You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

551 lines
15KB

  1. /*
  2. * (c) 2001 Fabrice Bellard
  3. * 2007 Marc Hoffman <marc.hoffman@analog.com>
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * DCT test (c) 2001 Fabrice Bellard
  24. * Started from sample code by Juan J. Sierralta P.
  25. */
  26. #include <stdlib.h>
  27. #include <stdio.h>
  28. #include <string.h>
  29. #include <sys/time.h>
  30. #include <unistd.h>
  31. #include <math.h>
  32. #include "libavutil/cpu.h"
  33. #include "libavutil/common.h"
  34. #include "libavutil/lfg.h"
  35. #include "simple_idct.h"
  36. #include "aandcttab.h"
  37. #include "faandct.h"
  38. #include "faanidct.h"
  39. #include "x86/idct_xvid.h"
  40. #include "dctref.h"
  41. #undef printf
  42. void ff_mmx_idct(DCTELEM *data);
  43. void ff_mmxext_idct(DCTELEM *data);
  44. void odivx_idct_c(short *block);
  45. // BFIN
  46. void ff_bfin_idct(DCTELEM *block);
  47. void ff_bfin_fdct(DCTELEM *block);
  48. // ALTIVEC
  49. void fdct_altivec(DCTELEM *block);
  50. //void idct_altivec(DCTELEM *block);?? no routine
  51. // ARM
  52. void ff_j_rev_dct_arm(DCTELEM *data);
  53. void ff_simple_idct_arm(DCTELEM *data);
  54. void ff_simple_idct_armv5te(DCTELEM *data);
  55. void ff_simple_idct_armv6(DCTELEM *data);
  56. void ff_simple_idct_neon(DCTELEM *data);
  57. void ff_simple_idct_axp(DCTELEM *data);
  58. struct algo {
  59. const char *name;
  60. void (*func)(DCTELEM *block);
  61. enum formattag { NO_PERM, MMX_PERM, MMX_SIMPLE_PERM, SCALE_PERM,
  62. SSE2_PERM, PARTTRANS_PERM } format;
  63. int mm_support;
  64. int nonspec;
  65. };
  66. #ifndef FAAN_POSTSCALE
  67. #define FAAN_SCALE SCALE_PERM
  68. #else
  69. #define FAAN_SCALE NO_PERM
  70. #endif
  71. static int cpu_flags;
  72. static const struct algo fdct_tab[] = {
  73. { "REF-DBL", ff_ref_fdct, NO_PERM },
  74. { "FAAN", ff_faandct, FAAN_SCALE },
  75. { "IJG-AAN-INT", ff_fdct_ifast, SCALE_PERM },
  76. { "IJG-LLM-INT", ff_jpeg_fdct_islow_8, NO_PERM },
  77. #if HAVE_MMX
  78. { "MMX", ff_fdct_mmx, NO_PERM, AV_CPU_FLAG_MMX },
  79. { "MMX2", ff_fdct_mmx2, NO_PERM, AV_CPU_FLAG_MMX2 },
  80. { "SSE2", ff_fdct_sse2, NO_PERM, AV_CPU_FLAG_SSE2 },
  81. #endif
  82. #if HAVE_ALTIVEC
  83. { "altivecfdct", fdct_altivec, NO_PERM, AV_CPU_FLAG_ALTIVEC },
  84. #endif
  85. #if ARCH_BFIN
  86. { "BFINfdct", ff_bfin_fdct, NO_PERM },
  87. #endif
  88. { 0 }
  89. };
  90. static const struct algo idct_tab[] = {
  91. { "FAANI", ff_faanidct, NO_PERM },
  92. { "REF-DBL", ff_ref_idct, NO_PERM },
  93. { "INT", ff_j_rev_dct, MMX_PERM },
  94. { "SIMPLE-C", ff_simple_idct_8, NO_PERM },
  95. #if HAVE_MMX
  96. #if CONFIG_GPL
  97. { "LIBMPEG2-MMX", ff_mmx_idct, MMX_PERM, AV_CPU_FLAG_MMX, 1 },
  98. { "LIBMPEG2-MMX2", ff_mmxext_idct, MMX_PERM, AV_CPU_FLAG_MMX2, 1 },
  99. #endif
  100. { "SIMPLE-MMX", ff_simple_idct_mmx, MMX_SIMPLE_PERM, AV_CPU_FLAG_MMX },
  101. { "XVID-MMX", ff_idct_xvid_mmx, NO_PERM, AV_CPU_FLAG_MMX, 1 },
  102. { "XVID-MMX2", ff_idct_xvid_mmx2, NO_PERM, AV_CPU_FLAG_MMX2, 1 },
  103. { "XVID-SSE2", ff_idct_xvid_sse2, SSE2_PERM, AV_CPU_FLAG_SSE2, 1 },
  104. #endif
  105. #if ARCH_BFIN
  106. { "BFINidct", ff_bfin_idct, NO_PERM },
  107. #endif
  108. #if ARCH_ARM
  109. { "SIMPLE-ARM", ff_simple_idct_arm, NO_PERM },
  110. { "INT-ARM", ff_j_rev_dct_arm, MMX_PERM },
  111. #endif
  112. #if HAVE_ARMV5TE
  113. { "SIMPLE-ARMV5TE", ff_simple_idct_armv5te,NO_PERM },
  114. #endif
  115. #if HAVE_ARMV6
  116. { "SIMPLE-ARMV6", ff_simple_idct_armv6, MMX_PERM },
  117. #endif
  118. #if HAVE_NEON
  119. { "SIMPLE-NEON", ff_simple_idct_neon, PARTTRANS_PERM },
  120. #endif
  121. #if ARCH_ALPHA
  122. { "SIMPLE-ALPHA", ff_simple_idct_axp, NO_PERM },
  123. #endif
  124. { 0 }
  125. };
  126. #define AANSCALE_BITS 12
  127. static int64_t gettime(void)
  128. {
  129. struct timeval tv;
  130. gettimeofday(&tv, NULL);
  131. return (int64_t)tv.tv_sec * 1000000 + tv.tv_usec;
  132. }
  133. #define NB_ITS 20000
  134. #define NB_ITS_SPEED 50000
  135. static short idct_mmx_perm[64];
  136. static short idct_simple_mmx_perm[64] = {
  137. 0x00, 0x08, 0x04, 0x09, 0x01, 0x0C, 0x05, 0x0D,
  138. 0x10, 0x18, 0x14, 0x19, 0x11, 0x1C, 0x15, 0x1D,
  139. 0x20, 0x28, 0x24, 0x29, 0x21, 0x2C, 0x25, 0x2D,
  140. 0x12, 0x1A, 0x16, 0x1B, 0x13, 0x1E, 0x17, 0x1F,
  141. 0x02, 0x0A, 0x06, 0x0B, 0x03, 0x0E, 0x07, 0x0F,
  142. 0x30, 0x38, 0x34, 0x39, 0x31, 0x3C, 0x35, 0x3D,
  143. 0x22, 0x2A, 0x26, 0x2B, 0x23, 0x2E, 0x27, 0x2F,
  144. 0x32, 0x3A, 0x36, 0x3B, 0x33, 0x3E, 0x37, 0x3F,
  145. };
  146. static const uint8_t idct_sse2_row_perm[8] = { 0, 4, 1, 5, 2, 6, 3, 7 };
  147. static void idct_mmx_init(void)
  148. {
  149. int i;
  150. /* the mmx/mmxext idct uses a reordered input, so we patch scan tables */
  151. for (i = 0; i < 64; i++) {
  152. idct_mmx_perm[i] = (i & 0x38) | ((i & 6) >> 1) | ((i & 1) << 2);
  153. }
  154. }
  155. DECLARE_ALIGNED(16, static DCTELEM, block)[64];
  156. DECLARE_ALIGNED(8, static DCTELEM, block1)[64];
  157. static inline void mmx_emms(void)
  158. {
  159. #if HAVE_MMX
  160. if (cpu_flags & AV_CPU_FLAG_MMX)
  161. __asm__ volatile ("emms\n\t");
  162. #endif
  163. }
  164. static void init_block(DCTELEM block[64], int test, int is_idct, AVLFG *prng)
  165. {
  166. int i, j;
  167. memset(block, 0, 64 * sizeof(*block));
  168. switch (test) {
  169. case 0:
  170. for (i = 0; i < 64; i++)
  171. block[i] = (av_lfg_get(prng) % 512) - 256;
  172. if (is_idct) {
  173. ff_ref_fdct(block);
  174. for (i = 0; i < 64; i++)
  175. block[i] >>= 3;
  176. }
  177. break;
  178. case 1:
  179. j = av_lfg_get(prng) % 10 + 1;
  180. for (i = 0; i < j; i++)
  181. block[av_lfg_get(prng) % 64] = av_lfg_get(prng) % 512 - 256;
  182. break;
  183. case 2:
  184. block[ 0] = av_lfg_get(prng) % 4096 - 2048;
  185. block[63] = (block[0] & 1) ^ 1;
  186. break;
  187. }
  188. }
  189. static void permute(DCTELEM dst[64], const DCTELEM src[64], int perm)
  190. {
  191. int i;
  192. if (perm == MMX_PERM) {
  193. for (i = 0; i < 64; i++)
  194. dst[idct_mmx_perm[i]] = src[i];
  195. } else if (perm == MMX_SIMPLE_PERM) {
  196. for (i = 0; i < 64; i++)
  197. dst[idct_simple_mmx_perm[i]] = src[i];
  198. } else if (perm == SSE2_PERM) {
  199. for (i = 0; i < 64; i++)
  200. dst[(i & 0x38) | idct_sse2_row_perm[i & 7]] = src[i];
  201. } else if (perm == PARTTRANS_PERM) {
  202. for (i = 0; i < 64; i++)
  203. dst[(i & 0x24) | ((i & 3) << 3) | ((i >> 3) & 3)] = src[i];
  204. } else {
  205. for (i = 0; i < 64; i++)
  206. dst[i] = src[i];
  207. }
  208. }
  209. static int dct_error(const struct algo *dct, int test, int is_idct, int speed)
  210. {
  211. void (*ref)(DCTELEM *block) = is_idct ? ff_ref_idct : ff_ref_fdct;
  212. int it, i, scale;
  213. int err_inf, v;
  214. int64_t err2, ti, ti1, it1, err_sum = 0;
  215. int64_t sysErr[64], sysErrMax = 0;
  216. int maxout = 0;
  217. int blockSumErrMax = 0, blockSumErr;
  218. AVLFG prng;
  219. double omse, ome;
  220. int spec_err;
  221. av_lfg_init(&prng, 1);
  222. err_inf = 0;
  223. err2 = 0;
  224. for (i = 0; i < 64; i++)
  225. sysErr[i] = 0;
  226. for (it = 0; it < NB_ITS; it++) {
  227. init_block(block1, test, is_idct, &prng);
  228. permute(block, block1, dct->format);
  229. dct->func(block);
  230. mmx_emms();
  231. if (dct->format == SCALE_PERM) {
  232. for (i = 0; i < 64; i++) {
  233. scale = 8 * (1 << (AANSCALE_BITS + 11)) / ff_aanscales[i];
  234. block[i] = (block[i] * scale) >> AANSCALE_BITS;
  235. }
  236. }
  237. ref(block1);
  238. blockSumErr = 0;
  239. for (i = 0; i < 64; i++) {
  240. int err = block[i] - block1[i];
  241. err_sum += err;
  242. v = abs(err);
  243. if (v > err_inf)
  244. err_inf = v;
  245. err2 += v * v;
  246. sysErr[i] += block[i] - block1[i];
  247. blockSumErr += v;
  248. if (abs(block[i]) > maxout)
  249. maxout = abs(block[i]);
  250. }
  251. if (blockSumErrMax < blockSumErr)
  252. blockSumErrMax = blockSumErr;
  253. }
  254. for (i = 0; i < 64; i++)
  255. sysErrMax = FFMAX(sysErrMax, FFABS(sysErr[i]));
  256. for (i = 0; i < 64; i++) {
  257. if (i % 8 == 0)
  258. printf("\n");
  259. printf("%7d ", (int) sysErr[i]);
  260. }
  261. printf("\n");
  262. omse = (double) err2 / NB_ITS / 64;
  263. ome = (double) err_sum / NB_ITS / 64;
  264. spec_err = is_idct && (err_inf > 1 || omse > 0.02 || fabs(ome) > 0.0015);
  265. printf("%s %s: ppe=%d omse=%0.8f ome=%0.8f syserr=%0.8f maxout=%d blockSumErr=%d\n",
  266. is_idct ? "IDCT" : "DCT", dct->name, err_inf,
  267. omse, ome, (double) sysErrMax / NB_ITS,
  268. maxout, blockSumErrMax);
  269. if (spec_err && !dct->nonspec)
  270. return 1;
  271. if (!speed)
  272. return 0;
  273. /* speed test */
  274. init_block(block, test, is_idct, &prng);
  275. permute(block1, block, dct->format);
  276. ti = gettime();
  277. it1 = 0;
  278. do {
  279. for (it = 0; it < NB_ITS_SPEED; it++) {
  280. memcpy(block, block1, sizeof(block));
  281. dct->func(block);
  282. }
  283. it1 += NB_ITS_SPEED;
  284. ti1 = gettime() - ti;
  285. } while (ti1 < 1000000);
  286. mmx_emms();
  287. printf("%s %s: %0.1f kdct/s\n", is_idct ? "IDCT" : "DCT", dct->name,
  288. (double) it1 * 1000.0 / (double) ti1);
  289. return 0;
  290. }
  291. DECLARE_ALIGNED(8, static uint8_t, img_dest)[64];
  292. DECLARE_ALIGNED(8, static uint8_t, img_dest1)[64];
  293. static void idct248_ref(uint8_t *dest, int linesize, int16_t *block)
  294. {
  295. static int init;
  296. static double c8[8][8];
  297. static double c4[4][4];
  298. double block1[64], block2[64], block3[64];
  299. double s, sum, v;
  300. int i, j, k;
  301. if (!init) {
  302. init = 1;
  303. for (i = 0; i < 8; i++) {
  304. sum = 0;
  305. for (j = 0; j < 8; j++) {
  306. s = (i == 0) ? sqrt(1.0 / 8.0) : sqrt(1.0 / 4.0);
  307. c8[i][j] = s * cos(M_PI * i * (j + 0.5) / 8.0);
  308. sum += c8[i][j] * c8[i][j];
  309. }
  310. }
  311. for (i = 0; i < 4; i++) {
  312. sum = 0;
  313. for (j = 0; j < 4; j++) {
  314. s = (i == 0) ? sqrt(1.0 / 4.0) : sqrt(1.0 / 2.0);
  315. c4[i][j] = s * cos(M_PI * i * (j + 0.5) / 4.0);
  316. sum += c4[i][j] * c4[i][j];
  317. }
  318. }
  319. }
  320. /* butterfly */
  321. s = 0.5 * sqrt(2.0);
  322. for (i = 0; i < 4; i++) {
  323. for (j = 0; j < 8; j++) {
  324. block1[8 * (2 * i) + j] =
  325. (block[8 * (2 * i) + j] + block[8 * (2 * i + 1) + j]) * s;
  326. block1[8 * (2 * i + 1) + j] =
  327. (block[8 * (2 * i) + j] - block[8 * (2 * i + 1) + j]) * s;
  328. }
  329. }
  330. /* idct8 on lines */
  331. for (i = 0; i < 8; i++) {
  332. for (j = 0; j < 8; j++) {
  333. sum = 0;
  334. for (k = 0; k < 8; k++)
  335. sum += c8[k][j] * block1[8 * i + k];
  336. block2[8 * i + j] = sum;
  337. }
  338. }
  339. /* idct4 */
  340. for (i = 0; i < 8; i++) {
  341. for (j = 0; j < 4; j++) {
  342. /* top */
  343. sum = 0;
  344. for (k = 0; k < 4; k++)
  345. sum += c4[k][j] * block2[8 * (2 * k) + i];
  346. block3[8 * (2 * j) + i] = sum;
  347. /* bottom */
  348. sum = 0;
  349. for (k = 0; k < 4; k++)
  350. sum += c4[k][j] * block2[8 * (2 * k + 1) + i];
  351. block3[8 * (2 * j + 1) + i] = sum;
  352. }
  353. }
  354. /* clamp and store the result */
  355. for (i = 0; i < 8; i++) {
  356. for (j = 0; j < 8; j++) {
  357. v = block3[8 * i + j];
  358. if (v < 0) v = 0;
  359. else if (v > 255) v = 255;
  360. dest[i * linesize + j] = (int) rint(v);
  361. }
  362. }
  363. }
  364. static void idct248_error(const char *name,
  365. void (*idct248_put)(uint8_t *dest, int line_size,
  366. int16_t *block),
  367. int speed)
  368. {
  369. int it, i, it1, ti, ti1, err_max, v;
  370. AVLFG prng;
  371. av_lfg_init(&prng, 1);
  372. /* just one test to see if code is correct (precision is less
  373. important here) */
  374. err_max = 0;
  375. for (it = 0; it < NB_ITS; it++) {
  376. /* XXX: use forward transform to generate values */
  377. for (i = 0; i < 64; i++)
  378. block1[i] = av_lfg_get(&prng) % 256 - 128;
  379. block1[0] += 1024;
  380. for (i = 0; i < 64; i++)
  381. block[i] = block1[i];
  382. idct248_ref(img_dest1, 8, block);
  383. for (i = 0; i < 64; i++)
  384. block[i] = block1[i];
  385. idct248_put(img_dest, 8, block);
  386. for (i = 0; i < 64; i++) {
  387. v = abs((int) img_dest[i] - (int) img_dest1[i]);
  388. if (v == 255)
  389. printf("%d %d\n", img_dest[i], img_dest1[i]);
  390. if (v > err_max)
  391. err_max = v;
  392. }
  393. }
  394. printf("%s %s: err_inf=%d\n", 1 ? "IDCT248" : "DCT248", name, err_max);
  395. if (!speed)
  396. return;
  397. ti = gettime();
  398. it1 = 0;
  399. do {
  400. for (it = 0; it < NB_ITS_SPEED; it++) {
  401. for (i = 0; i < 64; i++)
  402. block[i] = block1[i];
  403. idct248_put(img_dest, 8, block);
  404. }
  405. it1 += NB_ITS_SPEED;
  406. ti1 = gettime() - ti;
  407. } while (ti1 < 1000000);
  408. mmx_emms();
  409. printf("%s %s: %0.1f kdct/s\n", 1 ? "IDCT248" : "DCT248", name,
  410. (double) it1 * 1000.0 / (double) ti1);
  411. }
  412. static void help(void)
  413. {
  414. printf("dct-test [-i] [<test-number>]\n"
  415. "test-number 0 -> test with random matrixes\n"
  416. " 1 -> test with random sparse matrixes\n"
  417. " 2 -> do 3. test from mpeg4 std\n"
  418. "-i test IDCT implementations\n"
  419. "-4 test IDCT248 implementations\n"
  420. "-t speed test\n");
  421. }
  422. int main(int argc, char **argv)
  423. {
  424. int test_idct = 0, test_248_dct = 0;
  425. int c, i;
  426. int test = 1;
  427. int speed = 0;
  428. int err = 0;
  429. cpu_flags = av_get_cpu_flags();
  430. ff_ref_dct_init();
  431. idct_mmx_init();
  432. for (;;) {
  433. c = getopt(argc, argv, "ih4t");
  434. if (c == -1)
  435. break;
  436. switch (c) {
  437. case 'i':
  438. test_idct = 1;
  439. break;
  440. case '4':
  441. test_248_dct = 1;
  442. break;
  443. case 't':
  444. speed = 1;
  445. break;
  446. default:
  447. case 'h':
  448. help();
  449. return 0;
  450. }
  451. }
  452. if (optind < argc)
  453. test = atoi(argv[optind]);
  454. printf("Libav DCT/IDCT test\n");
  455. if (test_248_dct) {
  456. idct248_error("SIMPLE-C", ff_simple_idct248_put, speed);
  457. } else {
  458. const struct algo *algos = test_idct ? idct_tab : fdct_tab;
  459. for (i = 0; algos[i].name; i++)
  460. if (!(~cpu_flags & algos[i].mm_support)) {
  461. err |= dct_error(&algos[i], test, test_idct, speed);
  462. }
  463. }
  464. return err;
  465. }