You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

4149 lines
143KB

  1. /*
  2. * VC-1 and WMV3 decoder
  3. * Copyright (c) 2006-2007 Konstantin Shishkov
  4. * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file vc1.c
  24. * VC-1 and WMV3 decoder
  25. *
  26. */
  27. #include "dsputil.h"
  28. #include "avcodec.h"
  29. #include "mpegvideo.h"
  30. #include "vc1.h"
  31. #include "vc1data.h"
  32. #include "vc1acdata.h"
  33. #include "msmpeg4data.h"
  34. #include "unary.h"
  35. #undef NDEBUG
  36. #include <assert.h>
  37. #define MB_INTRA_VLC_BITS 9
  38. #define DC_VLC_BITS 9
  39. #define AC_VLC_BITS 9
  40. static const uint16_t table_mb_intra[64][2];
  41. static inline int decode210(GetBitContext *gb){
  42. if (get_bits1(gb))
  43. return 0;
  44. else
  45. return 2 - get_bits1(gb);
  46. }
  47. /**
  48. * Init VC-1 specific tables and VC1Context members
  49. * @param v The VC1Context to initialize
  50. * @return Status
  51. */
  52. static int vc1_init_common(VC1Context *v)
  53. {
  54. static int done = 0;
  55. int i = 0;
  56. v->hrd_rate = v->hrd_buffer = NULL;
  57. /* VLC tables */
  58. if(!done)
  59. {
  60. done = 1;
  61. init_vlc(&ff_vc1_bfraction_vlc, VC1_BFRACTION_VLC_BITS, 23,
  62. ff_vc1_bfraction_bits, 1, 1,
  63. ff_vc1_bfraction_codes, 1, 1, 1);
  64. init_vlc(&ff_vc1_norm2_vlc, VC1_NORM2_VLC_BITS, 4,
  65. ff_vc1_norm2_bits, 1, 1,
  66. ff_vc1_norm2_codes, 1, 1, 1);
  67. init_vlc(&ff_vc1_norm6_vlc, VC1_NORM6_VLC_BITS, 64,
  68. ff_vc1_norm6_bits, 1, 1,
  69. ff_vc1_norm6_codes, 2, 2, 1);
  70. init_vlc(&ff_vc1_imode_vlc, VC1_IMODE_VLC_BITS, 7,
  71. ff_vc1_imode_bits, 1, 1,
  72. ff_vc1_imode_codes, 1, 1, 1);
  73. for (i=0; i<3; i++)
  74. {
  75. init_vlc(&ff_vc1_ttmb_vlc[i], VC1_TTMB_VLC_BITS, 16,
  76. ff_vc1_ttmb_bits[i], 1, 1,
  77. ff_vc1_ttmb_codes[i], 2, 2, 1);
  78. init_vlc(&ff_vc1_ttblk_vlc[i], VC1_TTBLK_VLC_BITS, 8,
  79. ff_vc1_ttblk_bits[i], 1, 1,
  80. ff_vc1_ttblk_codes[i], 1, 1, 1);
  81. init_vlc(&ff_vc1_subblkpat_vlc[i], VC1_SUBBLKPAT_VLC_BITS, 15,
  82. ff_vc1_subblkpat_bits[i], 1, 1,
  83. ff_vc1_subblkpat_codes[i], 1, 1, 1);
  84. }
  85. for(i=0; i<4; i++)
  86. {
  87. init_vlc(&ff_vc1_4mv_block_pattern_vlc[i], VC1_4MV_BLOCK_PATTERN_VLC_BITS, 16,
  88. ff_vc1_4mv_block_pattern_bits[i], 1, 1,
  89. ff_vc1_4mv_block_pattern_codes[i], 1, 1, 1);
  90. init_vlc(&ff_vc1_cbpcy_p_vlc[i], VC1_CBPCY_P_VLC_BITS, 64,
  91. ff_vc1_cbpcy_p_bits[i], 1, 1,
  92. ff_vc1_cbpcy_p_codes[i], 2, 2, 1);
  93. init_vlc(&ff_vc1_mv_diff_vlc[i], VC1_MV_DIFF_VLC_BITS, 73,
  94. ff_vc1_mv_diff_bits[i], 1, 1,
  95. ff_vc1_mv_diff_codes[i], 2, 2, 1);
  96. }
  97. for(i=0; i<8; i++)
  98. init_vlc(&ff_vc1_ac_coeff_table[i], AC_VLC_BITS, vc1_ac_sizes[i],
  99. &vc1_ac_tables[i][0][1], 8, 4,
  100. &vc1_ac_tables[i][0][0], 8, 4, 1);
  101. init_vlc(&ff_msmp4_mb_i_vlc, MB_INTRA_VLC_BITS, 64,
  102. &ff_msmp4_mb_i_table[0][1], 4, 2,
  103. &ff_msmp4_mb_i_table[0][0], 4, 2, 1);
  104. }
  105. /* Other defaults */
  106. v->pq = -1;
  107. v->mvrange = 0; /* 7.1.1.18, p80 */
  108. return 0;
  109. }
  110. /***********************************************************************/
  111. /**
  112. * @defgroup bitplane VC9 Bitplane decoding
  113. * @see 8.7, p56
  114. * @{
  115. */
  116. /** @addtogroup bitplane
  117. * Imode types
  118. * @{
  119. */
  120. enum Imode {
  121. IMODE_RAW,
  122. IMODE_NORM2,
  123. IMODE_DIFF2,
  124. IMODE_NORM6,
  125. IMODE_DIFF6,
  126. IMODE_ROWSKIP,
  127. IMODE_COLSKIP
  128. };
  129. /** @} */ //imode defines
  130. /** Decode rows by checking if they are skipped
  131. * @param plane Buffer to store decoded bits
  132. * @param[in] width Width of this buffer
  133. * @param[in] height Height of this buffer
  134. * @param[in] stride of this buffer
  135. */
  136. static void decode_rowskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  137. int x, y;
  138. for (y=0; y<height; y++){
  139. if (!get_bits1(gb)) //rowskip
  140. memset(plane, 0, width);
  141. else
  142. for (x=0; x<width; x++)
  143. plane[x] = get_bits1(gb);
  144. plane += stride;
  145. }
  146. }
  147. /** Decode columns by checking if they are skipped
  148. * @param plane Buffer to store decoded bits
  149. * @param[in] width Width of this buffer
  150. * @param[in] height Height of this buffer
  151. * @param[in] stride of this buffer
  152. * @todo FIXME: Optimize
  153. */
  154. static void decode_colskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  155. int x, y;
  156. for (x=0; x<width; x++){
  157. if (!get_bits1(gb)) //colskip
  158. for (y=0; y<height; y++)
  159. plane[y*stride] = 0;
  160. else
  161. for (y=0; y<height; y++)
  162. plane[y*stride] = get_bits1(gb);
  163. plane ++;
  164. }
  165. }
  166. /** Decode a bitplane's bits
  167. * @param bp Bitplane where to store the decode bits
  168. * @param v VC-1 context for bit reading and logging
  169. * @return Status
  170. * @todo FIXME: Optimize
  171. */
  172. static int bitplane_decoding(uint8_t* data, int *raw_flag, VC1Context *v)
  173. {
  174. GetBitContext *gb = &v->s.gb;
  175. int imode, x, y, code, offset;
  176. uint8_t invert, *planep = data;
  177. int width, height, stride;
  178. width = v->s.mb_width;
  179. height = v->s.mb_height;
  180. stride = v->s.mb_stride;
  181. invert = get_bits1(gb);
  182. imode = get_vlc2(gb, ff_vc1_imode_vlc.table, VC1_IMODE_VLC_BITS, 1);
  183. *raw_flag = 0;
  184. switch (imode)
  185. {
  186. case IMODE_RAW:
  187. //Data is actually read in the MB layer (same for all tests == "raw")
  188. *raw_flag = 1; //invert ignored
  189. return invert;
  190. case IMODE_DIFF2:
  191. case IMODE_NORM2:
  192. if ((height * width) & 1)
  193. {
  194. *planep++ = get_bits1(gb);
  195. offset = 1;
  196. }
  197. else offset = 0;
  198. // decode bitplane as one long line
  199. for (y = offset; y < height * width; y += 2) {
  200. code = get_vlc2(gb, ff_vc1_norm2_vlc.table, VC1_NORM2_VLC_BITS, 1);
  201. *planep++ = code & 1;
  202. offset++;
  203. if(offset == width) {
  204. offset = 0;
  205. planep += stride - width;
  206. }
  207. *planep++ = code >> 1;
  208. offset++;
  209. if(offset == width) {
  210. offset = 0;
  211. planep += stride - width;
  212. }
  213. }
  214. break;
  215. case IMODE_DIFF6:
  216. case IMODE_NORM6:
  217. if(!(height % 3) && (width % 3)) { // use 2x3 decoding
  218. for(y = 0; y < height; y+= 3) {
  219. for(x = width & 1; x < width; x += 2) {
  220. code = get_vlc2(gb, ff_vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  221. if(code < 0){
  222. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  223. return -1;
  224. }
  225. planep[x + 0] = (code >> 0) & 1;
  226. planep[x + 1] = (code >> 1) & 1;
  227. planep[x + 0 + stride] = (code >> 2) & 1;
  228. planep[x + 1 + stride] = (code >> 3) & 1;
  229. planep[x + 0 + stride * 2] = (code >> 4) & 1;
  230. planep[x + 1 + stride * 2] = (code >> 5) & 1;
  231. }
  232. planep += stride * 3;
  233. }
  234. if(width & 1) decode_colskip(data, 1, height, stride, &v->s.gb);
  235. } else { // 3x2
  236. planep += (height & 1) * stride;
  237. for(y = height & 1; y < height; y += 2) {
  238. for(x = width % 3; x < width; x += 3) {
  239. code = get_vlc2(gb, ff_vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  240. if(code < 0){
  241. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  242. return -1;
  243. }
  244. planep[x + 0] = (code >> 0) & 1;
  245. planep[x + 1] = (code >> 1) & 1;
  246. planep[x + 2] = (code >> 2) & 1;
  247. planep[x + 0 + stride] = (code >> 3) & 1;
  248. planep[x + 1 + stride] = (code >> 4) & 1;
  249. planep[x + 2 + stride] = (code >> 5) & 1;
  250. }
  251. planep += stride * 2;
  252. }
  253. x = width % 3;
  254. if(x) decode_colskip(data , x, height , stride, &v->s.gb);
  255. if(height & 1) decode_rowskip(data+x, width - x, 1, stride, &v->s.gb);
  256. }
  257. break;
  258. case IMODE_ROWSKIP:
  259. decode_rowskip(data, width, height, stride, &v->s.gb);
  260. break;
  261. case IMODE_COLSKIP:
  262. decode_colskip(data, width, height, stride, &v->s.gb);
  263. break;
  264. default: break;
  265. }
  266. /* Applying diff operator */
  267. if (imode == IMODE_DIFF2 || imode == IMODE_DIFF6)
  268. {
  269. planep = data;
  270. planep[0] ^= invert;
  271. for (x=1; x<width; x++)
  272. planep[x] ^= planep[x-1];
  273. for (y=1; y<height; y++)
  274. {
  275. planep += stride;
  276. planep[0] ^= planep[-stride];
  277. for (x=1; x<width; x++)
  278. {
  279. if (planep[x-1] != planep[x-stride]) planep[x] ^= invert;
  280. else planep[x] ^= planep[x-1];
  281. }
  282. }
  283. }
  284. else if (invert)
  285. {
  286. planep = data;
  287. for (x=0; x<stride*height; x++) planep[x] = !planep[x]; //FIXME stride
  288. }
  289. return (imode<<1) + invert;
  290. }
  291. /** @} */ //Bitplane group
  292. /***********************************************************************/
  293. /** VOP Dquant decoding
  294. * @param v VC-1 Context
  295. */
  296. static int vop_dquant_decoding(VC1Context *v)
  297. {
  298. GetBitContext *gb = &v->s.gb;
  299. int pqdiff;
  300. //variable size
  301. if (v->dquant == 2)
  302. {
  303. pqdiff = get_bits(gb, 3);
  304. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  305. else v->altpq = v->pq + pqdiff + 1;
  306. }
  307. else
  308. {
  309. v->dquantfrm = get_bits1(gb);
  310. if ( v->dquantfrm )
  311. {
  312. v->dqprofile = get_bits(gb, 2);
  313. switch (v->dqprofile)
  314. {
  315. case DQPROFILE_SINGLE_EDGE:
  316. case DQPROFILE_DOUBLE_EDGES:
  317. v->dqsbedge = get_bits(gb, 2);
  318. break;
  319. case DQPROFILE_ALL_MBS:
  320. v->dqbilevel = get_bits1(gb);
  321. default: break; //Forbidden ?
  322. }
  323. if (v->dqbilevel || v->dqprofile != DQPROFILE_ALL_MBS)
  324. {
  325. pqdiff = get_bits(gb, 3);
  326. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  327. else v->altpq = v->pq + pqdiff + 1;
  328. }
  329. }
  330. }
  331. return 0;
  332. }
  333. /** Put block onto picture
  334. */
  335. static void vc1_put_block(VC1Context *v, DCTELEM block[6][64])
  336. {
  337. uint8_t *Y;
  338. int ys, us, vs;
  339. DSPContext *dsp = &v->s.dsp;
  340. if(v->rangeredfrm) {
  341. int i, j, k;
  342. for(k = 0; k < 6; k++)
  343. for(j = 0; j < 8; j++)
  344. for(i = 0; i < 8; i++)
  345. block[k][i + j*8] = ((block[k][i + j*8] - 128) << 1) + 128;
  346. }
  347. ys = v->s.current_picture.linesize[0];
  348. us = v->s.current_picture.linesize[1];
  349. vs = v->s.current_picture.linesize[2];
  350. Y = v->s.dest[0];
  351. dsp->put_pixels_clamped(block[0], Y, ys);
  352. dsp->put_pixels_clamped(block[1], Y + 8, ys);
  353. Y += ys * 8;
  354. dsp->put_pixels_clamped(block[2], Y, ys);
  355. dsp->put_pixels_clamped(block[3], Y + 8, ys);
  356. if(!(v->s.flags & CODEC_FLAG_GRAY)) {
  357. dsp->put_pixels_clamped(block[4], v->s.dest[1], us);
  358. dsp->put_pixels_clamped(block[5], v->s.dest[2], vs);
  359. }
  360. }
  361. /** Do motion compensation over 1 macroblock
  362. * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
  363. */
  364. static void vc1_mc_1mv(VC1Context *v, int dir)
  365. {
  366. MpegEncContext *s = &v->s;
  367. DSPContext *dsp = &v->s.dsp;
  368. uint8_t *srcY, *srcU, *srcV;
  369. int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  370. if(!v->s.last_picture.data[0])return;
  371. mx = s->mv[dir][0][0];
  372. my = s->mv[dir][0][1];
  373. // store motion vectors for further use in B frames
  374. if(s->pict_type == P_TYPE) {
  375. s->current_picture.motion_val[1][s->block_index[0]][0] = mx;
  376. s->current_picture.motion_val[1][s->block_index[0]][1] = my;
  377. }
  378. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  379. uvmy = (my + ((my & 3) == 3)) >> 1;
  380. if(v->fastuvmc) {
  381. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  382. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  383. }
  384. if(!dir) {
  385. srcY = s->last_picture.data[0];
  386. srcU = s->last_picture.data[1];
  387. srcV = s->last_picture.data[2];
  388. } else {
  389. srcY = s->next_picture.data[0];
  390. srcU = s->next_picture.data[1];
  391. srcV = s->next_picture.data[2];
  392. }
  393. src_x = s->mb_x * 16 + (mx >> 2);
  394. src_y = s->mb_y * 16 + (my >> 2);
  395. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  396. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  397. if(v->profile != PROFILE_ADVANCED){
  398. src_x = av_clip( src_x, -16, s->mb_width * 16);
  399. src_y = av_clip( src_y, -16, s->mb_height * 16);
  400. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  401. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  402. }else{
  403. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  404. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  405. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  406. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  407. }
  408. srcY += src_y * s->linesize + src_x;
  409. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  410. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  411. /* for grayscale we should not try to read from unknown area */
  412. if(s->flags & CODEC_FLAG_GRAY) {
  413. srcU = s->edge_emu_buffer + 18 * s->linesize;
  414. srcV = s->edge_emu_buffer + 18 * s->linesize;
  415. }
  416. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  417. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel*3
  418. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 16 - s->mspel*3){
  419. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  420. srcY -= s->mspel * (1 + s->linesize);
  421. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  422. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  423. srcY = s->edge_emu_buffer;
  424. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  425. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  426. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  427. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  428. srcU = uvbuf;
  429. srcV = uvbuf + 16;
  430. /* if we deal with range reduction we need to scale source blocks */
  431. if(v->rangeredfrm) {
  432. int i, j;
  433. uint8_t *src, *src2;
  434. src = srcY;
  435. for(j = 0; j < 17 + s->mspel*2; j++) {
  436. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  437. src += s->linesize;
  438. }
  439. src = srcU; src2 = srcV;
  440. for(j = 0; j < 9; j++) {
  441. for(i = 0; i < 9; i++) {
  442. src[i] = ((src[i] - 128) >> 1) + 128;
  443. src2[i] = ((src2[i] - 128) >> 1) + 128;
  444. }
  445. src += s->uvlinesize;
  446. src2 += s->uvlinesize;
  447. }
  448. }
  449. /* if we deal with intensity compensation we need to scale source blocks */
  450. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  451. int i, j;
  452. uint8_t *src, *src2;
  453. src = srcY;
  454. for(j = 0; j < 17 + s->mspel*2; j++) {
  455. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  456. src += s->linesize;
  457. }
  458. src = srcU; src2 = srcV;
  459. for(j = 0; j < 9; j++) {
  460. for(i = 0; i < 9; i++) {
  461. src[i] = v->lutuv[src[i]];
  462. src2[i] = v->lutuv[src2[i]];
  463. }
  464. src += s->uvlinesize;
  465. src2 += s->uvlinesize;
  466. }
  467. }
  468. srcY += s->mspel * (1 + s->linesize);
  469. }
  470. if(s->mspel) {
  471. dxy = ((my & 3) << 2) | (mx & 3);
  472. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd);
  473. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
  474. srcY += s->linesize * 8;
  475. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd);
  476. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
  477. } else { // hpel mc - always used for luma
  478. dxy = (my & 2) | ((mx & 2) >> 1);
  479. if(!v->rnd)
  480. dsp->put_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  481. else
  482. dsp->put_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  483. }
  484. if(s->flags & CODEC_FLAG_GRAY) return;
  485. /* Chroma MC always uses qpel bilinear */
  486. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  487. uvmx = (uvmx&3)<<1;
  488. uvmy = (uvmy&3)<<1;
  489. if(!v->rnd){
  490. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  491. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  492. }else{
  493. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  494. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  495. }
  496. }
  497. /** Do motion compensation for 4-MV macroblock - luminance block
  498. */
  499. static void vc1_mc_4mv_luma(VC1Context *v, int n)
  500. {
  501. MpegEncContext *s = &v->s;
  502. DSPContext *dsp = &v->s.dsp;
  503. uint8_t *srcY;
  504. int dxy, mx, my, src_x, src_y;
  505. int off;
  506. if(!v->s.last_picture.data[0])return;
  507. mx = s->mv[0][n][0];
  508. my = s->mv[0][n][1];
  509. srcY = s->last_picture.data[0];
  510. off = s->linesize * 4 * (n&2) + (n&1) * 8;
  511. src_x = s->mb_x * 16 + (n&1) * 8 + (mx >> 2);
  512. src_y = s->mb_y * 16 + (n&2) * 4 + (my >> 2);
  513. if(v->profile != PROFILE_ADVANCED){
  514. src_x = av_clip( src_x, -16, s->mb_width * 16);
  515. src_y = av_clip( src_y, -16, s->mb_height * 16);
  516. }else{
  517. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  518. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  519. }
  520. srcY += src_y * s->linesize + src_x;
  521. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  522. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 8 - s->mspel*2
  523. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 8 - s->mspel*2){
  524. srcY -= s->mspel * (1 + s->linesize);
  525. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 9+s->mspel*2, 9+s->mspel*2,
  526. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  527. srcY = s->edge_emu_buffer;
  528. /* if we deal with range reduction we need to scale source blocks */
  529. if(v->rangeredfrm) {
  530. int i, j;
  531. uint8_t *src;
  532. src = srcY;
  533. for(j = 0; j < 9 + s->mspel*2; j++) {
  534. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  535. src += s->linesize;
  536. }
  537. }
  538. /* if we deal with intensity compensation we need to scale source blocks */
  539. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  540. int i, j;
  541. uint8_t *src;
  542. src = srcY;
  543. for(j = 0; j < 9 + s->mspel*2; j++) {
  544. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  545. src += s->linesize;
  546. }
  547. }
  548. srcY += s->mspel * (1 + s->linesize);
  549. }
  550. if(s->mspel) {
  551. dxy = ((my & 3) << 2) | (mx & 3);
  552. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize, v->rnd);
  553. } else { // hpel mc - always used for luma
  554. dxy = (my & 2) | ((mx & 2) >> 1);
  555. if(!v->rnd)
  556. dsp->put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  557. else
  558. dsp->put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  559. }
  560. }
  561. static inline int median4(int a, int b, int c, int d)
  562. {
  563. if(a < b) {
  564. if(c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2;
  565. else return (FFMIN(b, c) + FFMAX(a, d)) / 2;
  566. } else {
  567. if(c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2;
  568. else return (FFMIN(a, c) + FFMAX(b, d)) / 2;
  569. }
  570. }
  571. /** Do motion compensation for 4-MV macroblock - both chroma blocks
  572. */
  573. static void vc1_mc_4mv_chroma(VC1Context *v)
  574. {
  575. MpegEncContext *s = &v->s;
  576. DSPContext *dsp = &v->s.dsp;
  577. uint8_t *srcU, *srcV;
  578. int uvdxy, uvmx, uvmy, uvsrc_x, uvsrc_y;
  579. int i, idx, tx = 0, ty = 0;
  580. int mvx[4], mvy[4], intra[4];
  581. static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
  582. if(!v->s.last_picture.data[0])return;
  583. if(s->flags & CODEC_FLAG_GRAY) return;
  584. for(i = 0; i < 4; i++) {
  585. mvx[i] = s->mv[0][i][0];
  586. mvy[i] = s->mv[0][i][1];
  587. intra[i] = v->mb_type[0][s->block_index[i]];
  588. }
  589. /* calculate chroma MV vector from four luma MVs */
  590. idx = (intra[3] << 3) | (intra[2] << 2) | (intra[1] << 1) | intra[0];
  591. if(!idx) { // all blocks are inter
  592. tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]);
  593. ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]);
  594. } else if(count[idx] == 1) { // 3 inter blocks
  595. switch(idx) {
  596. case 0x1:
  597. tx = mid_pred(mvx[1], mvx[2], mvx[3]);
  598. ty = mid_pred(mvy[1], mvy[2], mvy[3]);
  599. break;
  600. case 0x2:
  601. tx = mid_pred(mvx[0], mvx[2], mvx[3]);
  602. ty = mid_pred(mvy[0], mvy[2], mvy[3]);
  603. break;
  604. case 0x4:
  605. tx = mid_pred(mvx[0], mvx[1], mvx[3]);
  606. ty = mid_pred(mvy[0], mvy[1], mvy[3]);
  607. break;
  608. case 0x8:
  609. tx = mid_pred(mvx[0], mvx[1], mvx[2]);
  610. ty = mid_pred(mvy[0], mvy[1], mvy[2]);
  611. break;
  612. }
  613. } else if(count[idx] == 2) {
  614. int t1 = 0, t2 = 0;
  615. for(i=0; i<3;i++) if(!intra[i]) {t1 = i; break;}
  616. for(i= t1+1; i<4; i++)if(!intra[i]) {t2 = i; break;}
  617. tx = (mvx[t1] + mvx[t2]) / 2;
  618. ty = (mvy[t1] + mvy[t2]) / 2;
  619. } else {
  620. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  621. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  622. return; //no need to do MC for inter blocks
  623. }
  624. s->current_picture.motion_val[1][s->block_index[0]][0] = tx;
  625. s->current_picture.motion_val[1][s->block_index[0]][1] = ty;
  626. uvmx = (tx + ((tx&3) == 3)) >> 1;
  627. uvmy = (ty + ((ty&3) == 3)) >> 1;
  628. if(v->fastuvmc) {
  629. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  630. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  631. }
  632. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  633. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  634. if(v->profile != PROFILE_ADVANCED){
  635. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  636. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  637. }else{
  638. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  639. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  640. }
  641. srcU = s->last_picture.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
  642. srcV = s->last_picture.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
  643. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  644. || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9
  645. || (unsigned)uvsrc_y > (s->v_edge_pos >> 1) - 9){
  646. ff_emulated_edge_mc(s->edge_emu_buffer , srcU, s->uvlinesize, 8+1, 8+1,
  647. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  648. ff_emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize, 8+1, 8+1,
  649. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  650. srcU = s->edge_emu_buffer;
  651. srcV = s->edge_emu_buffer + 16;
  652. /* if we deal with range reduction we need to scale source blocks */
  653. if(v->rangeredfrm) {
  654. int i, j;
  655. uint8_t *src, *src2;
  656. src = srcU; src2 = srcV;
  657. for(j = 0; j < 9; j++) {
  658. for(i = 0; i < 9; i++) {
  659. src[i] = ((src[i] - 128) >> 1) + 128;
  660. src2[i] = ((src2[i] - 128) >> 1) + 128;
  661. }
  662. src += s->uvlinesize;
  663. src2 += s->uvlinesize;
  664. }
  665. }
  666. /* if we deal with intensity compensation we need to scale source blocks */
  667. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  668. int i, j;
  669. uint8_t *src, *src2;
  670. src = srcU; src2 = srcV;
  671. for(j = 0; j < 9; j++) {
  672. for(i = 0; i < 9; i++) {
  673. src[i] = v->lutuv[src[i]];
  674. src2[i] = v->lutuv[src2[i]];
  675. }
  676. src += s->uvlinesize;
  677. src2 += s->uvlinesize;
  678. }
  679. }
  680. }
  681. /* Chroma MC always uses qpel bilinear */
  682. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  683. uvmx = (uvmx&3)<<1;
  684. uvmy = (uvmy&3)<<1;
  685. if(!v->rnd){
  686. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  687. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  688. }else{
  689. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  690. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  691. }
  692. }
  693. static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb);
  694. /**
  695. * Decode Simple/Main Profiles sequence header
  696. * @see Figure 7-8, p16-17
  697. * @param avctx Codec context
  698. * @param gb GetBit context initialized from Codec context extra_data
  699. * @return Status
  700. */
  701. static int decode_sequence_header(AVCodecContext *avctx, GetBitContext *gb)
  702. {
  703. VC1Context *v = avctx->priv_data;
  704. av_log(avctx, AV_LOG_DEBUG, "Header: %0X\n", show_bits(gb, 32));
  705. v->profile = get_bits(gb, 2);
  706. if (v->profile == PROFILE_COMPLEX)
  707. {
  708. av_log(avctx, AV_LOG_ERROR, "WMV3 Complex Profile is not fully supported\n");
  709. }
  710. if (v->profile == PROFILE_ADVANCED)
  711. {
  712. return decode_sequence_header_adv(v, gb);
  713. }
  714. else
  715. {
  716. v->res_sm = get_bits(gb, 2); //reserved
  717. if (v->res_sm)
  718. {
  719. av_log(avctx, AV_LOG_ERROR,
  720. "Reserved RES_SM=%i is forbidden\n", v->res_sm);
  721. return -1;
  722. }
  723. }
  724. // (fps-2)/4 (->30)
  725. v->frmrtq_postproc = get_bits(gb, 3); //common
  726. // (bitrate-32kbps)/64kbps
  727. v->bitrtq_postproc = get_bits(gb, 5); //common
  728. v->s.loop_filter = get_bits1(gb); //common
  729. if(v->s.loop_filter == 1 && v->profile == PROFILE_SIMPLE)
  730. {
  731. av_log(avctx, AV_LOG_ERROR,
  732. "LOOPFILTER shell not be enabled in simple profile\n");
  733. }
  734. v->res_x8 = get_bits1(gb); //reserved
  735. if (v->res_x8)
  736. {
  737. av_log(avctx, AV_LOG_ERROR,
  738. "1 for reserved RES_X8 is forbidden\n");
  739. //return -1;
  740. }
  741. v->multires = get_bits1(gb);
  742. v->res_fasttx = get_bits1(gb);
  743. if (!v->res_fasttx)
  744. {
  745. av_log(avctx, AV_LOG_ERROR,
  746. "0 for reserved RES_FASTTX is forbidden\n");
  747. //return -1;
  748. }
  749. v->fastuvmc = get_bits1(gb); //common
  750. if (!v->profile && !v->fastuvmc)
  751. {
  752. av_log(avctx, AV_LOG_ERROR,
  753. "FASTUVMC unavailable in Simple Profile\n");
  754. return -1;
  755. }
  756. v->extended_mv = get_bits1(gb); //common
  757. if (!v->profile && v->extended_mv)
  758. {
  759. av_log(avctx, AV_LOG_ERROR,
  760. "Extended MVs unavailable in Simple Profile\n");
  761. return -1;
  762. }
  763. v->dquant = get_bits(gb, 2); //common
  764. v->vstransform = get_bits1(gb); //common
  765. v->res_transtab = get_bits1(gb);
  766. if (v->res_transtab)
  767. {
  768. av_log(avctx, AV_LOG_ERROR,
  769. "1 for reserved RES_TRANSTAB is forbidden\n");
  770. return -1;
  771. }
  772. v->overlap = get_bits1(gb); //common
  773. v->s.resync_marker = get_bits1(gb);
  774. v->rangered = get_bits1(gb);
  775. if (v->rangered && v->profile == PROFILE_SIMPLE)
  776. {
  777. av_log(avctx, AV_LOG_INFO,
  778. "RANGERED should be set to 0 in simple profile\n");
  779. }
  780. v->s.max_b_frames = avctx->max_b_frames = get_bits(gb, 3); //common
  781. v->quantizer_mode = get_bits(gb, 2); //common
  782. v->finterpflag = get_bits1(gb); //common
  783. v->res_rtm_flag = get_bits1(gb); //reserved
  784. if (!v->res_rtm_flag)
  785. {
  786. // av_log(avctx, AV_LOG_ERROR,
  787. // "0 for reserved RES_RTM_FLAG is forbidden\n");
  788. av_log(avctx, AV_LOG_ERROR,
  789. "Old WMV3 version detected, only I-frames will be decoded\n");
  790. //return -1;
  791. }
  792. //TODO: figure out what they mean (always 0x402F)
  793. if(!v->res_fasttx) skip_bits(gb, 16);
  794. av_log(avctx, AV_LOG_DEBUG,
  795. "Profile %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  796. "LoopFilter=%i, MultiRes=%i, FastUVMC=%i, Extended MV=%i\n"
  797. "Rangered=%i, VSTransform=%i, Overlap=%i, SyncMarker=%i\n"
  798. "DQuant=%i, Quantizer mode=%i, Max B frames=%i\n",
  799. v->profile, v->frmrtq_postproc, v->bitrtq_postproc,
  800. v->s.loop_filter, v->multires, v->fastuvmc, v->extended_mv,
  801. v->rangered, v->vstransform, v->overlap, v->s.resync_marker,
  802. v->dquant, v->quantizer_mode, avctx->max_b_frames
  803. );
  804. return 0;
  805. }
  806. static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb)
  807. {
  808. v->res_rtm_flag = 1;
  809. v->level = get_bits(gb, 3);
  810. if(v->level >= 5)
  811. {
  812. av_log(v->s.avctx, AV_LOG_ERROR, "Reserved LEVEL %i\n",v->level);
  813. }
  814. v->chromaformat = get_bits(gb, 2);
  815. if (v->chromaformat != 1)
  816. {
  817. av_log(v->s.avctx, AV_LOG_ERROR,
  818. "Only 4:2:0 chroma format supported\n");
  819. return -1;
  820. }
  821. // (fps-2)/4 (->30)
  822. v->frmrtq_postproc = get_bits(gb, 3); //common
  823. // (bitrate-32kbps)/64kbps
  824. v->bitrtq_postproc = get_bits(gb, 5); //common
  825. v->postprocflag = get_bits1(gb); //common
  826. v->s.avctx->coded_width = (get_bits(gb, 12) + 1) << 1;
  827. v->s.avctx->coded_height = (get_bits(gb, 12) + 1) << 1;
  828. v->s.avctx->width = v->s.avctx->coded_width;
  829. v->s.avctx->height = v->s.avctx->coded_height;
  830. v->broadcast = get_bits1(gb);
  831. v->interlace = get_bits1(gb);
  832. v->tfcntrflag = get_bits1(gb);
  833. v->finterpflag = get_bits1(gb);
  834. skip_bits1(gb); // reserved
  835. v->s.h_edge_pos = v->s.avctx->coded_width;
  836. v->s.v_edge_pos = v->s.avctx->coded_height;
  837. av_log(v->s.avctx, AV_LOG_DEBUG,
  838. "Advanced Profile level %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  839. "LoopFilter=%i, ChromaFormat=%i, Pulldown=%i, Interlace: %i\n"
  840. "TFCTRflag=%i, FINTERPflag=%i\n",
  841. v->level, v->frmrtq_postproc, v->bitrtq_postproc,
  842. v->s.loop_filter, v->chromaformat, v->broadcast, v->interlace,
  843. v->tfcntrflag, v->finterpflag
  844. );
  845. v->psf = get_bits1(gb);
  846. if(v->psf) { //PsF, 6.1.13
  847. av_log(v->s.avctx, AV_LOG_ERROR, "Progressive Segmented Frame mode: not supported (yet)\n");
  848. return -1;
  849. }
  850. v->s.max_b_frames = v->s.avctx->max_b_frames = 7;
  851. if(get_bits1(gb)) { //Display Info - decoding is not affected by it
  852. int w, h, ar = 0;
  853. av_log(v->s.avctx, AV_LOG_DEBUG, "Display extended info:\n");
  854. v->s.avctx->width = v->s.width = w = get_bits(gb, 14) + 1;
  855. v->s.avctx->height = v->s.height = h = get_bits(gb, 14) + 1;
  856. av_log(v->s.avctx, AV_LOG_DEBUG, "Display dimensions: %ix%i\n", w, h);
  857. if(get_bits1(gb))
  858. ar = get_bits(gb, 4);
  859. if(ar && ar < 14){
  860. v->s.avctx->sample_aspect_ratio = ff_vc1_pixel_aspect[ar];
  861. }else if(ar == 15){
  862. w = get_bits(gb, 8);
  863. h = get_bits(gb, 8);
  864. v->s.avctx->sample_aspect_ratio = (AVRational){w, h};
  865. }
  866. if(get_bits1(gb)){ //framerate stuff
  867. if(get_bits1(gb)) {
  868. v->s.avctx->time_base.num = 32;
  869. v->s.avctx->time_base.den = get_bits(gb, 16) + 1;
  870. } else {
  871. int nr, dr;
  872. nr = get_bits(gb, 8);
  873. dr = get_bits(gb, 4);
  874. if(nr && nr < 8 && dr && dr < 3){
  875. v->s.avctx->time_base.num = ff_vc1_fps_dr[dr - 1];
  876. v->s.avctx->time_base.den = ff_vc1_fps_nr[nr - 1] * 1000;
  877. }
  878. }
  879. }
  880. if(get_bits1(gb)){
  881. v->color_prim = get_bits(gb, 8);
  882. v->transfer_char = get_bits(gb, 8);
  883. v->matrix_coef = get_bits(gb, 8);
  884. }
  885. }
  886. v->hrd_param_flag = get_bits1(gb);
  887. if(v->hrd_param_flag) {
  888. int i;
  889. v->hrd_num_leaky_buckets = get_bits(gb, 5);
  890. skip_bits(gb, 4); //bitrate exponent
  891. skip_bits(gb, 4); //buffer size exponent
  892. for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
  893. skip_bits(gb, 16); //hrd_rate[n]
  894. skip_bits(gb, 16); //hrd_buffer[n]
  895. }
  896. }
  897. return 0;
  898. }
  899. static int decode_entry_point(AVCodecContext *avctx, GetBitContext *gb)
  900. {
  901. VC1Context *v = avctx->priv_data;
  902. int i, blink, clentry, refdist;
  903. av_log(avctx, AV_LOG_DEBUG, "Entry point: %08X\n", show_bits_long(gb, 32));
  904. blink = get_bits1(gb); // broken link
  905. clentry = get_bits1(gb); // closed entry
  906. v->panscanflag = get_bits1(gb);
  907. refdist = get_bits1(gb); // refdist flag
  908. v->s.loop_filter = get_bits1(gb);
  909. v->fastuvmc = get_bits1(gb);
  910. v->extended_mv = get_bits1(gb);
  911. v->dquant = get_bits(gb, 2);
  912. v->vstransform = get_bits1(gb);
  913. v->overlap = get_bits1(gb);
  914. v->quantizer_mode = get_bits(gb, 2);
  915. if(v->hrd_param_flag){
  916. for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
  917. skip_bits(gb, 8); //hrd_full[n]
  918. }
  919. }
  920. if(get_bits1(gb)){
  921. avctx->coded_width = (get_bits(gb, 12)+1)<<1;
  922. avctx->coded_height = (get_bits(gb, 12)+1)<<1;
  923. }
  924. if(v->extended_mv)
  925. v->extended_dmv = get_bits1(gb);
  926. if(get_bits1(gb)) {
  927. av_log(avctx, AV_LOG_ERROR, "Luma scaling is not supported, expect wrong picture\n");
  928. skip_bits(gb, 3); // Y range, ignored for now
  929. }
  930. if(get_bits1(gb)) {
  931. av_log(avctx, AV_LOG_ERROR, "Chroma scaling is not supported, expect wrong picture\n");
  932. skip_bits(gb, 3); // UV range, ignored for now
  933. }
  934. av_log(avctx, AV_LOG_DEBUG, "Entry point info:\n"
  935. "BrokenLink=%i, ClosedEntry=%i, PanscanFlag=%i\n"
  936. "RefDist=%i, Postproc=%i, FastUVMC=%i, ExtMV=%i\n"
  937. "DQuant=%i, VSTransform=%i, Overlap=%i, Qmode=%i\n",
  938. blink, clentry, v->panscanflag, refdist, v->s.loop_filter,
  939. v->fastuvmc, v->extended_mv, v->dquant, v->vstransform, v->overlap, v->quantizer_mode);
  940. return 0;
  941. }
  942. static int vc1_parse_frame_header(VC1Context *v, GetBitContext* gb)
  943. {
  944. int pqindex, lowquant, status;
  945. if(v->finterpflag) v->interpfrm = get_bits1(gb);
  946. skip_bits(gb, 2); //framecnt unused
  947. v->rangeredfrm = 0;
  948. if (v->rangered) v->rangeredfrm = get_bits1(gb);
  949. v->s.pict_type = get_bits1(gb);
  950. if (v->s.avctx->max_b_frames) {
  951. if (!v->s.pict_type) {
  952. if (get_bits1(gb)) v->s.pict_type = I_TYPE;
  953. else v->s.pict_type = B_TYPE;
  954. } else v->s.pict_type = P_TYPE;
  955. } else v->s.pict_type = v->s.pict_type ? P_TYPE : I_TYPE;
  956. v->bi_type = 0;
  957. if(v->s.pict_type == B_TYPE) {
  958. v->bfraction = get_vlc2(gb, ff_vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
  959. v->bfraction = ff_vc1_bfraction_lut[v->bfraction];
  960. if(v->bfraction == 0) {
  961. v->s.pict_type = BI_TYPE;
  962. }
  963. }
  964. if(v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  965. skip_bits(gb, 7); // skip buffer fullness
  966. /* calculate RND */
  967. if(v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  968. v->rnd = 1;
  969. if(v->s.pict_type == P_TYPE)
  970. v->rnd ^= 1;
  971. /* Quantizer stuff */
  972. pqindex = get_bits(gb, 5);
  973. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  974. v->pq = ff_vc1_pquant_table[0][pqindex];
  975. else
  976. v->pq = ff_vc1_pquant_table[1][pqindex];
  977. v->pquantizer = 1;
  978. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  979. v->pquantizer = pqindex < 9;
  980. if (v->quantizer_mode == QUANT_NON_UNIFORM)
  981. v->pquantizer = 0;
  982. v->pqindex = pqindex;
  983. if (pqindex < 9) v->halfpq = get_bits1(gb);
  984. else v->halfpq = 0;
  985. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  986. v->pquantizer = get_bits1(gb);
  987. v->dquantfrm = 0;
  988. if (v->extended_mv == 1) v->mvrange = get_unary(gb, 0, 3);
  989. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  990. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  991. v->range_x = 1 << (v->k_x - 1);
  992. v->range_y = 1 << (v->k_y - 1);
  993. if (v->profile == PROFILE_ADVANCED)
  994. {
  995. if (v->postprocflag) v->postproc = get_bits1(gb);
  996. }
  997. else
  998. if (v->multires && v->s.pict_type != B_TYPE) v->respic = get_bits(gb, 2);
  999. if(v->res_x8 && (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)){
  1000. if(get_bits1(gb))return -1;
  1001. }
  1002. //av_log(v->s.avctx, AV_LOG_INFO, "%c Frame: QP=[%i]%i (+%i/2) %i\n",
  1003. // (v->s.pict_type == P_TYPE) ? 'P' : ((v->s.pict_type == I_TYPE) ? 'I' : 'B'), pqindex, v->pq, v->halfpq, v->rangeredfrm);
  1004. if(v->s.pict_type == I_TYPE || v->s.pict_type == P_TYPE) v->use_ic = 0;
  1005. switch(v->s.pict_type) {
  1006. case P_TYPE:
  1007. if (v->pq < 5) v->tt_index = 0;
  1008. else if(v->pq < 13) v->tt_index = 1;
  1009. else v->tt_index = 2;
  1010. lowquant = (v->pq > 12) ? 0 : 1;
  1011. v->mv_mode = ff_vc1_mv_pmode_table[lowquant][get_unary(gb, 1, 4)];
  1012. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1013. {
  1014. int scale, shift, i;
  1015. v->mv_mode2 = ff_vc1_mv_pmode_table2[lowquant][get_unary(gb, 1, 3)];
  1016. v->lumscale = get_bits(gb, 6);
  1017. v->lumshift = get_bits(gb, 6);
  1018. v->use_ic = 1;
  1019. /* fill lookup tables for intensity compensation */
  1020. if(!v->lumscale) {
  1021. scale = -64;
  1022. shift = (255 - v->lumshift * 2) << 6;
  1023. if(v->lumshift > 31)
  1024. shift += 128 << 6;
  1025. } else {
  1026. scale = v->lumscale + 32;
  1027. if(v->lumshift > 31)
  1028. shift = (v->lumshift - 64) << 6;
  1029. else
  1030. shift = v->lumshift << 6;
  1031. }
  1032. for(i = 0; i < 256; i++) {
  1033. v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6);
  1034. v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1035. }
  1036. }
  1037. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1038. v->s.quarter_sample = 0;
  1039. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1040. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1041. v->s.quarter_sample = 0;
  1042. else
  1043. v->s.quarter_sample = 1;
  1044. } else
  1045. v->s.quarter_sample = 1;
  1046. v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
  1047. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1048. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1049. || v->mv_mode == MV_PMODE_MIXED_MV)
  1050. {
  1051. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1052. if (status < 0) return -1;
  1053. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1054. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1055. } else {
  1056. v->mv_type_is_raw = 0;
  1057. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1058. }
  1059. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1060. if (status < 0) return -1;
  1061. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1062. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1063. /* Hopefully this is correct for P frames */
  1064. v->s.mv_table_index = get_bits(gb, 2); //but using ff_vc1_ tables
  1065. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1066. if (v->dquant)
  1067. {
  1068. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1069. vop_dquant_decoding(v);
  1070. }
  1071. v->ttfrm = 0; //FIXME Is that so ?
  1072. if (v->vstransform)
  1073. {
  1074. v->ttmbf = get_bits1(gb);
  1075. if (v->ttmbf)
  1076. {
  1077. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1078. }
  1079. } else {
  1080. v->ttmbf = 1;
  1081. v->ttfrm = TT_8X8;
  1082. }
  1083. break;
  1084. case B_TYPE:
  1085. if (v->pq < 5) v->tt_index = 0;
  1086. else if(v->pq < 13) v->tt_index = 1;
  1087. else v->tt_index = 2;
  1088. lowquant = (v->pq > 12) ? 0 : 1;
  1089. v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
  1090. v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
  1091. v->s.mspel = v->s.quarter_sample;
  1092. status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
  1093. if (status < 0) return -1;
  1094. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
  1095. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1096. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1097. if (status < 0) return -1;
  1098. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1099. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1100. v->s.mv_table_index = get_bits(gb, 2);
  1101. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1102. if (v->dquant)
  1103. {
  1104. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1105. vop_dquant_decoding(v);
  1106. }
  1107. v->ttfrm = 0;
  1108. if (v->vstransform)
  1109. {
  1110. v->ttmbf = get_bits1(gb);
  1111. if (v->ttmbf)
  1112. {
  1113. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1114. }
  1115. } else {
  1116. v->ttmbf = 1;
  1117. v->ttfrm = TT_8X8;
  1118. }
  1119. break;
  1120. }
  1121. /* AC Syntax */
  1122. v->c_ac_table_index = decode012(gb);
  1123. if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1124. {
  1125. v->y_ac_table_index = decode012(gb);
  1126. }
  1127. /* DC Syntax */
  1128. v->s.dc_table_index = get_bits1(gb);
  1129. if(v->s.pict_type == BI_TYPE) {
  1130. v->s.pict_type = B_TYPE;
  1131. v->bi_type = 1;
  1132. }
  1133. return 0;
  1134. }
  1135. static int vc1_parse_frame_header_adv(VC1Context *v, GetBitContext* gb)
  1136. {
  1137. int pqindex, lowquant;
  1138. int status;
  1139. v->p_frame_skipped = 0;
  1140. if(v->interlace){
  1141. v->fcm = decode012(gb);
  1142. if(v->fcm) return -1; // interlaced frames/fields are not implemented
  1143. }
  1144. switch(get_unary(gb, 0, 4)) {
  1145. case 0:
  1146. v->s.pict_type = P_TYPE;
  1147. break;
  1148. case 1:
  1149. v->s.pict_type = B_TYPE;
  1150. break;
  1151. case 2:
  1152. v->s.pict_type = I_TYPE;
  1153. break;
  1154. case 3:
  1155. v->s.pict_type = BI_TYPE;
  1156. break;
  1157. case 4:
  1158. v->s.pict_type = P_TYPE; // skipped pic
  1159. v->p_frame_skipped = 1;
  1160. return 0;
  1161. }
  1162. if(v->tfcntrflag)
  1163. skip_bits(gb, 8);
  1164. if(v->broadcast) {
  1165. if(!v->interlace || v->psf) {
  1166. v->rptfrm = get_bits(gb, 2);
  1167. } else {
  1168. v->tff = get_bits1(gb);
  1169. v->rptfrm = get_bits1(gb);
  1170. }
  1171. }
  1172. if(v->panscanflag) {
  1173. //...
  1174. }
  1175. v->rnd = get_bits1(gb);
  1176. if(v->interlace)
  1177. v->uvsamp = get_bits1(gb);
  1178. if(v->finterpflag) v->interpfrm = get_bits1(gb);
  1179. if(v->s.pict_type == B_TYPE) {
  1180. v->bfraction = get_vlc2(gb, ff_vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
  1181. v->bfraction = ff_vc1_bfraction_lut[v->bfraction];
  1182. if(v->bfraction == 0) {
  1183. v->s.pict_type = BI_TYPE; /* XXX: should not happen here */
  1184. }
  1185. }
  1186. pqindex = get_bits(gb, 5);
  1187. v->pqindex = pqindex;
  1188. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1189. v->pq = ff_vc1_pquant_table[0][pqindex];
  1190. else
  1191. v->pq = ff_vc1_pquant_table[1][pqindex];
  1192. v->pquantizer = 1;
  1193. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1194. v->pquantizer = pqindex < 9;
  1195. if (v->quantizer_mode == QUANT_NON_UNIFORM)
  1196. v->pquantizer = 0;
  1197. v->pqindex = pqindex;
  1198. if (pqindex < 9) v->halfpq = get_bits1(gb);
  1199. else v->halfpq = 0;
  1200. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  1201. v->pquantizer = get_bits1(gb);
  1202. if(v->s.pict_type == I_TYPE || v->s.pict_type == P_TYPE) v->use_ic = 0;
  1203. switch(v->s.pict_type) {
  1204. case I_TYPE:
  1205. case BI_TYPE:
  1206. status = bitplane_decoding(v->acpred_plane, &v->acpred_is_raw, v);
  1207. if (status < 0) return -1;
  1208. av_log(v->s.avctx, AV_LOG_DEBUG, "ACPRED plane encoding: "
  1209. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1210. v->condover = CONDOVER_NONE;
  1211. if(v->overlap && v->pq <= 8) {
  1212. v->condover = decode012(gb);
  1213. if(v->condover == CONDOVER_SELECT) {
  1214. status = bitplane_decoding(v->over_flags_plane, &v->overflg_is_raw, v);
  1215. if (status < 0) return -1;
  1216. av_log(v->s.avctx, AV_LOG_DEBUG, "CONDOVER plane encoding: "
  1217. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1218. }
  1219. }
  1220. break;
  1221. case P_TYPE:
  1222. if(v->postprocflag)
  1223. v->postproc = get_bits1(gb);
  1224. if (v->extended_mv) v->mvrange = get_unary(gb, 0, 3);
  1225. else v->mvrange = 0;
  1226. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1227. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1228. v->range_x = 1 << (v->k_x - 1);
  1229. v->range_y = 1 << (v->k_y - 1);
  1230. if (v->pq < 5) v->tt_index = 0;
  1231. else if(v->pq < 13) v->tt_index = 1;
  1232. else v->tt_index = 2;
  1233. lowquant = (v->pq > 12) ? 0 : 1;
  1234. v->mv_mode = ff_vc1_mv_pmode_table[lowquant][get_unary(gb, 1, 4)];
  1235. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1236. {
  1237. int scale, shift, i;
  1238. v->mv_mode2 = ff_vc1_mv_pmode_table2[lowquant][get_unary(gb, 1, 3)];
  1239. v->lumscale = get_bits(gb, 6);
  1240. v->lumshift = get_bits(gb, 6);
  1241. /* fill lookup tables for intensity compensation */
  1242. if(!v->lumscale) {
  1243. scale = -64;
  1244. shift = (255 - v->lumshift * 2) << 6;
  1245. if(v->lumshift > 31)
  1246. shift += 128 << 6;
  1247. } else {
  1248. scale = v->lumscale + 32;
  1249. if(v->lumshift > 31)
  1250. shift = (v->lumshift - 64) << 6;
  1251. else
  1252. shift = v->lumshift << 6;
  1253. }
  1254. for(i = 0; i < 256; i++) {
  1255. v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6);
  1256. v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1257. }
  1258. v->use_ic = 1;
  1259. }
  1260. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1261. v->s.quarter_sample = 0;
  1262. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1263. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1264. v->s.quarter_sample = 0;
  1265. else
  1266. v->s.quarter_sample = 1;
  1267. } else
  1268. v->s.quarter_sample = 1;
  1269. v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
  1270. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1271. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1272. || v->mv_mode == MV_PMODE_MIXED_MV)
  1273. {
  1274. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1275. if (status < 0) return -1;
  1276. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1277. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1278. } else {
  1279. v->mv_type_is_raw = 0;
  1280. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1281. }
  1282. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1283. if (status < 0) return -1;
  1284. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1285. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1286. /* Hopefully this is correct for P frames */
  1287. v->s.mv_table_index = get_bits(gb, 2); //but using ff_vc1_ tables
  1288. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1289. if (v->dquant)
  1290. {
  1291. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1292. vop_dquant_decoding(v);
  1293. }
  1294. v->ttfrm = 0; //FIXME Is that so ?
  1295. if (v->vstransform)
  1296. {
  1297. v->ttmbf = get_bits1(gb);
  1298. if (v->ttmbf)
  1299. {
  1300. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1301. }
  1302. } else {
  1303. v->ttmbf = 1;
  1304. v->ttfrm = TT_8X8;
  1305. }
  1306. break;
  1307. case B_TYPE:
  1308. if(v->postprocflag)
  1309. v->postproc = get_bits1(gb);
  1310. if (v->extended_mv) v->mvrange = get_unary(gb, 0, 3);
  1311. else v->mvrange = 0;
  1312. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1313. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1314. v->range_x = 1 << (v->k_x - 1);
  1315. v->range_y = 1 << (v->k_y - 1);
  1316. if (v->pq < 5) v->tt_index = 0;
  1317. else if(v->pq < 13) v->tt_index = 1;
  1318. else v->tt_index = 2;
  1319. lowquant = (v->pq > 12) ? 0 : 1;
  1320. v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
  1321. v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
  1322. v->s.mspel = v->s.quarter_sample;
  1323. status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
  1324. if (status < 0) return -1;
  1325. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
  1326. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1327. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1328. if (status < 0) return -1;
  1329. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1330. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1331. v->s.mv_table_index = get_bits(gb, 2);
  1332. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1333. if (v->dquant)
  1334. {
  1335. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1336. vop_dquant_decoding(v);
  1337. }
  1338. v->ttfrm = 0;
  1339. if (v->vstransform)
  1340. {
  1341. v->ttmbf = get_bits1(gb);
  1342. if (v->ttmbf)
  1343. {
  1344. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1345. }
  1346. } else {
  1347. v->ttmbf = 1;
  1348. v->ttfrm = TT_8X8;
  1349. }
  1350. break;
  1351. }
  1352. /* AC Syntax */
  1353. v->c_ac_table_index = decode012(gb);
  1354. if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1355. {
  1356. v->y_ac_table_index = decode012(gb);
  1357. }
  1358. /* DC Syntax */
  1359. v->s.dc_table_index = get_bits1(gb);
  1360. if ((v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE) && v->dquant) {
  1361. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1362. vop_dquant_decoding(v);
  1363. }
  1364. v->bi_type = 0;
  1365. if(v->s.pict_type == BI_TYPE) {
  1366. v->s.pict_type = B_TYPE;
  1367. v->bi_type = 1;
  1368. }
  1369. return 0;
  1370. }
  1371. /***********************************************************************/
  1372. /**
  1373. * @defgroup block VC-1 Block-level functions
  1374. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  1375. * @{
  1376. */
  1377. /**
  1378. * @def GET_MQUANT
  1379. * @brief Get macroblock-level quantizer scale
  1380. */
  1381. #define GET_MQUANT() \
  1382. if (v->dquantfrm) \
  1383. { \
  1384. int edges = 0; \
  1385. if (v->dqprofile == DQPROFILE_ALL_MBS) \
  1386. { \
  1387. if (v->dqbilevel) \
  1388. { \
  1389. mquant = (get_bits1(gb)) ? v->altpq : v->pq; \
  1390. } \
  1391. else \
  1392. { \
  1393. mqdiff = get_bits(gb, 3); \
  1394. if (mqdiff != 7) mquant = v->pq + mqdiff; \
  1395. else mquant = get_bits(gb, 5); \
  1396. } \
  1397. } \
  1398. if(v->dqprofile == DQPROFILE_SINGLE_EDGE) \
  1399. edges = 1 << v->dqsbedge; \
  1400. else if(v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
  1401. edges = (3 << v->dqsbedge) % 15; \
  1402. else if(v->dqprofile == DQPROFILE_FOUR_EDGES) \
  1403. edges = 15; \
  1404. if((edges&1) && !s->mb_x) \
  1405. mquant = v->altpq; \
  1406. if((edges&2) && s->first_slice_line) \
  1407. mquant = v->altpq; \
  1408. if((edges&4) && s->mb_x == (s->mb_width - 1)) \
  1409. mquant = v->altpq; \
  1410. if((edges&8) && s->mb_y == (s->mb_height - 1)) \
  1411. mquant = v->altpq; \
  1412. }
  1413. /**
  1414. * @def GET_MVDATA(_dmv_x, _dmv_y)
  1415. * @brief Get MV differentials
  1416. * @see MVDATA decoding from 8.3.5.2, p(1)20
  1417. * @param _dmv_x Horizontal differential for decoded MV
  1418. * @param _dmv_y Vertical differential for decoded MV
  1419. */
  1420. #define GET_MVDATA(_dmv_x, _dmv_y) \
  1421. index = 1 + get_vlc2(gb, ff_vc1_mv_diff_vlc[s->mv_table_index].table,\
  1422. VC1_MV_DIFF_VLC_BITS, 2); \
  1423. if (index > 36) \
  1424. { \
  1425. mb_has_coeffs = 1; \
  1426. index -= 37; \
  1427. } \
  1428. else mb_has_coeffs = 0; \
  1429. s->mb_intra = 0; \
  1430. if (!index) { _dmv_x = _dmv_y = 0; } \
  1431. else if (index == 35) \
  1432. { \
  1433. _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
  1434. _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
  1435. } \
  1436. else if (index == 36) \
  1437. { \
  1438. _dmv_x = 0; \
  1439. _dmv_y = 0; \
  1440. s->mb_intra = 1; \
  1441. } \
  1442. else \
  1443. { \
  1444. index1 = index%6; \
  1445. if (!s->quarter_sample && index1 == 5) val = 1; \
  1446. else val = 0; \
  1447. if(size_table[index1] - val > 0) \
  1448. val = get_bits(gb, size_table[index1] - val); \
  1449. else val = 0; \
  1450. sign = 0 - (val&1); \
  1451. _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1452. \
  1453. index1 = index/6; \
  1454. if (!s->quarter_sample && index1 == 5) val = 1; \
  1455. else val = 0; \
  1456. if(size_table[index1] - val > 0) \
  1457. val = get_bits(gb, size_table[index1] - val); \
  1458. else val = 0; \
  1459. sign = 0 - (val&1); \
  1460. _dmv_y = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1461. }
  1462. /** Predict and set motion vector
  1463. */
  1464. static inline void vc1_pred_mv(MpegEncContext *s, int n, int dmv_x, int dmv_y, int mv1, int r_x, int r_y, uint8_t* is_intra)
  1465. {
  1466. int xy, wrap, off = 0;
  1467. int16_t *A, *B, *C;
  1468. int px, py;
  1469. int sum;
  1470. /* scale MV difference to be quad-pel */
  1471. dmv_x <<= 1 - s->quarter_sample;
  1472. dmv_y <<= 1 - s->quarter_sample;
  1473. wrap = s->b8_stride;
  1474. xy = s->block_index[n];
  1475. if(s->mb_intra){
  1476. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = 0;
  1477. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = 0;
  1478. s->current_picture.motion_val[1][xy][0] = 0;
  1479. s->current_picture.motion_val[1][xy][1] = 0;
  1480. if(mv1) { /* duplicate motion data for 1-MV block */
  1481. s->current_picture.motion_val[0][xy + 1][0] = 0;
  1482. s->current_picture.motion_val[0][xy + 1][1] = 0;
  1483. s->current_picture.motion_val[0][xy + wrap][0] = 0;
  1484. s->current_picture.motion_val[0][xy + wrap][1] = 0;
  1485. s->current_picture.motion_val[0][xy + wrap + 1][0] = 0;
  1486. s->current_picture.motion_val[0][xy + wrap + 1][1] = 0;
  1487. s->current_picture.motion_val[1][xy + 1][0] = 0;
  1488. s->current_picture.motion_val[1][xy + 1][1] = 0;
  1489. s->current_picture.motion_val[1][xy + wrap][0] = 0;
  1490. s->current_picture.motion_val[1][xy + wrap][1] = 0;
  1491. s->current_picture.motion_val[1][xy + wrap + 1][0] = 0;
  1492. s->current_picture.motion_val[1][xy + wrap + 1][1] = 0;
  1493. }
  1494. return;
  1495. }
  1496. C = s->current_picture.motion_val[0][xy - 1];
  1497. A = s->current_picture.motion_val[0][xy - wrap];
  1498. if(mv1)
  1499. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
  1500. else {
  1501. //in 4-MV mode different blocks have different B predictor position
  1502. switch(n){
  1503. case 0:
  1504. off = (s->mb_x > 0) ? -1 : 1;
  1505. break;
  1506. case 1:
  1507. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
  1508. break;
  1509. case 2:
  1510. off = 1;
  1511. break;
  1512. case 3:
  1513. off = -1;
  1514. }
  1515. }
  1516. B = s->current_picture.motion_val[0][xy - wrap + off];
  1517. if(!s->first_slice_line || (n==2 || n==3)) { // predictor A is not out of bounds
  1518. if(s->mb_width == 1) {
  1519. px = A[0];
  1520. py = A[1];
  1521. } else {
  1522. px = mid_pred(A[0], B[0], C[0]);
  1523. py = mid_pred(A[1], B[1], C[1]);
  1524. }
  1525. } else if(s->mb_x || (n==1 || n==3)) { // predictor C is not out of bounds
  1526. px = C[0];
  1527. py = C[1];
  1528. } else {
  1529. px = py = 0;
  1530. }
  1531. /* Pullback MV as specified in 8.3.5.3.4 */
  1532. {
  1533. int qx, qy, X, Y;
  1534. qx = (s->mb_x << 6) + ((n==1 || n==3) ? 32 : 0);
  1535. qy = (s->mb_y << 6) + ((n==2 || n==3) ? 32 : 0);
  1536. X = (s->mb_width << 6) - 4;
  1537. Y = (s->mb_height << 6) - 4;
  1538. if(mv1) {
  1539. if(qx + px < -60) px = -60 - qx;
  1540. if(qy + py < -60) py = -60 - qy;
  1541. } else {
  1542. if(qx + px < -28) px = -28 - qx;
  1543. if(qy + py < -28) py = -28 - qy;
  1544. }
  1545. if(qx + px > X) px = X - qx;
  1546. if(qy + py > Y) py = Y - qy;
  1547. }
  1548. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1549. if((!s->first_slice_line || (n==2 || n==3)) && (s->mb_x || (n==1 || n==3))) {
  1550. if(is_intra[xy - wrap])
  1551. sum = FFABS(px) + FFABS(py);
  1552. else
  1553. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1554. if(sum > 32) {
  1555. if(get_bits1(&s->gb)) {
  1556. px = A[0];
  1557. py = A[1];
  1558. } else {
  1559. px = C[0];
  1560. py = C[1];
  1561. }
  1562. } else {
  1563. if(is_intra[xy - 1])
  1564. sum = FFABS(px) + FFABS(py);
  1565. else
  1566. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1567. if(sum > 32) {
  1568. if(get_bits1(&s->gb)) {
  1569. px = A[0];
  1570. py = A[1];
  1571. } else {
  1572. px = C[0];
  1573. py = C[1];
  1574. }
  1575. }
  1576. }
  1577. }
  1578. /* store MV using signed modulus of MV range defined in 4.11 */
  1579. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
  1580. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
  1581. if(mv1) { /* duplicate motion data for 1-MV block */
  1582. s->current_picture.motion_val[0][xy + 1][0] = s->current_picture.motion_val[0][xy][0];
  1583. s->current_picture.motion_val[0][xy + 1][1] = s->current_picture.motion_val[0][xy][1];
  1584. s->current_picture.motion_val[0][xy + wrap][0] = s->current_picture.motion_val[0][xy][0];
  1585. s->current_picture.motion_val[0][xy + wrap][1] = s->current_picture.motion_val[0][xy][1];
  1586. s->current_picture.motion_val[0][xy + wrap + 1][0] = s->current_picture.motion_val[0][xy][0];
  1587. s->current_picture.motion_val[0][xy + wrap + 1][1] = s->current_picture.motion_val[0][xy][1];
  1588. }
  1589. }
  1590. /** Motion compensation for direct or interpolated blocks in B-frames
  1591. */
  1592. static void vc1_interp_mc(VC1Context *v)
  1593. {
  1594. MpegEncContext *s = &v->s;
  1595. DSPContext *dsp = &v->s.dsp;
  1596. uint8_t *srcY, *srcU, *srcV;
  1597. int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  1598. if(!v->s.next_picture.data[0])return;
  1599. mx = s->mv[1][0][0];
  1600. my = s->mv[1][0][1];
  1601. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  1602. uvmy = (my + ((my & 3) == 3)) >> 1;
  1603. if(v->fastuvmc) {
  1604. uvmx = uvmx + ((uvmx<0)?-(uvmx&1):(uvmx&1));
  1605. uvmy = uvmy + ((uvmy<0)?-(uvmy&1):(uvmy&1));
  1606. }
  1607. srcY = s->next_picture.data[0];
  1608. srcU = s->next_picture.data[1];
  1609. srcV = s->next_picture.data[2];
  1610. src_x = s->mb_x * 16 + (mx >> 2);
  1611. src_y = s->mb_y * 16 + (my >> 2);
  1612. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  1613. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  1614. if(v->profile != PROFILE_ADVANCED){
  1615. src_x = av_clip( src_x, -16, s->mb_width * 16);
  1616. src_y = av_clip( src_y, -16, s->mb_height * 16);
  1617. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  1618. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  1619. }else{
  1620. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  1621. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  1622. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  1623. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  1624. }
  1625. srcY += src_y * s->linesize + src_x;
  1626. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  1627. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  1628. /* for grayscale we should not try to read from unknown area */
  1629. if(s->flags & CODEC_FLAG_GRAY) {
  1630. srcU = s->edge_emu_buffer + 18 * s->linesize;
  1631. srcV = s->edge_emu_buffer + 18 * s->linesize;
  1632. }
  1633. if(v->rangeredfrm
  1634. || (unsigned)src_x > s->h_edge_pos - (mx&3) - 16
  1635. || (unsigned)src_y > s->v_edge_pos - (my&3) - 16){
  1636. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  1637. srcY -= s->mspel * (1 + s->linesize);
  1638. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  1639. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  1640. srcY = s->edge_emu_buffer;
  1641. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  1642. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1643. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  1644. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1645. srcU = uvbuf;
  1646. srcV = uvbuf + 16;
  1647. /* if we deal with range reduction we need to scale source blocks */
  1648. if(v->rangeredfrm) {
  1649. int i, j;
  1650. uint8_t *src, *src2;
  1651. src = srcY;
  1652. for(j = 0; j < 17 + s->mspel*2; j++) {
  1653. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  1654. src += s->linesize;
  1655. }
  1656. src = srcU; src2 = srcV;
  1657. for(j = 0; j < 9; j++) {
  1658. for(i = 0; i < 9; i++) {
  1659. src[i] = ((src[i] - 128) >> 1) + 128;
  1660. src2[i] = ((src2[i] - 128) >> 1) + 128;
  1661. }
  1662. src += s->uvlinesize;
  1663. src2 += s->uvlinesize;
  1664. }
  1665. }
  1666. srcY += s->mspel * (1 + s->linesize);
  1667. }
  1668. mx >>= 1;
  1669. my >>= 1;
  1670. dxy = ((my & 1) << 1) | (mx & 1);
  1671. dsp->avg_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  1672. if(s->flags & CODEC_FLAG_GRAY) return;
  1673. /* Chroma MC always uses qpel blilinear */
  1674. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  1675. uvmx = (uvmx&3)<<1;
  1676. uvmy = (uvmy&3)<<1;
  1677. dsp->avg_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  1678. dsp->avg_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  1679. }
  1680. static av_always_inline int scale_mv(int value, int bfrac, int inv, int qs)
  1681. {
  1682. int n = bfrac;
  1683. #if B_FRACTION_DEN==256
  1684. if(inv)
  1685. n -= 256;
  1686. if(!qs)
  1687. return 2 * ((value * n + 255) >> 9);
  1688. return (value * n + 128) >> 8;
  1689. #else
  1690. if(inv)
  1691. n -= B_FRACTION_DEN;
  1692. if(!qs)
  1693. return 2 * ((value * n + B_FRACTION_DEN - 1) / (2 * B_FRACTION_DEN));
  1694. return (value * n + B_FRACTION_DEN/2) / B_FRACTION_DEN;
  1695. #endif
  1696. }
  1697. /** Reconstruct motion vector for B-frame and do motion compensation
  1698. */
  1699. static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mode)
  1700. {
  1701. if(v->use_ic) {
  1702. v->mv_mode2 = v->mv_mode;
  1703. v->mv_mode = MV_PMODE_INTENSITY_COMP;
  1704. }
  1705. if(direct) {
  1706. vc1_mc_1mv(v, 0);
  1707. vc1_interp_mc(v);
  1708. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1709. return;
  1710. }
  1711. if(mode == BMV_TYPE_INTERPOLATED) {
  1712. vc1_mc_1mv(v, 0);
  1713. vc1_interp_mc(v);
  1714. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1715. return;
  1716. }
  1717. if(v->use_ic && (mode == BMV_TYPE_BACKWARD)) v->mv_mode = v->mv_mode2;
  1718. vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD));
  1719. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1720. }
  1721. static inline void vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mvtype)
  1722. {
  1723. MpegEncContext *s = &v->s;
  1724. int xy, wrap, off = 0;
  1725. int16_t *A, *B, *C;
  1726. int px, py;
  1727. int sum;
  1728. int r_x, r_y;
  1729. const uint8_t *is_intra = v->mb_type[0];
  1730. r_x = v->range_x;
  1731. r_y = v->range_y;
  1732. /* scale MV difference to be quad-pel */
  1733. dmv_x[0] <<= 1 - s->quarter_sample;
  1734. dmv_y[0] <<= 1 - s->quarter_sample;
  1735. dmv_x[1] <<= 1 - s->quarter_sample;
  1736. dmv_y[1] <<= 1 - s->quarter_sample;
  1737. wrap = s->b8_stride;
  1738. xy = s->block_index[0];
  1739. if(s->mb_intra) {
  1740. s->current_picture.motion_val[0][xy][0] =
  1741. s->current_picture.motion_val[0][xy][1] =
  1742. s->current_picture.motion_val[1][xy][0] =
  1743. s->current_picture.motion_val[1][xy][1] = 0;
  1744. return;
  1745. }
  1746. s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 0, s->quarter_sample);
  1747. s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 0, s->quarter_sample);
  1748. s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 1, s->quarter_sample);
  1749. s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 1, s->quarter_sample);
  1750. /* Pullback predicted motion vectors as specified in 8.4.5.4 */
  1751. s->mv[0][0][0] = av_clip(s->mv[0][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  1752. s->mv[0][0][1] = av_clip(s->mv[0][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  1753. s->mv[1][0][0] = av_clip(s->mv[1][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  1754. s->mv[1][0][1] = av_clip(s->mv[1][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  1755. if(direct) {
  1756. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  1757. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  1758. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  1759. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  1760. return;
  1761. }
  1762. if((mvtype == BMV_TYPE_FORWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  1763. C = s->current_picture.motion_val[0][xy - 2];
  1764. A = s->current_picture.motion_val[0][xy - wrap*2];
  1765. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  1766. B = s->current_picture.motion_val[0][xy - wrap*2 + off];
  1767. if(!s->mb_x) C[0] = C[1] = 0;
  1768. if(!s->first_slice_line) { // predictor A is not out of bounds
  1769. if(s->mb_width == 1) {
  1770. px = A[0];
  1771. py = A[1];
  1772. } else {
  1773. px = mid_pred(A[0], B[0], C[0]);
  1774. py = mid_pred(A[1], B[1], C[1]);
  1775. }
  1776. } else if(s->mb_x) { // predictor C is not out of bounds
  1777. px = C[0];
  1778. py = C[1];
  1779. } else {
  1780. px = py = 0;
  1781. }
  1782. /* Pullback MV as specified in 8.3.5.3.4 */
  1783. {
  1784. int qx, qy, X, Y;
  1785. if(v->profile < PROFILE_ADVANCED) {
  1786. qx = (s->mb_x << 5);
  1787. qy = (s->mb_y << 5);
  1788. X = (s->mb_width << 5) - 4;
  1789. Y = (s->mb_height << 5) - 4;
  1790. if(qx + px < -28) px = -28 - qx;
  1791. if(qy + py < -28) py = -28 - qy;
  1792. if(qx + px > X) px = X - qx;
  1793. if(qy + py > Y) py = Y - qy;
  1794. } else {
  1795. qx = (s->mb_x << 6);
  1796. qy = (s->mb_y << 6);
  1797. X = (s->mb_width << 6) - 4;
  1798. Y = (s->mb_height << 6) - 4;
  1799. if(qx + px < -60) px = -60 - qx;
  1800. if(qy + py < -60) py = -60 - qy;
  1801. if(qx + px > X) px = X - qx;
  1802. if(qy + py > Y) py = Y - qy;
  1803. }
  1804. }
  1805. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1806. if(0 && !s->first_slice_line && s->mb_x) {
  1807. if(is_intra[xy - wrap])
  1808. sum = FFABS(px) + FFABS(py);
  1809. else
  1810. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1811. if(sum > 32) {
  1812. if(get_bits1(&s->gb)) {
  1813. px = A[0];
  1814. py = A[1];
  1815. } else {
  1816. px = C[0];
  1817. py = C[1];
  1818. }
  1819. } else {
  1820. if(is_intra[xy - 2])
  1821. sum = FFABS(px) + FFABS(py);
  1822. else
  1823. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1824. if(sum > 32) {
  1825. if(get_bits1(&s->gb)) {
  1826. px = A[0];
  1827. py = A[1];
  1828. } else {
  1829. px = C[0];
  1830. py = C[1];
  1831. }
  1832. }
  1833. }
  1834. }
  1835. /* store MV using signed modulus of MV range defined in 4.11 */
  1836. s->mv[0][0][0] = ((px + dmv_x[0] + r_x) & ((r_x << 1) - 1)) - r_x;
  1837. s->mv[0][0][1] = ((py + dmv_y[0] + r_y) & ((r_y << 1) - 1)) - r_y;
  1838. }
  1839. if((mvtype == BMV_TYPE_BACKWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  1840. C = s->current_picture.motion_val[1][xy - 2];
  1841. A = s->current_picture.motion_val[1][xy - wrap*2];
  1842. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  1843. B = s->current_picture.motion_val[1][xy - wrap*2 + off];
  1844. if(!s->mb_x) C[0] = C[1] = 0;
  1845. if(!s->first_slice_line) { // predictor A is not out of bounds
  1846. if(s->mb_width == 1) {
  1847. px = A[0];
  1848. py = A[1];
  1849. } else {
  1850. px = mid_pred(A[0], B[0], C[0]);
  1851. py = mid_pred(A[1], B[1], C[1]);
  1852. }
  1853. } else if(s->mb_x) { // predictor C is not out of bounds
  1854. px = C[0];
  1855. py = C[1];
  1856. } else {
  1857. px = py = 0;
  1858. }
  1859. /* Pullback MV as specified in 8.3.5.3.4 */
  1860. {
  1861. int qx, qy, X, Y;
  1862. if(v->profile < PROFILE_ADVANCED) {
  1863. qx = (s->mb_x << 5);
  1864. qy = (s->mb_y << 5);
  1865. X = (s->mb_width << 5) - 4;
  1866. Y = (s->mb_height << 5) - 4;
  1867. if(qx + px < -28) px = -28 - qx;
  1868. if(qy + py < -28) py = -28 - qy;
  1869. if(qx + px > X) px = X - qx;
  1870. if(qy + py > Y) py = Y - qy;
  1871. } else {
  1872. qx = (s->mb_x << 6);
  1873. qy = (s->mb_y << 6);
  1874. X = (s->mb_width << 6) - 4;
  1875. Y = (s->mb_height << 6) - 4;
  1876. if(qx + px < -60) px = -60 - qx;
  1877. if(qy + py < -60) py = -60 - qy;
  1878. if(qx + px > X) px = X - qx;
  1879. if(qy + py > Y) py = Y - qy;
  1880. }
  1881. }
  1882. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1883. if(0 && !s->first_slice_line && s->mb_x) {
  1884. if(is_intra[xy - wrap])
  1885. sum = FFABS(px) + FFABS(py);
  1886. else
  1887. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1888. if(sum > 32) {
  1889. if(get_bits1(&s->gb)) {
  1890. px = A[0];
  1891. py = A[1];
  1892. } else {
  1893. px = C[0];
  1894. py = C[1];
  1895. }
  1896. } else {
  1897. if(is_intra[xy - 2])
  1898. sum = FFABS(px) + FFABS(py);
  1899. else
  1900. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1901. if(sum > 32) {
  1902. if(get_bits1(&s->gb)) {
  1903. px = A[0];
  1904. py = A[1];
  1905. } else {
  1906. px = C[0];
  1907. py = C[1];
  1908. }
  1909. }
  1910. }
  1911. }
  1912. /* store MV using signed modulus of MV range defined in 4.11 */
  1913. s->mv[1][0][0] = ((px + dmv_x[1] + r_x) & ((r_x << 1) - 1)) - r_x;
  1914. s->mv[1][0][1] = ((py + dmv_y[1] + r_y) & ((r_y << 1) - 1)) - r_y;
  1915. }
  1916. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  1917. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  1918. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  1919. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  1920. }
  1921. /** Get predicted DC value for I-frames only
  1922. * prediction dir: left=0, top=1
  1923. * @param s MpegEncContext
  1924. * @param[in] n block index in the current MB
  1925. * @param dc_val_ptr Pointer to DC predictor
  1926. * @param dir_ptr Prediction direction for use in AC prediction
  1927. */
  1928. static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  1929. int16_t **dc_val_ptr, int *dir_ptr)
  1930. {
  1931. int a, b, c, wrap, pred, scale;
  1932. int16_t *dc_val;
  1933. static const uint16_t dcpred[32] = {
  1934. -1, 1024, 512, 341, 256, 205, 171, 146, 128,
  1935. 114, 102, 93, 85, 79, 73, 68, 64,
  1936. 60, 57, 54, 51, 49, 47, 45, 43,
  1937. 41, 39, 38, 37, 35, 34, 33
  1938. };
  1939. /* find prediction - wmv3_dc_scale always used here in fact */
  1940. if (n < 4) scale = s->y_dc_scale;
  1941. else scale = s->c_dc_scale;
  1942. wrap = s->block_wrap[n];
  1943. dc_val= s->dc_val[0] + s->block_index[n];
  1944. /* B A
  1945. * C X
  1946. */
  1947. c = dc_val[ - 1];
  1948. b = dc_val[ - 1 - wrap];
  1949. a = dc_val[ - wrap];
  1950. if (pq < 9 || !overlap)
  1951. {
  1952. /* Set outer values */
  1953. if (s->first_slice_line && (n!=2 && n!=3)) b=a=dcpred[scale];
  1954. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=dcpred[scale];
  1955. }
  1956. else
  1957. {
  1958. /* Set outer values */
  1959. if (s->first_slice_line && (n!=2 && n!=3)) b=a=0;
  1960. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=0;
  1961. }
  1962. if (abs(a - b) <= abs(b - c)) {
  1963. pred = c;
  1964. *dir_ptr = 1;//left
  1965. } else {
  1966. pred = a;
  1967. *dir_ptr = 0;//top
  1968. }
  1969. /* update predictor */
  1970. *dc_val_ptr = &dc_val[0];
  1971. return pred;
  1972. }
  1973. /** Get predicted DC value
  1974. * prediction dir: left=0, top=1
  1975. * @param s MpegEncContext
  1976. * @param[in] n block index in the current MB
  1977. * @param dc_val_ptr Pointer to DC predictor
  1978. * @param dir_ptr Prediction direction for use in AC prediction
  1979. */
  1980. static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  1981. int a_avail, int c_avail,
  1982. int16_t **dc_val_ptr, int *dir_ptr)
  1983. {
  1984. int a, b, c, wrap, pred, scale;
  1985. int16_t *dc_val;
  1986. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1987. int q1, q2 = 0;
  1988. /* find prediction - wmv3_dc_scale always used here in fact */
  1989. if (n < 4) scale = s->y_dc_scale;
  1990. else scale = s->c_dc_scale;
  1991. wrap = s->block_wrap[n];
  1992. dc_val= s->dc_val[0] + s->block_index[n];
  1993. /* B A
  1994. * C X
  1995. */
  1996. c = dc_val[ - 1];
  1997. b = dc_val[ - 1 - wrap];
  1998. a = dc_val[ - wrap];
  1999. /* scale predictors if needed */
  2000. q1 = s->current_picture.qscale_table[mb_pos];
  2001. if(c_avail && (n!= 1 && n!=3)) {
  2002. q2 = s->current_picture.qscale_table[mb_pos - 1];
  2003. if(q2 && q2 != q1)
  2004. c = (c * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2005. }
  2006. if(a_avail && (n!= 2 && n!=3)) {
  2007. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2008. if(q2 && q2 != q1)
  2009. a = (a * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2010. }
  2011. if(a_avail && c_avail && (n!=3)) {
  2012. int off = mb_pos;
  2013. if(n != 1) off--;
  2014. if(n != 2) off -= s->mb_stride;
  2015. q2 = s->current_picture.qscale_table[off];
  2016. if(q2 && q2 != q1)
  2017. b = (b * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2018. }
  2019. if(a_avail && c_avail) {
  2020. if(abs(a - b) <= abs(b - c)) {
  2021. pred = c;
  2022. *dir_ptr = 1;//left
  2023. } else {
  2024. pred = a;
  2025. *dir_ptr = 0;//top
  2026. }
  2027. } else if(a_avail) {
  2028. pred = a;
  2029. *dir_ptr = 0;//top
  2030. } else if(c_avail) {
  2031. pred = c;
  2032. *dir_ptr = 1;//left
  2033. } else {
  2034. pred = 0;
  2035. *dir_ptr = 1;//left
  2036. }
  2037. /* update predictor */
  2038. *dc_val_ptr = &dc_val[0];
  2039. return pred;
  2040. }
  2041. /**
  2042. * @defgroup std_mb VC1 Macroblock-level functions in Simple/Main Profiles
  2043. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  2044. * @{
  2045. */
  2046. static inline int vc1_coded_block_pred(MpegEncContext * s, int n, uint8_t **coded_block_ptr)
  2047. {
  2048. int xy, wrap, pred, a, b, c;
  2049. xy = s->block_index[n];
  2050. wrap = s->b8_stride;
  2051. /* B C
  2052. * A X
  2053. */
  2054. a = s->coded_block[xy - 1 ];
  2055. b = s->coded_block[xy - 1 - wrap];
  2056. c = s->coded_block[xy - wrap];
  2057. if (b == c) {
  2058. pred = a;
  2059. } else {
  2060. pred = c;
  2061. }
  2062. /* store value */
  2063. *coded_block_ptr = &s->coded_block[xy];
  2064. return pred;
  2065. }
  2066. /**
  2067. * Decode one AC coefficient
  2068. * @param v The VC1 context
  2069. * @param last Last coefficient
  2070. * @param skip How much zero coefficients to skip
  2071. * @param value Decoded AC coefficient value
  2072. * @see 8.1.3.4
  2073. */
  2074. static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip, int *value, int codingset)
  2075. {
  2076. GetBitContext *gb = &v->s.gb;
  2077. int index, escape, run = 0, level = 0, lst = 0;
  2078. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2079. if (index != vc1_ac_sizes[codingset] - 1) {
  2080. run = vc1_index_decode_table[codingset][index][0];
  2081. level = vc1_index_decode_table[codingset][index][1];
  2082. lst = index >= vc1_last_decode_table[codingset];
  2083. if(get_bits1(gb))
  2084. level = -level;
  2085. } else {
  2086. escape = decode210(gb);
  2087. if (escape != 2) {
  2088. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2089. run = vc1_index_decode_table[codingset][index][0];
  2090. level = vc1_index_decode_table[codingset][index][1];
  2091. lst = index >= vc1_last_decode_table[codingset];
  2092. if(escape == 0) {
  2093. if(lst)
  2094. level += vc1_last_delta_level_table[codingset][run];
  2095. else
  2096. level += vc1_delta_level_table[codingset][run];
  2097. } else {
  2098. if(lst)
  2099. run += vc1_last_delta_run_table[codingset][level] + 1;
  2100. else
  2101. run += vc1_delta_run_table[codingset][level] + 1;
  2102. }
  2103. if(get_bits1(gb))
  2104. level = -level;
  2105. } else {
  2106. int sign;
  2107. lst = get_bits1(gb);
  2108. if(v->s.esc3_level_length == 0) {
  2109. if(v->pq < 8 || v->dquantfrm) { // table 59
  2110. v->s.esc3_level_length = get_bits(gb, 3);
  2111. if(!v->s.esc3_level_length)
  2112. v->s.esc3_level_length = get_bits(gb, 2) + 8;
  2113. } else { //table 60
  2114. v->s.esc3_level_length = get_unary(gb, 1, 6) + 2;
  2115. }
  2116. v->s.esc3_run_length = 3 + get_bits(gb, 2);
  2117. }
  2118. run = get_bits(gb, v->s.esc3_run_length);
  2119. sign = get_bits1(gb);
  2120. level = get_bits(gb, v->s.esc3_level_length);
  2121. if(sign)
  2122. level = -level;
  2123. }
  2124. }
  2125. *last = lst;
  2126. *skip = run;
  2127. *value = level;
  2128. }
  2129. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2130. * @param v VC1Context
  2131. * @param block block to decode
  2132. * @param coded are AC coeffs present or not
  2133. * @param codingset set of VLC to decode data
  2134. */
  2135. static int vc1_decode_i_block(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset)
  2136. {
  2137. GetBitContext *gb = &v->s.gb;
  2138. MpegEncContext *s = &v->s;
  2139. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2140. int run_diff, i;
  2141. int16_t *dc_val;
  2142. int16_t *ac_val, *ac_val2;
  2143. int dcdiff;
  2144. /* Get DC differential */
  2145. if (n < 4) {
  2146. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2147. } else {
  2148. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2149. }
  2150. if (dcdiff < 0){
  2151. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2152. return -1;
  2153. }
  2154. if (dcdiff)
  2155. {
  2156. if (dcdiff == 119 /* ESC index value */)
  2157. {
  2158. /* TODO: Optimize */
  2159. if (v->pq == 1) dcdiff = get_bits(gb, 10);
  2160. else if (v->pq == 2) dcdiff = get_bits(gb, 9);
  2161. else dcdiff = get_bits(gb, 8);
  2162. }
  2163. else
  2164. {
  2165. if (v->pq == 1)
  2166. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2167. else if (v->pq == 2)
  2168. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  2169. }
  2170. if (get_bits1(gb))
  2171. dcdiff = -dcdiff;
  2172. }
  2173. /* Prediction */
  2174. dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
  2175. *dc_val = dcdiff;
  2176. /* Store the quantized DC coeff, used for prediction */
  2177. if (n < 4) {
  2178. block[0] = dcdiff * s->y_dc_scale;
  2179. } else {
  2180. block[0] = dcdiff * s->c_dc_scale;
  2181. }
  2182. /* Skip ? */
  2183. run_diff = 0;
  2184. i = 0;
  2185. if (!coded) {
  2186. goto not_coded;
  2187. }
  2188. //AC Decoding
  2189. i = 1;
  2190. {
  2191. int last = 0, skip, value;
  2192. const int8_t *zz_table;
  2193. int scale;
  2194. int k;
  2195. scale = v->pq * 2 + v->halfpq;
  2196. if(v->s.ac_pred) {
  2197. if(!dc_pred_dir)
  2198. zz_table = ff_vc1_horizontal_zz;
  2199. else
  2200. zz_table = ff_vc1_vertical_zz;
  2201. } else
  2202. zz_table = ff_vc1_normal_zz;
  2203. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2204. ac_val2 = ac_val;
  2205. if(dc_pred_dir) //left
  2206. ac_val -= 16;
  2207. else //top
  2208. ac_val -= 16 * s->block_wrap[n];
  2209. while (!last) {
  2210. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2211. i += skip;
  2212. if(i > 63)
  2213. break;
  2214. block[zz_table[i++]] = value;
  2215. }
  2216. /* apply AC prediction if needed */
  2217. if(s->ac_pred) {
  2218. if(dc_pred_dir) { //left
  2219. for(k = 1; k < 8; k++)
  2220. block[k << 3] += ac_val[k];
  2221. } else { //top
  2222. for(k = 1; k < 8; k++)
  2223. block[k] += ac_val[k + 8];
  2224. }
  2225. }
  2226. /* save AC coeffs for further prediction */
  2227. for(k = 1; k < 8; k++) {
  2228. ac_val2[k] = block[k << 3];
  2229. ac_val2[k + 8] = block[k];
  2230. }
  2231. /* scale AC coeffs */
  2232. for(k = 1; k < 64; k++)
  2233. if(block[k]) {
  2234. block[k] *= scale;
  2235. if(!v->pquantizer)
  2236. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2237. }
  2238. if(s->ac_pred) i = 63;
  2239. }
  2240. not_coded:
  2241. if(!coded) {
  2242. int k, scale;
  2243. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2244. ac_val2 = ac_val;
  2245. scale = v->pq * 2 + v->halfpq;
  2246. memset(ac_val2, 0, 16 * 2);
  2247. if(dc_pred_dir) {//left
  2248. ac_val -= 16;
  2249. if(s->ac_pred)
  2250. memcpy(ac_val2, ac_val, 8 * 2);
  2251. } else {//top
  2252. ac_val -= 16 * s->block_wrap[n];
  2253. if(s->ac_pred)
  2254. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2255. }
  2256. /* apply AC prediction if needed */
  2257. if(s->ac_pred) {
  2258. if(dc_pred_dir) { //left
  2259. for(k = 1; k < 8; k++) {
  2260. block[k << 3] = ac_val[k] * scale;
  2261. if(!v->pquantizer && block[k << 3])
  2262. block[k << 3] += (block[k << 3] < 0) ? -v->pq : v->pq;
  2263. }
  2264. } else { //top
  2265. for(k = 1; k < 8; k++) {
  2266. block[k] = ac_val[k + 8] * scale;
  2267. if(!v->pquantizer && block[k])
  2268. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2269. }
  2270. }
  2271. i = 63;
  2272. }
  2273. }
  2274. s->block_last_index[n] = i;
  2275. return 0;
  2276. }
  2277. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2278. * @param v VC1Context
  2279. * @param block block to decode
  2280. * @param coded are AC coeffs present or not
  2281. * @param codingset set of VLC to decode data
  2282. */
  2283. static int vc1_decode_i_block_adv(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset, int mquant)
  2284. {
  2285. GetBitContext *gb = &v->s.gb;
  2286. MpegEncContext *s = &v->s;
  2287. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2288. int run_diff, i;
  2289. int16_t *dc_val;
  2290. int16_t *ac_val, *ac_val2;
  2291. int dcdiff;
  2292. int a_avail = v->a_avail, c_avail = v->c_avail;
  2293. int use_pred = s->ac_pred;
  2294. int scale;
  2295. int q1, q2 = 0;
  2296. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2297. /* Get DC differential */
  2298. if (n < 4) {
  2299. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2300. } else {
  2301. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2302. }
  2303. if (dcdiff < 0){
  2304. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2305. return -1;
  2306. }
  2307. if (dcdiff)
  2308. {
  2309. if (dcdiff == 119 /* ESC index value */)
  2310. {
  2311. /* TODO: Optimize */
  2312. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2313. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2314. else dcdiff = get_bits(gb, 8);
  2315. }
  2316. else
  2317. {
  2318. if (mquant == 1)
  2319. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2320. else if (mquant == 2)
  2321. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  2322. }
  2323. if (get_bits1(gb))
  2324. dcdiff = -dcdiff;
  2325. }
  2326. /* Prediction */
  2327. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
  2328. *dc_val = dcdiff;
  2329. /* Store the quantized DC coeff, used for prediction */
  2330. if (n < 4) {
  2331. block[0] = dcdiff * s->y_dc_scale;
  2332. } else {
  2333. block[0] = dcdiff * s->c_dc_scale;
  2334. }
  2335. /* Skip ? */
  2336. run_diff = 0;
  2337. i = 0;
  2338. //AC Decoding
  2339. i = 1;
  2340. /* check if AC is needed at all */
  2341. if(!a_avail && !c_avail) use_pred = 0;
  2342. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2343. ac_val2 = ac_val;
  2344. scale = mquant * 2 + v->halfpq;
  2345. if(dc_pred_dir) //left
  2346. ac_val -= 16;
  2347. else //top
  2348. ac_val -= 16 * s->block_wrap[n];
  2349. q1 = s->current_picture.qscale_table[mb_pos];
  2350. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  2351. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2352. if(dc_pred_dir && n==1) q2 = q1;
  2353. if(!dc_pred_dir && n==2) q2 = q1;
  2354. if(n==3) q2 = q1;
  2355. if(coded) {
  2356. int last = 0, skip, value;
  2357. const int8_t *zz_table;
  2358. int k;
  2359. if(v->s.ac_pred) {
  2360. if(!dc_pred_dir)
  2361. zz_table = ff_vc1_horizontal_zz;
  2362. else
  2363. zz_table = ff_vc1_vertical_zz;
  2364. } else
  2365. zz_table = ff_vc1_normal_zz;
  2366. while (!last) {
  2367. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2368. i += skip;
  2369. if(i > 63)
  2370. break;
  2371. block[zz_table[i++]] = value;
  2372. }
  2373. /* apply AC prediction if needed */
  2374. if(use_pred) {
  2375. /* scale predictors if needed*/
  2376. if(q2 && q1!=q2) {
  2377. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2378. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2379. if(dc_pred_dir) { //left
  2380. for(k = 1; k < 8; k++)
  2381. block[k << 3] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2382. } else { //top
  2383. for(k = 1; k < 8; k++)
  2384. block[k] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2385. }
  2386. } else {
  2387. if(dc_pred_dir) { //left
  2388. for(k = 1; k < 8; k++)
  2389. block[k << 3] += ac_val[k];
  2390. } else { //top
  2391. for(k = 1; k < 8; k++)
  2392. block[k] += ac_val[k + 8];
  2393. }
  2394. }
  2395. }
  2396. /* save AC coeffs for further prediction */
  2397. for(k = 1; k < 8; k++) {
  2398. ac_val2[k] = block[k << 3];
  2399. ac_val2[k + 8] = block[k];
  2400. }
  2401. /* scale AC coeffs */
  2402. for(k = 1; k < 64; k++)
  2403. if(block[k]) {
  2404. block[k] *= scale;
  2405. if(!v->pquantizer)
  2406. block[k] += (block[k] < 0) ? -mquant : mquant;
  2407. }
  2408. if(use_pred) i = 63;
  2409. } else { // no AC coeffs
  2410. int k;
  2411. memset(ac_val2, 0, 16 * 2);
  2412. if(dc_pred_dir) {//left
  2413. if(use_pred) {
  2414. memcpy(ac_val2, ac_val, 8 * 2);
  2415. if(q2 && q1!=q2) {
  2416. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2417. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2418. for(k = 1; k < 8; k++)
  2419. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2420. }
  2421. }
  2422. } else {//top
  2423. if(use_pred) {
  2424. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2425. if(q2 && q1!=q2) {
  2426. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2427. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2428. for(k = 1; k < 8; k++)
  2429. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2430. }
  2431. }
  2432. }
  2433. /* apply AC prediction if needed */
  2434. if(use_pred) {
  2435. if(dc_pred_dir) { //left
  2436. for(k = 1; k < 8; k++) {
  2437. block[k << 3] = ac_val2[k] * scale;
  2438. if(!v->pquantizer && block[k << 3])
  2439. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2440. }
  2441. } else { //top
  2442. for(k = 1; k < 8; k++) {
  2443. block[k] = ac_val2[k + 8] * scale;
  2444. if(!v->pquantizer && block[k])
  2445. block[k] += (block[k] < 0) ? -mquant : mquant;
  2446. }
  2447. }
  2448. i = 63;
  2449. }
  2450. }
  2451. s->block_last_index[n] = i;
  2452. return 0;
  2453. }
  2454. /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
  2455. * @param v VC1Context
  2456. * @param block block to decode
  2457. * @param coded are AC coeffs present or not
  2458. * @param mquant block quantizer
  2459. * @param codingset set of VLC to decode data
  2460. */
  2461. static int vc1_decode_intra_block(VC1Context *v, DCTELEM block[64], int n, int coded, int mquant, int codingset)
  2462. {
  2463. GetBitContext *gb = &v->s.gb;
  2464. MpegEncContext *s = &v->s;
  2465. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2466. int run_diff, i;
  2467. int16_t *dc_val;
  2468. int16_t *ac_val, *ac_val2;
  2469. int dcdiff;
  2470. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2471. int a_avail = v->a_avail, c_avail = v->c_avail;
  2472. int use_pred = s->ac_pred;
  2473. int scale;
  2474. int q1, q2 = 0;
  2475. /* XXX: Guard against dumb values of mquant */
  2476. mquant = (mquant < 1) ? 0 : ( (mquant>31) ? 31 : mquant );
  2477. /* Set DC scale - y and c use the same */
  2478. s->y_dc_scale = s->y_dc_scale_table[mquant];
  2479. s->c_dc_scale = s->c_dc_scale_table[mquant];
  2480. /* Get DC differential */
  2481. if (n < 4) {
  2482. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2483. } else {
  2484. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2485. }
  2486. if (dcdiff < 0){
  2487. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2488. return -1;
  2489. }
  2490. if (dcdiff)
  2491. {
  2492. if (dcdiff == 119 /* ESC index value */)
  2493. {
  2494. /* TODO: Optimize */
  2495. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2496. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2497. else dcdiff = get_bits(gb, 8);
  2498. }
  2499. else
  2500. {
  2501. if (mquant == 1)
  2502. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2503. else if (mquant == 2)
  2504. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  2505. }
  2506. if (get_bits1(gb))
  2507. dcdiff = -dcdiff;
  2508. }
  2509. /* Prediction */
  2510. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
  2511. *dc_val = dcdiff;
  2512. /* Store the quantized DC coeff, used for prediction */
  2513. if (n < 4) {
  2514. block[0] = dcdiff * s->y_dc_scale;
  2515. } else {
  2516. block[0] = dcdiff * s->c_dc_scale;
  2517. }
  2518. /* Skip ? */
  2519. run_diff = 0;
  2520. i = 0;
  2521. //AC Decoding
  2522. i = 1;
  2523. /* check if AC is needed at all and adjust direction if needed */
  2524. if(!a_avail) dc_pred_dir = 1;
  2525. if(!c_avail) dc_pred_dir = 0;
  2526. if(!a_avail && !c_avail) use_pred = 0;
  2527. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2528. ac_val2 = ac_val;
  2529. scale = mquant * 2 + v->halfpq;
  2530. if(dc_pred_dir) //left
  2531. ac_val -= 16;
  2532. else //top
  2533. ac_val -= 16 * s->block_wrap[n];
  2534. q1 = s->current_picture.qscale_table[mb_pos];
  2535. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  2536. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2537. if(dc_pred_dir && n==1) q2 = q1;
  2538. if(!dc_pred_dir && n==2) q2 = q1;
  2539. if(n==3) q2 = q1;
  2540. if(coded) {
  2541. int last = 0, skip, value;
  2542. const int8_t *zz_table;
  2543. int k;
  2544. zz_table = ff_vc1_simple_progressive_8x8_zz;
  2545. while (!last) {
  2546. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2547. i += skip;
  2548. if(i > 63)
  2549. break;
  2550. block[zz_table[i++]] = value;
  2551. }
  2552. /* apply AC prediction if needed */
  2553. if(use_pred) {
  2554. /* scale predictors if needed*/
  2555. if(q2 && q1!=q2) {
  2556. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2557. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2558. if(dc_pred_dir) { //left
  2559. for(k = 1; k < 8; k++)
  2560. block[k << 3] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2561. } else { //top
  2562. for(k = 1; k < 8; k++)
  2563. block[k] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2564. }
  2565. } else {
  2566. if(dc_pred_dir) { //left
  2567. for(k = 1; k < 8; k++)
  2568. block[k << 3] += ac_val[k];
  2569. } else { //top
  2570. for(k = 1; k < 8; k++)
  2571. block[k] += ac_val[k + 8];
  2572. }
  2573. }
  2574. }
  2575. /* save AC coeffs for further prediction */
  2576. for(k = 1; k < 8; k++) {
  2577. ac_val2[k] = block[k << 3];
  2578. ac_val2[k + 8] = block[k];
  2579. }
  2580. /* scale AC coeffs */
  2581. for(k = 1; k < 64; k++)
  2582. if(block[k]) {
  2583. block[k] *= scale;
  2584. if(!v->pquantizer)
  2585. block[k] += (block[k] < 0) ? -mquant : mquant;
  2586. }
  2587. if(use_pred) i = 63;
  2588. } else { // no AC coeffs
  2589. int k;
  2590. memset(ac_val2, 0, 16 * 2);
  2591. if(dc_pred_dir) {//left
  2592. if(use_pred) {
  2593. memcpy(ac_val2, ac_val, 8 * 2);
  2594. if(q2 && q1!=q2) {
  2595. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2596. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2597. for(k = 1; k < 8; k++)
  2598. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2599. }
  2600. }
  2601. } else {//top
  2602. if(use_pred) {
  2603. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2604. if(q2 && q1!=q2) {
  2605. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2606. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2607. for(k = 1; k < 8; k++)
  2608. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2609. }
  2610. }
  2611. }
  2612. /* apply AC prediction if needed */
  2613. if(use_pred) {
  2614. if(dc_pred_dir) { //left
  2615. for(k = 1; k < 8; k++) {
  2616. block[k << 3] = ac_val2[k] * scale;
  2617. if(!v->pquantizer && block[k << 3])
  2618. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2619. }
  2620. } else { //top
  2621. for(k = 1; k < 8; k++) {
  2622. block[k] = ac_val2[k + 8] * scale;
  2623. if(!v->pquantizer && block[k])
  2624. block[k] += (block[k] < 0) ? -mquant : mquant;
  2625. }
  2626. }
  2627. i = 63;
  2628. }
  2629. }
  2630. s->block_last_index[n] = i;
  2631. return 0;
  2632. }
  2633. /** Decode P block
  2634. */
  2635. static int vc1_decode_p_block(VC1Context *v, DCTELEM block[64], int n, int mquant, int ttmb, int first_block)
  2636. {
  2637. MpegEncContext *s = &v->s;
  2638. GetBitContext *gb = &s->gb;
  2639. int i, j;
  2640. int subblkpat = 0;
  2641. int scale, off, idx, last, skip, value;
  2642. int ttblk = ttmb & 7;
  2643. if(ttmb == -1) {
  2644. ttblk = ff_vc1_ttblk_to_tt[v->tt_index][get_vlc2(gb, ff_vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
  2645. }
  2646. if(ttblk == TT_4X4) {
  2647. subblkpat = ~(get_vlc2(gb, ff_vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
  2648. }
  2649. if((ttblk != TT_8X8 && ttblk != TT_4X4) && (v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))) {
  2650. subblkpat = decode012(gb);
  2651. if(subblkpat) subblkpat ^= 3; //swap decoded pattern bits
  2652. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) ttblk = TT_8X4;
  2653. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) ttblk = TT_4X8;
  2654. }
  2655. scale = 2 * mquant + ((v->pq == mquant) ? v->halfpq : 0);
  2656. // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
  2657. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
  2658. subblkpat = 2 - (ttblk == TT_8X4_TOP);
  2659. ttblk = TT_8X4;
  2660. }
  2661. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
  2662. subblkpat = 2 - (ttblk == TT_4X8_LEFT);
  2663. ttblk = TT_4X8;
  2664. }
  2665. switch(ttblk) {
  2666. case TT_8X8:
  2667. i = 0;
  2668. last = 0;
  2669. while (!last) {
  2670. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2671. i += skip;
  2672. if(i > 63)
  2673. break;
  2674. idx = ff_vc1_simple_progressive_8x8_zz[i++];
  2675. block[idx] = value * scale;
  2676. if(!v->pquantizer)
  2677. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  2678. }
  2679. s->dsp.vc1_inv_trans_8x8(block);
  2680. break;
  2681. case TT_4X4:
  2682. for(j = 0; j < 4; j++) {
  2683. last = subblkpat & (1 << (3 - j));
  2684. i = 0;
  2685. off = (j & 1) * 4 + (j & 2) * 16;
  2686. while (!last) {
  2687. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2688. i += skip;
  2689. if(i > 15)
  2690. break;
  2691. idx = ff_vc1_simple_progressive_4x4_zz[i++];
  2692. block[idx + off] = value * scale;
  2693. if(!v->pquantizer)
  2694. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2695. }
  2696. if(!(subblkpat & (1 << (3 - j))))
  2697. s->dsp.vc1_inv_trans_4x4(block, j);
  2698. }
  2699. break;
  2700. case TT_8X4:
  2701. for(j = 0; j < 2; j++) {
  2702. last = subblkpat & (1 << (1 - j));
  2703. i = 0;
  2704. off = j * 32;
  2705. while (!last) {
  2706. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2707. i += skip;
  2708. if(i > 31)
  2709. break;
  2710. if(v->profile < PROFILE_ADVANCED)
  2711. idx = ff_vc1_simple_progressive_8x4_zz[i++];
  2712. else
  2713. idx = ff_vc1_adv_progressive_8x4_zz[i++];
  2714. block[idx + off] = value * scale;
  2715. if(!v->pquantizer)
  2716. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2717. }
  2718. if(!(subblkpat & (1 << (1 - j))))
  2719. s->dsp.vc1_inv_trans_8x4(block, j);
  2720. }
  2721. break;
  2722. case TT_4X8:
  2723. for(j = 0; j < 2; j++) {
  2724. last = subblkpat & (1 << (1 - j));
  2725. i = 0;
  2726. off = j * 4;
  2727. while (!last) {
  2728. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2729. i += skip;
  2730. if(i > 31)
  2731. break;
  2732. if(v->profile < PROFILE_ADVANCED)
  2733. idx = ff_vc1_simple_progressive_4x8_zz[i++];
  2734. else
  2735. idx = ff_vc1_adv_progressive_4x8_zz[i++];
  2736. block[idx + off] = value * scale;
  2737. if(!v->pquantizer)
  2738. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2739. }
  2740. if(!(subblkpat & (1 << (1 - j))))
  2741. s->dsp.vc1_inv_trans_4x8(block, j);
  2742. }
  2743. break;
  2744. }
  2745. return 0;
  2746. }
  2747. /** Decode one P-frame MB (in Simple/Main profile)
  2748. */
  2749. static int vc1_decode_p_mb(VC1Context *v)
  2750. {
  2751. MpegEncContext *s = &v->s;
  2752. GetBitContext *gb = &s->gb;
  2753. int i, j;
  2754. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2755. int cbp; /* cbp decoding stuff */
  2756. int mqdiff, mquant; /* MB quantization */
  2757. int ttmb = v->ttfrm; /* MB Transform type */
  2758. int status;
  2759. static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
  2760. offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  2761. int mb_has_coeffs = 1; /* last_flag */
  2762. int dmv_x, dmv_y; /* Differential MV components */
  2763. int index, index1; /* LUT indices */
  2764. int val, sign; /* temp values */
  2765. int first_block = 1;
  2766. int dst_idx, off;
  2767. int skipped, fourmv;
  2768. mquant = v->pq; /* Loosy initialization */
  2769. if (v->mv_type_is_raw)
  2770. fourmv = get_bits1(gb);
  2771. else
  2772. fourmv = v->mv_type_mb_plane[mb_pos];
  2773. if (v->skip_is_raw)
  2774. skipped = get_bits1(gb);
  2775. else
  2776. skipped = v->s.mbskip_table[mb_pos];
  2777. s->dsp.clear_blocks(s->block[0]);
  2778. if (!fourmv) /* 1MV mode */
  2779. {
  2780. if (!skipped)
  2781. {
  2782. GET_MVDATA(dmv_x, dmv_y);
  2783. if (s->mb_intra) {
  2784. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  2785. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  2786. }
  2787. s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
  2788. vc1_pred_mv(s, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0]);
  2789. /* FIXME Set DC val for inter block ? */
  2790. if (s->mb_intra && !mb_has_coeffs)
  2791. {
  2792. GET_MQUANT();
  2793. s->ac_pred = get_bits1(gb);
  2794. cbp = 0;
  2795. }
  2796. else if (mb_has_coeffs)
  2797. {
  2798. if (s->mb_intra) s->ac_pred = get_bits1(gb);
  2799. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2800. GET_MQUANT();
  2801. }
  2802. else
  2803. {
  2804. mquant = v->pq;
  2805. cbp = 0;
  2806. }
  2807. s->current_picture.qscale_table[mb_pos] = mquant;
  2808. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  2809. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table,
  2810. VC1_TTMB_VLC_BITS, 2);
  2811. if(!s->mb_intra) vc1_mc_1mv(v, 0);
  2812. dst_idx = 0;
  2813. for (i=0; i<6; i++)
  2814. {
  2815. s->dc_val[0][s->block_index[i]] = 0;
  2816. dst_idx += i >> 2;
  2817. val = ((cbp >> (5 - i)) & 1);
  2818. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2819. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  2820. if(s->mb_intra) {
  2821. /* check if prediction blocks A and C are available */
  2822. v->a_avail = v->c_avail = 0;
  2823. if(i == 2 || i == 3 || !s->first_slice_line)
  2824. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2825. if(i == 1 || i == 3 || s->mb_x)
  2826. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2827. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  2828. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  2829. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  2830. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  2831. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  2832. if(!v->res_fasttx && v->res_x8) for(j = 0; j < 64; j++) s->block[i][j] += 16;
  2833. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2834. if(v->pq >= 9 && v->overlap) {
  2835. if(v->c_avail)
  2836. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2837. if(v->a_avail)
  2838. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2839. }
  2840. } else if(val) {
  2841. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  2842. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2843. first_block = 0;
  2844. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  2845. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  2846. }
  2847. }
  2848. }
  2849. else //Skipped
  2850. {
  2851. s->mb_intra = 0;
  2852. for(i = 0; i < 6; i++) {
  2853. v->mb_type[0][s->block_index[i]] = 0;
  2854. s->dc_val[0][s->block_index[i]] = 0;
  2855. }
  2856. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  2857. s->current_picture.qscale_table[mb_pos] = 0;
  2858. vc1_pred_mv(s, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0]);
  2859. vc1_mc_1mv(v, 0);
  2860. return 0;
  2861. }
  2862. } //1MV mode
  2863. else //4MV mode
  2864. {
  2865. if (!skipped /* unskipped MB */)
  2866. {
  2867. int intra_count = 0, coded_inter = 0;
  2868. int is_intra[6], is_coded[6];
  2869. /* Get CBPCY */
  2870. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2871. for (i=0; i<6; i++)
  2872. {
  2873. val = ((cbp >> (5 - i)) & 1);
  2874. s->dc_val[0][s->block_index[i]] = 0;
  2875. s->mb_intra = 0;
  2876. if(i < 4) {
  2877. dmv_x = dmv_y = 0;
  2878. s->mb_intra = 0;
  2879. mb_has_coeffs = 0;
  2880. if(val) {
  2881. GET_MVDATA(dmv_x, dmv_y);
  2882. }
  2883. vc1_pred_mv(s, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0]);
  2884. if(!s->mb_intra) vc1_mc_4mv_luma(v, i);
  2885. intra_count += s->mb_intra;
  2886. is_intra[i] = s->mb_intra;
  2887. is_coded[i] = mb_has_coeffs;
  2888. }
  2889. if(i&4){
  2890. is_intra[i] = (intra_count >= 3);
  2891. is_coded[i] = val;
  2892. }
  2893. if(i == 4) vc1_mc_4mv_chroma(v);
  2894. v->mb_type[0][s->block_index[i]] = is_intra[i];
  2895. if(!coded_inter) coded_inter = !is_intra[i] & is_coded[i];
  2896. }
  2897. // if there are no coded blocks then don't do anything more
  2898. if(!intra_count && !coded_inter) return 0;
  2899. dst_idx = 0;
  2900. GET_MQUANT();
  2901. s->current_picture.qscale_table[mb_pos] = mquant;
  2902. /* test if block is intra and has pred */
  2903. {
  2904. int intrapred = 0;
  2905. for(i=0; i<6; i++)
  2906. if(is_intra[i]) {
  2907. if(((!s->first_slice_line || (i==2 || i==3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
  2908. || ((s->mb_x || (i==1 || i==3)) && v->mb_type[0][s->block_index[i] - 1])) {
  2909. intrapred = 1;
  2910. break;
  2911. }
  2912. }
  2913. if(intrapred)s->ac_pred = get_bits1(gb);
  2914. else s->ac_pred = 0;
  2915. }
  2916. if (!v->ttmbf && coded_inter)
  2917. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  2918. for (i=0; i<6; i++)
  2919. {
  2920. dst_idx += i >> 2;
  2921. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2922. s->mb_intra = is_intra[i];
  2923. if (is_intra[i]) {
  2924. /* check if prediction blocks A and C are available */
  2925. v->a_avail = v->c_avail = 0;
  2926. if(i == 2 || i == 3 || !s->first_slice_line)
  2927. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2928. if(i == 1 || i == 3 || s->mb_x)
  2929. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2930. vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant, (i&4)?v->codingset2:v->codingset);
  2931. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  2932. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  2933. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  2934. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  2935. if(!v->res_fasttx && v->res_x8) for(j = 0; j < 64; j++) s->block[i][j] += 16;
  2936. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  2937. if(v->pq >= 9 && v->overlap) {
  2938. if(v->c_avail)
  2939. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2940. if(v->a_avail)
  2941. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2942. }
  2943. } else if(is_coded[i]) {
  2944. status = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  2945. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2946. first_block = 0;
  2947. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  2948. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  2949. }
  2950. }
  2951. return status;
  2952. }
  2953. else //Skipped MB
  2954. {
  2955. s->mb_intra = 0;
  2956. s->current_picture.qscale_table[mb_pos] = 0;
  2957. for (i=0; i<6; i++) {
  2958. v->mb_type[0][s->block_index[i]] = 0;
  2959. s->dc_val[0][s->block_index[i]] = 0;
  2960. }
  2961. for (i=0; i<4; i++)
  2962. {
  2963. vc1_pred_mv(s, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0]);
  2964. vc1_mc_4mv_luma(v, i);
  2965. }
  2966. vc1_mc_4mv_chroma(v);
  2967. s->current_picture.qscale_table[mb_pos] = 0;
  2968. return 0;
  2969. }
  2970. }
  2971. /* Should never happen */
  2972. return -1;
  2973. }
  2974. /** Decode one B-frame MB (in Main profile)
  2975. */
  2976. static void vc1_decode_b_mb(VC1Context *v)
  2977. {
  2978. MpegEncContext *s = &v->s;
  2979. GetBitContext *gb = &s->gb;
  2980. int i, j;
  2981. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2982. int cbp = 0; /* cbp decoding stuff */
  2983. int mqdiff, mquant; /* MB quantization */
  2984. int ttmb = v->ttfrm; /* MB Transform type */
  2985. static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
  2986. offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  2987. int mb_has_coeffs = 0; /* last_flag */
  2988. int index, index1; /* LUT indices */
  2989. int val, sign; /* temp values */
  2990. int first_block = 1;
  2991. int dst_idx, off;
  2992. int skipped, direct;
  2993. int dmv_x[2], dmv_y[2];
  2994. int bmvtype = BMV_TYPE_BACKWARD;
  2995. mquant = v->pq; /* Loosy initialization */
  2996. s->mb_intra = 0;
  2997. if (v->dmb_is_raw)
  2998. direct = get_bits1(gb);
  2999. else
  3000. direct = v->direct_mb_plane[mb_pos];
  3001. if (v->skip_is_raw)
  3002. skipped = get_bits1(gb);
  3003. else
  3004. skipped = v->s.mbskip_table[mb_pos];
  3005. s->dsp.clear_blocks(s->block[0]);
  3006. dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
  3007. for(i = 0; i < 6; i++) {
  3008. v->mb_type[0][s->block_index[i]] = 0;
  3009. s->dc_val[0][s->block_index[i]] = 0;
  3010. }
  3011. s->current_picture.qscale_table[mb_pos] = 0;
  3012. if (!direct) {
  3013. if (!skipped) {
  3014. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3015. dmv_x[1] = dmv_x[0];
  3016. dmv_y[1] = dmv_y[0];
  3017. }
  3018. if(skipped || !s->mb_intra) {
  3019. bmvtype = decode012(gb);
  3020. switch(bmvtype) {
  3021. case 0:
  3022. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
  3023. break;
  3024. case 1:
  3025. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
  3026. break;
  3027. case 2:
  3028. bmvtype = BMV_TYPE_INTERPOLATED;
  3029. dmv_x[0] = dmv_y[0] = 0;
  3030. }
  3031. }
  3032. }
  3033. for(i = 0; i < 6; i++)
  3034. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3035. if (skipped) {
  3036. if(direct) bmvtype = BMV_TYPE_INTERPOLATED;
  3037. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3038. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3039. return;
  3040. }
  3041. if (direct) {
  3042. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3043. GET_MQUANT();
  3044. s->mb_intra = 0;
  3045. mb_has_coeffs = 0;
  3046. s->current_picture.qscale_table[mb_pos] = mquant;
  3047. if(!v->ttmbf)
  3048. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3049. dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0;
  3050. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3051. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3052. } else {
  3053. if(!mb_has_coeffs && !s->mb_intra) {
  3054. /* no coded blocks - effectively skipped */
  3055. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3056. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3057. return;
  3058. }
  3059. if(s->mb_intra && !mb_has_coeffs) {
  3060. GET_MQUANT();
  3061. s->current_picture.qscale_table[mb_pos] = mquant;
  3062. s->ac_pred = get_bits1(gb);
  3063. cbp = 0;
  3064. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3065. } else {
  3066. if(bmvtype == BMV_TYPE_INTERPOLATED) {
  3067. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3068. if(!mb_has_coeffs) {
  3069. /* interpolated skipped block */
  3070. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3071. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3072. return;
  3073. }
  3074. }
  3075. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3076. if(!s->mb_intra) {
  3077. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3078. }
  3079. if(s->mb_intra)
  3080. s->ac_pred = get_bits1(gb);
  3081. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3082. GET_MQUANT();
  3083. s->current_picture.qscale_table[mb_pos] = mquant;
  3084. if(!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  3085. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3086. }
  3087. }
  3088. dst_idx = 0;
  3089. for (i=0; i<6; i++)
  3090. {
  3091. s->dc_val[0][s->block_index[i]] = 0;
  3092. dst_idx += i >> 2;
  3093. val = ((cbp >> (5 - i)) & 1);
  3094. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3095. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3096. if(s->mb_intra) {
  3097. /* check if prediction blocks A and C are available */
  3098. v->a_avail = v->c_avail = 0;
  3099. if(i == 2 || i == 3 || !s->first_slice_line)
  3100. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3101. if(i == 1 || i == 3 || s->mb_x)
  3102. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3103. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  3104. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  3105. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  3106. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  3107. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  3108. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3109. } else if(val) {
  3110. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  3111. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  3112. first_block = 0;
  3113. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  3114. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  3115. }
  3116. }
  3117. }
  3118. /** Decode blocks of I-frame
  3119. */
  3120. static void vc1_decode_i_blocks(VC1Context *v)
  3121. {
  3122. int k, j;
  3123. MpegEncContext *s = &v->s;
  3124. int cbp, val;
  3125. uint8_t *coded_val;
  3126. int mb_pos;
  3127. /* select codingmode used for VLC tables selection */
  3128. switch(v->y_ac_table_index){
  3129. case 0:
  3130. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3131. break;
  3132. case 1:
  3133. v->codingset = CS_HIGH_MOT_INTRA;
  3134. break;
  3135. case 2:
  3136. v->codingset = CS_MID_RATE_INTRA;
  3137. break;
  3138. }
  3139. switch(v->c_ac_table_index){
  3140. case 0:
  3141. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3142. break;
  3143. case 1:
  3144. v->codingset2 = CS_HIGH_MOT_INTER;
  3145. break;
  3146. case 2:
  3147. v->codingset2 = CS_MID_RATE_INTER;
  3148. break;
  3149. }
  3150. /* Set DC scale - y and c use the same */
  3151. s->y_dc_scale = s->y_dc_scale_table[v->pq];
  3152. s->c_dc_scale = s->c_dc_scale_table[v->pq];
  3153. //do frame decode
  3154. s->mb_x = s->mb_y = 0;
  3155. s->mb_intra = 1;
  3156. s->first_slice_line = 1;
  3157. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3158. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3159. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3160. ff_init_block_index(s);
  3161. ff_update_block_index(s);
  3162. s->dsp.clear_blocks(s->block[0]);
  3163. mb_pos = s->mb_x + s->mb_y * s->mb_width;
  3164. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  3165. s->current_picture.qscale_table[mb_pos] = v->pq;
  3166. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3167. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3168. // do actual MB decoding and displaying
  3169. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  3170. v->s.ac_pred = get_bits1(&v->s.gb);
  3171. for(k = 0; k < 6; k++) {
  3172. val = ((cbp >> (5 - k)) & 1);
  3173. if (k < 4) {
  3174. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  3175. val = val ^ pred;
  3176. *coded_val = val;
  3177. }
  3178. cbp |= val << (5 - k);
  3179. vc1_decode_i_block(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2);
  3180. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  3181. if(!v->res_fasttx && !v->res_x8) for(j = 0; j < 64; j++) s->block[k][j] -= 16;
  3182. if(v->pq >= 9 && v->overlap) {
  3183. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  3184. }
  3185. }
  3186. vc1_put_block(v, s->block);
  3187. if(v->pq >= 9 && v->overlap) {
  3188. if(s->mb_x) {
  3189. s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
  3190. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3191. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3192. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  3193. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  3194. }
  3195. }
  3196. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  3197. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3198. if(!s->first_slice_line) {
  3199. s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
  3200. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  3201. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3202. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  3203. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  3204. }
  3205. }
  3206. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3207. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3208. }
  3209. if(get_bits_count(&s->gb) > v->bits) {
  3210. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  3211. return;
  3212. }
  3213. }
  3214. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3215. s->first_slice_line = 0;
  3216. }
  3217. }
  3218. /** Decode blocks of I-frame for advanced profile
  3219. */
  3220. static void vc1_decode_i_blocks_adv(VC1Context *v)
  3221. {
  3222. int k, j;
  3223. MpegEncContext *s = &v->s;
  3224. int cbp, val;
  3225. uint8_t *coded_val;
  3226. int mb_pos;
  3227. int mquant = v->pq;
  3228. int mqdiff;
  3229. int overlap;
  3230. GetBitContext *gb = &s->gb;
  3231. /* select codingmode used for VLC tables selection */
  3232. switch(v->y_ac_table_index){
  3233. case 0:
  3234. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3235. break;
  3236. case 1:
  3237. v->codingset = CS_HIGH_MOT_INTRA;
  3238. break;
  3239. case 2:
  3240. v->codingset = CS_MID_RATE_INTRA;
  3241. break;
  3242. }
  3243. switch(v->c_ac_table_index){
  3244. case 0:
  3245. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3246. break;
  3247. case 1:
  3248. v->codingset2 = CS_HIGH_MOT_INTER;
  3249. break;
  3250. case 2:
  3251. v->codingset2 = CS_MID_RATE_INTER;
  3252. break;
  3253. }
  3254. //do frame decode
  3255. s->mb_x = s->mb_y = 0;
  3256. s->mb_intra = 1;
  3257. s->first_slice_line = 1;
  3258. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3259. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3260. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3261. ff_init_block_index(s);
  3262. ff_update_block_index(s);
  3263. s->dsp.clear_blocks(s->block[0]);
  3264. mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3265. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  3266. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3267. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3268. // do actual MB decoding and displaying
  3269. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  3270. if(v->acpred_is_raw)
  3271. v->s.ac_pred = get_bits1(&v->s.gb);
  3272. else
  3273. v->s.ac_pred = v->acpred_plane[mb_pos];
  3274. if(v->condover == CONDOVER_SELECT) {
  3275. if(v->overflg_is_raw)
  3276. overlap = get_bits1(&v->s.gb);
  3277. else
  3278. overlap = v->over_flags_plane[mb_pos];
  3279. } else
  3280. overlap = (v->condover == CONDOVER_ALL);
  3281. GET_MQUANT();
  3282. s->current_picture.qscale_table[mb_pos] = mquant;
  3283. /* Set DC scale - y and c use the same */
  3284. s->y_dc_scale = s->y_dc_scale_table[mquant];
  3285. s->c_dc_scale = s->c_dc_scale_table[mquant];
  3286. for(k = 0; k < 6; k++) {
  3287. val = ((cbp >> (5 - k)) & 1);
  3288. if (k < 4) {
  3289. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  3290. val = val ^ pred;
  3291. *coded_val = val;
  3292. }
  3293. cbp |= val << (5 - k);
  3294. v->a_avail = !s->first_slice_line || (k==2 || k==3);
  3295. v->c_avail = !!s->mb_x || (k==1 || k==3);
  3296. vc1_decode_i_block_adv(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2, mquant);
  3297. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  3298. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  3299. }
  3300. vc1_put_block(v, s->block);
  3301. if(overlap) {
  3302. if(s->mb_x) {
  3303. s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
  3304. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3305. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3306. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  3307. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  3308. }
  3309. }
  3310. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  3311. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3312. if(!s->first_slice_line) {
  3313. s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
  3314. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  3315. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3316. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  3317. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  3318. }
  3319. }
  3320. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3321. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3322. }
  3323. if(get_bits_count(&s->gb) > v->bits) {
  3324. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  3325. return;
  3326. }
  3327. }
  3328. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3329. s->first_slice_line = 0;
  3330. }
  3331. }
  3332. static void vc1_decode_p_blocks(VC1Context *v)
  3333. {
  3334. MpegEncContext *s = &v->s;
  3335. /* select codingmode used for VLC tables selection */
  3336. switch(v->c_ac_table_index){
  3337. case 0:
  3338. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3339. break;
  3340. case 1:
  3341. v->codingset = CS_HIGH_MOT_INTRA;
  3342. break;
  3343. case 2:
  3344. v->codingset = CS_MID_RATE_INTRA;
  3345. break;
  3346. }
  3347. switch(v->c_ac_table_index){
  3348. case 0:
  3349. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3350. break;
  3351. case 1:
  3352. v->codingset2 = CS_HIGH_MOT_INTER;
  3353. break;
  3354. case 2:
  3355. v->codingset2 = CS_MID_RATE_INTER;
  3356. break;
  3357. }
  3358. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3359. s->first_slice_line = 1;
  3360. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3361. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3362. ff_init_block_index(s);
  3363. ff_update_block_index(s);
  3364. s->dsp.clear_blocks(s->block[0]);
  3365. vc1_decode_p_mb(v);
  3366. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  3367. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  3368. return;
  3369. }
  3370. }
  3371. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3372. s->first_slice_line = 0;
  3373. }
  3374. }
  3375. static void vc1_decode_b_blocks(VC1Context *v)
  3376. {
  3377. MpegEncContext *s = &v->s;
  3378. /* select codingmode used for VLC tables selection */
  3379. switch(v->c_ac_table_index){
  3380. case 0:
  3381. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3382. break;
  3383. case 1:
  3384. v->codingset = CS_HIGH_MOT_INTRA;
  3385. break;
  3386. case 2:
  3387. v->codingset = CS_MID_RATE_INTRA;
  3388. break;
  3389. }
  3390. switch(v->c_ac_table_index){
  3391. case 0:
  3392. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3393. break;
  3394. case 1:
  3395. v->codingset2 = CS_HIGH_MOT_INTER;
  3396. break;
  3397. case 2:
  3398. v->codingset2 = CS_MID_RATE_INTER;
  3399. break;
  3400. }
  3401. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3402. s->first_slice_line = 1;
  3403. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3404. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3405. ff_init_block_index(s);
  3406. ff_update_block_index(s);
  3407. s->dsp.clear_blocks(s->block[0]);
  3408. vc1_decode_b_mb(v);
  3409. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  3410. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  3411. return;
  3412. }
  3413. }
  3414. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3415. s->first_slice_line = 0;
  3416. }
  3417. }
  3418. static void vc1_decode_skip_blocks(VC1Context *v)
  3419. {
  3420. MpegEncContext *s = &v->s;
  3421. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3422. s->first_slice_line = 1;
  3423. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3424. s->mb_x = 0;
  3425. ff_init_block_index(s);
  3426. ff_update_block_index(s);
  3427. memcpy(s->dest[0], s->last_picture.data[0] + s->mb_y * 16 * s->linesize, s->linesize * 16);
  3428. memcpy(s->dest[1], s->last_picture.data[1] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  3429. memcpy(s->dest[2], s->last_picture.data[2] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  3430. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3431. s->first_slice_line = 0;
  3432. }
  3433. s->pict_type = P_TYPE;
  3434. }
  3435. static void vc1_decode_blocks(VC1Context *v)
  3436. {
  3437. v->s.esc3_level_length = 0;
  3438. switch(v->s.pict_type) {
  3439. case I_TYPE:
  3440. if(v->profile == PROFILE_ADVANCED)
  3441. vc1_decode_i_blocks_adv(v);
  3442. else
  3443. vc1_decode_i_blocks(v);
  3444. break;
  3445. case P_TYPE:
  3446. if(v->p_frame_skipped)
  3447. vc1_decode_skip_blocks(v);
  3448. else
  3449. vc1_decode_p_blocks(v);
  3450. break;
  3451. case B_TYPE:
  3452. if(v->bi_type){
  3453. if(v->profile == PROFILE_ADVANCED)
  3454. vc1_decode_i_blocks_adv(v);
  3455. else
  3456. vc1_decode_i_blocks(v);
  3457. }else
  3458. vc1_decode_b_blocks(v);
  3459. break;
  3460. }
  3461. }
  3462. /** Find VC-1 marker in buffer
  3463. * @return position where next marker starts or end of buffer if no marker found
  3464. */
  3465. static av_always_inline uint8_t* find_next_marker(uint8_t *src, uint8_t *end)
  3466. {
  3467. uint32_t mrk = 0xFFFFFFFF;
  3468. if(end-src < 4) return end;
  3469. while(src < end){
  3470. mrk = (mrk << 8) | *src++;
  3471. if(IS_MARKER(mrk))
  3472. return src-4;
  3473. }
  3474. return end;
  3475. }
  3476. static av_always_inline int vc1_unescape_buffer(uint8_t *src, int size, uint8_t *dst)
  3477. {
  3478. int dsize = 0, i;
  3479. if(size < 4){
  3480. for(dsize = 0; dsize < size; dsize++) *dst++ = *src++;
  3481. return size;
  3482. }
  3483. for(i = 0; i < size; i++, src++) {
  3484. if(src[0] == 3 && i >= 2 && !src[-1] && !src[-2] && i < size-1 && src[1] < 4) {
  3485. dst[dsize++] = src[1];
  3486. src++;
  3487. i++;
  3488. } else
  3489. dst[dsize++] = *src;
  3490. }
  3491. return dsize;
  3492. }
  3493. /** Initialize a VC1/WMV3 decoder
  3494. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  3495. * @todo TODO: Decypher remaining bits in extra_data
  3496. */
  3497. static int vc1_decode_init(AVCodecContext *avctx)
  3498. {
  3499. VC1Context *v = avctx->priv_data;
  3500. MpegEncContext *s = &v->s;
  3501. GetBitContext gb;
  3502. if (!avctx->extradata_size || !avctx->extradata) return -1;
  3503. if (!(avctx->flags & CODEC_FLAG_GRAY))
  3504. avctx->pix_fmt = PIX_FMT_YUV420P;
  3505. else
  3506. avctx->pix_fmt = PIX_FMT_GRAY8;
  3507. v->s.avctx = avctx;
  3508. avctx->flags |= CODEC_FLAG_EMU_EDGE;
  3509. v->s.flags |= CODEC_FLAG_EMU_EDGE;
  3510. if(ff_h263_decode_init(avctx) < 0)
  3511. return -1;
  3512. if (vc1_init_common(v) < 0) return -1;
  3513. avctx->coded_width = avctx->width;
  3514. avctx->coded_height = avctx->height;
  3515. if (avctx->codec_id == CODEC_ID_WMV3)
  3516. {
  3517. int count = 0;
  3518. // looks like WMV3 has a sequence header stored in the extradata
  3519. // advanced sequence header may be before the first frame
  3520. // the last byte of the extradata is a version number, 1 for the
  3521. // samples we can decode
  3522. init_get_bits(&gb, avctx->extradata, avctx->extradata_size*8);
  3523. if (decode_sequence_header(avctx, &gb) < 0)
  3524. return -1;
  3525. count = avctx->extradata_size*8 - get_bits_count(&gb);
  3526. if (count>0)
  3527. {
  3528. av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n",
  3529. count, get_bits(&gb, count));
  3530. }
  3531. else if (count < 0)
  3532. {
  3533. av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count);
  3534. }
  3535. } else { // VC1/WVC1
  3536. uint8_t *start = avctx->extradata, *end = avctx->extradata + avctx->extradata_size;
  3537. uint8_t *next; int size, buf2_size;
  3538. uint8_t *buf2 = NULL;
  3539. int seq_inited = 0, ep_inited = 0;
  3540. if(avctx->extradata_size < 16) {
  3541. av_log(avctx, AV_LOG_ERROR, "Extradata size too small: %i\n", avctx->extradata_size);
  3542. return -1;
  3543. }
  3544. buf2 = av_mallocz(avctx->extradata_size + FF_INPUT_BUFFER_PADDING_SIZE);
  3545. if(start[0]) start++; // in WVC1 extradata first byte is its size
  3546. next = start;
  3547. for(; next < end; start = next){
  3548. next = find_next_marker(start + 4, end);
  3549. size = next - start - 4;
  3550. if(size <= 0) continue;
  3551. buf2_size = vc1_unescape_buffer(start + 4, size, buf2);
  3552. init_get_bits(&gb, buf2, buf2_size * 8);
  3553. switch(AV_RB32(start)){
  3554. case VC1_CODE_SEQHDR:
  3555. if(decode_sequence_header(avctx, &gb) < 0){
  3556. av_free(buf2);
  3557. return -1;
  3558. }
  3559. seq_inited = 1;
  3560. break;
  3561. case VC1_CODE_ENTRYPOINT:
  3562. if(decode_entry_point(avctx, &gb) < 0){
  3563. av_free(buf2);
  3564. return -1;
  3565. }
  3566. ep_inited = 1;
  3567. break;
  3568. }
  3569. }
  3570. av_free(buf2);
  3571. if(!seq_inited || !ep_inited){
  3572. av_log(avctx, AV_LOG_ERROR, "Incomplete extradata\n");
  3573. return -1;
  3574. }
  3575. }
  3576. avctx->has_b_frames= !!(avctx->max_b_frames);
  3577. s->low_delay = !avctx->has_b_frames;
  3578. s->mb_width = (avctx->coded_width+15)>>4;
  3579. s->mb_height = (avctx->coded_height+15)>>4;
  3580. /* Allocate mb bitplanes */
  3581. v->mv_type_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3582. v->direct_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3583. v->acpred_plane = av_malloc(s->mb_stride * s->mb_height);
  3584. v->over_flags_plane = av_malloc(s->mb_stride * s->mb_height);
  3585. /* allocate block type info in that way so it could be used with s->block_index[] */
  3586. v->mb_type_base = av_malloc(s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
  3587. v->mb_type[0] = v->mb_type_base + s->b8_stride + 1;
  3588. v->mb_type[1] = v->mb_type_base + s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride + 1;
  3589. v->mb_type[2] = v->mb_type[1] + s->mb_stride * (s->mb_height + 1);
  3590. /* Init coded blocks info */
  3591. if (v->profile == PROFILE_ADVANCED)
  3592. {
  3593. // if (alloc_bitplane(&v->over_flags_plane, s->mb_width, s->mb_height) < 0)
  3594. // return -1;
  3595. // if (alloc_bitplane(&v->ac_pred_plane, s->mb_width, s->mb_height) < 0)
  3596. // return -1;
  3597. }
  3598. return 0;
  3599. }
  3600. /** Decode a VC1/WMV3 frame
  3601. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  3602. */
  3603. static int vc1_decode_frame(AVCodecContext *avctx,
  3604. void *data, int *data_size,
  3605. uint8_t *buf, int buf_size)
  3606. {
  3607. VC1Context *v = avctx->priv_data;
  3608. MpegEncContext *s = &v->s;
  3609. AVFrame *pict = data;
  3610. uint8_t *buf2 = NULL;
  3611. /* no supplementary picture */
  3612. if (buf_size == 0) {
  3613. /* special case for last picture */
  3614. if (s->low_delay==0 && s->next_picture_ptr) {
  3615. *pict= *(AVFrame*)s->next_picture_ptr;
  3616. s->next_picture_ptr= NULL;
  3617. *data_size = sizeof(AVFrame);
  3618. }
  3619. return 0;
  3620. }
  3621. /* We need to set current_picture_ptr before reading the header,
  3622. * otherwise we cannot store anything in there. */
  3623. if(s->current_picture_ptr==NULL || s->current_picture_ptr->data[0]){
  3624. int i= ff_find_unused_picture(s, 0);
  3625. s->current_picture_ptr= &s->picture[i];
  3626. }
  3627. //for advanced profile we may need to parse and unescape data
  3628. if (avctx->codec_id == CODEC_ID_VC1) {
  3629. int buf_size2 = 0;
  3630. buf2 = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  3631. if(IS_MARKER(AV_RB32(buf))){ /* frame starts with marker and needs to be parsed */
  3632. uint8_t *start, *end, *next;
  3633. int size;
  3634. next = buf;
  3635. for(start = buf, end = buf + buf_size; next < end; start = next){
  3636. next = find_next_marker(start + 4, end);
  3637. size = next - start - 4;
  3638. if(size <= 0) continue;
  3639. switch(AV_RB32(start)){
  3640. case VC1_CODE_FRAME:
  3641. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  3642. break;
  3643. case VC1_CODE_ENTRYPOINT: /* it should be before frame data */
  3644. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  3645. init_get_bits(&s->gb, buf2, buf_size2*8);
  3646. decode_entry_point(avctx, &s->gb);
  3647. break;
  3648. case VC1_CODE_SLICE:
  3649. av_log(avctx, AV_LOG_ERROR, "Sliced decoding is not implemented (yet)\n");
  3650. av_free(buf2);
  3651. return -1;
  3652. }
  3653. }
  3654. }else if(v->interlace && ((buf[0] & 0xC0) == 0xC0)){ /* WVC1 interlaced stores both fields divided by marker */
  3655. uint8_t *divider;
  3656. divider = find_next_marker(buf, buf + buf_size);
  3657. if((divider == (buf + buf_size)) || AV_RB32(divider) != VC1_CODE_FIELD){
  3658. av_log(avctx, AV_LOG_ERROR, "Error in WVC1 interlaced frame\n");
  3659. return -1;
  3660. }
  3661. buf_size2 = vc1_unescape_buffer(buf, divider - buf, buf2);
  3662. // TODO
  3663. av_free(buf2);return -1;
  3664. }else{
  3665. buf_size2 = vc1_unescape_buffer(buf, buf_size, buf2);
  3666. }
  3667. init_get_bits(&s->gb, buf2, buf_size2*8);
  3668. } else
  3669. init_get_bits(&s->gb, buf, buf_size*8);
  3670. // do parse frame header
  3671. if(v->profile < PROFILE_ADVANCED) {
  3672. if(vc1_parse_frame_header(v, &s->gb) == -1) {
  3673. av_free(buf2);
  3674. return -1;
  3675. }
  3676. } else {
  3677. if(vc1_parse_frame_header_adv(v, &s->gb) == -1) {
  3678. av_free(buf2);
  3679. return -1;
  3680. }
  3681. }
  3682. if(s->pict_type != I_TYPE && !v->res_rtm_flag){
  3683. av_free(buf2);
  3684. return -1;
  3685. }
  3686. // for hurry_up==5
  3687. s->current_picture.pict_type= s->pict_type;
  3688. s->current_picture.key_frame= s->pict_type == I_TYPE;
  3689. /* skip B-frames if we don't have reference frames */
  3690. if(s->last_picture_ptr==NULL && (s->pict_type==B_TYPE || s->dropable)){
  3691. av_free(buf2);
  3692. return -1;//buf_size;
  3693. }
  3694. /* skip b frames if we are in a hurry */
  3695. if(avctx->hurry_up && s->pict_type==B_TYPE) return -1;//buf_size;
  3696. if( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type==B_TYPE)
  3697. || (avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type!=I_TYPE)
  3698. || avctx->skip_frame >= AVDISCARD_ALL) {
  3699. av_free(buf2);
  3700. return buf_size;
  3701. }
  3702. /* skip everything if we are in a hurry>=5 */
  3703. if(avctx->hurry_up>=5) {
  3704. av_free(buf2);
  3705. return -1;//buf_size;
  3706. }
  3707. if(s->next_p_frame_damaged){
  3708. if(s->pict_type==B_TYPE)
  3709. return buf_size;
  3710. else
  3711. s->next_p_frame_damaged=0;
  3712. }
  3713. if(MPV_frame_start(s, avctx) < 0) {
  3714. av_free(buf2);
  3715. return -1;
  3716. }
  3717. ff_er_frame_start(s);
  3718. v->bits = buf_size * 8;
  3719. vc1_decode_blocks(v);
  3720. //av_log(s->avctx, AV_LOG_INFO, "Consumed %i/%i bits\n", get_bits_count(&s->gb), buf_size*8);
  3721. // if(get_bits_count(&s->gb) > buf_size * 8)
  3722. // return -1;
  3723. ff_er_frame_end(s);
  3724. MPV_frame_end(s);
  3725. assert(s->current_picture.pict_type == s->current_picture_ptr->pict_type);
  3726. assert(s->current_picture.pict_type == s->pict_type);
  3727. if (s->pict_type == B_TYPE || s->low_delay) {
  3728. *pict= *(AVFrame*)s->current_picture_ptr;
  3729. } else if (s->last_picture_ptr != NULL) {
  3730. *pict= *(AVFrame*)s->last_picture_ptr;
  3731. }
  3732. if(s->last_picture_ptr || s->low_delay){
  3733. *data_size = sizeof(AVFrame);
  3734. ff_print_debug_info(s, pict);
  3735. }
  3736. /* Return the Picture timestamp as the frame number */
  3737. /* we substract 1 because it is added on utils.c */
  3738. avctx->frame_number = s->picture_number - 1;
  3739. av_free(buf2);
  3740. return buf_size;
  3741. }
  3742. /** Close a VC1/WMV3 decoder
  3743. * @warning Initial try at using MpegEncContext stuff
  3744. */
  3745. static int vc1_decode_end(AVCodecContext *avctx)
  3746. {
  3747. VC1Context *v = avctx->priv_data;
  3748. av_freep(&v->hrd_rate);
  3749. av_freep(&v->hrd_buffer);
  3750. MPV_common_end(&v->s);
  3751. av_freep(&v->mv_type_mb_plane);
  3752. av_freep(&v->direct_mb_plane);
  3753. av_freep(&v->acpred_plane);
  3754. av_freep(&v->over_flags_plane);
  3755. av_freep(&v->mb_type_base);
  3756. return 0;
  3757. }
  3758. AVCodec vc1_decoder = {
  3759. "vc1",
  3760. CODEC_TYPE_VIDEO,
  3761. CODEC_ID_VC1,
  3762. sizeof(VC1Context),
  3763. vc1_decode_init,
  3764. NULL,
  3765. vc1_decode_end,
  3766. vc1_decode_frame,
  3767. CODEC_CAP_DELAY,
  3768. NULL
  3769. };
  3770. AVCodec wmv3_decoder = {
  3771. "wmv3",
  3772. CODEC_TYPE_VIDEO,
  3773. CODEC_ID_WMV3,
  3774. sizeof(VC1Context),
  3775. vc1_decode_init,
  3776. NULL,
  3777. vc1_decode_end,
  3778. vc1_decode_frame,
  3779. CODEC_CAP_DELAY,
  3780. NULL
  3781. };