You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

752 lines
22KB

  1. /*
  2. * FLAC (Free Lossless Audio Codec) decoder
  3. * Copyright (c) 2003 Alex Beregszaszi
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file flac.c
  23. * FLAC (Free Lossless Audio Codec) decoder
  24. * @author Alex Beregszaszi
  25. *
  26. * For more information on the FLAC format, visit:
  27. * http://flac.sourceforge.net/
  28. *
  29. * This decoder can be used in 1 of 2 ways: Either raw FLAC data can be fed
  30. * through, starting from the initial 'fLaC' signature; or by passing the
  31. * 34-byte streaminfo structure through avctx->extradata[_size] followed
  32. * by data starting with the 0xFFF8 marker.
  33. */
  34. #include <limits.h>
  35. #define ALT_BITSTREAM_READER
  36. #include "avcodec.h"
  37. #include "bitstream.h"
  38. #include "golomb.h"
  39. #include "crc.h"
  40. #undef NDEBUG
  41. #include <assert.h>
  42. #define MAX_CHANNELS 8
  43. #define MAX_BLOCKSIZE 65535
  44. #define FLAC_STREAMINFO_SIZE 34
  45. enum decorrelation_type {
  46. INDEPENDENT,
  47. LEFT_SIDE,
  48. RIGHT_SIDE,
  49. MID_SIDE,
  50. };
  51. typedef struct FLACContext {
  52. AVCodecContext *avctx;
  53. GetBitContext gb;
  54. int min_blocksize, max_blocksize;
  55. int min_framesize, max_framesize;
  56. int samplerate, channels;
  57. int blocksize/*, last_blocksize*/;
  58. int bps, curr_bps;
  59. enum decorrelation_type decorrelation;
  60. int32_t *decoded[MAX_CHANNELS];
  61. uint8_t *bitstream;
  62. int bitstream_size;
  63. int bitstream_index;
  64. unsigned int allocated_bitstream_size;
  65. } FLACContext;
  66. #define METADATA_TYPE_STREAMINFO 0
  67. static int sample_rate_table[] =
  68. { 0, 0, 0, 0,
  69. 8000, 16000, 22050, 24000, 32000, 44100, 48000, 96000,
  70. 0, 0, 0, 0 };
  71. static int sample_size_table[] =
  72. { 0, 8, 12, 0, 16, 20, 24, 0 };
  73. static int blocksize_table[] = {
  74. 0, 192, 576<<0, 576<<1, 576<<2, 576<<3, 0, 0,
  75. 256<<0, 256<<1, 256<<2, 256<<3, 256<<4, 256<<5, 256<<6, 256<<7
  76. };
  77. static int64_t get_utf8(GetBitContext *gb){
  78. int64_t val;
  79. GET_UTF8(val, get_bits(gb, 8), return -1;)
  80. return val;
  81. }
  82. static void metadata_streaminfo(FLACContext *s);
  83. static void allocate_buffers(FLACContext *s);
  84. static int metadata_parse(FLACContext *s);
  85. static int flac_decode_init(AVCodecContext * avctx)
  86. {
  87. FLACContext *s = avctx->priv_data;
  88. s->avctx = avctx;
  89. if (avctx->extradata_size > 4) {
  90. /* initialize based on the demuxer-supplied streamdata header */
  91. init_get_bits(&s->gb, avctx->extradata, avctx->extradata_size*8);
  92. if (avctx->extradata_size == FLAC_STREAMINFO_SIZE) {
  93. metadata_streaminfo(s);
  94. allocate_buffers(s);
  95. } else {
  96. metadata_parse(s);
  97. }
  98. }
  99. return 0;
  100. }
  101. static void dump_headers(FLACContext *s)
  102. {
  103. av_log(s->avctx, AV_LOG_DEBUG, " Blocksize: %d .. %d (%d)\n", s->min_blocksize, s->max_blocksize, s->blocksize);
  104. av_log(s->avctx, AV_LOG_DEBUG, " Framesize: %d .. %d\n", s->min_framesize, s->max_framesize);
  105. av_log(s->avctx, AV_LOG_DEBUG, " Samplerate: %d\n", s->samplerate);
  106. av_log(s->avctx, AV_LOG_DEBUG, " Channels: %d\n", s->channels);
  107. av_log(s->avctx, AV_LOG_DEBUG, " Bits: %d\n", s->bps);
  108. }
  109. static void allocate_buffers(FLACContext *s){
  110. int i;
  111. assert(s->max_blocksize);
  112. if(s->max_framesize == 0 && s->max_blocksize){
  113. s->max_framesize= (s->channels * s->bps * s->max_blocksize + 7)/ 8; //FIXME header overhead
  114. }
  115. for (i = 0; i < s->channels; i++)
  116. {
  117. s->decoded[i] = av_realloc(s->decoded[i], sizeof(int32_t)*s->max_blocksize);
  118. }
  119. s->bitstream= av_fast_realloc(s->bitstream, &s->allocated_bitstream_size, s->max_framesize);
  120. }
  121. static void metadata_streaminfo(FLACContext *s)
  122. {
  123. /* mandatory streaminfo */
  124. s->min_blocksize = get_bits(&s->gb, 16);
  125. s->max_blocksize = get_bits(&s->gb, 16);
  126. s->min_framesize = get_bits_long(&s->gb, 24);
  127. s->max_framesize = get_bits_long(&s->gb, 24);
  128. s->samplerate = get_bits_long(&s->gb, 20);
  129. s->channels = get_bits(&s->gb, 3) + 1;
  130. s->bps = get_bits(&s->gb, 5) + 1;
  131. s->avctx->channels = s->channels;
  132. s->avctx->sample_rate = s->samplerate;
  133. skip_bits(&s->gb, 36); /* total num of samples */
  134. skip_bits(&s->gb, 64); /* md5 sum */
  135. skip_bits(&s->gb, 64); /* md5 sum */
  136. dump_headers(s);
  137. }
  138. /**
  139. * Parse a list of metadata blocks. This list of blocks must begin with
  140. * the fLaC marker.
  141. * @param s the flac decoding context containing the gb bit reader used to
  142. * parse metadata
  143. * @return 1 if some metadata was read, 0 if no fLaC marker was found
  144. */
  145. static int metadata_parse(FLACContext *s)
  146. {
  147. int i, metadata_last, metadata_type, metadata_size, streaminfo_updated=0;
  148. if (show_bits_long(&s->gb, 32) == MKBETAG('f','L','a','C')) {
  149. skip_bits(&s->gb, 32);
  150. av_log(s->avctx, AV_LOG_DEBUG, "STREAM HEADER\n");
  151. do {
  152. metadata_last = get_bits1(&s->gb);
  153. metadata_type = get_bits(&s->gb, 7);
  154. metadata_size = get_bits_long(&s->gb, 24);
  155. av_log(s->avctx, AV_LOG_DEBUG,
  156. " metadata block: flag = %d, type = %d, size = %d\n",
  157. metadata_last, metadata_type, metadata_size);
  158. if (metadata_size) {
  159. switch (metadata_type) {
  160. case METADATA_TYPE_STREAMINFO:
  161. metadata_streaminfo(s);
  162. streaminfo_updated = 1;
  163. break;
  164. default:
  165. for (i=0; i<metadata_size; i++)
  166. skip_bits(&s->gb, 8);
  167. }
  168. }
  169. } while (!metadata_last);
  170. if (streaminfo_updated)
  171. allocate_buffers(s);
  172. return 1;
  173. }
  174. return 0;
  175. }
  176. static int decode_residuals(FLACContext *s, int channel, int pred_order)
  177. {
  178. int i, tmp, partition, method_type, rice_order;
  179. int sample = 0, samples;
  180. method_type = get_bits(&s->gb, 2);
  181. if (method_type != 0){
  182. av_log(s->avctx, AV_LOG_DEBUG, "illegal residual coding method %d\n", method_type);
  183. return -1;
  184. }
  185. rice_order = get_bits(&s->gb, 4);
  186. samples= s->blocksize >> rice_order;
  187. if (pred_order > samples) {
  188. av_log(s->avctx, AV_LOG_ERROR, "invalid predictor order: %i > %i\n", pred_order, samples);
  189. return -1;
  190. }
  191. sample=
  192. i= pred_order;
  193. for (partition = 0; partition < (1 << rice_order); partition++)
  194. {
  195. tmp = get_bits(&s->gb, 4);
  196. if (tmp == 15)
  197. {
  198. av_log(s->avctx, AV_LOG_DEBUG, "fixed len partition\n");
  199. tmp = get_bits(&s->gb, 5);
  200. for (; i < samples; i++, sample++)
  201. s->decoded[channel][sample] = get_sbits(&s->gb, tmp);
  202. }
  203. else
  204. {
  205. // av_log(s->avctx, AV_LOG_DEBUG, "rice coded partition k=%d\n", tmp);
  206. for (; i < samples; i++, sample++){
  207. s->decoded[channel][sample] = get_sr_golomb_flac(&s->gb, tmp, INT_MAX, 0);
  208. }
  209. }
  210. i= 0;
  211. }
  212. // av_log(s->avctx, AV_LOG_DEBUG, "partitions: %d, samples: %d\n", 1 << rice_order, sample);
  213. return 0;
  214. }
  215. static int decode_subframe_fixed(FLACContext *s, int channel, int pred_order)
  216. {
  217. int i;
  218. // av_log(s->avctx, AV_LOG_DEBUG, " SUBFRAME FIXED\n");
  219. /* warm up samples */
  220. // av_log(s->avctx, AV_LOG_DEBUG, " warm up samples: %d\n", pred_order);
  221. for (i = 0; i < pred_order; i++)
  222. {
  223. s->decoded[channel][i] = get_sbits(&s->gb, s->curr_bps);
  224. // av_log(s->avctx, AV_LOG_DEBUG, " %d: %d\n", i, s->decoded[channel][i]);
  225. }
  226. if (decode_residuals(s, channel, pred_order) < 0)
  227. return -1;
  228. switch(pred_order)
  229. {
  230. case 0:
  231. break;
  232. case 1:
  233. for (i = pred_order; i < s->blocksize; i++)
  234. s->decoded[channel][i] += s->decoded[channel][i-1];
  235. break;
  236. case 2:
  237. for (i = pred_order; i < s->blocksize; i++)
  238. s->decoded[channel][i] += 2*s->decoded[channel][i-1]
  239. - s->decoded[channel][i-2];
  240. break;
  241. case 3:
  242. for (i = pred_order; i < s->blocksize; i++)
  243. s->decoded[channel][i] += 3*s->decoded[channel][i-1]
  244. - 3*s->decoded[channel][i-2]
  245. + s->decoded[channel][i-3];
  246. break;
  247. case 4:
  248. for (i = pred_order; i < s->blocksize; i++)
  249. s->decoded[channel][i] += 4*s->decoded[channel][i-1]
  250. - 6*s->decoded[channel][i-2]
  251. + 4*s->decoded[channel][i-3]
  252. - s->decoded[channel][i-4];
  253. break;
  254. default:
  255. av_log(s->avctx, AV_LOG_ERROR, "illegal pred order %d\n", pred_order);
  256. return -1;
  257. }
  258. return 0;
  259. }
  260. static int decode_subframe_lpc(FLACContext *s, int channel, int pred_order)
  261. {
  262. int i, j;
  263. int coeff_prec, qlevel;
  264. int coeffs[pred_order];
  265. // av_log(s->avctx, AV_LOG_DEBUG, " SUBFRAME LPC\n");
  266. /* warm up samples */
  267. // av_log(s->avctx, AV_LOG_DEBUG, " warm up samples: %d\n", pred_order);
  268. for (i = 0; i < pred_order; i++)
  269. {
  270. s->decoded[channel][i] = get_sbits(&s->gb, s->curr_bps);
  271. // av_log(s->avctx, AV_LOG_DEBUG, " %d: %d\n", i, s->decoded[channel][i]);
  272. }
  273. coeff_prec = get_bits(&s->gb, 4) + 1;
  274. if (coeff_prec == 16)
  275. {
  276. av_log(s->avctx, AV_LOG_DEBUG, "invalid coeff precision\n");
  277. return -1;
  278. }
  279. // av_log(s->avctx, AV_LOG_DEBUG, " qlp coeff prec: %d\n", coeff_prec);
  280. qlevel = get_sbits(&s->gb, 5);
  281. // av_log(s->avctx, AV_LOG_DEBUG, " quant level: %d\n", qlevel);
  282. if(qlevel < 0){
  283. av_log(s->avctx, AV_LOG_DEBUG, "qlevel %d not supported, maybe buggy stream\n", qlevel);
  284. return -1;
  285. }
  286. for (i = 0; i < pred_order; i++)
  287. {
  288. coeffs[i] = get_sbits(&s->gb, coeff_prec);
  289. // av_log(s->avctx, AV_LOG_DEBUG, " %d: %d\n", i, coeffs[i]);
  290. }
  291. if (decode_residuals(s, channel, pred_order) < 0)
  292. return -1;
  293. if (s->bps > 16) {
  294. int64_t sum;
  295. for (i = pred_order; i < s->blocksize; i++)
  296. {
  297. sum = 0;
  298. for (j = 0; j < pred_order; j++)
  299. sum += (int64_t)coeffs[j] * s->decoded[channel][i-j-1];
  300. s->decoded[channel][i] += sum >> qlevel;
  301. }
  302. } else {
  303. int sum;
  304. for (i = pred_order; i < s->blocksize; i++)
  305. {
  306. sum = 0;
  307. for (j = 0; j < pred_order; j++)
  308. sum += coeffs[j] * s->decoded[channel][i-j-1];
  309. s->decoded[channel][i] += sum >> qlevel;
  310. }
  311. }
  312. return 0;
  313. }
  314. static inline int decode_subframe(FLACContext *s, int channel)
  315. {
  316. int type, wasted = 0;
  317. int i, tmp;
  318. s->curr_bps = s->bps;
  319. if(channel == 0){
  320. if(s->decorrelation == RIGHT_SIDE)
  321. s->curr_bps++;
  322. }else{
  323. if(s->decorrelation == LEFT_SIDE || s->decorrelation == MID_SIDE)
  324. s->curr_bps++;
  325. }
  326. if (get_bits1(&s->gb))
  327. {
  328. av_log(s->avctx, AV_LOG_ERROR, "invalid subframe padding\n");
  329. return -1;
  330. }
  331. type = get_bits(&s->gb, 6);
  332. // wasted = get_bits1(&s->gb);
  333. // if (wasted)
  334. // {
  335. // while (!get_bits1(&s->gb))
  336. // wasted++;
  337. // if (wasted)
  338. // wasted++;
  339. // s->curr_bps -= wasted;
  340. // }
  341. #if 0
  342. wasted= 16 - av_log2(show_bits(&s->gb, 17));
  343. skip_bits(&s->gb, wasted+1);
  344. s->curr_bps -= wasted;
  345. #else
  346. if (get_bits1(&s->gb))
  347. {
  348. wasted = 1;
  349. while (!get_bits1(&s->gb))
  350. wasted++;
  351. s->curr_bps -= wasted;
  352. av_log(s->avctx, AV_LOG_DEBUG, "%d wasted bits\n", wasted);
  353. }
  354. #endif
  355. //FIXME use av_log2 for types
  356. if (type == 0)
  357. {
  358. av_log(s->avctx, AV_LOG_DEBUG, "coding type: constant\n");
  359. tmp = get_sbits(&s->gb, s->curr_bps);
  360. for (i = 0; i < s->blocksize; i++)
  361. s->decoded[channel][i] = tmp;
  362. }
  363. else if (type == 1)
  364. {
  365. av_log(s->avctx, AV_LOG_DEBUG, "coding type: verbatim\n");
  366. for (i = 0; i < s->blocksize; i++)
  367. s->decoded[channel][i] = get_sbits(&s->gb, s->curr_bps);
  368. }
  369. else if ((type >= 8) && (type <= 12))
  370. {
  371. // av_log(s->avctx, AV_LOG_DEBUG, "coding type: fixed\n");
  372. if (decode_subframe_fixed(s, channel, type & ~0x8) < 0)
  373. return -1;
  374. }
  375. else if (type >= 32)
  376. {
  377. // av_log(s->avctx, AV_LOG_DEBUG, "coding type: lpc\n");
  378. if (decode_subframe_lpc(s, channel, (type & ~0x20)+1) < 0)
  379. return -1;
  380. }
  381. else
  382. {
  383. av_log(s->avctx, AV_LOG_ERROR, "invalid coding type\n");
  384. return -1;
  385. }
  386. if (wasted)
  387. {
  388. int i;
  389. for (i = 0; i < s->blocksize; i++)
  390. s->decoded[channel][i] <<= wasted;
  391. }
  392. return 0;
  393. }
  394. static int decode_frame(FLACContext *s, int alloc_data_size)
  395. {
  396. int blocksize_code, sample_rate_code, sample_size_code, assignment, i, crc8;
  397. int decorrelation, bps, blocksize, samplerate;
  398. blocksize_code = get_bits(&s->gb, 4);
  399. sample_rate_code = get_bits(&s->gb, 4);
  400. assignment = get_bits(&s->gb, 4); /* channel assignment */
  401. if (assignment < 8 && s->channels == assignment+1)
  402. decorrelation = INDEPENDENT;
  403. else if (assignment >=8 && assignment < 11 && s->channels == 2)
  404. decorrelation = LEFT_SIDE + assignment - 8;
  405. else
  406. {
  407. av_log(s->avctx, AV_LOG_ERROR, "unsupported channel assignment %d (channels=%d)\n", assignment, s->channels);
  408. return -1;
  409. }
  410. sample_size_code = get_bits(&s->gb, 3);
  411. if(sample_size_code == 0)
  412. bps= s->bps;
  413. else if((sample_size_code != 3) && (sample_size_code != 7))
  414. bps = sample_size_table[sample_size_code];
  415. else
  416. {
  417. av_log(s->avctx, AV_LOG_ERROR, "invalid sample size code (%d)\n", sample_size_code);
  418. return -1;
  419. }
  420. if (get_bits1(&s->gb))
  421. {
  422. av_log(s->avctx, AV_LOG_ERROR, "broken stream, invalid padding\n");
  423. return -1;
  424. }
  425. if(get_utf8(&s->gb) < 0){
  426. av_log(s->avctx, AV_LOG_ERROR, "utf8 fscked\n");
  427. return -1;
  428. }
  429. #if 0
  430. if (/*((blocksize_code == 6) || (blocksize_code == 7)) &&*/
  431. (s->min_blocksize != s->max_blocksize)){
  432. }else{
  433. }
  434. #endif
  435. if (blocksize_code == 0)
  436. blocksize = s->min_blocksize;
  437. else if (blocksize_code == 6)
  438. blocksize = get_bits(&s->gb, 8)+1;
  439. else if (blocksize_code == 7)
  440. blocksize = get_bits(&s->gb, 16)+1;
  441. else
  442. blocksize = blocksize_table[blocksize_code];
  443. if(blocksize > s->max_blocksize){
  444. av_log(s->avctx, AV_LOG_ERROR, "blocksize %d > %d\n", blocksize, s->max_blocksize);
  445. return -1;
  446. }
  447. if(blocksize * s->channels * sizeof(int16_t) > alloc_data_size)
  448. return -1;
  449. if (sample_rate_code == 0){
  450. samplerate= s->samplerate;
  451. }else if ((sample_rate_code > 3) && (sample_rate_code < 12))
  452. samplerate = sample_rate_table[sample_rate_code];
  453. else if (sample_rate_code == 12)
  454. samplerate = get_bits(&s->gb, 8) * 1000;
  455. else if (sample_rate_code == 13)
  456. samplerate = get_bits(&s->gb, 16);
  457. else if (sample_rate_code == 14)
  458. samplerate = get_bits(&s->gb, 16) * 10;
  459. else{
  460. av_log(s->avctx, AV_LOG_ERROR, "illegal sample rate code %d\n", sample_rate_code);
  461. return -1;
  462. }
  463. skip_bits(&s->gb, 8);
  464. crc8= av_crc(av_crc07, 0, s->gb.buffer, get_bits_count(&s->gb)/8);
  465. if(crc8){
  466. av_log(s->avctx, AV_LOG_ERROR, "header crc mismatch crc=%2X\n", crc8);
  467. return -1;
  468. }
  469. s->blocksize = blocksize;
  470. s->samplerate = samplerate;
  471. s->bps = bps;
  472. s->decorrelation= decorrelation;
  473. // dump_headers(s);
  474. /* subframes */
  475. for (i = 0; i < s->channels; i++)
  476. {
  477. // av_log(s->avctx, AV_LOG_DEBUG, "decoded: %x residual: %x\n", s->decoded[i], s->residual[i]);
  478. if (decode_subframe(s, i) < 0)
  479. return -1;
  480. }
  481. align_get_bits(&s->gb);
  482. /* frame footer */
  483. skip_bits(&s->gb, 16); /* data crc */
  484. return 0;
  485. }
  486. static int flac_decode_frame(AVCodecContext *avctx,
  487. void *data, int *data_size,
  488. uint8_t *buf, int buf_size)
  489. {
  490. FLACContext *s = avctx->priv_data;
  491. int tmp = 0, i, j = 0, input_buf_size = 0;
  492. int16_t *samples = data;
  493. int alloc_data_size= *data_size;
  494. *data_size=0;
  495. if(s->max_framesize == 0){
  496. s->max_framesize= 65536; // should hopefully be enough for the first header
  497. s->bitstream= av_fast_realloc(s->bitstream, &s->allocated_bitstream_size, s->max_framesize);
  498. }
  499. if(1 && s->max_framesize){//FIXME truncated
  500. buf_size= FFMAX(FFMIN(buf_size, s->max_framesize - s->bitstream_size), 0);
  501. input_buf_size= buf_size;
  502. if(s->bitstream_index + s->bitstream_size + buf_size > s->allocated_bitstream_size){
  503. // printf("memmove\n");
  504. memmove(s->bitstream, &s->bitstream[s->bitstream_index], s->bitstream_size);
  505. s->bitstream_index=0;
  506. }
  507. memcpy(&s->bitstream[s->bitstream_index + s->bitstream_size], buf, buf_size);
  508. buf= &s->bitstream[s->bitstream_index];
  509. buf_size += s->bitstream_size;
  510. s->bitstream_size= buf_size;
  511. if(buf_size < s->max_framesize){
  512. // printf("wanna more data ...\n");
  513. return input_buf_size;
  514. }
  515. }
  516. init_get_bits(&s->gb, buf, buf_size*8);
  517. if (!metadata_parse(s))
  518. {
  519. tmp = show_bits(&s->gb, 16);
  520. if(tmp != 0xFFF8){
  521. av_log(s->avctx, AV_LOG_ERROR, "FRAME HEADER not here\n");
  522. while(get_bits_count(&s->gb)/8+2 < buf_size && show_bits(&s->gb, 16) != 0xFFF8)
  523. skip_bits(&s->gb, 8);
  524. goto end; // we may not have enough bits left to decode a frame, so try next time
  525. }
  526. skip_bits(&s->gb, 16);
  527. if (decode_frame(s, alloc_data_size) < 0){
  528. av_log(s->avctx, AV_LOG_ERROR, "decode_frame() failed\n");
  529. s->bitstream_size=0;
  530. s->bitstream_index=0;
  531. return -1;
  532. }
  533. }
  534. #if 0
  535. /* fix the channel order here */
  536. if (s->order == MID_SIDE)
  537. {
  538. short *left = samples;
  539. short *right = samples + s->blocksize;
  540. for (i = 0; i < s->blocksize; i += 2)
  541. {
  542. uint32_t x = s->decoded[0][i];
  543. uint32_t y = s->decoded[0][i+1];
  544. right[i] = x - (y / 2);
  545. left[i] = right[i] + y;
  546. }
  547. *data_size = 2 * s->blocksize;
  548. }
  549. else
  550. {
  551. for (i = 0; i < s->channels; i++)
  552. {
  553. switch(s->order)
  554. {
  555. case INDEPENDENT:
  556. for (j = 0; j < s->blocksize; j++)
  557. samples[(s->blocksize*i)+j] = s->decoded[i][j];
  558. break;
  559. case LEFT_SIDE:
  560. case RIGHT_SIDE:
  561. if (i == 0)
  562. for (j = 0; j < s->blocksize; j++)
  563. samples[(s->blocksize*i)+j] = s->decoded[0][j];
  564. else
  565. for (j = 0; j < s->blocksize; j++)
  566. samples[(s->blocksize*i)+j] = s->decoded[0][j] - s->decoded[i][j];
  567. break;
  568. // case MID_SIDE:
  569. // av_log(s->avctx, AV_LOG_DEBUG, "mid-side unsupported\n");
  570. }
  571. *data_size += s->blocksize;
  572. }
  573. }
  574. #else
  575. #define DECORRELATE(left, right)\
  576. assert(s->channels == 2);\
  577. for (i = 0; i < s->blocksize; i++)\
  578. {\
  579. int a= s->decoded[0][i];\
  580. int b= s->decoded[1][i];\
  581. *samples++ = ((left) << (24 - s->bps)) >> 8;\
  582. *samples++ = ((right) << (24 - s->bps)) >> 8;\
  583. }\
  584. break;
  585. switch(s->decorrelation)
  586. {
  587. case INDEPENDENT:
  588. for (j = 0; j < s->blocksize; j++)
  589. {
  590. for (i = 0; i < s->channels; i++)
  591. *samples++ = (s->decoded[i][j] << (24 - s->bps)) >> 8;
  592. }
  593. break;
  594. case LEFT_SIDE:
  595. DECORRELATE(a,a-b)
  596. case RIGHT_SIDE:
  597. DECORRELATE(a+b,b)
  598. case MID_SIDE:
  599. DECORRELATE( (a-=b>>1) + b, a)
  600. }
  601. #endif
  602. *data_size = (int8_t *)samples - (int8_t *)data;
  603. // av_log(s->avctx, AV_LOG_DEBUG, "data size: %d\n", *data_size);
  604. // s->last_blocksize = s->blocksize;
  605. end:
  606. i= (get_bits_count(&s->gb)+7)/8;;
  607. if(i > buf_size){
  608. av_log(s->avctx, AV_LOG_ERROR, "overread: %d\n", i - buf_size);
  609. s->bitstream_size=0;
  610. s->bitstream_index=0;
  611. return -1;
  612. }
  613. if(s->bitstream_size){
  614. s->bitstream_index += i;
  615. s->bitstream_size -= i;
  616. return input_buf_size;
  617. }else
  618. return i;
  619. }
  620. static int flac_decode_close(AVCodecContext *avctx)
  621. {
  622. FLACContext *s = avctx->priv_data;
  623. int i;
  624. for (i = 0; i < s->channels; i++)
  625. {
  626. av_freep(&s->decoded[i]);
  627. }
  628. av_freep(&s->bitstream);
  629. return 0;
  630. }
  631. static void flac_flush(AVCodecContext *avctx){
  632. FLACContext *s = avctx->priv_data;
  633. s->bitstream_size=
  634. s->bitstream_index= 0;
  635. }
  636. AVCodec flac_decoder = {
  637. "flac",
  638. CODEC_TYPE_AUDIO,
  639. CODEC_ID_FLAC,
  640. sizeof(FLACContext),
  641. flac_decode_init,
  642. NULL,
  643. flac_decode_close,
  644. flac_decode_frame,
  645. .flush= flac_flush,
  646. };