You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3577 lines
139KB

  1. /*
  2. * HEVC video Decoder
  3. *
  4. * Copyright (C) 2012 - 2013 Guillaume Martres
  5. * Copyright (C) 2012 - 2013 Mickael Raulet
  6. * Copyright (C) 2012 - 2013 Gildas Cocherel
  7. * Copyright (C) 2012 - 2013 Wassim Hamidouche
  8. *
  9. * This file is part of FFmpeg.
  10. *
  11. * FFmpeg is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU Lesser General Public
  13. * License as published by the Free Software Foundation; either
  14. * version 2.1 of the License, or (at your option) any later version.
  15. *
  16. * FFmpeg is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * Lesser General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU Lesser General Public
  22. * License along with FFmpeg; if not, write to the Free Software
  23. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  24. */
  25. #include "libavutil/attributes.h"
  26. #include "libavutil/common.h"
  27. #include "libavutil/display.h"
  28. #include "libavutil/internal.h"
  29. #include "libavutil/mastering_display_metadata.h"
  30. #include "libavutil/md5.h"
  31. #include "libavutil/opt.h"
  32. #include "libavutil/pixdesc.h"
  33. #include "libavutil/stereo3d.h"
  34. #include "bswapdsp.h"
  35. #include "bytestream.h"
  36. #include "cabac_functions.h"
  37. #include "golomb.h"
  38. #include "hevc.h"
  39. #include "hevc_data.h"
  40. #include "hevc_parse.h"
  41. #include "hevcdec.h"
  42. #include "hwaccel.h"
  43. #include "profiles.h"
  44. const uint8_t ff_hevc_pel_weight[65] = { [2] = 0, [4] = 1, [6] = 2, [8] = 3, [12] = 4, [16] = 5, [24] = 6, [32] = 7, [48] = 8, [64] = 9 };
  45. /**
  46. * NOTE: Each function hls_foo correspond to the function foo in the
  47. * specification (HLS stands for High Level Syntax).
  48. */
  49. /**
  50. * Section 5.7
  51. */
  52. /* free everything allocated by pic_arrays_init() */
  53. static void pic_arrays_free(HEVCContext *s)
  54. {
  55. av_freep(&s->sao);
  56. av_freep(&s->deblock);
  57. av_freep(&s->skip_flag);
  58. av_freep(&s->tab_ct_depth);
  59. av_freep(&s->tab_ipm);
  60. av_freep(&s->cbf_luma);
  61. av_freep(&s->is_pcm);
  62. av_freep(&s->qp_y_tab);
  63. av_freep(&s->tab_slice_address);
  64. av_freep(&s->filter_slice_edges);
  65. av_freep(&s->horizontal_bs);
  66. av_freep(&s->vertical_bs);
  67. av_freep(&s->sh.entry_point_offset);
  68. av_freep(&s->sh.size);
  69. av_freep(&s->sh.offset);
  70. av_buffer_pool_uninit(&s->tab_mvf_pool);
  71. av_buffer_pool_uninit(&s->rpl_tab_pool);
  72. }
  73. /* allocate arrays that depend on frame dimensions */
  74. static int pic_arrays_init(HEVCContext *s, const HEVCSPS *sps)
  75. {
  76. int log2_min_cb_size = sps->log2_min_cb_size;
  77. int width = sps->width;
  78. int height = sps->height;
  79. int pic_size_in_ctb = ((width >> log2_min_cb_size) + 1) *
  80. ((height >> log2_min_cb_size) + 1);
  81. int ctb_count = sps->ctb_width * sps->ctb_height;
  82. int min_pu_size = sps->min_pu_width * sps->min_pu_height;
  83. s->bs_width = (width >> 2) + 1;
  84. s->bs_height = (height >> 2) + 1;
  85. s->sao = av_mallocz_array(ctb_count, sizeof(*s->sao));
  86. s->deblock = av_mallocz_array(ctb_count, sizeof(*s->deblock));
  87. if (!s->sao || !s->deblock)
  88. goto fail;
  89. s->skip_flag = av_malloc_array(sps->min_cb_height, sps->min_cb_width);
  90. s->tab_ct_depth = av_malloc_array(sps->min_cb_height, sps->min_cb_width);
  91. if (!s->skip_flag || !s->tab_ct_depth)
  92. goto fail;
  93. s->cbf_luma = av_malloc_array(sps->min_tb_width, sps->min_tb_height);
  94. s->tab_ipm = av_mallocz(min_pu_size);
  95. s->is_pcm = av_malloc_array(sps->min_pu_width + 1, sps->min_pu_height + 1);
  96. if (!s->tab_ipm || !s->cbf_luma || !s->is_pcm)
  97. goto fail;
  98. s->filter_slice_edges = av_mallocz(ctb_count);
  99. s->tab_slice_address = av_malloc_array(pic_size_in_ctb,
  100. sizeof(*s->tab_slice_address));
  101. s->qp_y_tab = av_malloc_array(pic_size_in_ctb,
  102. sizeof(*s->qp_y_tab));
  103. if (!s->qp_y_tab || !s->filter_slice_edges || !s->tab_slice_address)
  104. goto fail;
  105. s->horizontal_bs = av_mallocz_array(s->bs_width, s->bs_height);
  106. s->vertical_bs = av_mallocz_array(s->bs_width, s->bs_height);
  107. if (!s->horizontal_bs || !s->vertical_bs)
  108. goto fail;
  109. s->tab_mvf_pool = av_buffer_pool_init(min_pu_size * sizeof(MvField),
  110. av_buffer_allocz);
  111. s->rpl_tab_pool = av_buffer_pool_init(ctb_count * sizeof(RefPicListTab),
  112. av_buffer_allocz);
  113. if (!s->tab_mvf_pool || !s->rpl_tab_pool)
  114. goto fail;
  115. return 0;
  116. fail:
  117. pic_arrays_free(s);
  118. return AVERROR(ENOMEM);
  119. }
  120. static int pred_weight_table(HEVCContext *s, GetBitContext *gb)
  121. {
  122. int i = 0;
  123. int j = 0;
  124. uint8_t luma_weight_l0_flag[16];
  125. uint8_t chroma_weight_l0_flag[16];
  126. uint8_t luma_weight_l1_flag[16];
  127. uint8_t chroma_weight_l1_flag[16];
  128. int luma_log2_weight_denom;
  129. luma_log2_weight_denom = get_ue_golomb_long(gb);
  130. if (luma_log2_weight_denom < 0 || luma_log2_weight_denom > 7) {
  131. av_log(s->avctx, AV_LOG_ERROR, "luma_log2_weight_denom %d is invalid\n", luma_log2_weight_denom);
  132. return AVERROR_INVALIDDATA;
  133. }
  134. s->sh.luma_log2_weight_denom = av_clip_uintp2(luma_log2_weight_denom, 3);
  135. if (s->ps.sps->chroma_format_idc != 0) {
  136. int64_t chroma_log2_weight_denom = luma_log2_weight_denom + (int64_t)get_se_golomb(gb);
  137. if (chroma_log2_weight_denom < 0 || chroma_log2_weight_denom > 7) {
  138. av_log(s->avctx, AV_LOG_ERROR, "chroma_log2_weight_denom %"PRId64" is invalid\n", chroma_log2_weight_denom);
  139. return AVERROR_INVALIDDATA;
  140. }
  141. s->sh.chroma_log2_weight_denom = chroma_log2_weight_denom;
  142. }
  143. for (i = 0; i < s->sh.nb_refs[L0]; i++) {
  144. luma_weight_l0_flag[i] = get_bits1(gb);
  145. if (!luma_weight_l0_flag[i]) {
  146. s->sh.luma_weight_l0[i] = 1 << s->sh.luma_log2_weight_denom;
  147. s->sh.luma_offset_l0[i] = 0;
  148. }
  149. }
  150. if (s->ps.sps->chroma_format_idc != 0) {
  151. for (i = 0; i < s->sh.nb_refs[L0]; i++)
  152. chroma_weight_l0_flag[i] = get_bits1(gb);
  153. } else {
  154. for (i = 0; i < s->sh.nb_refs[L0]; i++)
  155. chroma_weight_l0_flag[i] = 0;
  156. }
  157. for (i = 0; i < s->sh.nb_refs[L0]; i++) {
  158. if (luma_weight_l0_flag[i]) {
  159. int delta_luma_weight_l0 = get_se_golomb(gb);
  160. if ((int8_t)delta_luma_weight_l0 != delta_luma_weight_l0)
  161. return AVERROR_INVALIDDATA;
  162. s->sh.luma_weight_l0[i] = (1 << s->sh.luma_log2_weight_denom) + delta_luma_weight_l0;
  163. s->sh.luma_offset_l0[i] = get_se_golomb(gb);
  164. }
  165. if (chroma_weight_l0_flag[i]) {
  166. for (j = 0; j < 2; j++) {
  167. int delta_chroma_weight_l0 = get_se_golomb(gb);
  168. int delta_chroma_offset_l0 = get_se_golomb(gb);
  169. if ( (int8_t)delta_chroma_weight_l0 != delta_chroma_weight_l0
  170. || delta_chroma_offset_l0 < -(1<<17) || delta_chroma_offset_l0 > (1<<17)) {
  171. return AVERROR_INVALIDDATA;
  172. }
  173. s->sh.chroma_weight_l0[i][j] = (1 << s->sh.chroma_log2_weight_denom) + delta_chroma_weight_l0;
  174. s->sh.chroma_offset_l0[i][j] = av_clip((delta_chroma_offset_l0 - ((128 * s->sh.chroma_weight_l0[i][j])
  175. >> s->sh.chroma_log2_weight_denom) + 128), -128, 127);
  176. }
  177. } else {
  178. s->sh.chroma_weight_l0[i][0] = 1 << s->sh.chroma_log2_weight_denom;
  179. s->sh.chroma_offset_l0[i][0] = 0;
  180. s->sh.chroma_weight_l0[i][1] = 1 << s->sh.chroma_log2_weight_denom;
  181. s->sh.chroma_offset_l0[i][1] = 0;
  182. }
  183. }
  184. if (s->sh.slice_type == HEVC_SLICE_B) {
  185. for (i = 0; i < s->sh.nb_refs[L1]; i++) {
  186. luma_weight_l1_flag[i] = get_bits1(gb);
  187. if (!luma_weight_l1_flag[i]) {
  188. s->sh.luma_weight_l1[i] = 1 << s->sh.luma_log2_weight_denom;
  189. s->sh.luma_offset_l1[i] = 0;
  190. }
  191. }
  192. if (s->ps.sps->chroma_format_idc != 0) {
  193. for (i = 0; i < s->sh.nb_refs[L1]; i++)
  194. chroma_weight_l1_flag[i] = get_bits1(gb);
  195. } else {
  196. for (i = 0; i < s->sh.nb_refs[L1]; i++)
  197. chroma_weight_l1_flag[i] = 0;
  198. }
  199. for (i = 0; i < s->sh.nb_refs[L1]; i++) {
  200. if (luma_weight_l1_flag[i]) {
  201. int delta_luma_weight_l1 = get_se_golomb(gb);
  202. if ((int8_t)delta_luma_weight_l1 != delta_luma_weight_l1)
  203. return AVERROR_INVALIDDATA;
  204. s->sh.luma_weight_l1[i] = (1 << s->sh.luma_log2_weight_denom) + delta_luma_weight_l1;
  205. s->sh.luma_offset_l1[i] = get_se_golomb(gb);
  206. }
  207. if (chroma_weight_l1_flag[i]) {
  208. for (j = 0; j < 2; j++) {
  209. int delta_chroma_weight_l1 = get_se_golomb(gb);
  210. int delta_chroma_offset_l1 = get_se_golomb(gb);
  211. if ( (int8_t)delta_chroma_weight_l1 != delta_chroma_weight_l1
  212. || delta_chroma_offset_l1 < -(1<<17) || delta_chroma_offset_l1 > (1<<17)) {
  213. return AVERROR_INVALIDDATA;
  214. }
  215. s->sh.chroma_weight_l1[i][j] = (1 << s->sh.chroma_log2_weight_denom) + delta_chroma_weight_l1;
  216. s->sh.chroma_offset_l1[i][j] = av_clip((delta_chroma_offset_l1 - ((128 * s->sh.chroma_weight_l1[i][j])
  217. >> s->sh.chroma_log2_weight_denom) + 128), -128, 127);
  218. }
  219. } else {
  220. s->sh.chroma_weight_l1[i][0] = 1 << s->sh.chroma_log2_weight_denom;
  221. s->sh.chroma_offset_l1[i][0] = 0;
  222. s->sh.chroma_weight_l1[i][1] = 1 << s->sh.chroma_log2_weight_denom;
  223. s->sh.chroma_offset_l1[i][1] = 0;
  224. }
  225. }
  226. }
  227. return 0;
  228. }
  229. static int decode_lt_rps(HEVCContext *s, LongTermRPS *rps, GetBitContext *gb)
  230. {
  231. const HEVCSPS *sps = s->ps.sps;
  232. int max_poc_lsb = 1 << sps->log2_max_poc_lsb;
  233. int prev_delta_msb = 0;
  234. unsigned int nb_sps = 0, nb_sh;
  235. int i;
  236. rps->nb_refs = 0;
  237. if (!sps->long_term_ref_pics_present_flag)
  238. return 0;
  239. if (sps->num_long_term_ref_pics_sps > 0)
  240. nb_sps = get_ue_golomb_long(gb);
  241. nb_sh = get_ue_golomb_long(gb);
  242. if (nb_sps > sps->num_long_term_ref_pics_sps)
  243. return AVERROR_INVALIDDATA;
  244. if (nb_sh + (uint64_t)nb_sps > FF_ARRAY_ELEMS(rps->poc))
  245. return AVERROR_INVALIDDATA;
  246. rps->nb_refs = nb_sh + nb_sps;
  247. for (i = 0; i < rps->nb_refs; i++) {
  248. uint8_t delta_poc_msb_present;
  249. if (i < nb_sps) {
  250. uint8_t lt_idx_sps = 0;
  251. if (sps->num_long_term_ref_pics_sps > 1)
  252. lt_idx_sps = get_bits(gb, av_ceil_log2(sps->num_long_term_ref_pics_sps));
  253. rps->poc[i] = sps->lt_ref_pic_poc_lsb_sps[lt_idx_sps];
  254. rps->used[i] = sps->used_by_curr_pic_lt_sps_flag[lt_idx_sps];
  255. } else {
  256. rps->poc[i] = get_bits(gb, sps->log2_max_poc_lsb);
  257. rps->used[i] = get_bits1(gb);
  258. }
  259. delta_poc_msb_present = get_bits1(gb);
  260. if (delta_poc_msb_present) {
  261. int64_t delta = get_ue_golomb_long(gb);
  262. int64_t poc;
  263. if (i && i != nb_sps)
  264. delta += prev_delta_msb;
  265. poc = rps->poc[i] + s->poc - delta * max_poc_lsb - s->sh.pic_order_cnt_lsb;
  266. if (poc != (int32_t)poc)
  267. return AVERROR_INVALIDDATA;
  268. rps->poc[i] = poc;
  269. prev_delta_msb = delta;
  270. }
  271. }
  272. return 0;
  273. }
  274. static void export_stream_params(AVCodecContext *avctx, const HEVCParamSets *ps,
  275. const HEVCSPS *sps)
  276. {
  277. const HEVCVPS *vps = (const HEVCVPS*)ps->vps_list[sps->vps_id]->data;
  278. const HEVCWindow *ow = &sps->output_window;
  279. unsigned int num = 0, den = 0;
  280. avctx->pix_fmt = sps->pix_fmt;
  281. avctx->coded_width = sps->width;
  282. avctx->coded_height = sps->height;
  283. avctx->width = sps->width - ow->left_offset - ow->right_offset;
  284. avctx->height = sps->height - ow->top_offset - ow->bottom_offset;
  285. avctx->has_b_frames = sps->temporal_layer[sps->max_sub_layers - 1].num_reorder_pics;
  286. avctx->profile = sps->ptl.general_ptl.profile_idc;
  287. avctx->level = sps->ptl.general_ptl.level_idc;
  288. ff_set_sar(avctx, sps->vui.sar);
  289. if (sps->vui.video_signal_type_present_flag)
  290. avctx->color_range = sps->vui.video_full_range_flag ? AVCOL_RANGE_JPEG
  291. : AVCOL_RANGE_MPEG;
  292. else
  293. avctx->color_range = AVCOL_RANGE_MPEG;
  294. if (sps->vui.colour_description_present_flag) {
  295. avctx->color_primaries = sps->vui.colour_primaries;
  296. avctx->color_trc = sps->vui.transfer_characteristic;
  297. avctx->colorspace = sps->vui.matrix_coeffs;
  298. } else {
  299. avctx->color_primaries = AVCOL_PRI_UNSPECIFIED;
  300. avctx->color_trc = AVCOL_TRC_UNSPECIFIED;
  301. avctx->colorspace = AVCOL_SPC_UNSPECIFIED;
  302. }
  303. if (vps->vps_timing_info_present_flag) {
  304. num = vps->vps_num_units_in_tick;
  305. den = vps->vps_time_scale;
  306. } else if (sps->vui.vui_timing_info_present_flag) {
  307. num = sps->vui.vui_num_units_in_tick;
  308. den = sps->vui.vui_time_scale;
  309. }
  310. if (num != 0 && den != 0)
  311. av_reduce(&avctx->framerate.den, &avctx->framerate.num,
  312. num, den, 1 << 30);
  313. }
  314. static enum AVPixelFormat get_format(HEVCContext *s, const HEVCSPS *sps)
  315. {
  316. #define HWACCEL_MAX (CONFIG_HEVC_DXVA2_HWACCEL + \
  317. CONFIG_HEVC_D3D11VA_HWACCEL * 2 + \
  318. CONFIG_HEVC_NVDEC_HWACCEL + \
  319. CONFIG_HEVC_VAAPI_HWACCEL + \
  320. CONFIG_HEVC_VIDEOTOOLBOX_HWACCEL + \
  321. CONFIG_HEVC_VDPAU_HWACCEL)
  322. enum AVPixelFormat pix_fmts[HWACCEL_MAX + 2], *fmt = pix_fmts;
  323. switch (sps->pix_fmt) {
  324. case AV_PIX_FMT_YUV420P:
  325. case AV_PIX_FMT_YUVJ420P:
  326. #if CONFIG_HEVC_DXVA2_HWACCEL
  327. *fmt++ = AV_PIX_FMT_DXVA2_VLD;
  328. #endif
  329. #if CONFIG_HEVC_D3D11VA_HWACCEL
  330. *fmt++ = AV_PIX_FMT_D3D11VA_VLD;
  331. *fmt++ = AV_PIX_FMT_D3D11;
  332. #endif
  333. #if CONFIG_HEVC_VAAPI_HWACCEL
  334. *fmt++ = AV_PIX_FMT_VAAPI;
  335. #endif
  336. #if CONFIG_HEVC_VDPAU_HWACCEL
  337. *fmt++ = AV_PIX_FMT_VDPAU;
  338. #endif
  339. #if CONFIG_HEVC_NVDEC_HWACCEL
  340. *fmt++ = AV_PIX_FMT_CUDA;
  341. #endif
  342. #if CONFIG_HEVC_VIDEOTOOLBOX_HWACCEL
  343. *fmt++ = AV_PIX_FMT_VIDEOTOOLBOX;
  344. #endif
  345. break;
  346. case AV_PIX_FMT_YUV420P10:
  347. #if CONFIG_HEVC_DXVA2_HWACCEL
  348. *fmt++ = AV_PIX_FMT_DXVA2_VLD;
  349. #endif
  350. #if CONFIG_HEVC_D3D11VA_HWACCEL
  351. *fmt++ = AV_PIX_FMT_D3D11VA_VLD;
  352. *fmt++ = AV_PIX_FMT_D3D11;
  353. #endif
  354. #if CONFIG_HEVC_VAAPI_HWACCEL
  355. *fmt++ = AV_PIX_FMT_VAAPI;
  356. #endif
  357. #if CONFIG_HEVC_VIDEOTOOLBOX_HWACCEL
  358. *fmt++ = AV_PIX_FMT_VIDEOTOOLBOX;
  359. #endif
  360. #if CONFIG_HEVC_NVDEC_HWACCEL
  361. *fmt++ = AV_PIX_FMT_CUDA;
  362. #endif
  363. break;
  364. case AV_PIX_FMT_YUV420P12:
  365. #if CONFIG_HEVC_NVDEC_HWACCEL
  366. *fmt++ = AV_PIX_FMT_CUDA;
  367. #endif
  368. break;
  369. }
  370. *fmt++ = sps->pix_fmt;
  371. *fmt = AV_PIX_FMT_NONE;
  372. return ff_thread_get_format(s->avctx, pix_fmts);
  373. }
  374. static int set_sps(HEVCContext *s, const HEVCSPS *sps,
  375. enum AVPixelFormat pix_fmt)
  376. {
  377. int ret, i;
  378. pic_arrays_free(s);
  379. s->ps.sps = NULL;
  380. s->ps.vps = NULL;
  381. if (!sps)
  382. return 0;
  383. ret = pic_arrays_init(s, sps);
  384. if (ret < 0)
  385. goto fail;
  386. export_stream_params(s->avctx, &s->ps, sps);
  387. s->avctx->pix_fmt = pix_fmt;
  388. ff_hevc_pred_init(&s->hpc, sps->bit_depth);
  389. ff_hevc_dsp_init (&s->hevcdsp, sps->bit_depth);
  390. ff_videodsp_init (&s->vdsp, sps->bit_depth);
  391. for (i = 0; i < 3; i++) {
  392. av_freep(&s->sao_pixel_buffer_h[i]);
  393. av_freep(&s->sao_pixel_buffer_v[i]);
  394. }
  395. if (sps->sao_enabled && !s->avctx->hwaccel) {
  396. int c_count = (sps->chroma_format_idc != 0) ? 3 : 1;
  397. int c_idx;
  398. for(c_idx = 0; c_idx < c_count; c_idx++) {
  399. int w = sps->width >> sps->hshift[c_idx];
  400. int h = sps->height >> sps->vshift[c_idx];
  401. s->sao_pixel_buffer_h[c_idx] =
  402. av_malloc((w * 2 * sps->ctb_height) <<
  403. sps->pixel_shift);
  404. s->sao_pixel_buffer_v[c_idx] =
  405. av_malloc((h * 2 * sps->ctb_width) <<
  406. sps->pixel_shift);
  407. }
  408. }
  409. s->ps.sps = sps;
  410. s->ps.vps = (HEVCVPS*) s->ps.vps_list[s->ps.sps->vps_id]->data;
  411. return 0;
  412. fail:
  413. pic_arrays_free(s);
  414. s->ps.sps = NULL;
  415. return ret;
  416. }
  417. static int hls_slice_header(HEVCContext *s)
  418. {
  419. GetBitContext *gb = &s->HEVClc->gb;
  420. SliceHeader *sh = &s->sh;
  421. int i, ret;
  422. // Coded parameters
  423. sh->first_slice_in_pic_flag = get_bits1(gb);
  424. if (s->ref && sh->first_slice_in_pic_flag) {
  425. av_log(s->avctx, AV_LOG_ERROR, "Two slices reporting being the first in the same frame.\n");
  426. return 1; // This slice will be skipped later, do not corrupt state
  427. }
  428. if ((IS_IDR(s) || IS_BLA(s)) && sh->first_slice_in_pic_flag) {
  429. s->seq_decode = (s->seq_decode + 1) & 0xff;
  430. s->max_ra = INT_MAX;
  431. if (IS_IDR(s))
  432. ff_hevc_clear_refs(s);
  433. }
  434. sh->no_output_of_prior_pics_flag = 0;
  435. if (IS_IRAP(s))
  436. sh->no_output_of_prior_pics_flag = get_bits1(gb);
  437. sh->pps_id = get_ue_golomb_long(gb);
  438. if (sh->pps_id >= HEVC_MAX_PPS_COUNT || !s->ps.pps_list[sh->pps_id]) {
  439. av_log(s->avctx, AV_LOG_ERROR, "PPS id out of range: %d\n", sh->pps_id);
  440. return AVERROR_INVALIDDATA;
  441. }
  442. if (!sh->first_slice_in_pic_flag &&
  443. s->ps.pps != (HEVCPPS*)s->ps.pps_list[sh->pps_id]->data) {
  444. av_log(s->avctx, AV_LOG_ERROR, "PPS changed between slices.\n");
  445. return AVERROR_INVALIDDATA;
  446. }
  447. s->ps.pps = (HEVCPPS*)s->ps.pps_list[sh->pps_id]->data;
  448. if (s->nal_unit_type == HEVC_NAL_CRA_NUT && s->last_eos == 1)
  449. sh->no_output_of_prior_pics_flag = 1;
  450. if (s->ps.sps != (HEVCSPS*)s->ps.sps_list[s->ps.pps->sps_id]->data) {
  451. const HEVCSPS *sps = (HEVCSPS*)s->ps.sps_list[s->ps.pps->sps_id]->data;
  452. const HEVCSPS *last_sps = s->ps.sps;
  453. enum AVPixelFormat pix_fmt;
  454. if (last_sps && IS_IRAP(s) && s->nal_unit_type != HEVC_NAL_CRA_NUT) {
  455. if (sps->width != last_sps->width || sps->height != last_sps->height ||
  456. sps->temporal_layer[sps->max_sub_layers - 1].max_dec_pic_buffering !=
  457. last_sps->temporal_layer[last_sps->max_sub_layers - 1].max_dec_pic_buffering)
  458. sh->no_output_of_prior_pics_flag = 0;
  459. }
  460. ff_hevc_clear_refs(s);
  461. ret = set_sps(s, sps, sps->pix_fmt);
  462. if (ret < 0)
  463. return ret;
  464. pix_fmt = get_format(s, sps);
  465. if (pix_fmt < 0)
  466. return pix_fmt;
  467. s->avctx->pix_fmt = pix_fmt;
  468. s->seq_decode = (s->seq_decode + 1) & 0xff;
  469. s->max_ra = INT_MAX;
  470. }
  471. sh->dependent_slice_segment_flag = 0;
  472. if (!sh->first_slice_in_pic_flag) {
  473. int slice_address_length;
  474. if (s->ps.pps->dependent_slice_segments_enabled_flag)
  475. sh->dependent_slice_segment_flag = get_bits1(gb);
  476. slice_address_length = av_ceil_log2(s->ps.sps->ctb_width *
  477. s->ps.sps->ctb_height);
  478. sh->slice_segment_addr = get_bitsz(gb, slice_address_length);
  479. if (sh->slice_segment_addr >= s->ps.sps->ctb_width * s->ps.sps->ctb_height) {
  480. av_log(s->avctx, AV_LOG_ERROR,
  481. "Invalid slice segment address: %u.\n",
  482. sh->slice_segment_addr);
  483. return AVERROR_INVALIDDATA;
  484. }
  485. if (!sh->dependent_slice_segment_flag) {
  486. sh->slice_addr = sh->slice_segment_addr;
  487. s->slice_idx++;
  488. }
  489. } else {
  490. sh->slice_segment_addr = sh->slice_addr = 0;
  491. s->slice_idx = 0;
  492. s->slice_initialized = 0;
  493. }
  494. if (!sh->dependent_slice_segment_flag) {
  495. s->slice_initialized = 0;
  496. for (i = 0; i < s->ps.pps->num_extra_slice_header_bits; i++)
  497. skip_bits(gb, 1); // slice_reserved_undetermined_flag[]
  498. sh->slice_type = get_ue_golomb_long(gb);
  499. if (!(sh->slice_type == HEVC_SLICE_I ||
  500. sh->slice_type == HEVC_SLICE_P ||
  501. sh->slice_type == HEVC_SLICE_B)) {
  502. av_log(s->avctx, AV_LOG_ERROR, "Unknown slice type: %d.\n",
  503. sh->slice_type);
  504. return AVERROR_INVALIDDATA;
  505. }
  506. if (IS_IRAP(s) && sh->slice_type != HEVC_SLICE_I) {
  507. av_log(s->avctx, AV_LOG_ERROR, "Inter slices in an IRAP frame.\n");
  508. return AVERROR_INVALIDDATA;
  509. }
  510. // when flag is not present, picture is inferred to be output
  511. sh->pic_output_flag = 1;
  512. if (s->ps.pps->output_flag_present_flag)
  513. sh->pic_output_flag = get_bits1(gb);
  514. if (s->ps.sps->separate_colour_plane_flag)
  515. sh->colour_plane_id = get_bits(gb, 2);
  516. if (!IS_IDR(s)) {
  517. int poc, pos;
  518. sh->pic_order_cnt_lsb = get_bits(gb, s->ps.sps->log2_max_poc_lsb);
  519. poc = ff_hevc_compute_poc(s->ps.sps, s->pocTid0, sh->pic_order_cnt_lsb, s->nal_unit_type);
  520. if (!sh->first_slice_in_pic_flag && poc != s->poc) {
  521. av_log(s->avctx, AV_LOG_WARNING,
  522. "Ignoring POC change between slices: %d -> %d\n", s->poc, poc);
  523. if (s->avctx->err_recognition & AV_EF_EXPLODE)
  524. return AVERROR_INVALIDDATA;
  525. poc = s->poc;
  526. }
  527. s->poc = poc;
  528. sh->short_term_ref_pic_set_sps_flag = get_bits1(gb);
  529. pos = get_bits_left(gb);
  530. if (!sh->short_term_ref_pic_set_sps_flag) {
  531. ret = ff_hevc_decode_short_term_rps(gb, s->avctx, &sh->slice_rps, s->ps.sps, 1);
  532. if (ret < 0)
  533. return ret;
  534. sh->short_term_rps = &sh->slice_rps;
  535. } else {
  536. int numbits, rps_idx;
  537. if (!s->ps.sps->nb_st_rps) {
  538. av_log(s->avctx, AV_LOG_ERROR, "No ref lists in the SPS.\n");
  539. return AVERROR_INVALIDDATA;
  540. }
  541. numbits = av_ceil_log2(s->ps.sps->nb_st_rps);
  542. rps_idx = numbits > 0 ? get_bits(gb, numbits) : 0;
  543. sh->short_term_rps = &s->ps.sps->st_rps[rps_idx];
  544. }
  545. sh->short_term_ref_pic_set_size = pos - get_bits_left(gb);
  546. pos = get_bits_left(gb);
  547. ret = decode_lt_rps(s, &sh->long_term_rps, gb);
  548. if (ret < 0) {
  549. av_log(s->avctx, AV_LOG_WARNING, "Invalid long term RPS.\n");
  550. if (s->avctx->err_recognition & AV_EF_EXPLODE)
  551. return AVERROR_INVALIDDATA;
  552. }
  553. sh->long_term_ref_pic_set_size = pos - get_bits_left(gb);
  554. if (s->ps.sps->sps_temporal_mvp_enabled_flag)
  555. sh->slice_temporal_mvp_enabled_flag = get_bits1(gb);
  556. else
  557. sh->slice_temporal_mvp_enabled_flag = 0;
  558. } else {
  559. s->sh.short_term_rps = NULL;
  560. s->poc = 0;
  561. }
  562. /* 8.3.1 */
  563. if (sh->first_slice_in_pic_flag && s->temporal_id == 0 &&
  564. s->nal_unit_type != HEVC_NAL_TRAIL_N &&
  565. s->nal_unit_type != HEVC_NAL_TSA_N &&
  566. s->nal_unit_type != HEVC_NAL_STSA_N &&
  567. s->nal_unit_type != HEVC_NAL_RADL_N &&
  568. s->nal_unit_type != HEVC_NAL_RADL_R &&
  569. s->nal_unit_type != HEVC_NAL_RASL_N &&
  570. s->nal_unit_type != HEVC_NAL_RASL_R)
  571. s->pocTid0 = s->poc;
  572. if (s->ps.sps->sao_enabled) {
  573. sh->slice_sample_adaptive_offset_flag[0] = get_bits1(gb);
  574. if (s->ps.sps->chroma_format_idc) {
  575. sh->slice_sample_adaptive_offset_flag[1] =
  576. sh->slice_sample_adaptive_offset_flag[2] = get_bits1(gb);
  577. }
  578. } else {
  579. sh->slice_sample_adaptive_offset_flag[0] = 0;
  580. sh->slice_sample_adaptive_offset_flag[1] = 0;
  581. sh->slice_sample_adaptive_offset_flag[2] = 0;
  582. }
  583. sh->nb_refs[L0] = sh->nb_refs[L1] = 0;
  584. if (sh->slice_type == HEVC_SLICE_P || sh->slice_type == HEVC_SLICE_B) {
  585. int nb_refs;
  586. sh->nb_refs[L0] = s->ps.pps->num_ref_idx_l0_default_active;
  587. if (sh->slice_type == HEVC_SLICE_B)
  588. sh->nb_refs[L1] = s->ps.pps->num_ref_idx_l1_default_active;
  589. if (get_bits1(gb)) { // num_ref_idx_active_override_flag
  590. sh->nb_refs[L0] = get_ue_golomb_long(gb) + 1;
  591. if (sh->slice_type == HEVC_SLICE_B)
  592. sh->nb_refs[L1] = get_ue_golomb_long(gb) + 1;
  593. }
  594. if (sh->nb_refs[L0] > HEVC_MAX_REFS || sh->nb_refs[L1] > HEVC_MAX_REFS) {
  595. av_log(s->avctx, AV_LOG_ERROR, "Too many refs: %d/%d.\n",
  596. sh->nb_refs[L0], sh->nb_refs[L1]);
  597. return AVERROR_INVALIDDATA;
  598. }
  599. sh->rpl_modification_flag[0] = 0;
  600. sh->rpl_modification_flag[1] = 0;
  601. nb_refs = ff_hevc_frame_nb_refs(s);
  602. if (!nb_refs) {
  603. av_log(s->avctx, AV_LOG_ERROR, "Zero refs for a frame with P or B slices.\n");
  604. return AVERROR_INVALIDDATA;
  605. }
  606. if (s->ps.pps->lists_modification_present_flag && nb_refs > 1) {
  607. sh->rpl_modification_flag[0] = get_bits1(gb);
  608. if (sh->rpl_modification_flag[0]) {
  609. for (i = 0; i < sh->nb_refs[L0]; i++)
  610. sh->list_entry_lx[0][i] = get_bits(gb, av_ceil_log2(nb_refs));
  611. }
  612. if (sh->slice_type == HEVC_SLICE_B) {
  613. sh->rpl_modification_flag[1] = get_bits1(gb);
  614. if (sh->rpl_modification_flag[1] == 1)
  615. for (i = 0; i < sh->nb_refs[L1]; i++)
  616. sh->list_entry_lx[1][i] = get_bits(gb, av_ceil_log2(nb_refs));
  617. }
  618. }
  619. if (sh->slice_type == HEVC_SLICE_B)
  620. sh->mvd_l1_zero_flag = get_bits1(gb);
  621. if (s->ps.pps->cabac_init_present_flag)
  622. sh->cabac_init_flag = get_bits1(gb);
  623. else
  624. sh->cabac_init_flag = 0;
  625. sh->collocated_ref_idx = 0;
  626. if (sh->slice_temporal_mvp_enabled_flag) {
  627. sh->collocated_list = L0;
  628. if (sh->slice_type == HEVC_SLICE_B)
  629. sh->collocated_list = !get_bits1(gb);
  630. if (sh->nb_refs[sh->collocated_list] > 1) {
  631. sh->collocated_ref_idx = get_ue_golomb_long(gb);
  632. if (sh->collocated_ref_idx >= sh->nb_refs[sh->collocated_list]) {
  633. av_log(s->avctx, AV_LOG_ERROR,
  634. "Invalid collocated_ref_idx: %d.\n",
  635. sh->collocated_ref_idx);
  636. return AVERROR_INVALIDDATA;
  637. }
  638. }
  639. }
  640. if ((s->ps.pps->weighted_pred_flag && sh->slice_type == HEVC_SLICE_P) ||
  641. (s->ps.pps->weighted_bipred_flag && sh->slice_type == HEVC_SLICE_B)) {
  642. int ret = pred_weight_table(s, gb);
  643. if (ret < 0)
  644. return ret;
  645. }
  646. sh->max_num_merge_cand = 5 - get_ue_golomb_long(gb);
  647. if (sh->max_num_merge_cand < 1 || sh->max_num_merge_cand > 5) {
  648. av_log(s->avctx, AV_LOG_ERROR,
  649. "Invalid number of merging MVP candidates: %d.\n",
  650. sh->max_num_merge_cand);
  651. return AVERROR_INVALIDDATA;
  652. }
  653. }
  654. sh->slice_qp_delta = get_se_golomb(gb);
  655. if (s->ps.pps->pic_slice_level_chroma_qp_offsets_present_flag) {
  656. sh->slice_cb_qp_offset = get_se_golomb(gb);
  657. sh->slice_cr_qp_offset = get_se_golomb(gb);
  658. } else {
  659. sh->slice_cb_qp_offset = 0;
  660. sh->slice_cr_qp_offset = 0;
  661. }
  662. if (s->ps.pps->chroma_qp_offset_list_enabled_flag)
  663. sh->cu_chroma_qp_offset_enabled_flag = get_bits1(gb);
  664. else
  665. sh->cu_chroma_qp_offset_enabled_flag = 0;
  666. if (s->ps.pps->deblocking_filter_control_present_flag) {
  667. int deblocking_filter_override_flag = 0;
  668. if (s->ps.pps->deblocking_filter_override_enabled_flag)
  669. deblocking_filter_override_flag = get_bits1(gb);
  670. if (deblocking_filter_override_flag) {
  671. sh->disable_deblocking_filter_flag = get_bits1(gb);
  672. if (!sh->disable_deblocking_filter_flag) {
  673. int beta_offset_div2 = get_se_golomb(gb);
  674. int tc_offset_div2 = get_se_golomb(gb) ;
  675. if (beta_offset_div2 < -6 || beta_offset_div2 > 6 ||
  676. tc_offset_div2 < -6 || tc_offset_div2 > 6) {
  677. av_log(s->avctx, AV_LOG_ERROR,
  678. "Invalid deblock filter offsets: %d, %d\n",
  679. beta_offset_div2, tc_offset_div2);
  680. return AVERROR_INVALIDDATA;
  681. }
  682. sh->beta_offset = beta_offset_div2 * 2;
  683. sh->tc_offset = tc_offset_div2 * 2;
  684. }
  685. } else {
  686. sh->disable_deblocking_filter_flag = s->ps.pps->disable_dbf;
  687. sh->beta_offset = s->ps.pps->beta_offset;
  688. sh->tc_offset = s->ps.pps->tc_offset;
  689. }
  690. } else {
  691. sh->disable_deblocking_filter_flag = 0;
  692. sh->beta_offset = 0;
  693. sh->tc_offset = 0;
  694. }
  695. if (s->ps.pps->seq_loop_filter_across_slices_enabled_flag &&
  696. (sh->slice_sample_adaptive_offset_flag[0] ||
  697. sh->slice_sample_adaptive_offset_flag[1] ||
  698. !sh->disable_deblocking_filter_flag)) {
  699. sh->slice_loop_filter_across_slices_enabled_flag = get_bits1(gb);
  700. } else {
  701. sh->slice_loop_filter_across_slices_enabled_flag = s->ps.pps->seq_loop_filter_across_slices_enabled_flag;
  702. }
  703. } else if (!s->slice_initialized) {
  704. av_log(s->avctx, AV_LOG_ERROR, "Independent slice segment missing.\n");
  705. return AVERROR_INVALIDDATA;
  706. }
  707. sh->num_entry_point_offsets = 0;
  708. if (s->ps.pps->tiles_enabled_flag || s->ps.pps->entropy_coding_sync_enabled_flag) {
  709. unsigned num_entry_point_offsets = get_ue_golomb_long(gb);
  710. // It would be possible to bound this tighter but this here is simpler
  711. if (num_entry_point_offsets > get_bits_left(gb)) {
  712. av_log(s->avctx, AV_LOG_ERROR, "num_entry_point_offsets %d is invalid\n", num_entry_point_offsets);
  713. return AVERROR_INVALIDDATA;
  714. }
  715. sh->num_entry_point_offsets = num_entry_point_offsets;
  716. if (sh->num_entry_point_offsets > 0) {
  717. int offset_len = get_ue_golomb_long(gb) + 1;
  718. if (offset_len < 1 || offset_len > 32) {
  719. sh->num_entry_point_offsets = 0;
  720. av_log(s->avctx, AV_LOG_ERROR, "offset_len %d is invalid\n", offset_len);
  721. return AVERROR_INVALIDDATA;
  722. }
  723. av_freep(&sh->entry_point_offset);
  724. av_freep(&sh->offset);
  725. av_freep(&sh->size);
  726. sh->entry_point_offset = av_malloc_array(sh->num_entry_point_offsets, sizeof(unsigned));
  727. sh->offset = av_malloc_array(sh->num_entry_point_offsets, sizeof(int));
  728. sh->size = av_malloc_array(sh->num_entry_point_offsets, sizeof(int));
  729. if (!sh->entry_point_offset || !sh->offset || !sh->size) {
  730. sh->num_entry_point_offsets = 0;
  731. av_log(s->avctx, AV_LOG_ERROR, "Failed to allocate memory\n");
  732. return AVERROR(ENOMEM);
  733. }
  734. for (i = 0; i < sh->num_entry_point_offsets; i++) {
  735. unsigned val = get_bits_long(gb, offset_len);
  736. sh->entry_point_offset[i] = val + 1; // +1; // +1 to get the size
  737. }
  738. if (s->threads_number > 1 && (s->ps.pps->num_tile_rows > 1 || s->ps.pps->num_tile_columns > 1)) {
  739. s->enable_parallel_tiles = 0; // TODO: you can enable tiles in parallel here
  740. s->threads_number = 1;
  741. } else
  742. s->enable_parallel_tiles = 0;
  743. } else
  744. s->enable_parallel_tiles = 0;
  745. }
  746. if (s->ps.pps->slice_header_extension_present_flag) {
  747. unsigned int length = get_ue_golomb_long(gb);
  748. if (length*8LL > get_bits_left(gb)) {
  749. av_log(s->avctx, AV_LOG_ERROR, "too many slice_header_extension_data_bytes\n");
  750. return AVERROR_INVALIDDATA;
  751. }
  752. for (i = 0; i < length; i++)
  753. skip_bits(gb, 8); // slice_header_extension_data_byte
  754. }
  755. // Inferred parameters
  756. sh->slice_qp = 26U + s->ps.pps->pic_init_qp_minus26 + sh->slice_qp_delta;
  757. if (sh->slice_qp > 51 ||
  758. sh->slice_qp < -s->ps.sps->qp_bd_offset) {
  759. av_log(s->avctx, AV_LOG_ERROR,
  760. "The slice_qp %d is outside the valid range "
  761. "[%d, 51].\n",
  762. sh->slice_qp,
  763. -s->ps.sps->qp_bd_offset);
  764. return AVERROR_INVALIDDATA;
  765. }
  766. sh->slice_ctb_addr_rs = sh->slice_segment_addr;
  767. if (!s->sh.slice_ctb_addr_rs && s->sh.dependent_slice_segment_flag) {
  768. av_log(s->avctx, AV_LOG_ERROR, "Impossible slice segment.\n");
  769. return AVERROR_INVALIDDATA;
  770. }
  771. if (get_bits_left(gb) < 0) {
  772. av_log(s->avctx, AV_LOG_ERROR,
  773. "Overread slice header by %d bits\n", -get_bits_left(gb));
  774. return AVERROR_INVALIDDATA;
  775. }
  776. s->HEVClc->first_qp_group = !s->sh.dependent_slice_segment_flag;
  777. if (!s->ps.pps->cu_qp_delta_enabled_flag)
  778. s->HEVClc->qp_y = s->sh.slice_qp;
  779. s->slice_initialized = 1;
  780. s->HEVClc->tu.cu_qp_offset_cb = 0;
  781. s->HEVClc->tu.cu_qp_offset_cr = 0;
  782. return 0;
  783. }
  784. #define CTB(tab, x, y) ((tab)[(y) * s->ps.sps->ctb_width + (x)])
  785. #define SET_SAO(elem, value) \
  786. do { \
  787. if (!sao_merge_up_flag && !sao_merge_left_flag) \
  788. sao->elem = value; \
  789. else if (sao_merge_left_flag) \
  790. sao->elem = CTB(s->sao, rx-1, ry).elem; \
  791. else if (sao_merge_up_flag) \
  792. sao->elem = CTB(s->sao, rx, ry-1).elem; \
  793. else \
  794. sao->elem = 0; \
  795. } while (0)
  796. static void hls_sao_param(HEVCContext *s, int rx, int ry)
  797. {
  798. HEVCLocalContext *lc = s->HEVClc;
  799. int sao_merge_left_flag = 0;
  800. int sao_merge_up_flag = 0;
  801. SAOParams *sao = &CTB(s->sao, rx, ry);
  802. int c_idx, i;
  803. if (s->sh.slice_sample_adaptive_offset_flag[0] ||
  804. s->sh.slice_sample_adaptive_offset_flag[1]) {
  805. if (rx > 0) {
  806. if (lc->ctb_left_flag)
  807. sao_merge_left_flag = ff_hevc_sao_merge_flag_decode(s);
  808. }
  809. if (ry > 0 && !sao_merge_left_flag) {
  810. if (lc->ctb_up_flag)
  811. sao_merge_up_flag = ff_hevc_sao_merge_flag_decode(s);
  812. }
  813. }
  814. for (c_idx = 0; c_idx < (s->ps.sps->chroma_format_idc ? 3 : 1); c_idx++) {
  815. int log2_sao_offset_scale = c_idx == 0 ? s->ps.pps->log2_sao_offset_scale_luma :
  816. s->ps.pps->log2_sao_offset_scale_chroma;
  817. if (!s->sh.slice_sample_adaptive_offset_flag[c_idx]) {
  818. sao->type_idx[c_idx] = SAO_NOT_APPLIED;
  819. continue;
  820. }
  821. if (c_idx == 2) {
  822. sao->type_idx[2] = sao->type_idx[1];
  823. sao->eo_class[2] = sao->eo_class[1];
  824. } else {
  825. SET_SAO(type_idx[c_idx], ff_hevc_sao_type_idx_decode(s));
  826. }
  827. if (sao->type_idx[c_idx] == SAO_NOT_APPLIED)
  828. continue;
  829. for (i = 0; i < 4; i++)
  830. SET_SAO(offset_abs[c_idx][i], ff_hevc_sao_offset_abs_decode(s));
  831. if (sao->type_idx[c_idx] == SAO_BAND) {
  832. for (i = 0; i < 4; i++) {
  833. if (sao->offset_abs[c_idx][i]) {
  834. SET_SAO(offset_sign[c_idx][i],
  835. ff_hevc_sao_offset_sign_decode(s));
  836. } else {
  837. sao->offset_sign[c_idx][i] = 0;
  838. }
  839. }
  840. SET_SAO(band_position[c_idx], ff_hevc_sao_band_position_decode(s));
  841. } else if (c_idx != 2) {
  842. SET_SAO(eo_class[c_idx], ff_hevc_sao_eo_class_decode(s));
  843. }
  844. // Inferred parameters
  845. sao->offset_val[c_idx][0] = 0;
  846. for (i = 0; i < 4; i++) {
  847. sao->offset_val[c_idx][i + 1] = sao->offset_abs[c_idx][i];
  848. if (sao->type_idx[c_idx] == SAO_EDGE) {
  849. if (i > 1)
  850. sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1];
  851. } else if (sao->offset_sign[c_idx][i]) {
  852. sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1];
  853. }
  854. sao->offset_val[c_idx][i + 1] *= 1 << log2_sao_offset_scale;
  855. }
  856. }
  857. }
  858. #undef SET_SAO
  859. #undef CTB
  860. static int hls_cross_component_pred(HEVCContext *s, int idx) {
  861. HEVCLocalContext *lc = s->HEVClc;
  862. int log2_res_scale_abs_plus1 = ff_hevc_log2_res_scale_abs(s, idx);
  863. if (log2_res_scale_abs_plus1 != 0) {
  864. int res_scale_sign_flag = ff_hevc_res_scale_sign_flag(s, idx);
  865. lc->tu.res_scale_val = (1 << (log2_res_scale_abs_plus1 - 1)) *
  866. (1 - 2 * res_scale_sign_flag);
  867. } else {
  868. lc->tu.res_scale_val = 0;
  869. }
  870. return 0;
  871. }
  872. static int hls_transform_unit(HEVCContext *s, int x0, int y0,
  873. int xBase, int yBase, int cb_xBase, int cb_yBase,
  874. int log2_cb_size, int log2_trafo_size,
  875. int blk_idx, int cbf_luma, int *cbf_cb, int *cbf_cr)
  876. {
  877. HEVCLocalContext *lc = s->HEVClc;
  878. const int log2_trafo_size_c = log2_trafo_size - s->ps.sps->hshift[1];
  879. int i;
  880. if (lc->cu.pred_mode == MODE_INTRA) {
  881. int trafo_size = 1 << log2_trafo_size;
  882. ff_hevc_set_neighbour_available(s, x0, y0, trafo_size, trafo_size);
  883. s->hpc.intra_pred[log2_trafo_size - 2](s, x0, y0, 0);
  884. }
  885. if (cbf_luma || cbf_cb[0] || cbf_cr[0] ||
  886. (s->ps.sps->chroma_format_idc == 2 && (cbf_cb[1] || cbf_cr[1]))) {
  887. int scan_idx = SCAN_DIAG;
  888. int scan_idx_c = SCAN_DIAG;
  889. int cbf_chroma = cbf_cb[0] || cbf_cr[0] ||
  890. (s->ps.sps->chroma_format_idc == 2 &&
  891. (cbf_cb[1] || cbf_cr[1]));
  892. if (s->ps.pps->cu_qp_delta_enabled_flag && !lc->tu.is_cu_qp_delta_coded) {
  893. lc->tu.cu_qp_delta = ff_hevc_cu_qp_delta_abs(s);
  894. if (lc->tu.cu_qp_delta != 0)
  895. if (ff_hevc_cu_qp_delta_sign_flag(s) == 1)
  896. lc->tu.cu_qp_delta = -lc->tu.cu_qp_delta;
  897. lc->tu.is_cu_qp_delta_coded = 1;
  898. if (lc->tu.cu_qp_delta < -(26 + s->ps.sps->qp_bd_offset / 2) ||
  899. lc->tu.cu_qp_delta > (25 + s->ps.sps->qp_bd_offset / 2)) {
  900. av_log(s->avctx, AV_LOG_ERROR,
  901. "The cu_qp_delta %d is outside the valid range "
  902. "[%d, %d].\n",
  903. lc->tu.cu_qp_delta,
  904. -(26 + s->ps.sps->qp_bd_offset / 2),
  905. (25 + s->ps.sps->qp_bd_offset / 2));
  906. return AVERROR_INVALIDDATA;
  907. }
  908. ff_hevc_set_qPy(s, cb_xBase, cb_yBase, log2_cb_size);
  909. }
  910. if (s->sh.cu_chroma_qp_offset_enabled_flag && cbf_chroma &&
  911. !lc->cu.cu_transquant_bypass_flag && !lc->tu.is_cu_chroma_qp_offset_coded) {
  912. int cu_chroma_qp_offset_flag = ff_hevc_cu_chroma_qp_offset_flag(s);
  913. if (cu_chroma_qp_offset_flag) {
  914. int cu_chroma_qp_offset_idx = 0;
  915. if (s->ps.pps->chroma_qp_offset_list_len_minus1 > 0) {
  916. cu_chroma_qp_offset_idx = ff_hevc_cu_chroma_qp_offset_idx(s);
  917. av_log(s->avctx, AV_LOG_ERROR,
  918. "cu_chroma_qp_offset_idx not yet tested.\n");
  919. }
  920. lc->tu.cu_qp_offset_cb = s->ps.pps->cb_qp_offset_list[cu_chroma_qp_offset_idx];
  921. lc->tu.cu_qp_offset_cr = s->ps.pps->cr_qp_offset_list[cu_chroma_qp_offset_idx];
  922. } else {
  923. lc->tu.cu_qp_offset_cb = 0;
  924. lc->tu.cu_qp_offset_cr = 0;
  925. }
  926. lc->tu.is_cu_chroma_qp_offset_coded = 1;
  927. }
  928. if (lc->cu.pred_mode == MODE_INTRA && log2_trafo_size < 4) {
  929. if (lc->tu.intra_pred_mode >= 6 &&
  930. lc->tu.intra_pred_mode <= 14) {
  931. scan_idx = SCAN_VERT;
  932. } else if (lc->tu.intra_pred_mode >= 22 &&
  933. lc->tu.intra_pred_mode <= 30) {
  934. scan_idx = SCAN_HORIZ;
  935. }
  936. if (lc->tu.intra_pred_mode_c >= 6 &&
  937. lc->tu.intra_pred_mode_c <= 14) {
  938. scan_idx_c = SCAN_VERT;
  939. } else if (lc->tu.intra_pred_mode_c >= 22 &&
  940. lc->tu.intra_pred_mode_c <= 30) {
  941. scan_idx_c = SCAN_HORIZ;
  942. }
  943. }
  944. lc->tu.cross_pf = 0;
  945. if (cbf_luma)
  946. ff_hevc_hls_residual_coding(s, x0, y0, log2_trafo_size, scan_idx, 0);
  947. if (s->ps.sps->chroma_format_idc && (log2_trafo_size > 2 || s->ps.sps->chroma_format_idc == 3)) {
  948. int trafo_size_h = 1 << (log2_trafo_size_c + s->ps.sps->hshift[1]);
  949. int trafo_size_v = 1 << (log2_trafo_size_c + s->ps.sps->vshift[1]);
  950. lc->tu.cross_pf = (s->ps.pps->cross_component_prediction_enabled_flag && cbf_luma &&
  951. (lc->cu.pred_mode == MODE_INTER ||
  952. (lc->tu.chroma_mode_c == 4)));
  953. if (lc->tu.cross_pf) {
  954. hls_cross_component_pred(s, 0);
  955. }
  956. for (i = 0; i < (s->ps.sps->chroma_format_idc == 2 ? 2 : 1); i++) {
  957. if (lc->cu.pred_mode == MODE_INTRA) {
  958. ff_hevc_set_neighbour_available(s, x0, y0 + (i << log2_trafo_size_c), trafo_size_h, trafo_size_v);
  959. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0 + (i << log2_trafo_size_c), 1);
  960. }
  961. if (cbf_cb[i])
  962. ff_hevc_hls_residual_coding(s, x0, y0 + (i << log2_trafo_size_c),
  963. log2_trafo_size_c, scan_idx_c, 1);
  964. else
  965. if (lc->tu.cross_pf) {
  966. ptrdiff_t stride = s->frame->linesize[1];
  967. int hshift = s->ps.sps->hshift[1];
  968. int vshift = s->ps.sps->vshift[1];
  969. int16_t *coeffs_y = (int16_t*)lc->edge_emu_buffer;
  970. int16_t *coeffs = (int16_t*)lc->edge_emu_buffer2;
  971. int size = 1 << log2_trafo_size_c;
  972. uint8_t *dst = &s->frame->data[1][(y0 >> vshift) * stride +
  973. ((x0 >> hshift) << s->ps.sps->pixel_shift)];
  974. for (i = 0; i < (size * size); i++) {
  975. coeffs[i] = ((lc->tu.res_scale_val * coeffs_y[i]) >> 3);
  976. }
  977. s->hevcdsp.add_residual[log2_trafo_size_c-2](dst, coeffs, stride);
  978. }
  979. }
  980. if (lc->tu.cross_pf) {
  981. hls_cross_component_pred(s, 1);
  982. }
  983. for (i = 0; i < (s->ps.sps->chroma_format_idc == 2 ? 2 : 1); i++) {
  984. if (lc->cu.pred_mode == MODE_INTRA) {
  985. ff_hevc_set_neighbour_available(s, x0, y0 + (i << log2_trafo_size_c), trafo_size_h, trafo_size_v);
  986. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0 + (i << log2_trafo_size_c), 2);
  987. }
  988. if (cbf_cr[i])
  989. ff_hevc_hls_residual_coding(s, x0, y0 + (i << log2_trafo_size_c),
  990. log2_trafo_size_c, scan_idx_c, 2);
  991. else
  992. if (lc->tu.cross_pf) {
  993. ptrdiff_t stride = s->frame->linesize[2];
  994. int hshift = s->ps.sps->hshift[2];
  995. int vshift = s->ps.sps->vshift[2];
  996. int16_t *coeffs_y = (int16_t*)lc->edge_emu_buffer;
  997. int16_t *coeffs = (int16_t*)lc->edge_emu_buffer2;
  998. int size = 1 << log2_trafo_size_c;
  999. uint8_t *dst = &s->frame->data[2][(y0 >> vshift) * stride +
  1000. ((x0 >> hshift) << s->ps.sps->pixel_shift)];
  1001. for (i = 0; i < (size * size); i++) {
  1002. coeffs[i] = ((lc->tu.res_scale_val * coeffs_y[i]) >> 3);
  1003. }
  1004. s->hevcdsp.add_residual[log2_trafo_size_c-2](dst, coeffs, stride);
  1005. }
  1006. }
  1007. } else if (s->ps.sps->chroma_format_idc && blk_idx == 3) {
  1008. int trafo_size_h = 1 << (log2_trafo_size + 1);
  1009. int trafo_size_v = 1 << (log2_trafo_size + s->ps.sps->vshift[1]);
  1010. for (i = 0; i < (s->ps.sps->chroma_format_idc == 2 ? 2 : 1); i++) {
  1011. if (lc->cu.pred_mode == MODE_INTRA) {
  1012. ff_hevc_set_neighbour_available(s, xBase, yBase + (i << log2_trafo_size),
  1013. trafo_size_h, trafo_size_v);
  1014. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase + (i << log2_trafo_size), 1);
  1015. }
  1016. if (cbf_cb[i])
  1017. ff_hevc_hls_residual_coding(s, xBase, yBase + (i << log2_trafo_size),
  1018. log2_trafo_size, scan_idx_c, 1);
  1019. }
  1020. for (i = 0; i < (s->ps.sps->chroma_format_idc == 2 ? 2 : 1); i++) {
  1021. if (lc->cu.pred_mode == MODE_INTRA) {
  1022. ff_hevc_set_neighbour_available(s, xBase, yBase + (i << log2_trafo_size),
  1023. trafo_size_h, trafo_size_v);
  1024. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase + (i << log2_trafo_size), 2);
  1025. }
  1026. if (cbf_cr[i])
  1027. ff_hevc_hls_residual_coding(s, xBase, yBase + (i << log2_trafo_size),
  1028. log2_trafo_size, scan_idx_c, 2);
  1029. }
  1030. }
  1031. } else if (s->ps.sps->chroma_format_idc && lc->cu.pred_mode == MODE_INTRA) {
  1032. if (log2_trafo_size > 2 || s->ps.sps->chroma_format_idc == 3) {
  1033. int trafo_size_h = 1 << (log2_trafo_size_c + s->ps.sps->hshift[1]);
  1034. int trafo_size_v = 1 << (log2_trafo_size_c + s->ps.sps->vshift[1]);
  1035. ff_hevc_set_neighbour_available(s, x0, y0, trafo_size_h, trafo_size_v);
  1036. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0, 1);
  1037. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0, 2);
  1038. if (s->ps.sps->chroma_format_idc == 2) {
  1039. ff_hevc_set_neighbour_available(s, x0, y0 + (1 << log2_trafo_size_c),
  1040. trafo_size_h, trafo_size_v);
  1041. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0 + (1 << log2_trafo_size_c), 1);
  1042. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0 + (1 << log2_trafo_size_c), 2);
  1043. }
  1044. } else if (blk_idx == 3) {
  1045. int trafo_size_h = 1 << (log2_trafo_size + 1);
  1046. int trafo_size_v = 1 << (log2_trafo_size + s->ps.sps->vshift[1]);
  1047. ff_hevc_set_neighbour_available(s, xBase, yBase,
  1048. trafo_size_h, trafo_size_v);
  1049. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase, 1);
  1050. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase, 2);
  1051. if (s->ps.sps->chroma_format_idc == 2) {
  1052. ff_hevc_set_neighbour_available(s, xBase, yBase + (1 << (log2_trafo_size)),
  1053. trafo_size_h, trafo_size_v);
  1054. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase + (1 << (log2_trafo_size)), 1);
  1055. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase + (1 << (log2_trafo_size)), 2);
  1056. }
  1057. }
  1058. }
  1059. return 0;
  1060. }
  1061. static void set_deblocking_bypass(HEVCContext *s, int x0, int y0, int log2_cb_size)
  1062. {
  1063. int cb_size = 1 << log2_cb_size;
  1064. int log2_min_pu_size = s->ps.sps->log2_min_pu_size;
  1065. int min_pu_width = s->ps.sps->min_pu_width;
  1066. int x_end = FFMIN(x0 + cb_size, s->ps.sps->width);
  1067. int y_end = FFMIN(y0 + cb_size, s->ps.sps->height);
  1068. int i, j;
  1069. for (j = (y0 >> log2_min_pu_size); j < (y_end >> log2_min_pu_size); j++)
  1070. for (i = (x0 >> log2_min_pu_size); i < (x_end >> log2_min_pu_size); i++)
  1071. s->is_pcm[i + j * min_pu_width] = 2;
  1072. }
  1073. static int hls_transform_tree(HEVCContext *s, int x0, int y0,
  1074. int xBase, int yBase, int cb_xBase, int cb_yBase,
  1075. int log2_cb_size, int log2_trafo_size,
  1076. int trafo_depth, int blk_idx,
  1077. const int *base_cbf_cb, const int *base_cbf_cr)
  1078. {
  1079. HEVCLocalContext *lc = s->HEVClc;
  1080. uint8_t split_transform_flag;
  1081. int cbf_cb[2];
  1082. int cbf_cr[2];
  1083. int ret;
  1084. cbf_cb[0] = base_cbf_cb[0];
  1085. cbf_cb[1] = base_cbf_cb[1];
  1086. cbf_cr[0] = base_cbf_cr[0];
  1087. cbf_cr[1] = base_cbf_cr[1];
  1088. if (lc->cu.intra_split_flag) {
  1089. if (trafo_depth == 1) {
  1090. lc->tu.intra_pred_mode = lc->pu.intra_pred_mode[blk_idx];
  1091. if (s->ps.sps->chroma_format_idc == 3) {
  1092. lc->tu.intra_pred_mode_c = lc->pu.intra_pred_mode_c[blk_idx];
  1093. lc->tu.chroma_mode_c = lc->pu.chroma_mode_c[blk_idx];
  1094. } else {
  1095. lc->tu.intra_pred_mode_c = lc->pu.intra_pred_mode_c[0];
  1096. lc->tu.chroma_mode_c = lc->pu.chroma_mode_c[0];
  1097. }
  1098. }
  1099. } else {
  1100. lc->tu.intra_pred_mode = lc->pu.intra_pred_mode[0];
  1101. lc->tu.intra_pred_mode_c = lc->pu.intra_pred_mode_c[0];
  1102. lc->tu.chroma_mode_c = lc->pu.chroma_mode_c[0];
  1103. }
  1104. if (log2_trafo_size <= s->ps.sps->log2_max_trafo_size &&
  1105. log2_trafo_size > s->ps.sps->log2_min_tb_size &&
  1106. trafo_depth < lc->cu.max_trafo_depth &&
  1107. !(lc->cu.intra_split_flag && trafo_depth == 0)) {
  1108. split_transform_flag = ff_hevc_split_transform_flag_decode(s, log2_trafo_size);
  1109. } else {
  1110. int inter_split = s->ps.sps->max_transform_hierarchy_depth_inter == 0 &&
  1111. lc->cu.pred_mode == MODE_INTER &&
  1112. lc->cu.part_mode != PART_2Nx2N &&
  1113. trafo_depth == 0;
  1114. split_transform_flag = log2_trafo_size > s->ps.sps->log2_max_trafo_size ||
  1115. (lc->cu.intra_split_flag && trafo_depth == 0) ||
  1116. inter_split;
  1117. }
  1118. if (s->ps.sps->chroma_format_idc && (log2_trafo_size > 2 || s->ps.sps->chroma_format_idc == 3)) {
  1119. if (trafo_depth == 0 || cbf_cb[0]) {
  1120. cbf_cb[0] = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
  1121. if (s->ps.sps->chroma_format_idc == 2 && (!split_transform_flag || log2_trafo_size == 3)) {
  1122. cbf_cb[1] = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
  1123. }
  1124. }
  1125. if (trafo_depth == 0 || cbf_cr[0]) {
  1126. cbf_cr[0] = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
  1127. if (s->ps.sps->chroma_format_idc == 2 && (!split_transform_flag || log2_trafo_size == 3)) {
  1128. cbf_cr[1] = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
  1129. }
  1130. }
  1131. }
  1132. if (split_transform_flag) {
  1133. const int trafo_size_split = 1 << (log2_trafo_size - 1);
  1134. const int x1 = x0 + trafo_size_split;
  1135. const int y1 = y0 + trafo_size_split;
  1136. #define SUBDIVIDE(x, y, idx) \
  1137. do { \
  1138. ret = hls_transform_tree(s, x, y, x0, y0, cb_xBase, cb_yBase, log2_cb_size, \
  1139. log2_trafo_size - 1, trafo_depth + 1, idx, \
  1140. cbf_cb, cbf_cr); \
  1141. if (ret < 0) \
  1142. return ret; \
  1143. } while (0)
  1144. SUBDIVIDE(x0, y0, 0);
  1145. SUBDIVIDE(x1, y0, 1);
  1146. SUBDIVIDE(x0, y1, 2);
  1147. SUBDIVIDE(x1, y1, 3);
  1148. #undef SUBDIVIDE
  1149. } else {
  1150. int min_tu_size = 1 << s->ps.sps->log2_min_tb_size;
  1151. int log2_min_tu_size = s->ps.sps->log2_min_tb_size;
  1152. int min_tu_width = s->ps.sps->min_tb_width;
  1153. int cbf_luma = 1;
  1154. if (lc->cu.pred_mode == MODE_INTRA || trafo_depth != 0 ||
  1155. cbf_cb[0] || cbf_cr[0] ||
  1156. (s->ps.sps->chroma_format_idc == 2 && (cbf_cb[1] || cbf_cr[1]))) {
  1157. cbf_luma = ff_hevc_cbf_luma_decode(s, trafo_depth);
  1158. }
  1159. ret = hls_transform_unit(s, x0, y0, xBase, yBase, cb_xBase, cb_yBase,
  1160. log2_cb_size, log2_trafo_size,
  1161. blk_idx, cbf_luma, cbf_cb, cbf_cr);
  1162. if (ret < 0)
  1163. return ret;
  1164. // TODO: store cbf_luma somewhere else
  1165. if (cbf_luma) {
  1166. int i, j;
  1167. for (i = 0; i < (1 << log2_trafo_size); i += min_tu_size)
  1168. for (j = 0; j < (1 << log2_trafo_size); j += min_tu_size) {
  1169. int x_tu = (x0 + j) >> log2_min_tu_size;
  1170. int y_tu = (y0 + i) >> log2_min_tu_size;
  1171. s->cbf_luma[y_tu * min_tu_width + x_tu] = 1;
  1172. }
  1173. }
  1174. if (!s->sh.disable_deblocking_filter_flag) {
  1175. ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_trafo_size);
  1176. if (s->ps.pps->transquant_bypass_enable_flag &&
  1177. lc->cu.cu_transquant_bypass_flag)
  1178. set_deblocking_bypass(s, x0, y0, log2_trafo_size);
  1179. }
  1180. }
  1181. return 0;
  1182. }
  1183. static int hls_pcm_sample(HEVCContext *s, int x0, int y0, int log2_cb_size)
  1184. {
  1185. HEVCLocalContext *lc = s->HEVClc;
  1186. GetBitContext gb;
  1187. int cb_size = 1 << log2_cb_size;
  1188. ptrdiff_t stride0 = s->frame->linesize[0];
  1189. ptrdiff_t stride1 = s->frame->linesize[1];
  1190. ptrdiff_t stride2 = s->frame->linesize[2];
  1191. uint8_t *dst0 = &s->frame->data[0][y0 * stride0 + (x0 << s->ps.sps->pixel_shift)];
  1192. uint8_t *dst1 = &s->frame->data[1][(y0 >> s->ps.sps->vshift[1]) * stride1 + ((x0 >> s->ps.sps->hshift[1]) << s->ps.sps->pixel_shift)];
  1193. uint8_t *dst2 = &s->frame->data[2][(y0 >> s->ps.sps->vshift[2]) * stride2 + ((x0 >> s->ps.sps->hshift[2]) << s->ps.sps->pixel_shift)];
  1194. int length = cb_size * cb_size * s->ps.sps->pcm.bit_depth +
  1195. (((cb_size >> s->ps.sps->hshift[1]) * (cb_size >> s->ps.sps->vshift[1])) +
  1196. ((cb_size >> s->ps.sps->hshift[2]) * (cb_size >> s->ps.sps->vshift[2]))) *
  1197. s->ps.sps->pcm.bit_depth_chroma;
  1198. const uint8_t *pcm = skip_bytes(&lc->cc, (length + 7) >> 3);
  1199. int ret;
  1200. if (!s->sh.disable_deblocking_filter_flag)
  1201. ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
  1202. ret = init_get_bits(&gb, pcm, length);
  1203. if (ret < 0)
  1204. return ret;
  1205. s->hevcdsp.put_pcm(dst0, stride0, cb_size, cb_size, &gb, s->ps.sps->pcm.bit_depth);
  1206. if (s->ps.sps->chroma_format_idc) {
  1207. s->hevcdsp.put_pcm(dst1, stride1,
  1208. cb_size >> s->ps.sps->hshift[1],
  1209. cb_size >> s->ps.sps->vshift[1],
  1210. &gb, s->ps.sps->pcm.bit_depth_chroma);
  1211. s->hevcdsp.put_pcm(dst2, stride2,
  1212. cb_size >> s->ps.sps->hshift[2],
  1213. cb_size >> s->ps.sps->vshift[2],
  1214. &gb, s->ps.sps->pcm.bit_depth_chroma);
  1215. }
  1216. return 0;
  1217. }
  1218. /**
  1219. * 8.5.3.2.2.1 Luma sample unidirectional interpolation process
  1220. *
  1221. * @param s HEVC decoding context
  1222. * @param dst target buffer for block data at block position
  1223. * @param dststride stride of the dst buffer
  1224. * @param ref reference picture buffer at origin (0, 0)
  1225. * @param mv motion vector (relative to block position) to get pixel data from
  1226. * @param x_off horizontal position of block from origin (0, 0)
  1227. * @param y_off vertical position of block from origin (0, 0)
  1228. * @param block_w width of block
  1229. * @param block_h height of block
  1230. * @param luma_weight weighting factor applied to the luma prediction
  1231. * @param luma_offset additive offset applied to the luma prediction value
  1232. */
  1233. static void luma_mc_uni(HEVCContext *s, uint8_t *dst, ptrdiff_t dststride,
  1234. AVFrame *ref, const Mv *mv, int x_off, int y_off,
  1235. int block_w, int block_h, int luma_weight, int luma_offset)
  1236. {
  1237. HEVCLocalContext *lc = s->HEVClc;
  1238. uint8_t *src = ref->data[0];
  1239. ptrdiff_t srcstride = ref->linesize[0];
  1240. int pic_width = s->ps.sps->width;
  1241. int pic_height = s->ps.sps->height;
  1242. int mx = mv->x & 3;
  1243. int my = mv->y & 3;
  1244. int weight_flag = (s->sh.slice_type == HEVC_SLICE_P && s->ps.pps->weighted_pred_flag) ||
  1245. (s->sh.slice_type == HEVC_SLICE_B && s->ps.pps->weighted_bipred_flag);
  1246. int idx = ff_hevc_pel_weight[block_w];
  1247. x_off += mv->x >> 2;
  1248. y_off += mv->y >> 2;
  1249. src += y_off * srcstride + (x_off * (1 << s->ps.sps->pixel_shift));
  1250. if (x_off < QPEL_EXTRA_BEFORE || y_off < QPEL_EXTRA_AFTER ||
  1251. x_off >= pic_width - block_w - QPEL_EXTRA_AFTER ||
  1252. y_off >= pic_height - block_h - QPEL_EXTRA_AFTER) {
  1253. const ptrdiff_t edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1254. int offset = QPEL_EXTRA_BEFORE * srcstride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1255. int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1256. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src - offset,
  1257. edge_emu_stride, srcstride,
  1258. block_w + QPEL_EXTRA,
  1259. block_h + QPEL_EXTRA,
  1260. x_off - QPEL_EXTRA_BEFORE, y_off - QPEL_EXTRA_BEFORE,
  1261. pic_width, pic_height);
  1262. src = lc->edge_emu_buffer + buf_offset;
  1263. srcstride = edge_emu_stride;
  1264. }
  1265. if (!weight_flag)
  1266. s->hevcdsp.put_hevc_qpel_uni[idx][!!my][!!mx](dst, dststride, src, srcstride,
  1267. block_h, mx, my, block_w);
  1268. else
  1269. s->hevcdsp.put_hevc_qpel_uni_w[idx][!!my][!!mx](dst, dststride, src, srcstride,
  1270. block_h, s->sh.luma_log2_weight_denom,
  1271. luma_weight, luma_offset, mx, my, block_w);
  1272. }
  1273. /**
  1274. * 8.5.3.2.2.1 Luma sample bidirectional interpolation process
  1275. *
  1276. * @param s HEVC decoding context
  1277. * @param dst target buffer for block data at block position
  1278. * @param dststride stride of the dst buffer
  1279. * @param ref0 reference picture0 buffer at origin (0, 0)
  1280. * @param mv0 motion vector0 (relative to block position) to get pixel data from
  1281. * @param x_off horizontal position of block from origin (0, 0)
  1282. * @param y_off vertical position of block from origin (0, 0)
  1283. * @param block_w width of block
  1284. * @param block_h height of block
  1285. * @param ref1 reference picture1 buffer at origin (0, 0)
  1286. * @param mv1 motion vector1 (relative to block position) to get pixel data from
  1287. * @param current_mv current motion vector structure
  1288. */
  1289. static void luma_mc_bi(HEVCContext *s, uint8_t *dst, ptrdiff_t dststride,
  1290. AVFrame *ref0, const Mv *mv0, int x_off, int y_off,
  1291. int block_w, int block_h, AVFrame *ref1, const Mv *mv1, struct MvField *current_mv)
  1292. {
  1293. HEVCLocalContext *lc = s->HEVClc;
  1294. ptrdiff_t src0stride = ref0->linesize[0];
  1295. ptrdiff_t src1stride = ref1->linesize[0];
  1296. int pic_width = s->ps.sps->width;
  1297. int pic_height = s->ps.sps->height;
  1298. int mx0 = mv0->x & 3;
  1299. int my0 = mv0->y & 3;
  1300. int mx1 = mv1->x & 3;
  1301. int my1 = mv1->y & 3;
  1302. int weight_flag = (s->sh.slice_type == HEVC_SLICE_P && s->ps.pps->weighted_pred_flag) ||
  1303. (s->sh.slice_type == HEVC_SLICE_B && s->ps.pps->weighted_bipred_flag);
  1304. int x_off0 = x_off + (mv0->x >> 2);
  1305. int y_off0 = y_off + (mv0->y >> 2);
  1306. int x_off1 = x_off + (mv1->x >> 2);
  1307. int y_off1 = y_off + (mv1->y >> 2);
  1308. int idx = ff_hevc_pel_weight[block_w];
  1309. uint8_t *src0 = ref0->data[0] + y_off0 * src0stride + (int)((unsigned)x_off0 << s->ps.sps->pixel_shift);
  1310. uint8_t *src1 = ref1->data[0] + y_off1 * src1stride + (int)((unsigned)x_off1 << s->ps.sps->pixel_shift);
  1311. if (x_off0 < QPEL_EXTRA_BEFORE || y_off0 < QPEL_EXTRA_AFTER ||
  1312. x_off0 >= pic_width - block_w - QPEL_EXTRA_AFTER ||
  1313. y_off0 >= pic_height - block_h - QPEL_EXTRA_AFTER) {
  1314. const ptrdiff_t edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1315. int offset = QPEL_EXTRA_BEFORE * src0stride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1316. int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1317. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src0 - offset,
  1318. edge_emu_stride, src0stride,
  1319. block_w + QPEL_EXTRA,
  1320. block_h + QPEL_EXTRA,
  1321. x_off0 - QPEL_EXTRA_BEFORE, y_off0 - QPEL_EXTRA_BEFORE,
  1322. pic_width, pic_height);
  1323. src0 = lc->edge_emu_buffer + buf_offset;
  1324. src0stride = edge_emu_stride;
  1325. }
  1326. if (x_off1 < QPEL_EXTRA_BEFORE || y_off1 < QPEL_EXTRA_AFTER ||
  1327. x_off1 >= pic_width - block_w - QPEL_EXTRA_AFTER ||
  1328. y_off1 >= pic_height - block_h - QPEL_EXTRA_AFTER) {
  1329. const ptrdiff_t edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1330. int offset = QPEL_EXTRA_BEFORE * src1stride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1331. int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1332. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer2, src1 - offset,
  1333. edge_emu_stride, src1stride,
  1334. block_w + QPEL_EXTRA,
  1335. block_h + QPEL_EXTRA,
  1336. x_off1 - QPEL_EXTRA_BEFORE, y_off1 - QPEL_EXTRA_BEFORE,
  1337. pic_width, pic_height);
  1338. src1 = lc->edge_emu_buffer2 + buf_offset;
  1339. src1stride = edge_emu_stride;
  1340. }
  1341. s->hevcdsp.put_hevc_qpel[idx][!!my0][!!mx0](lc->tmp, src0, src0stride,
  1342. block_h, mx0, my0, block_w);
  1343. if (!weight_flag)
  1344. s->hevcdsp.put_hevc_qpel_bi[idx][!!my1][!!mx1](dst, dststride, src1, src1stride, lc->tmp,
  1345. block_h, mx1, my1, block_w);
  1346. else
  1347. s->hevcdsp.put_hevc_qpel_bi_w[idx][!!my1][!!mx1](dst, dststride, src1, src1stride, lc->tmp,
  1348. block_h, s->sh.luma_log2_weight_denom,
  1349. s->sh.luma_weight_l0[current_mv->ref_idx[0]],
  1350. s->sh.luma_weight_l1[current_mv->ref_idx[1]],
  1351. s->sh.luma_offset_l0[current_mv->ref_idx[0]],
  1352. s->sh.luma_offset_l1[current_mv->ref_idx[1]],
  1353. mx1, my1, block_w);
  1354. }
  1355. /**
  1356. * 8.5.3.2.2.2 Chroma sample uniprediction interpolation process
  1357. *
  1358. * @param s HEVC decoding context
  1359. * @param dst1 target buffer for block data at block position (U plane)
  1360. * @param dst2 target buffer for block data at block position (V plane)
  1361. * @param dststride stride of the dst1 and dst2 buffers
  1362. * @param ref reference picture buffer at origin (0, 0)
  1363. * @param mv motion vector (relative to block position) to get pixel data from
  1364. * @param x_off horizontal position of block from origin (0, 0)
  1365. * @param y_off vertical position of block from origin (0, 0)
  1366. * @param block_w width of block
  1367. * @param block_h height of block
  1368. * @param chroma_weight weighting factor applied to the chroma prediction
  1369. * @param chroma_offset additive offset applied to the chroma prediction value
  1370. */
  1371. static void chroma_mc_uni(HEVCContext *s, uint8_t *dst0,
  1372. ptrdiff_t dststride, uint8_t *src0, ptrdiff_t srcstride, int reflist,
  1373. int x_off, int y_off, int block_w, int block_h, struct MvField *current_mv, int chroma_weight, int chroma_offset)
  1374. {
  1375. HEVCLocalContext *lc = s->HEVClc;
  1376. int pic_width = s->ps.sps->width >> s->ps.sps->hshift[1];
  1377. int pic_height = s->ps.sps->height >> s->ps.sps->vshift[1];
  1378. const Mv *mv = &current_mv->mv[reflist];
  1379. int weight_flag = (s->sh.slice_type == HEVC_SLICE_P && s->ps.pps->weighted_pred_flag) ||
  1380. (s->sh.slice_type == HEVC_SLICE_B && s->ps.pps->weighted_bipred_flag);
  1381. int idx = ff_hevc_pel_weight[block_w];
  1382. int hshift = s->ps.sps->hshift[1];
  1383. int vshift = s->ps.sps->vshift[1];
  1384. intptr_t mx = av_mod_uintp2(mv->x, 2 + hshift);
  1385. intptr_t my = av_mod_uintp2(mv->y, 2 + vshift);
  1386. intptr_t _mx = mx << (1 - hshift);
  1387. intptr_t _my = my << (1 - vshift);
  1388. x_off += mv->x >> (2 + hshift);
  1389. y_off += mv->y >> (2 + vshift);
  1390. src0 += y_off * srcstride + (x_off * (1 << s->ps.sps->pixel_shift));
  1391. if (x_off < EPEL_EXTRA_BEFORE || y_off < EPEL_EXTRA_AFTER ||
  1392. x_off >= pic_width - block_w - EPEL_EXTRA_AFTER ||
  1393. y_off >= pic_height - block_h - EPEL_EXTRA_AFTER) {
  1394. const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1395. int offset0 = EPEL_EXTRA_BEFORE * (srcstride + (1 << s->ps.sps->pixel_shift));
  1396. int buf_offset0 = EPEL_EXTRA_BEFORE *
  1397. (edge_emu_stride + (1 << s->ps.sps->pixel_shift));
  1398. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src0 - offset0,
  1399. edge_emu_stride, srcstride,
  1400. block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
  1401. x_off - EPEL_EXTRA_BEFORE,
  1402. y_off - EPEL_EXTRA_BEFORE,
  1403. pic_width, pic_height);
  1404. src0 = lc->edge_emu_buffer + buf_offset0;
  1405. srcstride = edge_emu_stride;
  1406. }
  1407. if (!weight_flag)
  1408. s->hevcdsp.put_hevc_epel_uni[idx][!!my][!!mx](dst0, dststride, src0, srcstride,
  1409. block_h, _mx, _my, block_w);
  1410. else
  1411. s->hevcdsp.put_hevc_epel_uni_w[idx][!!my][!!mx](dst0, dststride, src0, srcstride,
  1412. block_h, s->sh.chroma_log2_weight_denom,
  1413. chroma_weight, chroma_offset, _mx, _my, block_w);
  1414. }
  1415. /**
  1416. * 8.5.3.2.2.2 Chroma sample bidirectional interpolation process
  1417. *
  1418. * @param s HEVC decoding context
  1419. * @param dst target buffer for block data at block position
  1420. * @param dststride stride of the dst buffer
  1421. * @param ref0 reference picture0 buffer at origin (0, 0)
  1422. * @param mv0 motion vector0 (relative to block position) to get pixel data from
  1423. * @param x_off horizontal position of block from origin (0, 0)
  1424. * @param y_off vertical position of block from origin (0, 0)
  1425. * @param block_w width of block
  1426. * @param block_h height of block
  1427. * @param ref1 reference picture1 buffer at origin (0, 0)
  1428. * @param mv1 motion vector1 (relative to block position) to get pixel data from
  1429. * @param current_mv current motion vector structure
  1430. * @param cidx chroma component(cb, cr)
  1431. */
  1432. static void chroma_mc_bi(HEVCContext *s, uint8_t *dst0, ptrdiff_t dststride, AVFrame *ref0, AVFrame *ref1,
  1433. int x_off, int y_off, int block_w, int block_h, struct MvField *current_mv, int cidx)
  1434. {
  1435. HEVCLocalContext *lc = s->HEVClc;
  1436. uint8_t *src1 = ref0->data[cidx+1];
  1437. uint8_t *src2 = ref1->data[cidx+1];
  1438. ptrdiff_t src1stride = ref0->linesize[cidx+1];
  1439. ptrdiff_t src2stride = ref1->linesize[cidx+1];
  1440. int weight_flag = (s->sh.slice_type == HEVC_SLICE_P && s->ps.pps->weighted_pred_flag) ||
  1441. (s->sh.slice_type == HEVC_SLICE_B && s->ps.pps->weighted_bipred_flag);
  1442. int pic_width = s->ps.sps->width >> s->ps.sps->hshift[1];
  1443. int pic_height = s->ps.sps->height >> s->ps.sps->vshift[1];
  1444. Mv *mv0 = &current_mv->mv[0];
  1445. Mv *mv1 = &current_mv->mv[1];
  1446. int hshift = s->ps.sps->hshift[1];
  1447. int vshift = s->ps.sps->vshift[1];
  1448. intptr_t mx0 = av_mod_uintp2(mv0->x, 2 + hshift);
  1449. intptr_t my0 = av_mod_uintp2(mv0->y, 2 + vshift);
  1450. intptr_t mx1 = av_mod_uintp2(mv1->x, 2 + hshift);
  1451. intptr_t my1 = av_mod_uintp2(mv1->y, 2 + vshift);
  1452. intptr_t _mx0 = mx0 << (1 - hshift);
  1453. intptr_t _my0 = my0 << (1 - vshift);
  1454. intptr_t _mx1 = mx1 << (1 - hshift);
  1455. intptr_t _my1 = my1 << (1 - vshift);
  1456. int x_off0 = x_off + (mv0->x >> (2 + hshift));
  1457. int y_off0 = y_off + (mv0->y >> (2 + vshift));
  1458. int x_off1 = x_off + (mv1->x >> (2 + hshift));
  1459. int y_off1 = y_off + (mv1->y >> (2 + vshift));
  1460. int idx = ff_hevc_pel_weight[block_w];
  1461. src1 += y_off0 * src1stride + (int)((unsigned)x_off0 << s->ps.sps->pixel_shift);
  1462. src2 += y_off1 * src2stride + (int)((unsigned)x_off1 << s->ps.sps->pixel_shift);
  1463. if (x_off0 < EPEL_EXTRA_BEFORE || y_off0 < EPEL_EXTRA_AFTER ||
  1464. x_off0 >= pic_width - block_w - EPEL_EXTRA_AFTER ||
  1465. y_off0 >= pic_height - block_h - EPEL_EXTRA_AFTER) {
  1466. const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1467. int offset1 = EPEL_EXTRA_BEFORE * (src1stride + (1 << s->ps.sps->pixel_shift));
  1468. int buf_offset1 = EPEL_EXTRA_BEFORE *
  1469. (edge_emu_stride + (1 << s->ps.sps->pixel_shift));
  1470. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src1 - offset1,
  1471. edge_emu_stride, src1stride,
  1472. block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
  1473. x_off0 - EPEL_EXTRA_BEFORE,
  1474. y_off0 - EPEL_EXTRA_BEFORE,
  1475. pic_width, pic_height);
  1476. src1 = lc->edge_emu_buffer + buf_offset1;
  1477. src1stride = edge_emu_stride;
  1478. }
  1479. if (x_off1 < EPEL_EXTRA_BEFORE || y_off1 < EPEL_EXTRA_AFTER ||
  1480. x_off1 >= pic_width - block_w - EPEL_EXTRA_AFTER ||
  1481. y_off1 >= pic_height - block_h - EPEL_EXTRA_AFTER) {
  1482. const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1483. int offset1 = EPEL_EXTRA_BEFORE * (src2stride + (1 << s->ps.sps->pixel_shift));
  1484. int buf_offset1 = EPEL_EXTRA_BEFORE *
  1485. (edge_emu_stride + (1 << s->ps.sps->pixel_shift));
  1486. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer2, src2 - offset1,
  1487. edge_emu_stride, src2stride,
  1488. block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
  1489. x_off1 - EPEL_EXTRA_BEFORE,
  1490. y_off1 - EPEL_EXTRA_BEFORE,
  1491. pic_width, pic_height);
  1492. src2 = lc->edge_emu_buffer2 + buf_offset1;
  1493. src2stride = edge_emu_stride;
  1494. }
  1495. s->hevcdsp.put_hevc_epel[idx][!!my0][!!mx0](lc->tmp, src1, src1stride,
  1496. block_h, _mx0, _my0, block_w);
  1497. if (!weight_flag)
  1498. s->hevcdsp.put_hevc_epel_bi[idx][!!my1][!!mx1](dst0, s->frame->linesize[cidx+1],
  1499. src2, src2stride, lc->tmp,
  1500. block_h, _mx1, _my1, block_w);
  1501. else
  1502. s->hevcdsp.put_hevc_epel_bi_w[idx][!!my1][!!mx1](dst0, s->frame->linesize[cidx+1],
  1503. src2, src2stride, lc->tmp,
  1504. block_h,
  1505. s->sh.chroma_log2_weight_denom,
  1506. s->sh.chroma_weight_l0[current_mv->ref_idx[0]][cidx],
  1507. s->sh.chroma_weight_l1[current_mv->ref_idx[1]][cidx],
  1508. s->sh.chroma_offset_l0[current_mv->ref_idx[0]][cidx],
  1509. s->sh.chroma_offset_l1[current_mv->ref_idx[1]][cidx],
  1510. _mx1, _my1, block_w);
  1511. }
  1512. static void hevc_await_progress(HEVCContext *s, HEVCFrame *ref,
  1513. const Mv *mv, int y0, int height)
  1514. {
  1515. if (s->threads_type == FF_THREAD_FRAME ) {
  1516. int y = FFMAX(0, (mv->y >> 2) + y0 + height + 9);
  1517. ff_thread_await_progress(&ref->tf, y, 0);
  1518. }
  1519. }
  1520. static void hevc_luma_mv_mvp_mode(HEVCContext *s, int x0, int y0, int nPbW,
  1521. int nPbH, int log2_cb_size, int part_idx,
  1522. int merge_idx, MvField *mv)
  1523. {
  1524. HEVCLocalContext *lc = s->HEVClc;
  1525. enum InterPredIdc inter_pred_idc = PRED_L0;
  1526. int mvp_flag;
  1527. ff_hevc_set_neighbour_available(s, x0, y0, nPbW, nPbH);
  1528. mv->pred_flag = 0;
  1529. if (s->sh.slice_type == HEVC_SLICE_B)
  1530. inter_pred_idc = ff_hevc_inter_pred_idc_decode(s, nPbW, nPbH);
  1531. if (inter_pred_idc != PRED_L1) {
  1532. if (s->sh.nb_refs[L0])
  1533. mv->ref_idx[0]= ff_hevc_ref_idx_lx_decode(s, s->sh.nb_refs[L0]);
  1534. mv->pred_flag = PF_L0;
  1535. ff_hevc_hls_mvd_coding(s, x0, y0, 0);
  1536. mvp_flag = ff_hevc_mvp_lx_flag_decode(s);
  1537. ff_hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
  1538. part_idx, merge_idx, mv, mvp_flag, 0);
  1539. mv->mv[0].x += lc->pu.mvd.x;
  1540. mv->mv[0].y += lc->pu.mvd.y;
  1541. }
  1542. if (inter_pred_idc != PRED_L0) {
  1543. if (s->sh.nb_refs[L1])
  1544. mv->ref_idx[1]= ff_hevc_ref_idx_lx_decode(s, s->sh.nb_refs[L1]);
  1545. if (s->sh.mvd_l1_zero_flag == 1 && inter_pred_idc == PRED_BI) {
  1546. AV_ZERO32(&lc->pu.mvd);
  1547. } else {
  1548. ff_hevc_hls_mvd_coding(s, x0, y0, 1);
  1549. }
  1550. mv->pred_flag += PF_L1;
  1551. mvp_flag = ff_hevc_mvp_lx_flag_decode(s);
  1552. ff_hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
  1553. part_idx, merge_idx, mv, mvp_flag, 1);
  1554. mv->mv[1].x += lc->pu.mvd.x;
  1555. mv->mv[1].y += lc->pu.mvd.y;
  1556. }
  1557. }
  1558. static void hls_prediction_unit(HEVCContext *s, int x0, int y0,
  1559. int nPbW, int nPbH,
  1560. int log2_cb_size, int partIdx, int idx)
  1561. {
  1562. #define POS(c_idx, x, y) \
  1563. &s->frame->data[c_idx][((y) >> s->ps.sps->vshift[c_idx]) * s->frame->linesize[c_idx] + \
  1564. (((x) >> s->ps.sps->hshift[c_idx]) << s->ps.sps->pixel_shift)]
  1565. HEVCLocalContext *lc = s->HEVClc;
  1566. int merge_idx = 0;
  1567. struct MvField current_mv = {{{ 0 }}};
  1568. int min_pu_width = s->ps.sps->min_pu_width;
  1569. MvField *tab_mvf = s->ref->tab_mvf;
  1570. RefPicList *refPicList = s->ref->refPicList;
  1571. HEVCFrame *ref0 = NULL, *ref1 = NULL;
  1572. uint8_t *dst0 = POS(0, x0, y0);
  1573. uint8_t *dst1 = POS(1, x0, y0);
  1574. uint8_t *dst2 = POS(2, x0, y0);
  1575. int log2_min_cb_size = s->ps.sps->log2_min_cb_size;
  1576. int min_cb_width = s->ps.sps->min_cb_width;
  1577. int x_cb = x0 >> log2_min_cb_size;
  1578. int y_cb = y0 >> log2_min_cb_size;
  1579. int x_pu, y_pu;
  1580. int i, j;
  1581. int skip_flag = SAMPLE_CTB(s->skip_flag, x_cb, y_cb);
  1582. if (!skip_flag)
  1583. lc->pu.merge_flag = ff_hevc_merge_flag_decode(s);
  1584. if (skip_flag || lc->pu.merge_flag) {
  1585. if (s->sh.max_num_merge_cand > 1)
  1586. merge_idx = ff_hevc_merge_idx_decode(s);
  1587. else
  1588. merge_idx = 0;
  1589. ff_hevc_luma_mv_merge_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
  1590. partIdx, merge_idx, &current_mv);
  1591. } else {
  1592. hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
  1593. partIdx, merge_idx, &current_mv);
  1594. }
  1595. x_pu = x0 >> s->ps.sps->log2_min_pu_size;
  1596. y_pu = y0 >> s->ps.sps->log2_min_pu_size;
  1597. for (j = 0; j < nPbH >> s->ps.sps->log2_min_pu_size; j++)
  1598. for (i = 0; i < nPbW >> s->ps.sps->log2_min_pu_size; i++)
  1599. tab_mvf[(y_pu + j) * min_pu_width + x_pu + i] = current_mv;
  1600. if (current_mv.pred_flag & PF_L0) {
  1601. ref0 = refPicList[0].ref[current_mv.ref_idx[0]];
  1602. if (!ref0)
  1603. return;
  1604. hevc_await_progress(s, ref0, &current_mv.mv[0], y0, nPbH);
  1605. }
  1606. if (current_mv.pred_flag & PF_L1) {
  1607. ref1 = refPicList[1].ref[current_mv.ref_idx[1]];
  1608. if (!ref1)
  1609. return;
  1610. hevc_await_progress(s, ref1, &current_mv.mv[1], y0, nPbH);
  1611. }
  1612. if (current_mv.pred_flag == PF_L0) {
  1613. int x0_c = x0 >> s->ps.sps->hshift[1];
  1614. int y0_c = y0 >> s->ps.sps->vshift[1];
  1615. int nPbW_c = nPbW >> s->ps.sps->hshift[1];
  1616. int nPbH_c = nPbH >> s->ps.sps->vshift[1];
  1617. luma_mc_uni(s, dst0, s->frame->linesize[0], ref0->frame,
  1618. &current_mv.mv[0], x0, y0, nPbW, nPbH,
  1619. s->sh.luma_weight_l0[current_mv.ref_idx[0]],
  1620. s->sh.luma_offset_l0[current_mv.ref_idx[0]]);
  1621. if (s->ps.sps->chroma_format_idc) {
  1622. chroma_mc_uni(s, dst1, s->frame->linesize[1], ref0->frame->data[1], ref0->frame->linesize[1],
  1623. 0, x0_c, y0_c, nPbW_c, nPbH_c, &current_mv,
  1624. s->sh.chroma_weight_l0[current_mv.ref_idx[0]][0], s->sh.chroma_offset_l0[current_mv.ref_idx[0]][0]);
  1625. chroma_mc_uni(s, dst2, s->frame->linesize[2], ref0->frame->data[2], ref0->frame->linesize[2],
  1626. 0, x0_c, y0_c, nPbW_c, nPbH_c, &current_mv,
  1627. s->sh.chroma_weight_l0[current_mv.ref_idx[0]][1], s->sh.chroma_offset_l0[current_mv.ref_idx[0]][1]);
  1628. }
  1629. } else if (current_mv.pred_flag == PF_L1) {
  1630. int x0_c = x0 >> s->ps.sps->hshift[1];
  1631. int y0_c = y0 >> s->ps.sps->vshift[1];
  1632. int nPbW_c = nPbW >> s->ps.sps->hshift[1];
  1633. int nPbH_c = nPbH >> s->ps.sps->vshift[1];
  1634. luma_mc_uni(s, dst0, s->frame->linesize[0], ref1->frame,
  1635. &current_mv.mv[1], x0, y0, nPbW, nPbH,
  1636. s->sh.luma_weight_l1[current_mv.ref_idx[1]],
  1637. s->sh.luma_offset_l1[current_mv.ref_idx[1]]);
  1638. if (s->ps.sps->chroma_format_idc) {
  1639. chroma_mc_uni(s, dst1, s->frame->linesize[1], ref1->frame->data[1], ref1->frame->linesize[1],
  1640. 1, x0_c, y0_c, nPbW_c, nPbH_c, &current_mv,
  1641. s->sh.chroma_weight_l1[current_mv.ref_idx[1]][0], s->sh.chroma_offset_l1[current_mv.ref_idx[1]][0]);
  1642. chroma_mc_uni(s, dst2, s->frame->linesize[2], ref1->frame->data[2], ref1->frame->linesize[2],
  1643. 1, x0_c, y0_c, nPbW_c, nPbH_c, &current_mv,
  1644. s->sh.chroma_weight_l1[current_mv.ref_idx[1]][1], s->sh.chroma_offset_l1[current_mv.ref_idx[1]][1]);
  1645. }
  1646. } else if (current_mv.pred_flag == PF_BI) {
  1647. int x0_c = x0 >> s->ps.sps->hshift[1];
  1648. int y0_c = y0 >> s->ps.sps->vshift[1];
  1649. int nPbW_c = nPbW >> s->ps.sps->hshift[1];
  1650. int nPbH_c = nPbH >> s->ps.sps->vshift[1];
  1651. luma_mc_bi(s, dst0, s->frame->linesize[0], ref0->frame,
  1652. &current_mv.mv[0], x0, y0, nPbW, nPbH,
  1653. ref1->frame, &current_mv.mv[1], &current_mv);
  1654. if (s->ps.sps->chroma_format_idc) {
  1655. chroma_mc_bi(s, dst1, s->frame->linesize[1], ref0->frame, ref1->frame,
  1656. x0_c, y0_c, nPbW_c, nPbH_c, &current_mv, 0);
  1657. chroma_mc_bi(s, dst2, s->frame->linesize[2], ref0->frame, ref1->frame,
  1658. x0_c, y0_c, nPbW_c, nPbH_c, &current_mv, 1);
  1659. }
  1660. }
  1661. }
  1662. /**
  1663. * 8.4.1
  1664. */
  1665. static int luma_intra_pred_mode(HEVCContext *s, int x0, int y0, int pu_size,
  1666. int prev_intra_luma_pred_flag)
  1667. {
  1668. HEVCLocalContext *lc = s->HEVClc;
  1669. int x_pu = x0 >> s->ps.sps->log2_min_pu_size;
  1670. int y_pu = y0 >> s->ps.sps->log2_min_pu_size;
  1671. int min_pu_width = s->ps.sps->min_pu_width;
  1672. int size_in_pus = pu_size >> s->ps.sps->log2_min_pu_size;
  1673. int x0b = av_mod_uintp2(x0, s->ps.sps->log2_ctb_size);
  1674. int y0b = av_mod_uintp2(y0, s->ps.sps->log2_ctb_size);
  1675. int cand_up = (lc->ctb_up_flag || y0b) ?
  1676. s->tab_ipm[(y_pu - 1) * min_pu_width + x_pu] : INTRA_DC;
  1677. int cand_left = (lc->ctb_left_flag || x0b) ?
  1678. s->tab_ipm[y_pu * min_pu_width + x_pu - 1] : INTRA_DC;
  1679. int y_ctb = (y0 >> (s->ps.sps->log2_ctb_size)) << (s->ps.sps->log2_ctb_size);
  1680. MvField *tab_mvf = s->ref->tab_mvf;
  1681. int intra_pred_mode;
  1682. int candidate[3];
  1683. int i, j;
  1684. // intra_pred_mode prediction does not cross vertical CTB boundaries
  1685. if ((y0 - 1) < y_ctb)
  1686. cand_up = INTRA_DC;
  1687. if (cand_left == cand_up) {
  1688. if (cand_left < 2) {
  1689. candidate[0] = INTRA_PLANAR;
  1690. candidate[1] = INTRA_DC;
  1691. candidate[2] = INTRA_ANGULAR_26;
  1692. } else {
  1693. candidate[0] = cand_left;
  1694. candidate[1] = 2 + ((cand_left - 2 - 1 + 32) & 31);
  1695. candidate[2] = 2 + ((cand_left - 2 + 1) & 31);
  1696. }
  1697. } else {
  1698. candidate[0] = cand_left;
  1699. candidate[1] = cand_up;
  1700. if (candidate[0] != INTRA_PLANAR && candidate[1] != INTRA_PLANAR) {
  1701. candidate[2] = INTRA_PLANAR;
  1702. } else if (candidate[0] != INTRA_DC && candidate[1] != INTRA_DC) {
  1703. candidate[2] = INTRA_DC;
  1704. } else {
  1705. candidate[2] = INTRA_ANGULAR_26;
  1706. }
  1707. }
  1708. if (prev_intra_luma_pred_flag) {
  1709. intra_pred_mode = candidate[lc->pu.mpm_idx];
  1710. } else {
  1711. if (candidate[0] > candidate[1])
  1712. FFSWAP(uint8_t, candidate[0], candidate[1]);
  1713. if (candidate[0] > candidate[2])
  1714. FFSWAP(uint8_t, candidate[0], candidate[2]);
  1715. if (candidate[1] > candidate[2])
  1716. FFSWAP(uint8_t, candidate[1], candidate[2]);
  1717. intra_pred_mode = lc->pu.rem_intra_luma_pred_mode;
  1718. for (i = 0; i < 3; i++)
  1719. if (intra_pred_mode >= candidate[i])
  1720. intra_pred_mode++;
  1721. }
  1722. /* write the intra prediction units into the mv array */
  1723. if (!size_in_pus)
  1724. size_in_pus = 1;
  1725. for (i = 0; i < size_in_pus; i++) {
  1726. memset(&s->tab_ipm[(y_pu + i) * min_pu_width + x_pu],
  1727. intra_pred_mode, size_in_pus);
  1728. for (j = 0; j < size_in_pus; j++) {
  1729. tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].pred_flag = PF_INTRA;
  1730. }
  1731. }
  1732. return intra_pred_mode;
  1733. }
  1734. static av_always_inline void set_ct_depth(HEVCContext *s, int x0, int y0,
  1735. int log2_cb_size, int ct_depth)
  1736. {
  1737. int length = (1 << log2_cb_size) >> s->ps.sps->log2_min_cb_size;
  1738. int x_cb = x0 >> s->ps.sps->log2_min_cb_size;
  1739. int y_cb = y0 >> s->ps.sps->log2_min_cb_size;
  1740. int y;
  1741. for (y = 0; y < length; y++)
  1742. memset(&s->tab_ct_depth[(y_cb + y) * s->ps.sps->min_cb_width + x_cb],
  1743. ct_depth, length);
  1744. }
  1745. static const uint8_t tab_mode_idx[] = {
  1746. 0, 1, 2, 2, 2, 2, 3, 5, 7, 8, 10, 12, 13, 15, 17, 18, 19, 20,
  1747. 21, 22, 23, 23, 24, 24, 25, 25, 26, 27, 27, 28, 28, 29, 29, 30, 31};
  1748. static void intra_prediction_unit(HEVCContext *s, int x0, int y0,
  1749. int log2_cb_size)
  1750. {
  1751. HEVCLocalContext *lc = s->HEVClc;
  1752. static const uint8_t intra_chroma_table[4] = { 0, 26, 10, 1 };
  1753. uint8_t prev_intra_luma_pred_flag[4];
  1754. int split = lc->cu.part_mode == PART_NxN;
  1755. int pb_size = (1 << log2_cb_size) >> split;
  1756. int side = split + 1;
  1757. int chroma_mode;
  1758. int i, j;
  1759. for (i = 0; i < side; i++)
  1760. for (j = 0; j < side; j++)
  1761. prev_intra_luma_pred_flag[2 * i + j] = ff_hevc_prev_intra_luma_pred_flag_decode(s);
  1762. for (i = 0; i < side; i++) {
  1763. for (j = 0; j < side; j++) {
  1764. if (prev_intra_luma_pred_flag[2 * i + j])
  1765. lc->pu.mpm_idx = ff_hevc_mpm_idx_decode(s);
  1766. else
  1767. lc->pu.rem_intra_luma_pred_mode = ff_hevc_rem_intra_luma_pred_mode_decode(s);
  1768. lc->pu.intra_pred_mode[2 * i + j] =
  1769. luma_intra_pred_mode(s, x0 + pb_size * j, y0 + pb_size * i, pb_size,
  1770. prev_intra_luma_pred_flag[2 * i + j]);
  1771. }
  1772. }
  1773. if (s->ps.sps->chroma_format_idc == 3) {
  1774. for (i = 0; i < side; i++) {
  1775. for (j = 0; j < side; j++) {
  1776. lc->pu.chroma_mode_c[2 * i + j] = chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(s);
  1777. if (chroma_mode != 4) {
  1778. if (lc->pu.intra_pred_mode[2 * i + j] == intra_chroma_table[chroma_mode])
  1779. lc->pu.intra_pred_mode_c[2 * i + j] = 34;
  1780. else
  1781. lc->pu.intra_pred_mode_c[2 * i + j] = intra_chroma_table[chroma_mode];
  1782. } else {
  1783. lc->pu.intra_pred_mode_c[2 * i + j] = lc->pu.intra_pred_mode[2 * i + j];
  1784. }
  1785. }
  1786. }
  1787. } else if (s->ps.sps->chroma_format_idc == 2) {
  1788. int mode_idx;
  1789. lc->pu.chroma_mode_c[0] = chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(s);
  1790. if (chroma_mode != 4) {
  1791. if (lc->pu.intra_pred_mode[0] == intra_chroma_table[chroma_mode])
  1792. mode_idx = 34;
  1793. else
  1794. mode_idx = intra_chroma_table[chroma_mode];
  1795. } else {
  1796. mode_idx = lc->pu.intra_pred_mode[0];
  1797. }
  1798. lc->pu.intra_pred_mode_c[0] = tab_mode_idx[mode_idx];
  1799. } else if (s->ps.sps->chroma_format_idc != 0) {
  1800. chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(s);
  1801. if (chroma_mode != 4) {
  1802. if (lc->pu.intra_pred_mode[0] == intra_chroma_table[chroma_mode])
  1803. lc->pu.intra_pred_mode_c[0] = 34;
  1804. else
  1805. lc->pu.intra_pred_mode_c[0] = intra_chroma_table[chroma_mode];
  1806. } else {
  1807. lc->pu.intra_pred_mode_c[0] = lc->pu.intra_pred_mode[0];
  1808. }
  1809. }
  1810. }
  1811. static void intra_prediction_unit_default_value(HEVCContext *s,
  1812. int x0, int y0,
  1813. int log2_cb_size)
  1814. {
  1815. HEVCLocalContext *lc = s->HEVClc;
  1816. int pb_size = 1 << log2_cb_size;
  1817. int size_in_pus = pb_size >> s->ps.sps->log2_min_pu_size;
  1818. int min_pu_width = s->ps.sps->min_pu_width;
  1819. MvField *tab_mvf = s->ref->tab_mvf;
  1820. int x_pu = x0 >> s->ps.sps->log2_min_pu_size;
  1821. int y_pu = y0 >> s->ps.sps->log2_min_pu_size;
  1822. int j, k;
  1823. if (size_in_pus == 0)
  1824. size_in_pus = 1;
  1825. for (j = 0; j < size_in_pus; j++)
  1826. memset(&s->tab_ipm[(y_pu + j) * min_pu_width + x_pu], INTRA_DC, size_in_pus);
  1827. if (lc->cu.pred_mode == MODE_INTRA)
  1828. for (j = 0; j < size_in_pus; j++)
  1829. for (k = 0; k < size_in_pus; k++)
  1830. tab_mvf[(y_pu + j) * min_pu_width + x_pu + k].pred_flag = PF_INTRA;
  1831. }
  1832. static int hls_coding_unit(HEVCContext *s, int x0, int y0, int log2_cb_size)
  1833. {
  1834. int cb_size = 1 << log2_cb_size;
  1835. HEVCLocalContext *lc = s->HEVClc;
  1836. int log2_min_cb_size = s->ps.sps->log2_min_cb_size;
  1837. int length = cb_size >> log2_min_cb_size;
  1838. int min_cb_width = s->ps.sps->min_cb_width;
  1839. int x_cb = x0 >> log2_min_cb_size;
  1840. int y_cb = y0 >> log2_min_cb_size;
  1841. int idx = log2_cb_size - 2;
  1842. int qp_block_mask = (1<<(s->ps.sps->log2_ctb_size - s->ps.pps->diff_cu_qp_delta_depth)) - 1;
  1843. int x, y, ret;
  1844. lc->cu.x = x0;
  1845. lc->cu.y = y0;
  1846. lc->cu.pred_mode = MODE_INTRA;
  1847. lc->cu.part_mode = PART_2Nx2N;
  1848. lc->cu.intra_split_flag = 0;
  1849. SAMPLE_CTB(s->skip_flag, x_cb, y_cb) = 0;
  1850. for (x = 0; x < 4; x++)
  1851. lc->pu.intra_pred_mode[x] = 1;
  1852. if (s->ps.pps->transquant_bypass_enable_flag) {
  1853. lc->cu.cu_transquant_bypass_flag = ff_hevc_cu_transquant_bypass_flag_decode(s);
  1854. if (lc->cu.cu_transquant_bypass_flag)
  1855. set_deblocking_bypass(s, x0, y0, log2_cb_size);
  1856. } else
  1857. lc->cu.cu_transquant_bypass_flag = 0;
  1858. if (s->sh.slice_type != HEVC_SLICE_I) {
  1859. uint8_t skip_flag = ff_hevc_skip_flag_decode(s, x0, y0, x_cb, y_cb);
  1860. x = y_cb * min_cb_width + x_cb;
  1861. for (y = 0; y < length; y++) {
  1862. memset(&s->skip_flag[x], skip_flag, length);
  1863. x += min_cb_width;
  1864. }
  1865. lc->cu.pred_mode = skip_flag ? MODE_SKIP : MODE_INTER;
  1866. } else {
  1867. x = y_cb * min_cb_width + x_cb;
  1868. for (y = 0; y < length; y++) {
  1869. memset(&s->skip_flag[x], 0, length);
  1870. x += min_cb_width;
  1871. }
  1872. }
  1873. if (SAMPLE_CTB(s->skip_flag, x_cb, y_cb)) {
  1874. hls_prediction_unit(s, x0, y0, cb_size, cb_size, log2_cb_size, 0, idx);
  1875. intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
  1876. if (!s->sh.disable_deblocking_filter_flag)
  1877. ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
  1878. } else {
  1879. int pcm_flag = 0;
  1880. if (s->sh.slice_type != HEVC_SLICE_I)
  1881. lc->cu.pred_mode = ff_hevc_pred_mode_decode(s);
  1882. if (lc->cu.pred_mode != MODE_INTRA ||
  1883. log2_cb_size == s->ps.sps->log2_min_cb_size) {
  1884. lc->cu.part_mode = ff_hevc_part_mode_decode(s, log2_cb_size);
  1885. lc->cu.intra_split_flag = lc->cu.part_mode == PART_NxN &&
  1886. lc->cu.pred_mode == MODE_INTRA;
  1887. }
  1888. if (lc->cu.pred_mode == MODE_INTRA) {
  1889. if (lc->cu.part_mode == PART_2Nx2N && s->ps.sps->pcm_enabled_flag &&
  1890. log2_cb_size >= s->ps.sps->pcm.log2_min_pcm_cb_size &&
  1891. log2_cb_size <= s->ps.sps->pcm.log2_max_pcm_cb_size) {
  1892. pcm_flag = ff_hevc_pcm_flag_decode(s);
  1893. }
  1894. if (pcm_flag) {
  1895. intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
  1896. ret = hls_pcm_sample(s, x0, y0, log2_cb_size);
  1897. if (s->ps.sps->pcm.loop_filter_disable_flag)
  1898. set_deblocking_bypass(s, x0, y0, log2_cb_size);
  1899. if (ret < 0)
  1900. return ret;
  1901. } else {
  1902. intra_prediction_unit(s, x0, y0, log2_cb_size);
  1903. }
  1904. } else {
  1905. intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
  1906. switch (lc->cu.part_mode) {
  1907. case PART_2Nx2N:
  1908. hls_prediction_unit(s, x0, y0, cb_size, cb_size, log2_cb_size, 0, idx);
  1909. break;
  1910. case PART_2NxN:
  1911. hls_prediction_unit(s, x0, y0, cb_size, cb_size / 2, log2_cb_size, 0, idx);
  1912. hls_prediction_unit(s, x0, y0 + cb_size / 2, cb_size, cb_size / 2, log2_cb_size, 1, idx);
  1913. break;
  1914. case PART_Nx2N:
  1915. hls_prediction_unit(s, x0, y0, cb_size / 2, cb_size, log2_cb_size, 0, idx - 1);
  1916. hls_prediction_unit(s, x0 + cb_size / 2, y0, cb_size / 2, cb_size, log2_cb_size, 1, idx - 1);
  1917. break;
  1918. case PART_2NxnU:
  1919. hls_prediction_unit(s, x0, y0, cb_size, cb_size / 4, log2_cb_size, 0, idx);
  1920. hls_prediction_unit(s, x0, y0 + cb_size / 4, cb_size, cb_size * 3 / 4, log2_cb_size, 1, idx);
  1921. break;
  1922. case PART_2NxnD:
  1923. hls_prediction_unit(s, x0, y0, cb_size, cb_size * 3 / 4, log2_cb_size, 0, idx);
  1924. hls_prediction_unit(s, x0, y0 + cb_size * 3 / 4, cb_size, cb_size / 4, log2_cb_size, 1, idx);
  1925. break;
  1926. case PART_nLx2N:
  1927. hls_prediction_unit(s, x0, y0, cb_size / 4, cb_size, log2_cb_size, 0, idx - 2);
  1928. hls_prediction_unit(s, x0 + cb_size / 4, y0, cb_size * 3 / 4, cb_size, log2_cb_size, 1, idx - 2);
  1929. break;
  1930. case PART_nRx2N:
  1931. hls_prediction_unit(s, x0, y0, cb_size * 3 / 4, cb_size, log2_cb_size, 0, idx - 2);
  1932. hls_prediction_unit(s, x0 + cb_size * 3 / 4, y0, cb_size / 4, cb_size, log2_cb_size, 1, idx - 2);
  1933. break;
  1934. case PART_NxN:
  1935. hls_prediction_unit(s, x0, y0, cb_size / 2, cb_size / 2, log2_cb_size, 0, idx - 1);
  1936. hls_prediction_unit(s, x0 + cb_size / 2, y0, cb_size / 2, cb_size / 2, log2_cb_size, 1, idx - 1);
  1937. hls_prediction_unit(s, x0, y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 2, idx - 1);
  1938. hls_prediction_unit(s, x0 + cb_size / 2, y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 3, idx - 1);
  1939. break;
  1940. }
  1941. }
  1942. if (!pcm_flag) {
  1943. int rqt_root_cbf = 1;
  1944. if (lc->cu.pred_mode != MODE_INTRA &&
  1945. !(lc->cu.part_mode == PART_2Nx2N && lc->pu.merge_flag)) {
  1946. rqt_root_cbf = ff_hevc_no_residual_syntax_flag_decode(s);
  1947. }
  1948. if (rqt_root_cbf) {
  1949. const static int cbf[2] = { 0 };
  1950. lc->cu.max_trafo_depth = lc->cu.pred_mode == MODE_INTRA ?
  1951. s->ps.sps->max_transform_hierarchy_depth_intra + lc->cu.intra_split_flag :
  1952. s->ps.sps->max_transform_hierarchy_depth_inter;
  1953. ret = hls_transform_tree(s, x0, y0, x0, y0, x0, y0,
  1954. log2_cb_size,
  1955. log2_cb_size, 0, 0, cbf, cbf);
  1956. if (ret < 0)
  1957. return ret;
  1958. } else {
  1959. if (!s->sh.disable_deblocking_filter_flag)
  1960. ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
  1961. }
  1962. }
  1963. }
  1964. if (s->ps.pps->cu_qp_delta_enabled_flag && lc->tu.is_cu_qp_delta_coded == 0)
  1965. ff_hevc_set_qPy(s, x0, y0, log2_cb_size);
  1966. x = y_cb * min_cb_width + x_cb;
  1967. for (y = 0; y < length; y++) {
  1968. memset(&s->qp_y_tab[x], lc->qp_y, length);
  1969. x += min_cb_width;
  1970. }
  1971. if(((x0 + (1<<log2_cb_size)) & qp_block_mask) == 0 &&
  1972. ((y0 + (1<<log2_cb_size)) & qp_block_mask) == 0) {
  1973. lc->qPy_pred = lc->qp_y;
  1974. }
  1975. set_ct_depth(s, x0, y0, log2_cb_size, lc->ct_depth);
  1976. return 0;
  1977. }
  1978. static int hls_coding_quadtree(HEVCContext *s, int x0, int y0,
  1979. int log2_cb_size, int cb_depth)
  1980. {
  1981. HEVCLocalContext *lc = s->HEVClc;
  1982. const int cb_size = 1 << log2_cb_size;
  1983. int ret;
  1984. int split_cu;
  1985. lc->ct_depth = cb_depth;
  1986. if (x0 + cb_size <= s->ps.sps->width &&
  1987. y0 + cb_size <= s->ps.sps->height &&
  1988. log2_cb_size > s->ps.sps->log2_min_cb_size) {
  1989. split_cu = ff_hevc_split_coding_unit_flag_decode(s, cb_depth, x0, y0);
  1990. } else {
  1991. split_cu = (log2_cb_size > s->ps.sps->log2_min_cb_size);
  1992. }
  1993. if (s->ps.pps->cu_qp_delta_enabled_flag &&
  1994. log2_cb_size >= s->ps.sps->log2_ctb_size - s->ps.pps->diff_cu_qp_delta_depth) {
  1995. lc->tu.is_cu_qp_delta_coded = 0;
  1996. lc->tu.cu_qp_delta = 0;
  1997. }
  1998. if (s->sh.cu_chroma_qp_offset_enabled_flag &&
  1999. log2_cb_size >= s->ps.sps->log2_ctb_size - s->ps.pps->diff_cu_chroma_qp_offset_depth) {
  2000. lc->tu.is_cu_chroma_qp_offset_coded = 0;
  2001. }
  2002. if (split_cu) {
  2003. int qp_block_mask = (1<<(s->ps.sps->log2_ctb_size - s->ps.pps->diff_cu_qp_delta_depth)) - 1;
  2004. const int cb_size_split = cb_size >> 1;
  2005. const int x1 = x0 + cb_size_split;
  2006. const int y1 = y0 + cb_size_split;
  2007. int more_data = 0;
  2008. more_data = hls_coding_quadtree(s, x0, y0, log2_cb_size - 1, cb_depth + 1);
  2009. if (more_data < 0)
  2010. return more_data;
  2011. if (more_data && x1 < s->ps.sps->width) {
  2012. more_data = hls_coding_quadtree(s, x1, y0, log2_cb_size - 1, cb_depth + 1);
  2013. if (more_data < 0)
  2014. return more_data;
  2015. }
  2016. if (more_data && y1 < s->ps.sps->height) {
  2017. more_data = hls_coding_quadtree(s, x0, y1, log2_cb_size - 1, cb_depth + 1);
  2018. if (more_data < 0)
  2019. return more_data;
  2020. }
  2021. if (more_data && x1 < s->ps.sps->width &&
  2022. y1 < s->ps.sps->height) {
  2023. more_data = hls_coding_quadtree(s, x1, y1, log2_cb_size - 1, cb_depth + 1);
  2024. if (more_data < 0)
  2025. return more_data;
  2026. }
  2027. if(((x0 + (1<<log2_cb_size)) & qp_block_mask) == 0 &&
  2028. ((y0 + (1<<log2_cb_size)) & qp_block_mask) == 0)
  2029. lc->qPy_pred = lc->qp_y;
  2030. if (more_data)
  2031. return ((x1 + cb_size_split) < s->ps.sps->width ||
  2032. (y1 + cb_size_split) < s->ps.sps->height);
  2033. else
  2034. return 0;
  2035. } else {
  2036. ret = hls_coding_unit(s, x0, y0, log2_cb_size);
  2037. if (ret < 0)
  2038. return ret;
  2039. if ((!((x0 + cb_size) %
  2040. (1 << (s->ps.sps->log2_ctb_size))) ||
  2041. (x0 + cb_size >= s->ps.sps->width)) &&
  2042. (!((y0 + cb_size) %
  2043. (1 << (s->ps.sps->log2_ctb_size))) ||
  2044. (y0 + cb_size >= s->ps.sps->height))) {
  2045. int end_of_slice_flag = ff_hevc_end_of_slice_flag_decode(s);
  2046. return !end_of_slice_flag;
  2047. } else {
  2048. return 1;
  2049. }
  2050. }
  2051. return 0;
  2052. }
  2053. static void hls_decode_neighbour(HEVCContext *s, int x_ctb, int y_ctb,
  2054. int ctb_addr_ts)
  2055. {
  2056. HEVCLocalContext *lc = s->HEVClc;
  2057. int ctb_size = 1 << s->ps.sps->log2_ctb_size;
  2058. int ctb_addr_rs = s->ps.pps->ctb_addr_ts_to_rs[ctb_addr_ts];
  2059. int ctb_addr_in_slice = ctb_addr_rs - s->sh.slice_addr;
  2060. s->tab_slice_address[ctb_addr_rs] = s->sh.slice_addr;
  2061. if (s->ps.pps->entropy_coding_sync_enabled_flag) {
  2062. if (x_ctb == 0 && (y_ctb & (ctb_size - 1)) == 0)
  2063. lc->first_qp_group = 1;
  2064. lc->end_of_tiles_x = s->ps.sps->width;
  2065. } else if (s->ps.pps->tiles_enabled_flag) {
  2066. if (ctb_addr_ts && s->ps.pps->tile_id[ctb_addr_ts] != s->ps.pps->tile_id[ctb_addr_ts - 1]) {
  2067. int idxX = s->ps.pps->col_idxX[x_ctb >> s->ps.sps->log2_ctb_size];
  2068. lc->end_of_tiles_x = x_ctb + (s->ps.pps->column_width[idxX] << s->ps.sps->log2_ctb_size);
  2069. lc->first_qp_group = 1;
  2070. }
  2071. } else {
  2072. lc->end_of_tiles_x = s->ps.sps->width;
  2073. }
  2074. lc->end_of_tiles_y = FFMIN(y_ctb + ctb_size, s->ps.sps->height);
  2075. lc->boundary_flags = 0;
  2076. if (s->ps.pps->tiles_enabled_flag) {
  2077. if (x_ctb > 0 && s->ps.pps->tile_id[ctb_addr_ts] != s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs - 1]])
  2078. lc->boundary_flags |= BOUNDARY_LEFT_TILE;
  2079. if (x_ctb > 0 && s->tab_slice_address[ctb_addr_rs] != s->tab_slice_address[ctb_addr_rs - 1])
  2080. lc->boundary_flags |= BOUNDARY_LEFT_SLICE;
  2081. if (y_ctb > 0 && s->ps.pps->tile_id[ctb_addr_ts] != s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs - s->ps.sps->ctb_width]])
  2082. lc->boundary_flags |= BOUNDARY_UPPER_TILE;
  2083. if (y_ctb > 0 && s->tab_slice_address[ctb_addr_rs] != s->tab_slice_address[ctb_addr_rs - s->ps.sps->ctb_width])
  2084. lc->boundary_flags |= BOUNDARY_UPPER_SLICE;
  2085. } else {
  2086. if (ctb_addr_in_slice <= 0)
  2087. lc->boundary_flags |= BOUNDARY_LEFT_SLICE;
  2088. if (ctb_addr_in_slice < s->ps.sps->ctb_width)
  2089. lc->boundary_flags |= BOUNDARY_UPPER_SLICE;
  2090. }
  2091. lc->ctb_left_flag = ((x_ctb > 0) && (ctb_addr_in_slice > 0) && !(lc->boundary_flags & BOUNDARY_LEFT_TILE));
  2092. lc->ctb_up_flag = ((y_ctb > 0) && (ctb_addr_in_slice >= s->ps.sps->ctb_width) && !(lc->boundary_flags & BOUNDARY_UPPER_TILE));
  2093. lc->ctb_up_right_flag = ((y_ctb > 0) && (ctb_addr_in_slice+1 >= s->ps.sps->ctb_width) && (s->ps.pps->tile_id[ctb_addr_ts] == s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs+1 - s->ps.sps->ctb_width]]));
  2094. lc->ctb_up_left_flag = ((x_ctb > 0) && (y_ctb > 0) && (ctb_addr_in_slice-1 >= s->ps.sps->ctb_width) && (s->ps.pps->tile_id[ctb_addr_ts] == s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs-1 - s->ps.sps->ctb_width]]));
  2095. }
  2096. static int hls_decode_entry(AVCodecContext *avctxt, void *isFilterThread)
  2097. {
  2098. HEVCContext *s = avctxt->priv_data;
  2099. int ctb_size = 1 << s->ps.sps->log2_ctb_size;
  2100. int more_data = 1;
  2101. int x_ctb = 0;
  2102. int y_ctb = 0;
  2103. int ctb_addr_ts = s->ps.pps->ctb_addr_rs_to_ts[s->sh.slice_ctb_addr_rs];
  2104. int ret;
  2105. if (!ctb_addr_ts && s->sh.dependent_slice_segment_flag) {
  2106. av_log(s->avctx, AV_LOG_ERROR, "Impossible initial tile.\n");
  2107. return AVERROR_INVALIDDATA;
  2108. }
  2109. if (s->sh.dependent_slice_segment_flag) {
  2110. int prev_rs = s->ps.pps->ctb_addr_ts_to_rs[ctb_addr_ts - 1];
  2111. if (s->tab_slice_address[prev_rs] != s->sh.slice_addr) {
  2112. av_log(s->avctx, AV_LOG_ERROR, "Previous slice segment missing\n");
  2113. return AVERROR_INVALIDDATA;
  2114. }
  2115. }
  2116. while (more_data && ctb_addr_ts < s->ps.sps->ctb_size) {
  2117. int ctb_addr_rs = s->ps.pps->ctb_addr_ts_to_rs[ctb_addr_ts];
  2118. x_ctb = (ctb_addr_rs % ((s->ps.sps->width + ctb_size - 1) >> s->ps.sps->log2_ctb_size)) << s->ps.sps->log2_ctb_size;
  2119. y_ctb = (ctb_addr_rs / ((s->ps.sps->width + ctb_size - 1) >> s->ps.sps->log2_ctb_size)) << s->ps.sps->log2_ctb_size;
  2120. hls_decode_neighbour(s, x_ctb, y_ctb, ctb_addr_ts);
  2121. ret = ff_hevc_cabac_init(s, ctb_addr_ts);
  2122. if (ret < 0) {
  2123. s->tab_slice_address[ctb_addr_rs] = -1;
  2124. return ret;
  2125. }
  2126. hls_sao_param(s, x_ctb >> s->ps.sps->log2_ctb_size, y_ctb >> s->ps.sps->log2_ctb_size);
  2127. s->deblock[ctb_addr_rs].beta_offset = s->sh.beta_offset;
  2128. s->deblock[ctb_addr_rs].tc_offset = s->sh.tc_offset;
  2129. s->filter_slice_edges[ctb_addr_rs] = s->sh.slice_loop_filter_across_slices_enabled_flag;
  2130. more_data = hls_coding_quadtree(s, x_ctb, y_ctb, s->ps.sps->log2_ctb_size, 0);
  2131. if (more_data < 0) {
  2132. s->tab_slice_address[ctb_addr_rs] = -1;
  2133. return more_data;
  2134. }
  2135. ctb_addr_ts++;
  2136. ff_hevc_save_states(s, ctb_addr_ts);
  2137. ff_hevc_hls_filters(s, x_ctb, y_ctb, ctb_size);
  2138. }
  2139. if (x_ctb + ctb_size >= s->ps.sps->width &&
  2140. y_ctb + ctb_size >= s->ps.sps->height)
  2141. ff_hevc_hls_filter(s, x_ctb, y_ctb, ctb_size);
  2142. return ctb_addr_ts;
  2143. }
  2144. static int hls_slice_data(HEVCContext *s)
  2145. {
  2146. int arg[2];
  2147. int ret[2];
  2148. arg[0] = 0;
  2149. arg[1] = 1;
  2150. s->avctx->execute(s->avctx, hls_decode_entry, arg, ret , 1, sizeof(int));
  2151. return ret[0];
  2152. }
  2153. static int hls_decode_entry_wpp(AVCodecContext *avctxt, void *input_ctb_row, int job, int self_id)
  2154. {
  2155. HEVCContext *s1 = avctxt->priv_data, *s;
  2156. HEVCLocalContext *lc;
  2157. int ctb_size = 1<< s1->ps.sps->log2_ctb_size;
  2158. int more_data = 1;
  2159. int *ctb_row_p = input_ctb_row;
  2160. int ctb_row = ctb_row_p[job];
  2161. int ctb_addr_rs = s1->sh.slice_ctb_addr_rs + ctb_row * ((s1->ps.sps->width + ctb_size - 1) >> s1->ps.sps->log2_ctb_size);
  2162. int ctb_addr_ts = s1->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs];
  2163. int thread = ctb_row % s1->threads_number;
  2164. int ret;
  2165. s = s1->sList[self_id];
  2166. lc = s->HEVClc;
  2167. if(ctb_row) {
  2168. ret = init_get_bits8(&lc->gb, s->data + s->sh.offset[ctb_row - 1], s->sh.size[ctb_row - 1]);
  2169. if (ret < 0)
  2170. goto error;
  2171. ff_init_cabac_decoder(&lc->cc, s->data + s->sh.offset[(ctb_row)-1], s->sh.size[ctb_row - 1]);
  2172. }
  2173. while(more_data && ctb_addr_ts < s->ps.sps->ctb_size) {
  2174. int x_ctb = (ctb_addr_rs % s->ps.sps->ctb_width) << s->ps.sps->log2_ctb_size;
  2175. int y_ctb = (ctb_addr_rs / s->ps.sps->ctb_width) << s->ps.sps->log2_ctb_size;
  2176. hls_decode_neighbour(s, x_ctb, y_ctb, ctb_addr_ts);
  2177. ff_thread_await_progress2(s->avctx, ctb_row, thread, SHIFT_CTB_WPP);
  2178. if (atomic_load(&s1->wpp_err)) {
  2179. ff_thread_report_progress2(s->avctx, ctb_row , thread, SHIFT_CTB_WPP);
  2180. return 0;
  2181. }
  2182. ret = ff_hevc_cabac_init(s, ctb_addr_ts);
  2183. if (ret < 0)
  2184. goto error;
  2185. hls_sao_param(s, x_ctb >> s->ps.sps->log2_ctb_size, y_ctb >> s->ps.sps->log2_ctb_size);
  2186. more_data = hls_coding_quadtree(s, x_ctb, y_ctb, s->ps.sps->log2_ctb_size, 0);
  2187. if (more_data < 0) {
  2188. ret = more_data;
  2189. goto error;
  2190. }
  2191. ctb_addr_ts++;
  2192. ff_hevc_save_states(s, ctb_addr_ts);
  2193. ff_thread_report_progress2(s->avctx, ctb_row, thread, 1);
  2194. ff_hevc_hls_filters(s, x_ctb, y_ctb, ctb_size);
  2195. if (!more_data && (x_ctb+ctb_size) < s->ps.sps->width && ctb_row != s->sh.num_entry_point_offsets) {
  2196. atomic_store(&s1->wpp_err, 1);
  2197. ff_thread_report_progress2(s->avctx, ctb_row ,thread, SHIFT_CTB_WPP);
  2198. return 0;
  2199. }
  2200. if ((x_ctb+ctb_size) >= s->ps.sps->width && (y_ctb+ctb_size) >= s->ps.sps->height ) {
  2201. ff_hevc_hls_filter(s, x_ctb, y_ctb, ctb_size);
  2202. ff_thread_report_progress2(s->avctx, ctb_row , thread, SHIFT_CTB_WPP);
  2203. return ctb_addr_ts;
  2204. }
  2205. ctb_addr_rs = s->ps.pps->ctb_addr_ts_to_rs[ctb_addr_ts];
  2206. x_ctb+=ctb_size;
  2207. if(x_ctb >= s->ps.sps->width) {
  2208. break;
  2209. }
  2210. }
  2211. ff_thread_report_progress2(s->avctx, ctb_row ,thread, SHIFT_CTB_WPP);
  2212. return 0;
  2213. error:
  2214. s->tab_slice_address[ctb_addr_rs] = -1;
  2215. atomic_store(&s1->wpp_err, 1);
  2216. ff_thread_report_progress2(s->avctx, ctb_row ,thread, SHIFT_CTB_WPP);
  2217. return ret;
  2218. }
  2219. static int hls_slice_data_wpp(HEVCContext *s, const H2645NAL *nal)
  2220. {
  2221. const uint8_t *data = nal->data;
  2222. int length = nal->size;
  2223. HEVCLocalContext *lc = s->HEVClc;
  2224. int *ret = av_malloc_array(s->sh.num_entry_point_offsets + 1, sizeof(int));
  2225. int *arg = av_malloc_array(s->sh.num_entry_point_offsets + 1, sizeof(int));
  2226. int64_t offset;
  2227. int64_t startheader, cmpt = 0;
  2228. int i, j, res = 0;
  2229. if (!ret || !arg) {
  2230. av_free(ret);
  2231. av_free(arg);
  2232. return AVERROR(ENOMEM);
  2233. }
  2234. if (s->sh.slice_ctb_addr_rs + s->sh.num_entry_point_offsets * s->ps.sps->ctb_width >= s->ps.sps->ctb_width * s->ps.sps->ctb_height) {
  2235. av_log(s->avctx, AV_LOG_ERROR, "WPP ctb addresses are wrong (%d %d %d %d)\n",
  2236. s->sh.slice_ctb_addr_rs, s->sh.num_entry_point_offsets,
  2237. s->ps.sps->ctb_width, s->ps.sps->ctb_height
  2238. );
  2239. res = AVERROR_INVALIDDATA;
  2240. goto error;
  2241. }
  2242. ff_alloc_entries(s->avctx, s->sh.num_entry_point_offsets + 1);
  2243. if (!s->sList[1]) {
  2244. for (i = 1; i < s->threads_number; i++) {
  2245. s->sList[i] = av_malloc(sizeof(HEVCContext));
  2246. memcpy(s->sList[i], s, sizeof(HEVCContext));
  2247. s->HEVClcList[i] = av_mallocz(sizeof(HEVCLocalContext));
  2248. s->sList[i]->HEVClc = s->HEVClcList[i];
  2249. }
  2250. }
  2251. offset = (lc->gb.index >> 3);
  2252. for (j = 0, cmpt = 0, startheader = offset + s->sh.entry_point_offset[0]; j < nal->skipped_bytes; j++) {
  2253. if (nal->skipped_bytes_pos[j] >= offset && nal->skipped_bytes_pos[j] < startheader) {
  2254. startheader--;
  2255. cmpt++;
  2256. }
  2257. }
  2258. for (i = 1; i < s->sh.num_entry_point_offsets; i++) {
  2259. offset += (s->sh.entry_point_offset[i - 1] - cmpt);
  2260. for (j = 0, cmpt = 0, startheader = offset
  2261. + s->sh.entry_point_offset[i]; j < nal->skipped_bytes; j++) {
  2262. if (nal->skipped_bytes_pos[j] >= offset && nal->skipped_bytes_pos[j] < startheader) {
  2263. startheader--;
  2264. cmpt++;
  2265. }
  2266. }
  2267. s->sh.size[i - 1] = s->sh.entry_point_offset[i] - cmpt;
  2268. s->sh.offset[i - 1] = offset;
  2269. }
  2270. if (s->sh.num_entry_point_offsets != 0) {
  2271. offset += s->sh.entry_point_offset[s->sh.num_entry_point_offsets - 1] - cmpt;
  2272. if (length < offset) {
  2273. av_log(s->avctx, AV_LOG_ERROR, "entry_point_offset table is corrupted\n");
  2274. res = AVERROR_INVALIDDATA;
  2275. goto error;
  2276. }
  2277. s->sh.size[s->sh.num_entry_point_offsets - 1] = length - offset;
  2278. s->sh.offset[s->sh.num_entry_point_offsets - 1] = offset;
  2279. }
  2280. s->data = data;
  2281. for (i = 1; i < s->threads_number; i++) {
  2282. s->sList[i]->HEVClc->first_qp_group = 1;
  2283. s->sList[i]->HEVClc->qp_y = s->sList[0]->HEVClc->qp_y;
  2284. memcpy(s->sList[i], s, sizeof(HEVCContext));
  2285. s->sList[i]->HEVClc = s->HEVClcList[i];
  2286. }
  2287. atomic_store(&s->wpp_err, 0);
  2288. ff_reset_entries(s->avctx);
  2289. for (i = 0; i <= s->sh.num_entry_point_offsets; i++) {
  2290. arg[i] = i;
  2291. ret[i] = 0;
  2292. }
  2293. if (s->ps.pps->entropy_coding_sync_enabled_flag)
  2294. s->avctx->execute2(s->avctx, hls_decode_entry_wpp, arg, ret, s->sh.num_entry_point_offsets + 1);
  2295. for (i = 0; i <= s->sh.num_entry_point_offsets; i++)
  2296. res += ret[i];
  2297. error:
  2298. av_free(ret);
  2299. av_free(arg);
  2300. return res;
  2301. }
  2302. static int set_side_data(HEVCContext *s)
  2303. {
  2304. AVFrame *out = s->ref->frame;
  2305. if (s->sei.frame_packing.present &&
  2306. s->sei.frame_packing.arrangement_type >= 3 &&
  2307. s->sei.frame_packing.arrangement_type <= 5 &&
  2308. s->sei.frame_packing.content_interpretation_type > 0 &&
  2309. s->sei.frame_packing.content_interpretation_type < 3) {
  2310. AVStereo3D *stereo = av_stereo3d_create_side_data(out);
  2311. if (!stereo)
  2312. return AVERROR(ENOMEM);
  2313. switch (s->sei.frame_packing.arrangement_type) {
  2314. case 3:
  2315. if (s->sei.frame_packing.quincunx_subsampling)
  2316. stereo->type = AV_STEREO3D_SIDEBYSIDE_QUINCUNX;
  2317. else
  2318. stereo->type = AV_STEREO3D_SIDEBYSIDE;
  2319. break;
  2320. case 4:
  2321. stereo->type = AV_STEREO3D_TOPBOTTOM;
  2322. break;
  2323. case 5:
  2324. stereo->type = AV_STEREO3D_FRAMESEQUENCE;
  2325. break;
  2326. }
  2327. if (s->sei.frame_packing.content_interpretation_type == 2)
  2328. stereo->flags = AV_STEREO3D_FLAG_INVERT;
  2329. if (s->sei.frame_packing.arrangement_type == 5) {
  2330. if (s->sei.frame_packing.current_frame_is_frame0_flag)
  2331. stereo->view = AV_STEREO3D_VIEW_LEFT;
  2332. else
  2333. stereo->view = AV_STEREO3D_VIEW_RIGHT;
  2334. }
  2335. }
  2336. if (s->sei.display_orientation.present &&
  2337. (s->sei.display_orientation.anticlockwise_rotation ||
  2338. s->sei.display_orientation.hflip || s->sei.display_orientation.vflip)) {
  2339. double angle = s->sei.display_orientation.anticlockwise_rotation * 360 / (double) (1 << 16);
  2340. AVFrameSideData *rotation = av_frame_new_side_data(out,
  2341. AV_FRAME_DATA_DISPLAYMATRIX,
  2342. sizeof(int32_t) * 9);
  2343. if (!rotation)
  2344. return AVERROR(ENOMEM);
  2345. av_display_rotation_set((int32_t *)rotation->data, angle);
  2346. av_display_matrix_flip((int32_t *)rotation->data,
  2347. s->sei.display_orientation.hflip,
  2348. s->sei.display_orientation.vflip);
  2349. }
  2350. // Decrement the mastering display flag when IRAP frame has no_rasl_output_flag=1
  2351. // so the side data persists for the entire coded video sequence.
  2352. if (s->sei.mastering_display.present > 0 &&
  2353. IS_IRAP(s) && s->no_rasl_output_flag) {
  2354. s->sei.mastering_display.present--;
  2355. }
  2356. if (s->sei.mastering_display.present) {
  2357. // HEVC uses a g,b,r ordering, which we convert to a more natural r,g,b
  2358. const int mapping[3] = {2, 0, 1};
  2359. const int chroma_den = 50000;
  2360. const int luma_den = 10000;
  2361. int i;
  2362. AVMasteringDisplayMetadata *metadata =
  2363. av_mastering_display_metadata_create_side_data(out);
  2364. if (!metadata)
  2365. return AVERROR(ENOMEM);
  2366. for (i = 0; i < 3; i++) {
  2367. const int j = mapping[i];
  2368. metadata->display_primaries[i][0].num = s->sei.mastering_display.display_primaries[j][0];
  2369. metadata->display_primaries[i][0].den = chroma_den;
  2370. metadata->display_primaries[i][1].num = s->sei.mastering_display.display_primaries[j][1];
  2371. metadata->display_primaries[i][1].den = chroma_den;
  2372. }
  2373. metadata->white_point[0].num = s->sei.mastering_display.white_point[0];
  2374. metadata->white_point[0].den = chroma_den;
  2375. metadata->white_point[1].num = s->sei.mastering_display.white_point[1];
  2376. metadata->white_point[1].den = chroma_den;
  2377. metadata->max_luminance.num = s->sei.mastering_display.max_luminance;
  2378. metadata->max_luminance.den = luma_den;
  2379. metadata->min_luminance.num = s->sei.mastering_display.min_luminance;
  2380. metadata->min_luminance.den = luma_den;
  2381. metadata->has_luminance = 1;
  2382. metadata->has_primaries = 1;
  2383. av_log(s->avctx, AV_LOG_DEBUG, "Mastering Display Metadata:\n");
  2384. av_log(s->avctx, AV_LOG_DEBUG,
  2385. "r(%5.4f,%5.4f) g(%5.4f,%5.4f) b(%5.4f %5.4f) wp(%5.4f, %5.4f)\n",
  2386. av_q2d(metadata->display_primaries[0][0]),
  2387. av_q2d(metadata->display_primaries[0][1]),
  2388. av_q2d(metadata->display_primaries[1][0]),
  2389. av_q2d(metadata->display_primaries[1][1]),
  2390. av_q2d(metadata->display_primaries[2][0]),
  2391. av_q2d(metadata->display_primaries[2][1]),
  2392. av_q2d(metadata->white_point[0]), av_q2d(metadata->white_point[1]));
  2393. av_log(s->avctx, AV_LOG_DEBUG,
  2394. "min_luminance=%f, max_luminance=%f\n",
  2395. av_q2d(metadata->min_luminance), av_q2d(metadata->max_luminance));
  2396. }
  2397. // Decrement the mastering display flag when IRAP frame has no_rasl_output_flag=1
  2398. // so the side data persists for the entire coded video sequence.
  2399. if (s->sei.content_light.present > 0 &&
  2400. IS_IRAP(s) && s->no_rasl_output_flag) {
  2401. s->sei.content_light.present--;
  2402. }
  2403. if (s->sei.content_light.present) {
  2404. AVContentLightMetadata *metadata =
  2405. av_content_light_metadata_create_side_data(out);
  2406. if (!metadata)
  2407. return AVERROR(ENOMEM);
  2408. metadata->MaxCLL = s->sei.content_light.max_content_light_level;
  2409. metadata->MaxFALL = s->sei.content_light.max_pic_average_light_level;
  2410. av_log(s->avctx, AV_LOG_DEBUG, "Content Light Level Metadata:\n");
  2411. av_log(s->avctx, AV_LOG_DEBUG, "MaxCLL=%d, MaxFALL=%d\n",
  2412. metadata->MaxCLL, metadata->MaxFALL);
  2413. }
  2414. if (s->sei.a53_caption.a53_caption) {
  2415. AVFrameSideData* sd = av_frame_new_side_data(out,
  2416. AV_FRAME_DATA_A53_CC,
  2417. s->sei.a53_caption.a53_caption_size);
  2418. if (sd)
  2419. memcpy(sd->data, s->sei.a53_caption.a53_caption, s->sei.a53_caption.a53_caption_size);
  2420. av_freep(&s->sei.a53_caption.a53_caption);
  2421. s->sei.a53_caption.a53_caption_size = 0;
  2422. s->avctx->properties |= FF_CODEC_PROPERTY_CLOSED_CAPTIONS;
  2423. }
  2424. if (s->sei.alternative_transfer.present &&
  2425. av_color_transfer_name(s->sei.alternative_transfer.preferred_transfer_characteristics) &&
  2426. s->sei.alternative_transfer.preferred_transfer_characteristics != AVCOL_TRC_UNSPECIFIED) {
  2427. s->avctx->color_trc = out->color_trc = s->sei.alternative_transfer.preferred_transfer_characteristics;
  2428. }
  2429. return 0;
  2430. }
  2431. static int hevc_frame_start(HEVCContext *s)
  2432. {
  2433. HEVCLocalContext *lc = s->HEVClc;
  2434. int pic_size_in_ctb = ((s->ps.sps->width >> s->ps.sps->log2_min_cb_size) + 1) *
  2435. ((s->ps.sps->height >> s->ps.sps->log2_min_cb_size) + 1);
  2436. int ret;
  2437. memset(s->horizontal_bs, 0, s->bs_width * s->bs_height);
  2438. memset(s->vertical_bs, 0, s->bs_width * s->bs_height);
  2439. memset(s->cbf_luma, 0, s->ps.sps->min_tb_width * s->ps.sps->min_tb_height);
  2440. memset(s->is_pcm, 0, (s->ps.sps->min_pu_width + 1) * (s->ps.sps->min_pu_height + 1));
  2441. memset(s->tab_slice_address, -1, pic_size_in_ctb * sizeof(*s->tab_slice_address));
  2442. s->is_decoded = 0;
  2443. s->first_nal_type = s->nal_unit_type;
  2444. s->no_rasl_output_flag = IS_IDR(s) || IS_BLA(s) || (s->nal_unit_type == HEVC_NAL_CRA_NUT && s->last_eos);
  2445. if (s->ps.pps->tiles_enabled_flag)
  2446. lc->end_of_tiles_x = s->ps.pps->column_width[0] << s->ps.sps->log2_ctb_size;
  2447. ret = ff_hevc_set_new_ref(s, &s->frame, s->poc);
  2448. if (ret < 0)
  2449. goto fail;
  2450. ret = ff_hevc_frame_rps(s);
  2451. if (ret < 0) {
  2452. av_log(s->avctx, AV_LOG_ERROR, "Error constructing the frame RPS.\n");
  2453. goto fail;
  2454. }
  2455. s->ref->frame->key_frame = IS_IRAP(s);
  2456. ret = set_side_data(s);
  2457. if (ret < 0)
  2458. goto fail;
  2459. s->frame->pict_type = 3 - s->sh.slice_type;
  2460. if (!IS_IRAP(s))
  2461. ff_hevc_bump_frame(s);
  2462. av_frame_unref(s->output_frame);
  2463. ret = ff_hevc_output_frame(s, s->output_frame, 0);
  2464. if (ret < 0)
  2465. goto fail;
  2466. if (!s->avctx->hwaccel)
  2467. ff_thread_finish_setup(s->avctx);
  2468. return 0;
  2469. fail:
  2470. if (s->ref)
  2471. ff_hevc_unref_frame(s, s->ref, ~0);
  2472. s->ref = NULL;
  2473. return ret;
  2474. }
  2475. static int decode_nal_unit(HEVCContext *s, const H2645NAL *nal)
  2476. {
  2477. HEVCLocalContext *lc = s->HEVClc;
  2478. GetBitContext *gb = &lc->gb;
  2479. int ctb_addr_ts, ret;
  2480. *gb = nal->gb;
  2481. s->nal_unit_type = nal->type;
  2482. s->temporal_id = nal->temporal_id;
  2483. switch (s->nal_unit_type) {
  2484. case HEVC_NAL_VPS:
  2485. if (s->avctx->hwaccel && s->avctx->hwaccel->decode_params) {
  2486. ret = s->avctx->hwaccel->decode_params(s->avctx,
  2487. nal->type,
  2488. nal->raw_data,
  2489. nal->raw_size);
  2490. if (ret < 0)
  2491. goto fail;
  2492. }
  2493. ret = ff_hevc_decode_nal_vps(gb, s->avctx, &s->ps);
  2494. if (ret < 0)
  2495. goto fail;
  2496. break;
  2497. case HEVC_NAL_SPS:
  2498. if (s->avctx->hwaccel && s->avctx->hwaccel->decode_params) {
  2499. ret = s->avctx->hwaccel->decode_params(s->avctx,
  2500. nal->type,
  2501. nal->raw_data,
  2502. nal->raw_size);
  2503. if (ret < 0)
  2504. goto fail;
  2505. }
  2506. ret = ff_hevc_decode_nal_sps(gb, s->avctx, &s->ps,
  2507. s->apply_defdispwin);
  2508. if (ret < 0)
  2509. goto fail;
  2510. break;
  2511. case HEVC_NAL_PPS:
  2512. if (s->avctx->hwaccel && s->avctx->hwaccel->decode_params) {
  2513. ret = s->avctx->hwaccel->decode_params(s->avctx,
  2514. nal->type,
  2515. nal->raw_data,
  2516. nal->raw_size);
  2517. if (ret < 0)
  2518. goto fail;
  2519. }
  2520. ret = ff_hevc_decode_nal_pps(gb, s->avctx, &s->ps);
  2521. if (ret < 0)
  2522. goto fail;
  2523. break;
  2524. case HEVC_NAL_SEI_PREFIX:
  2525. case HEVC_NAL_SEI_SUFFIX:
  2526. if (s->avctx->hwaccel && s->avctx->hwaccel->decode_params) {
  2527. ret = s->avctx->hwaccel->decode_params(s->avctx,
  2528. nal->type,
  2529. nal->raw_data,
  2530. nal->raw_size);
  2531. if (ret < 0)
  2532. goto fail;
  2533. }
  2534. ret = ff_hevc_decode_nal_sei(gb, s->avctx, &s->sei, &s->ps, s->nal_unit_type);
  2535. if (ret < 0)
  2536. goto fail;
  2537. break;
  2538. case HEVC_NAL_TRAIL_R:
  2539. case HEVC_NAL_TRAIL_N:
  2540. case HEVC_NAL_TSA_N:
  2541. case HEVC_NAL_TSA_R:
  2542. case HEVC_NAL_STSA_N:
  2543. case HEVC_NAL_STSA_R:
  2544. case HEVC_NAL_BLA_W_LP:
  2545. case HEVC_NAL_BLA_W_RADL:
  2546. case HEVC_NAL_BLA_N_LP:
  2547. case HEVC_NAL_IDR_W_RADL:
  2548. case HEVC_NAL_IDR_N_LP:
  2549. case HEVC_NAL_CRA_NUT:
  2550. case HEVC_NAL_RADL_N:
  2551. case HEVC_NAL_RADL_R:
  2552. case HEVC_NAL_RASL_N:
  2553. case HEVC_NAL_RASL_R:
  2554. ret = hls_slice_header(s);
  2555. if (ret < 0)
  2556. return ret;
  2557. if (ret == 1) {
  2558. ret = AVERROR_INVALIDDATA;
  2559. goto fail;
  2560. }
  2561. if (
  2562. (s->avctx->skip_frame >= AVDISCARD_BIDIR && s->sh.slice_type == HEVC_SLICE_B) ||
  2563. (s->avctx->skip_frame >= AVDISCARD_NONINTRA && s->sh.slice_type != HEVC_SLICE_I) ||
  2564. (s->avctx->skip_frame >= AVDISCARD_NONKEY && !IS_IDR(s))) {
  2565. break;
  2566. }
  2567. if (s->sh.first_slice_in_pic_flag) {
  2568. if (s->max_ra == INT_MAX) {
  2569. if (s->nal_unit_type == HEVC_NAL_CRA_NUT || IS_BLA(s)) {
  2570. s->max_ra = s->poc;
  2571. } else {
  2572. if (IS_IDR(s))
  2573. s->max_ra = INT_MIN;
  2574. }
  2575. }
  2576. if ((s->nal_unit_type == HEVC_NAL_RASL_R || s->nal_unit_type == HEVC_NAL_RASL_N) &&
  2577. s->poc <= s->max_ra) {
  2578. s->is_decoded = 0;
  2579. break;
  2580. } else {
  2581. if (s->nal_unit_type == HEVC_NAL_RASL_R && s->poc > s->max_ra)
  2582. s->max_ra = INT_MIN;
  2583. }
  2584. ret = hevc_frame_start(s);
  2585. if (ret < 0)
  2586. return ret;
  2587. } else if (!s->ref) {
  2588. av_log(s->avctx, AV_LOG_ERROR, "First slice in a frame missing.\n");
  2589. goto fail;
  2590. }
  2591. if (s->nal_unit_type != s->first_nal_type) {
  2592. av_log(s->avctx, AV_LOG_ERROR,
  2593. "Non-matching NAL types of the VCL NALUs: %d %d\n",
  2594. s->first_nal_type, s->nal_unit_type);
  2595. return AVERROR_INVALIDDATA;
  2596. }
  2597. if (!s->sh.dependent_slice_segment_flag &&
  2598. s->sh.slice_type != HEVC_SLICE_I) {
  2599. ret = ff_hevc_slice_rpl(s);
  2600. if (ret < 0) {
  2601. av_log(s->avctx, AV_LOG_WARNING,
  2602. "Error constructing the reference lists for the current slice.\n");
  2603. goto fail;
  2604. }
  2605. }
  2606. if (s->sh.first_slice_in_pic_flag && s->avctx->hwaccel) {
  2607. ret = s->avctx->hwaccel->start_frame(s->avctx, NULL, 0);
  2608. if (ret < 0)
  2609. goto fail;
  2610. }
  2611. if (s->avctx->hwaccel) {
  2612. ret = s->avctx->hwaccel->decode_slice(s->avctx, nal->raw_data, nal->raw_size);
  2613. if (ret < 0)
  2614. goto fail;
  2615. } else {
  2616. if (s->threads_number > 1 && s->sh.num_entry_point_offsets > 0)
  2617. ctb_addr_ts = hls_slice_data_wpp(s, nal);
  2618. else
  2619. ctb_addr_ts = hls_slice_data(s);
  2620. if (ctb_addr_ts >= (s->ps.sps->ctb_width * s->ps.sps->ctb_height)) {
  2621. s->is_decoded = 1;
  2622. }
  2623. if (ctb_addr_ts < 0) {
  2624. ret = ctb_addr_ts;
  2625. goto fail;
  2626. }
  2627. }
  2628. break;
  2629. case HEVC_NAL_EOS_NUT:
  2630. case HEVC_NAL_EOB_NUT:
  2631. s->seq_decode = (s->seq_decode + 1) & 0xff;
  2632. s->max_ra = INT_MAX;
  2633. break;
  2634. case HEVC_NAL_AUD:
  2635. case HEVC_NAL_FD_NUT:
  2636. break;
  2637. default:
  2638. av_log(s->avctx, AV_LOG_INFO,
  2639. "Skipping NAL unit %d\n", s->nal_unit_type);
  2640. }
  2641. return 0;
  2642. fail:
  2643. if (s->avctx->err_recognition & AV_EF_EXPLODE)
  2644. return ret;
  2645. return 0;
  2646. }
  2647. static int decode_nal_units(HEVCContext *s, const uint8_t *buf, int length)
  2648. {
  2649. int i, ret = 0;
  2650. int eos_at_start = 1;
  2651. s->ref = NULL;
  2652. s->last_eos = s->eos;
  2653. s->eos = 0;
  2654. /* split the input packet into NAL units, so we know the upper bound on the
  2655. * number of slices in the frame */
  2656. ret = ff_h2645_packet_split(&s->pkt, buf, length, s->avctx, s->is_nalff,
  2657. s->nal_length_size, s->avctx->codec_id, 1);
  2658. if (ret < 0) {
  2659. av_log(s->avctx, AV_LOG_ERROR,
  2660. "Error splitting the input into NAL units.\n");
  2661. return ret;
  2662. }
  2663. for (i = 0; i < s->pkt.nb_nals; i++) {
  2664. if (s->pkt.nals[i].type == HEVC_NAL_EOB_NUT ||
  2665. s->pkt.nals[i].type == HEVC_NAL_EOS_NUT) {
  2666. if (eos_at_start) {
  2667. s->last_eos = 1;
  2668. } else {
  2669. s->eos = 1;
  2670. }
  2671. } else {
  2672. eos_at_start = 0;
  2673. }
  2674. }
  2675. /* decode the NAL units */
  2676. for (i = 0; i < s->pkt.nb_nals; i++) {
  2677. H2645NAL *nal = &s->pkt.nals[i];
  2678. if (s->avctx->skip_frame >= AVDISCARD_ALL ||
  2679. (s->avctx->skip_frame >= AVDISCARD_NONREF
  2680. && ff_hevc_nal_is_nonref(nal->type)))
  2681. continue;
  2682. ret = decode_nal_unit(s, nal);
  2683. if (ret < 0) {
  2684. av_log(s->avctx, AV_LOG_WARNING,
  2685. "Error parsing NAL unit #%d.\n", i);
  2686. goto fail;
  2687. }
  2688. }
  2689. fail:
  2690. if (s->ref && s->threads_type == FF_THREAD_FRAME)
  2691. ff_thread_report_progress(&s->ref->tf, INT_MAX, 0);
  2692. return ret;
  2693. }
  2694. static void print_md5(void *log_ctx, int level, uint8_t md5[16])
  2695. {
  2696. int i;
  2697. for (i = 0; i < 16; i++)
  2698. av_log(log_ctx, level, "%02"PRIx8, md5[i]);
  2699. }
  2700. static int verify_md5(HEVCContext *s, AVFrame *frame)
  2701. {
  2702. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(frame->format);
  2703. int pixel_shift;
  2704. int i, j;
  2705. if (!desc)
  2706. return AVERROR(EINVAL);
  2707. pixel_shift = desc->comp[0].depth > 8;
  2708. av_log(s->avctx, AV_LOG_DEBUG, "Verifying checksum for frame with POC %d: ",
  2709. s->poc);
  2710. /* the checksums are LE, so we have to byteswap for >8bpp formats
  2711. * on BE arches */
  2712. #if HAVE_BIGENDIAN
  2713. if (pixel_shift && !s->checksum_buf) {
  2714. av_fast_malloc(&s->checksum_buf, &s->checksum_buf_size,
  2715. FFMAX3(frame->linesize[0], frame->linesize[1],
  2716. frame->linesize[2]));
  2717. if (!s->checksum_buf)
  2718. return AVERROR(ENOMEM);
  2719. }
  2720. #endif
  2721. for (i = 0; frame->data[i]; i++) {
  2722. int width = s->avctx->coded_width;
  2723. int height = s->avctx->coded_height;
  2724. int w = (i == 1 || i == 2) ? (width >> desc->log2_chroma_w) : width;
  2725. int h = (i == 1 || i == 2) ? (height >> desc->log2_chroma_h) : height;
  2726. uint8_t md5[16];
  2727. av_md5_init(s->md5_ctx);
  2728. for (j = 0; j < h; j++) {
  2729. const uint8_t *src = frame->data[i] + j * frame->linesize[i];
  2730. #if HAVE_BIGENDIAN
  2731. if (pixel_shift) {
  2732. s->bdsp.bswap16_buf((uint16_t *) s->checksum_buf,
  2733. (const uint16_t *) src, w);
  2734. src = s->checksum_buf;
  2735. }
  2736. #endif
  2737. av_md5_update(s->md5_ctx, src, w << pixel_shift);
  2738. }
  2739. av_md5_final(s->md5_ctx, md5);
  2740. if (!memcmp(md5, s->sei.picture_hash.md5[i], 16)) {
  2741. av_log (s->avctx, AV_LOG_DEBUG, "plane %d - correct ", i);
  2742. print_md5(s->avctx, AV_LOG_DEBUG, md5);
  2743. av_log (s->avctx, AV_LOG_DEBUG, "; ");
  2744. } else {
  2745. av_log (s->avctx, AV_LOG_ERROR, "mismatching checksum of plane %d - ", i);
  2746. print_md5(s->avctx, AV_LOG_ERROR, md5);
  2747. av_log (s->avctx, AV_LOG_ERROR, " != ");
  2748. print_md5(s->avctx, AV_LOG_ERROR, s->sei.picture_hash.md5[i]);
  2749. av_log (s->avctx, AV_LOG_ERROR, "\n");
  2750. return AVERROR_INVALIDDATA;
  2751. }
  2752. }
  2753. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  2754. return 0;
  2755. }
  2756. static int hevc_decode_extradata(HEVCContext *s, uint8_t *buf, int length, int first)
  2757. {
  2758. int ret, i;
  2759. ret = ff_hevc_decode_extradata(buf, length, &s->ps, &s->sei, &s->is_nalff,
  2760. &s->nal_length_size, s->avctx->err_recognition,
  2761. s->apply_defdispwin, s->avctx);
  2762. if (ret < 0)
  2763. return ret;
  2764. /* export stream parameters from the first SPS */
  2765. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.sps_list); i++) {
  2766. if (first && s->ps.sps_list[i]) {
  2767. const HEVCSPS *sps = (const HEVCSPS*)s->ps.sps_list[i]->data;
  2768. export_stream_params(s->avctx, &s->ps, sps);
  2769. break;
  2770. }
  2771. }
  2772. return 0;
  2773. }
  2774. static int hevc_decode_frame(AVCodecContext *avctx, void *data, int *got_output,
  2775. AVPacket *avpkt)
  2776. {
  2777. int ret;
  2778. int new_extradata_size;
  2779. uint8_t *new_extradata;
  2780. HEVCContext *s = avctx->priv_data;
  2781. if (!avpkt->size) {
  2782. ret = ff_hevc_output_frame(s, data, 1);
  2783. if (ret < 0)
  2784. return ret;
  2785. *got_output = ret;
  2786. return 0;
  2787. }
  2788. new_extradata = av_packet_get_side_data(avpkt, AV_PKT_DATA_NEW_EXTRADATA,
  2789. &new_extradata_size);
  2790. if (new_extradata && new_extradata_size > 0) {
  2791. ret = hevc_decode_extradata(s, new_extradata, new_extradata_size, 0);
  2792. if (ret < 0)
  2793. return ret;
  2794. }
  2795. s->ref = NULL;
  2796. ret = decode_nal_units(s, avpkt->data, avpkt->size);
  2797. if (ret < 0)
  2798. return ret;
  2799. if (avctx->hwaccel) {
  2800. if (s->ref && (ret = avctx->hwaccel->end_frame(avctx)) < 0) {
  2801. av_log(avctx, AV_LOG_ERROR,
  2802. "hardware accelerator failed to decode picture\n");
  2803. ff_hevc_unref_frame(s, s->ref, ~0);
  2804. return ret;
  2805. }
  2806. } else {
  2807. /* verify the SEI checksum */
  2808. if (avctx->err_recognition & AV_EF_CRCCHECK && s->is_decoded &&
  2809. s->sei.picture_hash.is_md5) {
  2810. ret = verify_md5(s, s->ref->frame);
  2811. if (ret < 0 && avctx->err_recognition & AV_EF_EXPLODE) {
  2812. ff_hevc_unref_frame(s, s->ref, ~0);
  2813. return ret;
  2814. }
  2815. }
  2816. }
  2817. s->sei.picture_hash.is_md5 = 0;
  2818. if (s->is_decoded) {
  2819. av_log(avctx, AV_LOG_DEBUG, "Decoded frame with POC %d.\n", s->poc);
  2820. s->is_decoded = 0;
  2821. }
  2822. if (s->output_frame->buf[0]) {
  2823. av_frame_move_ref(data, s->output_frame);
  2824. *got_output = 1;
  2825. }
  2826. return avpkt->size;
  2827. }
  2828. static int hevc_ref_frame(HEVCContext *s, HEVCFrame *dst, HEVCFrame *src)
  2829. {
  2830. int ret;
  2831. ret = ff_thread_ref_frame(&dst->tf, &src->tf);
  2832. if (ret < 0)
  2833. return ret;
  2834. dst->tab_mvf_buf = av_buffer_ref(src->tab_mvf_buf);
  2835. if (!dst->tab_mvf_buf)
  2836. goto fail;
  2837. dst->tab_mvf = src->tab_mvf;
  2838. dst->rpl_tab_buf = av_buffer_ref(src->rpl_tab_buf);
  2839. if (!dst->rpl_tab_buf)
  2840. goto fail;
  2841. dst->rpl_tab = src->rpl_tab;
  2842. dst->rpl_buf = av_buffer_ref(src->rpl_buf);
  2843. if (!dst->rpl_buf)
  2844. goto fail;
  2845. dst->poc = src->poc;
  2846. dst->ctb_count = src->ctb_count;
  2847. dst->flags = src->flags;
  2848. dst->sequence = src->sequence;
  2849. if (src->hwaccel_picture_private) {
  2850. dst->hwaccel_priv_buf = av_buffer_ref(src->hwaccel_priv_buf);
  2851. if (!dst->hwaccel_priv_buf)
  2852. goto fail;
  2853. dst->hwaccel_picture_private = dst->hwaccel_priv_buf->data;
  2854. }
  2855. return 0;
  2856. fail:
  2857. ff_hevc_unref_frame(s, dst, ~0);
  2858. return AVERROR(ENOMEM);
  2859. }
  2860. static av_cold int hevc_decode_free(AVCodecContext *avctx)
  2861. {
  2862. HEVCContext *s = avctx->priv_data;
  2863. int i;
  2864. pic_arrays_free(s);
  2865. av_freep(&s->md5_ctx);
  2866. av_freep(&s->cabac_state);
  2867. for (i = 0; i < 3; i++) {
  2868. av_freep(&s->sao_pixel_buffer_h[i]);
  2869. av_freep(&s->sao_pixel_buffer_v[i]);
  2870. }
  2871. av_frame_free(&s->output_frame);
  2872. for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
  2873. ff_hevc_unref_frame(s, &s->DPB[i], ~0);
  2874. av_frame_free(&s->DPB[i].frame);
  2875. }
  2876. ff_hevc_ps_uninit(&s->ps);
  2877. av_freep(&s->sh.entry_point_offset);
  2878. av_freep(&s->sh.offset);
  2879. av_freep(&s->sh.size);
  2880. for (i = 1; i < s->threads_number; i++) {
  2881. HEVCLocalContext *lc = s->HEVClcList[i];
  2882. if (lc) {
  2883. av_freep(&s->HEVClcList[i]);
  2884. av_freep(&s->sList[i]);
  2885. }
  2886. }
  2887. if (s->HEVClc == s->HEVClcList[0])
  2888. s->HEVClc = NULL;
  2889. av_freep(&s->HEVClcList[0]);
  2890. ff_h2645_packet_uninit(&s->pkt);
  2891. return 0;
  2892. }
  2893. static av_cold int hevc_init_context(AVCodecContext *avctx)
  2894. {
  2895. HEVCContext *s = avctx->priv_data;
  2896. int i;
  2897. s->avctx = avctx;
  2898. s->HEVClc = av_mallocz(sizeof(HEVCLocalContext));
  2899. if (!s->HEVClc)
  2900. goto fail;
  2901. s->HEVClcList[0] = s->HEVClc;
  2902. s->sList[0] = s;
  2903. s->cabac_state = av_malloc(HEVC_CONTEXTS);
  2904. if (!s->cabac_state)
  2905. goto fail;
  2906. s->output_frame = av_frame_alloc();
  2907. if (!s->output_frame)
  2908. goto fail;
  2909. for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
  2910. s->DPB[i].frame = av_frame_alloc();
  2911. if (!s->DPB[i].frame)
  2912. goto fail;
  2913. s->DPB[i].tf.f = s->DPB[i].frame;
  2914. }
  2915. s->max_ra = INT_MAX;
  2916. s->md5_ctx = av_md5_alloc();
  2917. if (!s->md5_ctx)
  2918. goto fail;
  2919. ff_bswapdsp_init(&s->bdsp);
  2920. s->context_initialized = 1;
  2921. s->eos = 0;
  2922. ff_hevc_reset_sei(&s->sei);
  2923. return 0;
  2924. fail:
  2925. hevc_decode_free(avctx);
  2926. return AVERROR(ENOMEM);
  2927. }
  2928. static int hevc_update_thread_context(AVCodecContext *dst,
  2929. const AVCodecContext *src)
  2930. {
  2931. HEVCContext *s = dst->priv_data;
  2932. HEVCContext *s0 = src->priv_data;
  2933. int i, ret;
  2934. if (!s->context_initialized) {
  2935. ret = hevc_init_context(dst);
  2936. if (ret < 0)
  2937. return ret;
  2938. }
  2939. for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
  2940. ff_hevc_unref_frame(s, &s->DPB[i], ~0);
  2941. if (s0->DPB[i].frame->buf[0]) {
  2942. ret = hevc_ref_frame(s, &s->DPB[i], &s0->DPB[i]);
  2943. if (ret < 0)
  2944. return ret;
  2945. }
  2946. }
  2947. if (s->ps.sps != s0->ps.sps)
  2948. s->ps.sps = NULL;
  2949. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.vps_list); i++) {
  2950. av_buffer_unref(&s->ps.vps_list[i]);
  2951. if (s0->ps.vps_list[i]) {
  2952. s->ps.vps_list[i] = av_buffer_ref(s0->ps.vps_list[i]);
  2953. if (!s->ps.vps_list[i])
  2954. return AVERROR(ENOMEM);
  2955. }
  2956. }
  2957. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.sps_list); i++) {
  2958. av_buffer_unref(&s->ps.sps_list[i]);
  2959. if (s0->ps.sps_list[i]) {
  2960. s->ps.sps_list[i] = av_buffer_ref(s0->ps.sps_list[i]);
  2961. if (!s->ps.sps_list[i])
  2962. return AVERROR(ENOMEM);
  2963. }
  2964. }
  2965. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.pps_list); i++) {
  2966. av_buffer_unref(&s->ps.pps_list[i]);
  2967. if (s0->ps.pps_list[i]) {
  2968. s->ps.pps_list[i] = av_buffer_ref(s0->ps.pps_list[i]);
  2969. if (!s->ps.pps_list[i])
  2970. return AVERROR(ENOMEM);
  2971. }
  2972. }
  2973. if (s->ps.sps != s0->ps.sps)
  2974. if ((ret = set_sps(s, s0->ps.sps, src->pix_fmt)) < 0)
  2975. return ret;
  2976. s->seq_decode = s0->seq_decode;
  2977. s->seq_output = s0->seq_output;
  2978. s->pocTid0 = s0->pocTid0;
  2979. s->max_ra = s0->max_ra;
  2980. s->eos = s0->eos;
  2981. s->no_rasl_output_flag = s0->no_rasl_output_flag;
  2982. s->is_nalff = s0->is_nalff;
  2983. s->nal_length_size = s0->nal_length_size;
  2984. s->threads_number = s0->threads_number;
  2985. s->threads_type = s0->threads_type;
  2986. if (s0->eos) {
  2987. s->seq_decode = (s->seq_decode + 1) & 0xff;
  2988. s->max_ra = INT_MAX;
  2989. }
  2990. s->sei.frame_packing = s0->sei.frame_packing;
  2991. s->sei.display_orientation = s0->sei.display_orientation;
  2992. s->sei.mastering_display = s0->sei.mastering_display;
  2993. s->sei.content_light = s0->sei.content_light;
  2994. s->sei.alternative_transfer = s0->sei.alternative_transfer;
  2995. return 0;
  2996. }
  2997. static av_cold int hevc_decode_init(AVCodecContext *avctx)
  2998. {
  2999. HEVCContext *s = avctx->priv_data;
  3000. int ret;
  3001. avctx->internal->allocate_progress = 1;
  3002. ret = hevc_init_context(avctx);
  3003. if (ret < 0)
  3004. return ret;
  3005. s->enable_parallel_tiles = 0;
  3006. s->sei.picture_timing.picture_struct = 0;
  3007. s->eos = 1;
  3008. atomic_init(&s->wpp_err, 0);
  3009. if(avctx->active_thread_type & FF_THREAD_SLICE)
  3010. s->threads_number = avctx->thread_count;
  3011. else
  3012. s->threads_number = 1;
  3013. if (avctx->extradata_size > 0 && avctx->extradata) {
  3014. ret = hevc_decode_extradata(s, avctx->extradata, avctx->extradata_size, 1);
  3015. if (ret < 0) {
  3016. hevc_decode_free(avctx);
  3017. return ret;
  3018. }
  3019. }
  3020. if((avctx->active_thread_type & FF_THREAD_FRAME) && avctx->thread_count > 1)
  3021. s->threads_type = FF_THREAD_FRAME;
  3022. else
  3023. s->threads_type = FF_THREAD_SLICE;
  3024. return 0;
  3025. }
  3026. static av_cold int hevc_init_thread_copy(AVCodecContext *avctx)
  3027. {
  3028. HEVCContext *s = avctx->priv_data;
  3029. int ret;
  3030. memset(s, 0, sizeof(*s));
  3031. ret = hevc_init_context(avctx);
  3032. if (ret < 0)
  3033. return ret;
  3034. return 0;
  3035. }
  3036. static void hevc_decode_flush(AVCodecContext *avctx)
  3037. {
  3038. HEVCContext *s = avctx->priv_data;
  3039. ff_hevc_flush_dpb(s);
  3040. s->max_ra = INT_MAX;
  3041. s->eos = 1;
  3042. }
  3043. #define OFFSET(x) offsetof(HEVCContext, x)
  3044. #define PAR (AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_VIDEO_PARAM)
  3045. static const AVOption options[] = {
  3046. { "apply_defdispwin", "Apply default display window from VUI", OFFSET(apply_defdispwin),
  3047. AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, PAR },
  3048. { "strict-displaywin", "stricly apply default display window size", OFFSET(apply_defdispwin),
  3049. AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, PAR },
  3050. { NULL },
  3051. };
  3052. static const AVClass hevc_decoder_class = {
  3053. .class_name = "HEVC decoder",
  3054. .item_name = av_default_item_name,
  3055. .option = options,
  3056. .version = LIBAVUTIL_VERSION_INT,
  3057. };
  3058. AVCodec ff_hevc_decoder = {
  3059. .name = "hevc",
  3060. .long_name = NULL_IF_CONFIG_SMALL("HEVC (High Efficiency Video Coding)"),
  3061. .type = AVMEDIA_TYPE_VIDEO,
  3062. .id = AV_CODEC_ID_HEVC,
  3063. .priv_data_size = sizeof(HEVCContext),
  3064. .priv_class = &hevc_decoder_class,
  3065. .init = hevc_decode_init,
  3066. .close = hevc_decode_free,
  3067. .decode = hevc_decode_frame,
  3068. .flush = hevc_decode_flush,
  3069. .update_thread_context = hevc_update_thread_context,
  3070. .init_thread_copy = hevc_init_thread_copy,
  3071. .capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DELAY |
  3072. AV_CODEC_CAP_SLICE_THREADS | AV_CODEC_CAP_FRAME_THREADS,
  3073. .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE | FF_CODEC_CAP_EXPORTS_CROPPING,
  3074. .profiles = NULL_IF_CONFIG_SMALL(ff_hevc_profiles),
  3075. .hw_configs = (const AVCodecHWConfigInternal*[]) {
  3076. #if CONFIG_HEVC_DXVA2_HWACCEL
  3077. HWACCEL_DXVA2(hevc),
  3078. #endif
  3079. #if CONFIG_HEVC_D3D11VA_HWACCEL
  3080. HWACCEL_D3D11VA(hevc),
  3081. #endif
  3082. #if CONFIG_HEVC_D3D11VA2_HWACCEL
  3083. HWACCEL_D3D11VA2(hevc),
  3084. #endif
  3085. #if CONFIG_HEVC_NVDEC_HWACCEL
  3086. HWACCEL_NVDEC(hevc),
  3087. #endif
  3088. #if CONFIG_HEVC_VAAPI_HWACCEL
  3089. HWACCEL_VAAPI(hevc),
  3090. #endif
  3091. #if CONFIG_HEVC_VDPAU_HWACCEL
  3092. HWACCEL_VDPAU(hevc),
  3093. #endif
  3094. #if CONFIG_HEVC_VIDEOTOOLBOX_HWACCEL
  3095. HWACCEL_VIDEOTOOLBOX(hevc),
  3096. #endif
  3097. NULL
  3098. },
  3099. };