;
  245. off = (n&1) * 4 + (n&2) * 16;
  246. src = block + off;
  247. dst = block + off;
  248. for(i = 0; i < 4; i++){
  249. t1 = 17 * (src[0] + src[2]);
  250. t2 = 17 * (src[0] - src[2]);
  251. t3 = 22 * src[1];
  252. t4 = 22 * src[3];
  253. t5 = 10 * src[1];
  254. t6 = 10 * src[3];
  255. dst[0] = (t1 + t3 + t6 + 4) >> 3;
  256. dst[1] = (t2 - t4 + t5 + 4) >> 3;
  257. dst[2] = (t2 + t4 - t5 + 4) >> 3;
  258. dst[3] = (t1 - t3 - t6 + 4) >> 3;
  259. src += 8;
  260. dst += 8;
  261. }
  262. src = block + off;
  263. dst = block + off;
  264. for(i = 0; i < 4; i++){
  265. t1 = 17 * (src[ 0] + src[16]);
  266. t2 = 17 * (src[ 0] - src[16]);
  267. t3 = 22 * src[ 8];
  268. t4 = 22 * src[24];
  269. t5 = 10 * src[ 8];
  270. t6 = 10 * src[24];
  271. dst[ 0] = (t1 + t3 + t6 + 64) >> 7;
  272. dst[ 8] = (t2 - t4 + t5 + 64) >> 7;
  273. dst[16] = (t2 + t4 - t5 + 64) >> 7;
  274. dst[24] = (t1 - t3 - t6 + 64) >> 7;
  275. src ++;
  276. dst ++;
  277. }
  278. }
  279. /* motion compensation functions */
  280. /** Filter in case of 2 filters */
  281. #define VC1_MSPEL_FILTER_16B(DIR, TYPE) \
  282. static av_always_inline int vc1_mspel_ ## DIR ## _filter_16bits(const TYPE *src, int stride, int mode) \
  283. { \
  284. switch(mode){ \
  285. case 0: /* no shift - should not occur */ \
  286. return 0; \
  287. case 1: /* 1/4 shift */ \
  288. return -4*src[-stride] + 53*src[0] + 18*src[stride] - 3*src[stride*2]; \
  289. case 2: /* 1/2 shift */ \
  290. return -src[-stride] + 9*src[0] + 9*src[stride] - src[stride*2]; \
  291. case 3: /* 3/4 shift */ \
  292. return -3*src[-stride] + 18*src[0] + 53*src[stride] - 4*src[stride*2]; \
  293. } \
  294. return 0; /* should not occur */ \
  295. }
  296. VC1_MSPEL_FILTER_16B(ver, uint8_t);
  297. VC1_MSPEL_FILTER_16B(hor, int16_t);
  298. /** Filter used to interpolate fractional pel values
  299. */
  300. static av_always_inline int vc1_mspel_filter(const uint8_t *src, int stride, int mode, int r)
  301. {
  302. switch(mode){
  303. case 0: //no shift
  304. return src[0];
  305. case 1: // 1/4 shift
  306. return (-4*src[-stride] + 53*src[0] + 18*src[stride] - 3*src[stride*2] + 32 - r) >> 6;
  307. case 2: // 1/2 shift
  308. return (-src[-stride] + 9*src[0] + 9*src[stride] - src[stride*2] + 8 - r) >> 4;
  309. case 3: // 3/4 shift
  310. return (-3*src[-stride] + 18*src[0] + 53*src[stride] - 4*src[stride*2] + 32 - r) >> 6;
  311. }
  312. return 0; //should not occur
  313. }
  314. /** Function used to do motion compensation with bicubic interpolation
  315. */
  316. static void vc1_mspel_mc(uint8_t *dst, const uint8_t *src, int stride, int hmode, int vmode, int rnd)
  317. {
  318. int i, j;
  319. if (vmode) { /* Horizontal filter to apply */
  320. int r;
  321. if (hmode) { /* Vertical filter to apply, output to tmp */
  322. static const int shift_value[] = { 0, 5, 1, 5 };
  323. int shift = (shift_value[hmode]+shift_value[vmode])>>1;
  324. int16_t tmp[11*8], *tptr = tmp;
  325. r = (1<<(shift-1)) + rnd-1;
  326. src -= 1;
  327. for(j = 0; j < 8; j++) {
  328. for(i = 0; i < 11; i++)
  329. tptr[i] = (vc1_mspel_ver_filter_16bits(src + i, stride, vmode)+r)>>shift;
  330. src += stride;
  331. tptr += 11;
  332. }
  333. r = 64-rnd;
  334. tptr = tmp+1;
  335. for(j = 0; j < 8; j++) {
  336. for(i = 0; i < 8; i++)
  337. dst[i] = av_clip_uint8((vc1_mspel_hor_filter_16bits(tptr + i, 1, hmode)+r)>>7);
  338. dst += stride;
  339. tptr += 11;
  340. }
  341. return;
  342. }
  343. else { /* No horizontal filter, output 8 lines to dst */
  344. r = 1-rnd;
  345. for(j = 0; j < 8; j++) {
  346. for(i = 0; i < 8; i++)
  347. dst[i] = av_clip_uint8(vc1_mspel_filter(src + i, stride, vmode, r));
  348. src += stride;
  349. dst += stride;
  350. }
  351. return;
  352. }
  353. }
  354. /* Horizontal mode with no vertical mode */
  355. for(j = 0; j < 8; j++) {
  356. for(i = 0; i < 8; i++)
  357. dst[i] = av_clip_uint8(vc1_mspel_filter(src + i, 1, hmode, rnd));
  358. dst += stride;
  359. src += stride;
  360. }
  361. }
  362. /* pixel functions - really are entry points to vc1_mspel_mc */
  363. /* this one is defined in dsputil.c */
  364. void ff_put_vc1_mspel_mc00_c(uint8_t *dst, const uint8_t *src, int stride, int rnd);
  365. #define PUT_VC1_MSPEL(a, b)\
  366. static void put_vc1_mspel_mc ## a ## b ##_c(uint8_t *dst, const uint8_t *src, int stride, int rnd) { \
  367. vc1_mspel_mc(dst, src, stride, a, b, rnd); \
  368. }
  369. PUT_VC1_MSPEL(1, 0)
  370. PUT_VC1_MSPEL(2, 0)
  371. PUT_VC1_MSPEL(3, 0)
  372. PUT_VC1_MSPEL(0, 1)
  373. PUT_VC1_MSPEL(1, 1)
  374. PUT_VC1_MSPEL(2, 1)
  375. PUT_VC1_MSPEL(3, 1)
  376. PUT_VC1_MSPEL(0, 2)
  377. PUT_VC1_MSPEL(1, 2)
  378. PUT_VC1_MSPEL(2, 2)
  379. PUT_VC1_MSPEL(3, 2)
  380. PUT_VC1_MSPEL(0, 3)
  381. PUT_VC1_MSPEL(1, 3)
  382. PUT_VC1_MSPEL(2, 3)
  383. PUT_VC1_MSPEL(3, 3)
  384. void ff_vc1dsp_init(DSPContext* dsp, AVCodecContext *avctx) {
  385. dsp->vc1_inv_trans_8x8 = vc1_inv_trans_8x8_c;
  386. dsp->vc1_inv_trans_4x8 = vc1_inv_trans_4x8_c;
  387. dsp->vc1_inv_trans_8x4 = vc1_inv_trans_8x4_c;
  388. dsp->vc1_inv_trans_4x4 = vc1_inv_trans_4x4_c;
  389. dsp->vc1_h_overlap = vc1_h_overlap_c;
  390. dsp->vc1_v_overlap = vc1_v_overlap_c;
  391. dsp->put_vc1_mspel_pixels_tab[ 0] = ff_put_vc1_mspel_mc00_c;
  392. dsp->put_vc1_mspel_pixels_tab[ 1] = put_vc1_mspel_mc10_c;
  393. dsp->put_vc1_mspel_pixels_tab[ 2] = put_vc1_mspel_mc20_c;
  394. dsp->put_vc1_mspel_pixels_tab[ 3] = put_vc1_mspel_mc30_c;
  395. dsp->put_vc1_mspel_pixels_tab[ 4] = put_vc1_mspel_mc01_c;
  396. dsp->put_vc1_mspel_pixels_tab[ 5] = put_vc1_mspel_mc11_c;
  397. dsp->put_vc1_mspel_pixels_tab[ 6] = put_vc1_mspel_mc21_c;
  398. dsp->put_vc1_mspel_pixels_tab[ 7] = put_vc1_mspel_mc31_c;
  399. dsp->put_vc1_mspel_pixels_tab[ 8] = put_vc1_mspel_mc02_c;
  400. dsp->put_vc1_mspel_pixels_tab[ 9] = put_vc1_mspel_mc12_c;
  401. dsp->put_vc1_mspel_pixels_tab[10] = put_vc1_mspel_mc22_c;
  402. dsp->put_vc1_mspel_pixels_tab[11] = put_vc1_mspel_mc32_c;
  403. dsp->put_vc1_mspel_pixels_tab[12] = put_vc1_mspel_mc03_c;
  404. dsp->put_vc1_mspel_pixels_tab[13] = put_vc1_mspel_mc13_c;
  405. dsp->put_vc1_mspel_pixels_tab[14] = put_vc1_mspel_mc23_c;
  406. dsp->put_vc1_mspel_pixels_tab[15] = put_vc1_mspel_mc33_c;
  407. }