You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3463 lines
135KB

  1. /*
  2. * HEVC video Decoder
  3. *
  4. * Copyright (C) 2012 - 2013 Guillaume Martres
  5. * Copyright (C) 2012 - 2013 Mickael Raulet
  6. * Copyright (C) 2012 - 2013 Gildas Cocherel
  7. * Copyright (C) 2012 - 2013 Wassim Hamidouche
  8. *
  9. * This file is part of FFmpeg.
  10. *
  11. * FFmpeg is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU Lesser General Public
  13. * License as published by the Free Software Foundation; either
  14. * version 2.1 of the License, or (at your option) any later version.
  15. *
  16. * FFmpeg is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * Lesser General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU Lesser General Public
  22. * License along with FFmpeg; if not, write to the Free Software
  23. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  24. */
  25. #include "libavutil/attributes.h"
  26. #include "libavutil/common.h"
  27. #include "libavutil/display.h"
  28. #include "libavutil/internal.h"
  29. #include "libavutil/mastering_display_metadata.h"
  30. #include "libavutil/md5.h"
  31. #include "libavutil/opt.h"
  32. #include "libavutil/pixdesc.h"
  33. #include "libavutil/stereo3d.h"
  34. #include "bswapdsp.h"
  35. #include "bytestream.h"
  36. #include "cabac_functions.h"
  37. #include "golomb.h"
  38. #include "hevc.h"
  39. #include "hevc_data.h"
  40. #include "hevc_parse.h"
  41. #include "hevcdec.h"
  42. #include "profiles.h"
  43. const uint8_t ff_hevc_pel_weight[65] = { [2] = 0, [4] = 1, [6] = 2, [8] = 3, [12] = 4, [16] = 5, [24] = 6, [32] = 7, [48] = 8, [64] = 9 };
  44. /**
  45. * NOTE: Each function hls_foo correspond to the function foo in the
  46. * specification (HLS stands for High Level Syntax).
  47. */
  48. /**
  49. * Section 5.7
  50. */
  51. /* free everything allocated by pic_arrays_init() */
  52. static void pic_arrays_free(HEVCContext *s)
  53. {
  54. av_freep(&s->sao);
  55. av_freep(&s->deblock);
  56. av_freep(&s->skip_flag);
  57. av_freep(&s->tab_ct_depth);
  58. av_freep(&s->tab_ipm);
  59. av_freep(&s->cbf_luma);
  60. av_freep(&s->is_pcm);
  61. av_freep(&s->qp_y_tab);
  62. av_freep(&s->tab_slice_address);
  63. av_freep(&s->filter_slice_edges);
  64. av_freep(&s->horizontal_bs);
  65. av_freep(&s->vertical_bs);
  66. av_freep(&s->sh.entry_point_offset);
  67. av_freep(&s->sh.size);
  68. av_freep(&s->sh.offset);
  69. av_buffer_pool_uninit(&s->tab_mvf_pool);
  70. av_buffer_pool_uninit(&s->rpl_tab_pool);
  71. }
  72. /* allocate arrays that depend on frame dimensions */
  73. static int pic_arrays_init(HEVCContext *s, const HEVCSPS *sps)
  74. {
  75. int log2_min_cb_size = sps->log2_min_cb_size;
  76. int width = sps->width;
  77. int height = sps->height;
  78. int pic_size_in_ctb = ((width >> log2_min_cb_size) + 1) *
  79. ((height >> log2_min_cb_size) + 1);
  80. int ctb_count = sps->ctb_width * sps->ctb_height;
  81. int min_pu_size = sps->min_pu_width * sps->min_pu_height;
  82. s->bs_width = (width >> 2) + 1;
  83. s->bs_height = (height >> 2) + 1;
  84. s->sao = av_mallocz_array(ctb_count, sizeof(*s->sao));
  85. s->deblock = av_mallocz_array(ctb_count, sizeof(*s->deblock));
  86. if (!s->sao || !s->deblock)
  87. goto fail;
  88. s->skip_flag = av_malloc_array(sps->min_cb_height, sps->min_cb_width);
  89. s->tab_ct_depth = av_malloc_array(sps->min_cb_height, sps->min_cb_width);
  90. if (!s->skip_flag || !s->tab_ct_depth)
  91. goto fail;
  92. s->cbf_luma = av_malloc_array(sps->min_tb_width, sps->min_tb_height);
  93. s->tab_ipm = av_mallocz(min_pu_size);
  94. s->is_pcm = av_malloc_array(sps->min_pu_width + 1, sps->min_pu_height + 1);
  95. if (!s->tab_ipm || !s->cbf_luma || !s->is_pcm)
  96. goto fail;
  97. s->filter_slice_edges = av_mallocz(ctb_count);
  98. s->tab_slice_address = av_malloc_array(pic_size_in_ctb,
  99. sizeof(*s->tab_slice_address));
  100. s->qp_y_tab = av_malloc_array(pic_size_in_ctb,
  101. sizeof(*s->qp_y_tab));
  102. if (!s->qp_y_tab || !s->filter_slice_edges || !s->tab_slice_address)
  103. goto fail;
  104. s->horizontal_bs = av_mallocz_array(s->bs_width, s->bs_height);
  105. s->vertical_bs = av_mallocz_array(s->bs_width, s->bs_height);
  106. if (!s->horizontal_bs || !s->vertical_bs)
  107. goto fail;
  108. s->tab_mvf_pool = av_buffer_pool_init(min_pu_size * sizeof(MvField),
  109. av_buffer_allocz);
  110. s->rpl_tab_pool = av_buffer_pool_init(ctb_count * sizeof(RefPicListTab),
  111. av_buffer_allocz);
  112. if (!s->tab_mvf_pool || !s->rpl_tab_pool)
  113. goto fail;
  114. return 0;
  115. fail:
  116. pic_arrays_free(s);
  117. return AVERROR(ENOMEM);
  118. }
  119. static int pred_weight_table(HEVCContext *s, GetBitContext *gb)
  120. {
  121. int i = 0;
  122. int j = 0;
  123. uint8_t luma_weight_l0_flag[16];
  124. uint8_t chroma_weight_l0_flag[16];
  125. uint8_t luma_weight_l1_flag[16];
  126. uint8_t chroma_weight_l1_flag[16];
  127. int luma_log2_weight_denom;
  128. luma_log2_weight_denom = get_ue_golomb_long(gb);
  129. if (luma_log2_weight_denom < 0 || luma_log2_weight_denom > 7)
  130. av_log(s->avctx, AV_LOG_ERROR, "luma_log2_weight_denom %d is invalid\n", luma_log2_weight_denom);
  131. s->sh.luma_log2_weight_denom = av_clip_uintp2(luma_log2_weight_denom, 3);
  132. if (s->ps.sps->chroma_format_idc != 0) {
  133. int delta = get_se_golomb(gb);
  134. s->sh.chroma_log2_weight_denom = av_clip_uintp2(s->sh.luma_log2_weight_denom + delta, 3);
  135. }
  136. for (i = 0; i < s->sh.nb_refs[L0]; i++) {
  137. luma_weight_l0_flag[i] = get_bits1(gb);
  138. if (!luma_weight_l0_flag[i]) {
  139. s->sh.luma_weight_l0[i] = 1 << s->sh.luma_log2_weight_denom;
  140. s->sh.luma_offset_l0[i] = 0;
  141. }
  142. }
  143. if (s->ps.sps->chroma_format_idc != 0) {
  144. for (i = 0; i < s->sh.nb_refs[L0]; i++)
  145. chroma_weight_l0_flag[i] = get_bits1(gb);
  146. } else {
  147. for (i = 0; i < s->sh.nb_refs[L0]; i++)
  148. chroma_weight_l0_flag[i] = 0;
  149. }
  150. for (i = 0; i < s->sh.nb_refs[L0]; i++) {
  151. if (luma_weight_l0_flag[i]) {
  152. int delta_luma_weight_l0 = get_se_golomb(gb);
  153. s->sh.luma_weight_l0[i] = (1 << s->sh.luma_log2_weight_denom) + delta_luma_weight_l0;
  154. s->sh.luma_offset_l0[i] = get_se_golomb(gb);
  155. }
  156. if (chroma_weight_l0_flag[i]) {
  157. for (j = 0; j < 2; j++) {
  158. int delta_chroma_weight_l0 = get_se_golomb(gb);
  159. int delta_chroma_offset_l0 = get_se_golomb(gb);
  160. if ( (int8_t)delta_chroma_weight_l0 != delta_chroma_weight_l0
  161. || delta_chroma_offset_l0 < -(1<<17) || delta_chroma_offset_l0 > (1<<17)) {
  162. return AVERROR_INVALIDDATA;
  163. }
  164. s->sh.chroma_weight_l0[i][j] = (1 << s->sh.chroma_log2_weight_denom) + delta_chroma_weight_l0;
  165. s->sh.chroma_offset_l0[i][j] = av_clip((delta_chroma_offset_l0 - ((128 * s->sh.chroma_weight_l0[i][j])
  166. >> s->sh.chroma_log2_weight_denom) + 128), -128, 127);
  167. }
  168. } else {
  169. s->sh.chroma_weight_l0[i][0] = 1 << s->sh.chroma_log2_weight_denom;
  170. s->sh.chroma_offset_l0[i][0] = 0;
  171. s->sh.chroma_weight_l0[i][1] = 1 << s->sh.chroma_log2_weight_denom;
  172. s->sh.chroma_offset_l0[i][1] = 0;
  173. }
  174. }
  175. if (s->sh.slice_type == HEVC_SLICE_B) {
  176. for (i = 0; i < s->sh.nb_refs[L1]; i++) {
  177. luma_weight_l1_flag[i] = get_bits1(gb);
  178. if (!luma_weight_l1_flag[i]) {
  179. s->sh.luma_weight_l1[i] = 1 << s->sh.luma_log2_weight_denom;
  180. s->sh.luma_offset_l1[i] = 0;
  181. }
  182. }
  183. if (s->ps.sps->chroma_format_idc != 0) {
  184. for (i = 0; i < s->sh.nb_refs[L1]; i++)
  185. chroma_weight_l1_flag[i] = get_bits1(gb);
  186. } else {
  187. for (i = 0; i < s->sh.nb_refs[L1]; i++)
  188. chroma_weight_l1_flag[i] = 0;
  189. }
  190. for (i = 0; i < s->sh.nb_refs[L1]; i++) {
  191. if (luma_weight_l1_flag[i]) {
  192. int delta_luma_weight_l1 = get_se_golomb(gb);
  193. s->sh.luma_weight_l1[i] = (1 << s->sh.luma_log2_weight_denom) + delta_luma_weight_l1;
  194. s->sh.luma_offset_l1[i] = get_se_golomb(gb);
  195. }
  196. if (chroma_weight_l1_flag[i]) {
  197. for (j = 0; j < 2; j++) {
  198. int delta_chroma_weight_l1 = get_se_golomb(gb);
  199. int delta_chroma_offset_l1 = get_se_golomb(gb);
  200. if ( (int8_t)delta_chroma_weight_l1 != delta_chroma_weight_l1
  201. || delta_chroma_offset_l1 < -(1<<17) || delta_chroma_offset_l1 > (1<<17)) {
  202. return AVERROR_INVALIDDATA;
  203. }
  204. s->sh.chroma_weight_l1[i][j] = (1 << s->sh.chroma_log2_weight_denom) + delta_chroma_weight_l1;
  205. s->sh.chroma_offset_l1[i][j] = av_clip((delta_chroma_offset_l1 - ((128 * s->sh.chroma_weight_l1[i][j])
  206. >> s->sh.chroma_log2_weight_denom) + 128), -128, 127);
  207. }
  208. } else {
  209. s->sh.chroma_weight_l1[i][0] = 1 << s->sh.chroma_log2_weight_denom;
  210. s->sh.chroma_offset_l1[i][0] = 0;
  211. s->sh.chroma_weight_l1[i][1] = 1 << s->sh.chroma_log2_weight_denom;
  212. s->sh.chroma_offset_l1[i][1] = 0;
  213. }
  214. }
  215. }
  216. return 0;
  217. }
  218. static int decode_lt_rps(HEVCContext *s, LongTermRPS *rps, GetBitContext *gb)
  219. {
  220. const HEVCSPS *sps = s->ps.sps;
  221. int max_poc_lsb = 1 << sps->log2_max_poc_lsb;
  222. int prev_delta_msb = 0;
  223. unsigned int nb_sps = 0, nb_sh;
  224. int i;
  225. rps->nb_refs = 0;
  226. if (!sps->long_term_ref_pics_present_flag)
  227. return 0;
  228. if (sps->num_long_term_ref_pics_sps > 0)
  229. nb_sps = get_ue_golomb_long(gb);
  230. nb_sh = get_ue_golomb_long(gb);
  231. if (nb_sps > sps->num_long_term_ref_pics_sps)
  232. return AVERROR_INVALIDDATA;
  233. if (nb_sh + (uint64_t)nb_sps > FF_ARRAY_ELEMS(rps->poc))
  234. return AVERROR_INVALIDDATA;
  235. rps->nb_refs = nb_sh + nb_sps;
  236. for (i = 0; i < rps->nb_refs; i++) {
  237. uint8_t delta_poc_msb_present;
  238. if (i < nb_sps) {
  239. uint8_t lt_idx_sps = 0;
  240. if (sps->num_long_term_ref_pics_sps > 1)
  241. lt_idx_sps = get_bits(gb, av_ceil_log2(sps->num_long_term_ref_pics_sps));
  242. rps->poc[i] = sps->lt_ref_pic_poc_lsb_sps[lt_idx_sps];
  243. rps->used[i] = sps->used_by_curr_pic_lt_sps_flag[lt_idx_sps];
  244. } else {
  245. rps->poc[i] = get_bits(gb, sps->log2_max_poc_lsb);
  246. rps->used[i] = get_bits1(gb);
  247. }
  248. delta_poc_msb_present = get_bits1(gb);
  249. if (delta_poc_msb_present) {
  250. int64_t delta = get_ue_golomb_long(gb);
  251. int64_t poc;
  252. if (i && i != nb_sps)
  253. delta += prev_delta_msb;
  254. poc = rps->poc[i] + s->poc - delta * max_poc_lsb - s->sh.pic_order_cnt_lsb;
  255. if (poc != (int32_t)poc)
  256. return AVERROR_INVALIDDATA;
  257. rps->poc[i] = poc;
  258. prev_delta_msb = delta;
  259. }
  260. }
  261. return 0;
  262. }
  263. static void export_stream_params(AVCodecContext *avctx, const HEVCParamSets *ps,
  264. const HEVCSPS *sps)
  265. {
  266. const HEVCVPS *vps = (const HEVCVPS*)ps->vps_list[sps->vps_id]->data;
  267. const HEVCWindow *ow = &sps->output_window;
  268. unsigned int num = 0, den = 0;
  269. avctx->pix_fmt = sps->pix_fmt;
  270. avctx->coded_width = sps->width;
  271. avctx->coded_height = sps->height;
  272. avctx->width = sps->width - ow->left_offset - ow->right_offset;
  273. avctx->height = sps->height - ow->top_offset - ow->bottom_offset;
  274. avctx->has_b_frames = sps->temporal_layer[sps->max_sub_layers - 1].num_reorder_pics;
  275. avctx->profile = sps->ptl.general_ptl.profile_idc;
  276. avctx->level = sps->ptl.general_ptl.level_idc;
  277. ff_set_sar(avctx, sps->vui.sar);
  278. if (sps->vui.video_signal_type_present_flag)
  279. avctx->color_range = sps->vui.video_full_range_flag ? AVCOL_RANGE_JPEG
  280. : AVCOL_RANGE_MPEG;
  281. else
  282. avctx->color_range = AVCOL_RANGE_MPEG;
  283. if (sps->vui.colour_description_present_flag) {
  284. avctx->color_primaries = sps->vui.colour_primaries;
  285. avctx->color_trc = sps->vui.transfer_characteristic;
  286. avctx->colorspace = sps->vui.matrix_coeffs;
  287. } else {
  288. avctx->color_primaries = AVCOL_PRI_UNSPECIFIED;
  289. avctx->color_trc = AVCOL_TRC_UNSPECIFIED;
  290. avctx->colorspace = AVCOL_SPC_UNSPECIFIED;
  291. }
  292. if (vps->vps_timing_info_present_flag) {
  293. num = vps->vps_num_units_in_tick;
  294. den = vps->vps_time_scale;
  295. } else if (sps->vui.vui_timing_info_present_flag) {
  296. num = sps->vui.vui_num_units_in_tick;
  297. den = sps->vui.vui_time_scale;
  298. }
  299. if (num != 0 && den != 0)
  300. av_reduce(&avctx->framerate.den, &avctx->framerate.num,
  301. num, den, 1 << 30);
  302. }
  303. static enum AVPixelFormat get_format(HEVCContext *s, const HEVCSPS *sps)
  304. {
  305. #define HWACCEL_MAX (CONFIG_HEVC_DXVA2_HWACCEL + CONFIG_HEVC_D3D11VA_HWACCEL * 2 + CONFIG_HEVC_VAAPI_HWACCEL + CONFIG_HEVC_VDPAU_HWACCEL)
  306. enum AVPixelFormat pix_fmts[HWACCEL_MAX + 2], *fmt = pix_fmts;
  307. switch (sps->pix_fmt) {
  308. case AV_PIX_FMT_YUV420P:
  309. case AV_PIX_FMT_YUVJ420P:
  310. #if CONFIG_HEVC_DXVA2_HWACCEL
  311. *fmt++ = AV_PIX_FMT_DXVA2_VLD;
  312. #endif
  313. #if CONFIG_HEVC_D3D11VA_HWACCEL
  314. *fmt++ = AV_PIX_FMT_D3D11VA_VLD;
  315. *fmt++ = AV_PIX_FMT_D3D11;
  316. #endif
  317. #if CONFIG_HEVC_VAAPI_HWACCEL
  318. *fmt++ = AV_PIX_FMT_VAAPI;
  319. #endif
  320. #if CONFIG_HEVC_VDPAU_HWACCEL
  321. *fmt++ = AV_PIX_FMT_VDPAU;
  322. #endif
  323. break;
  324. case AV_PIX_FMT_YUV420P10:
  325. #if CONFIG_HEVC_DXVA2_HWACCEL
  326. *fmt++ = AV_PIX_FMT_DXVA2_VLD;
  327. #endif
  328. #if CONFIG_HEVC_D3D11VA_HWACCEL
  329. *fmt++ = AV_PIX_FMT_D3D11VA_VLD;
  330. *fmt++ = AV_PIX_FMT_D3D11;
  331. #endif
  332. #if CONFIG_HEVC_VAAPI_HWACCEL
  333. *fmt++ = AV_PIX_FMT_VAAPI;
  334. #endif
  335. break;
  336. }
  337. *fmt++ = sps->pix_fmt;
  338. *fmt = AV_PIX_FMT_NONE;
  339. return ff_thread_get_format(s->avctx, pix_fmts);
  340. }
  341. static int set_sps(HEVCContext *s, const HEVCSPS *sps,
  342. enum AVPixelFormat pix_fmt)
  343. {
  344. int ret, i;
  345. pic_arrays_free(s);
  346. s->ps.sps = NULL;
  347. s->ps.vps = NULL;
  348. if (!sps)
  349. return 0;
  350. ret = pic_arrays_init(s, sps);
  351. if (ret < 0)
  352. goto fail;
  353. export_stream_params(s->avctx, &s->ps, sps);
  354. s->avctx->pix_fmt = pix_fmt;
  355. ff_hevc_pred_init(&s->hpc, sps->bit_depth);
  356. ff_hevc_dsp_init (&s->hevcdsp, sps->bit_depth);
  357. ff_videodsp_init (&s->vdsp, sps->bit_depth);
  358. for (i = 0; i < 3; i++) {
  359. av_freep(&s->sao_pixel_buffer_h[i]);
  360. av_freep(&s->sao_pixel_buffer_v[i]);
  361. }
  362. if (sps->sao_enabled && !s->avctx->hwaccel) {
  363. int c_count = (sps->chroma_format_idc != 0) ? 3 : 1;
  364. int c_idx;
  365. for(c_idx = 0; c_idx < c_count; c_idx++) {
  366. int w = sps->width >> sps->hshift[c_idx];
  367. int h = sps->height >> sps->vshift[c_idx];
  368. s->sao_pixel_buffer_h[c_idx] =
  369. av_malloc((w * 2 * sps->ctb_height) <<
  370. sps->pixel_shift);
  371. s->sao_pixel_buffer_v[c_idx] =
  372. av_malloc((h * 2 * sps->ctb_width) <<
  373. sps->pixel_shift);
  374. }
  375. }
  376. s->ps.sps = sps;
  377. s->ps.vps = (HEVCVPS*) s->ps.vps_list[s->ps.sps->vps_id]->data;
  378. return 0;
  379. fail:
  380. pic_arrays_free(s);
  381. s->ps.sps = NULL;
  382. return ret;
  383. }
  384. static int hls_slice_header(HEVCContext *s)
  385. {
  386. GetBitContext *gb = &s->HEVClc->gb;
  387. SliceHeader *sh = &s->sh;
  388. int i, ret;
  389. // Coded parameters
  390. sh->first_slice_in_pic_flag = get_bits1(gb);
  391. if ((IS_IDR(s) || IS_BLA(s)) && sh->first_slice_in_pic_flag) {
  392. s->seq_decode = (s->seq_decode + 1) & 0xff;
  393. s->max_ra = INT_MAX;
  394. if (IS_IDR(s))
  395. ff_hevc_clear_refs(s);
  396. }
  397. sh->no_output_of_prior_pics_flag = 0;
  398. if (IS_IRAP(s))
  399. sh->no_output_of_prior_pics_flag = get_bits1(gb);
  400. sh->pps_id = get_ue_golomb_long(gb);
  401. if (sh->pps_id >= HEVC_MAX_PPS_COUNT || !s->ps.pps_list[sh->pps_id]) {
  402. av_log(s->avctx, AV_LOG_ERROR, "PPS id out of range: %d\n", sh->pps_id);
  403. return AVERROR_INVALIDDATA;
  404. }
  405. if (!sh->first_slice_in_pic_flag &&
  406. s->ps.pps != (HEVCPPS*)s->ps.pps_list[sh->pps_id]->data) {
  407. av_log(s->avctx, AV_LOG_ERROR, "PPS changed between slices.\n");
  408. return AVERROR_INVALIDDATA;
  409. }
  410. s->ps.pps = (HEVCPPS*)s->ps.pps_list[sh->pps_id]->data;
  411. if (s->nal_unit_type == HEVC_NAL_CRA_NUT && s->last_eos == 1)
  412. sh->no_output_of_prior_pics_flag = 1;
  413. if (s->ps.sps != (HEVCSPS*)s->ps.sps_list[s->ps.pps->sps_id]->data) {
  414. const HEVCSPS *sps = (HEVCSPS*)s->ps.sps_list[s->ps.pps->sps_id]->data;
  415. const HEVCSPS *last_sps = s->ps.sps;
  416. enum AVPixelFormat pix_fmt;
  417. if (last_sps && IS_IRAP(s) && s->nal_unit_type != HEVC_NAL_CRA_NUT) {
  418. if (sps->width != last_sps->width || sps->height != last_sps->height ||
  419. sps->temporal_layer[sps->max_sub_layers - 1].max_dec_pic_buffering !=
  420. last_sps->temporal_layer[last_sps->max_sub_layers - 1].max_dec_pic_buffering)
  421. sh->no_output_of_prior_pics_flag = 0;
  422. }
  423. ff_hevc_clear_refs(s);
  424. pix_fmt = get_format(s, sps);
  425. if (pix_fmt < 0)
  426. return pix_fmt;
  427. ret = set_sps(s, sps, pix_fmt);
  428. if (ret < 0)
  429. return ret;
  430. s->seq_decode = (s->seq_decode + 1) & 0xff;
  431. s->max_ra = INT_MAX;
  432. }
  433. sh->dependent_slice_segment_flag = 0;
  434. if (!sh->first_slice_in_pic_flag) {
  435. int slice_address_length;
  436. if (s->ps.pps->dependent_slice_segments_enabled_flag)
  437. sh->dependent_slice_segment_flag = get_bits1(gb);
  438. slice_address_length = av_ceil_log2(s->ps.sps->ctb_width *
  439. s->ps.sps->ctb_height);
  440. sh->slice_segment_addr = get_bitsz(gb, slice_address_length);
  441. if (sh->slice_segment_addr >= s->ps.sps->ctb_width * s->ps.sps->ctb_height) {
  442. av_log(s->avctx, AV_LOG_ERROR,
  443. "Invalid slice segment address: %u.\n",
  444. sh->slice_segment_addr);
  445. return AVERROR_INVALIDDATA;
  446. }
  447. if (!sh->dependent_slice_segment_flag) {
  448. sh->slice_addr = sh->slice_segment_addr;
  449. s->slice_idx++;
  450. }
  451. } else {
  452. sh->slice_segment_addr = sh->slice_addr = 0;
  453. s->slice_idx = 0;
  454. s->slice_initialized = 0;
  455. }
  456. if (!sh->dependent_slice_segment_flag) {
  457. s->slice_initialized = 0;
  458. for (i = 0; i < s->ps.pps->num_extra_slice_header_bits; i++)
  459. skip_bits(gb, 1); // slice_reserved_undetermined_flag[]
  460. sh->slice_type = get_ue_golomb_long(gb);
  461. if (!(sh->slice_type == HEVC_SLICE_I ||
  462. sh->slice_type == HEVC_SLICE_P ||
  463. sh->slice_type == HEVC_SLICE_B)) {
  464. av_log(s->avctx, AV_LOG_ERROR, "Unknown slice type: %d.\n",
  465. sh->slice_type);
  466. return AVERROR_INVALIDDATA;
  467. }
  468. if (IS_IRAP(s) && sh->slice_type != HEVC_SLICE_I) {
  469. av_log(s->avctx, AV_LOG_ERROR, "Inter slices in an IRAP frame.\n");
  470. return AVERROR_INVALIDDATA;
  471. }
  472. // when flag is not present, picture is inferred to be output
  473. sh->pic_output_flag = 1;
  474. if (s->ps.pps->output_flag_present_flag)
  475. sh->pic_output_flag = get_bits1(gb);
  476. if (s->ps.sps->separate_colour_plane_flag)
  477. sh->colour_plane_id = get_bits(gb, 2);
  478. if (!IS_IDR(s)) {
  479. int poc, pos;
  480. sh->pic_order_cnt_lsb = get_bits(gb, s->ps.sps->log2_max_poc_lsb);
  481. poc = ff_hevc_compute_poc(s->ps.sps, s->pocTid0, sh->pic_order_cnt_lsb, s->nal_unit_type);
  482. if (!sh->first_slice_in_pic_flag && poc != s->poc) {
  483. av_log(s->avctx, AV_LOG_WARNING,
  484. "Ignoring POC change between slices: %d -> %d\n", s->poc, poc);
  485. if (s->avctx->err_recognition & AV_EF_EXPLODE)
  486. return AVERROR_INVALIDDATA;
  487. poc = s->poc;
  488. }
  489. s->poc = poc;
  490. sh->short_term_ref_pic_set_sps_flag = get_bits1(gb);
  491. pos = get_bits_left(gb);
  492. if (!sh->short_term_ref_pic_set_sps_flag) {
  493. ret = ff_hevc_decode_short_term_rps(gb, s->avctx, &sh->slice_rps, s->ps.sps, 1);
  494. if (ret < 0)
  495. return ret;
  496. sh->short_term_rps = &sh->slice_rps;
  497. } else {
  498. int numbits, rps_idx;
  499. if (!s->ps.sps->nb_st_rps) {
  500. av_log(s->avctx, AV_LOG_ERROR, "No ref lists in the SPS.\n");
  501. return AVERROR_INVALIDDATA;
  502. }
  503. numbits = av_ceil_log2(s->ps.sps->nb_st_rps);
  504. rps_idx = numbits > 0 ? get_bits(gb, numbits) : 0;
  505. sh->short_term_rps = &s->ps.sps->st_rps[rps_idx];
  506. }
  507. sh->short_term_ref_pic_set_size = pos - get_bits_left(gb);
  508. pos = get_bits_left(gb);
  509. ret = decode_lt_rps(s, &sh->long_term_rps, gb);
  510. if (ret < 0) {
  511. av_log(s->avctx, AV_LOG_WARNING, "Invalid long term RPS.\n");
  512. if (s->avctx->err_recognition & AV_EF_EXPLODE)
  513. return AVERROR_INVALIDDATA;
  514. }
  515. sh->long_term_ref_pic_set_size = pos - get_bits_left(gb);
  516. if (s->ps.sps->sps_temporal_mvp_enabled_flag)
  517. sh->slice_temporal_mvp_enabled_flag = get_bits1(gb);
  518. else
  519. sh->slice_temporal_mvp_enabled_flag = 0;
  520. } else {
  521. s->sh.short_term_rps = NULL;
  522. s->poc = 0;
  523. }
  524. /* 8.3.1 */
  525. if (sh->first_slice_in_pic_flag && s->temporal_id == 0 &&
  526. s->nal_unit_type != HEVC_NAL_TRAIL_N &&
  527. s->nal_unit_type != HEVC_NAL_TSA_N &&
  528. s->nal_unit_type != HEVC_NAL_STSA_N &&
  529. s->nal_unit_type != HEVC_NAL_RADL_N &&
  530. s->nal_unit_type != HEVC_NAL_RADL_R &&
  531. s->nal_unit_type != HEVC_NAL_RASL_N &&
  532. s->nal_unit_type != HEVC_NAL_RASL_R)
  533. s->pocTid0 = s->poc;
  534. if (s->ps.sps->sao_enabled) {
  535. sh->slice_sample_adaptive_offset_flag[0] = get_bits1(gb);
  536. if (s->ps.sps->chroma_format_idc) {
  537. sh->slice_sample_adaptive_offset_flag[1] =
  538. sh->slice_sample_adaptive_offset_flag[2] = get_bits1(gb);
  539. }
  540. } else {
  541. sh->slice_sample_adaptive_offset_flag[0] = 0;
  542. sh->slice_sample_adaptive_offset_flag[1] = 0;
  543. sh->slice_sample_adaptive_offset_flag[2] = 0;
  544. }
  545. sh->nb_refs[L0] = sh->nb_refs[L1] = 0;
  546. if (sh->slice_type == HEVC_SLICE_P || sh->slice_type == HEVC_SLICE_B) {
  547. int nb_refs;
  548. sh->nb_refs[L0] = s->ps.pps->num_ref_idx_l0_default_active;
  549. if (sh->slice_type == HEVC_SLICE_B)
  550. sh->nb_refs[L1] = s->ps.pps->num_ref_idx_l1_default_active;
  551. if (get_bits1(gb)) { // num_ref_idx_active_override_flag
  552. sh->nb_refs[L0] = get_ue_golomb_long(gb) + 1;
  553. if (sh->slice_type == HEVC_SLICE_B)
  554. sh->nb_refs[L1] = get_ue_golomb_long(gb) + 1;
  555. }
  556. if (sh->nb_refs[L0] > HEVC_MAX_REFS || sh->nb_refs[L1] > HEVC_MAX_REFS) {
  557. av_log(s->avctx, AV_LOG_ERROR, "Too many refs: %d/%d.\n",
  558. sh->nb_refs[L0], sh->nb_refs[L1]);
  559. return AVERROR_INVALIDDATA;
  560. }
  561. sh->rpl_modification_flag[0] = 0;
  562. sh->rpl_modification_flag[1] = 0;
  563. nb_refs = ff_hevc_frame_nb_refs(s);
  564. if (!nb_refs) {
  565. av_log(s->avctx, AV_LOG_ERROR, "Zero refs for a frame with P or B slices.\n");
  566. return AVERROR_INVALIDDATA;
  567. }
  568. if (s->ps.pps->lists_modification_present_flag && nb_refs > 1) {
  569. sh->rpl_modification_flag[0] = get_bits1(gb);
  570. if (sh->rpl_modification_flag[0]) {
  571. for (i = 0; i < sh->nb_refs[L0]; i++)
  572. sh->list_entry_lx[0][i] = get_bits(gb, av_ceil_log2(nb_refs));
  573. }
  574. if (sh->slice_type == HEVC_SLICE_B) {
  575. sh->rpl_modification_flag[1] = get_bits1(gb);
  576. if (sh->rpl_modification_flag[1] == 1)
  577. for (i = 0; i < sh->nb_refs[L1]; i++)
  578. sh->list_entry_lx[1][i] = get_bits(gb, av_ceil_log2(nb_refs));
  579. }
  580. }
  581. if (sh->slice_type == HEVC_SLICE_B)
  582. sh->mvd_l1_zero_flag = get_bits1(gb);
  583. if (s->ps.pps->cabac_init_present_flag)
  584. sh->cabac_init_flag = get_bits1(gb);
  585. else
  586. sh->cabac_init_flag = 0;
  587. sh->collocated_ref_idx = 0;
  588. if (sh->slice_temporal_mvp_enabled_flag) {
  589. sh->collocated_list = L0;
  590. if (sh->slice_type == HEVC_SLICE_B)
  591. sh->collocated_list = !get_bits1(gb);
  592. if (sh->nb_refs[sh->collocated_list] > 1) {
  593. sh->collocated_ref_idx = get_ue_golomb_long(gb);
  594. if (sh->collocated_ref_idx >= sh->nb_refs[sh->collocated_list]) {
  595. av_log(s->avctx, AV_LOG_ERROR,
  596. "Invalid collocated_ref_idx: %d.\n",
  597. sh->collocated_ref_idx);
  598. return AVERROR_INVALIDDATA;
  599. }
  600. }
  601. }
  602. if ((s->ps.pps->weighted_pred_flag && sh->slice_type == HEVC_SLICE_P) ||
  603. (s->ps.pps->weighted_bipred_flag && sh->slice_type == HEVC_SLICE_B)) {
  604. int ret = pred_weight_table(s, gb);
  605. if (ret < 0)
  606. return ret;
  607. }
  608. sh->max_num_merge_cand = 5 - get_ue_golomb_long(gb);
  609. if (sh->max_num_merge_cand < 1 || sh->max_num_merge_cand > 5) {
  610. av_log(s->avctx, AV_LOG_ERROR,
  611. "Invalid number of merging MVP candidates: %d.\n",
  612. sh->max_num_merge_cand);
  613. return AVERROR_INVALIDDATA;
  614. }
  615. }
  616. sh->slice_qp_delta = get_se_golomb(gb);
  617. if (s->ps.pps->pic_slice_level_chroma_qp_offsets_present_flag) {
  618. sh->slice_cb_qp_offset = get_se_golomb(gb);
  619. sh->slice_cr_qp_offset = get_se_golomb(gb);
  620. } else {
  621. sh->slice_cb_qp_offset = 0;
  622. sh->slice_cr_qp_offset = 0;
  623. }
  624. if (s->ps.pps->chroma_qp_offset_list_enabled_flag)
  625. sh->cu_chroma_qp_offset_enabled_flag = get_bits1(gb);
  626. else
  627. sh->cu_chroma_qp_offset_enabled_flag = 0;
  628. if (s->ps.pps->deblocking_filter_control_present_flag) {
  629. int deblocking_filter_override_flag = 0;
  630. if (s->ps.pps->deblocking_filter_override_enabled_flag)
  631. deblocking_filter_override_flag = get_bits1(gb);
  632. if (deblocking_filter_override_flag) {
  633. sh->disable_deblocking_filter_flag = get_bits1(gb);
  634. if (!sh->disable_deblocking_filter_flag) {
  635. int beta_offset_div2 = get_se_golomb(gb);
  636. int tc_offset_div2 = get_se_golomb(gb) ;
  637. if (beta_offset_div2 < -6 || beta_offset_div2 > 6 ||
  638. tc_offset_div2 < -6 || tc_offset_div2 > 6) {
  639. av_log(s->avctx, AV_LOG_ERROR,
  640. "Invalid deblock filter offsets: %d, %d\n",
  641. beta_offset_div2, tc_offset_div2);
  642. return AVERROR_INVALIDDATA;
  643. }
  644. sh->beta_offset = beta_offset_div2 * 2;
  645. sh->tc_offset = tc_offset_div2 * 2;
  646. }
  647. } else {
  648. sh->disable_deblocking_filter_flag = s->ps.pps->disable_dbf;
  649. sh->beta_offset = s->ps.pps->beta_offset;
  650. sh->tc_offset = s->ps.pps->tc_offset;
  651. }
  652. } else {
  653. sh->disable_deblocking_filter_flag = 0;
  654. sh->beta_offset = 0;
  655. sh->tc_offset = 0;
  656. }
  657. if (s->ps.pps->seq_loop_filter_across_slices_enabled_flag &&
  658. (sh->slice_sample_adaptive_offset_flag[0] ||
  659. sh->slice_sample_adaptive_offset_flag[1] ||
  660. !sh->disable_deblocking_filter_flag)) {
  661. sh->slice_loop_filter_across_slices_enabled_flag = get_bits1(gb);
  662. } else {
  663. sh->slice_loop_filter_across_slices_enabled_flag = s->ps.pps->seq_loop_filter_across_slices_enabled_flag;
  664. }
  665. } else if (!s->slice_initialized) {
  666. av_log(s->avctx, AV_LOG_ERROR, "Independent slice segment missing.\n");
  667. return AVERROR_INVALIDDATA;
  668. }
  669. sh->num_entry_point_offsets = 0;
  670. if (s->ps.pps->tiles_enabled_flag || s->ps.pps->entropy_coding_sync_enabled_flag) {
  671. unsigned num_entry_point_offsets = get_ue_golomb_long(gb);
  672. // It would be possible to bound this tighter but this here is simpler
  673. if (num_entry_point_offsets > get_bits_left(gb)) {
  674. av_log(s->avctx, AV_LOG_ERROR, "num_entry_point_offsets %d is invalid\n", num_entry_point_offsets);
  675. return AVERROR_INVALIDDATA;
  676. }
  677. sh->num_entry_point_offsets = num_entry_point_offsets;
  678. if (sh->num_entry_point_offsets > 0) {
  679. int offset_len = get_ue_golomb_long(gb) + 1;
  680. if (offset_len < 1 || offset_len > 32) {
  681. sh->num_entry_point_offsets = 0;
  682. av_log(s->avctx, AV_LOG_ERROR, "offset_len %d is invalid\n", offset_len);
  683. return AVERROR_INVALIDDATA;
  684. }
  685. av_freep(&sh->entry_point_offset);
  686. av_freep(&sh->offset);
  687. av_freep(&sh->size);
  688. sh->entry_point_offset = av_malloc_array(sh->num_entry_point_offsets, sizeof(unsigned));
  689. sh->offset = av_malloc_array(sh->num_entry_point_offsets, sizeof(int));
  690. sh->size = av_malloc_array(sh->num_entry_point_offsets, sizeof(int));
  691. if (!sh->entry_point_offset || !sh->offset || !sh->size) {
  692. sh->num_entry_point_offsets = 0;
  693. av_log(s->avctx, AV_LOG_ERROR, "Failed to allocate memory\n");
  694. return AVERROR(ENOMEM);
  695. }
  696. for (i = 0; i < sh->num_entry_point_offsets; i++) {
  697. unsigned val = get_bits_long(gb, offset_len);
  698. sh->entry_point_offset[i] = val + 1; // +1; // +1 to get the size
  699. }
  700. if (s->threads_number > 1 && (s->ps.pps->num_tile_rows > 1 || s->ps.pps->num_tile_columns > 1)) {
  701. s->enable_parallel_tiles = 0; // TODO: you can enable tiles in parallel here
  702. s->threads_number = 1;
  703. } else
  704. s->enable_parallel_tiles = 0;
  705. } else
  706. s->enable_parallel_tiles = 0;
  707. }
  708. if (s->ps.pps->slice_header_extension_present_flag) {
  709. unsigned int length = get_ue_golomb_long(gb);
  710. if (length*8LL > get_bits_left(gb)) {
  711. av_log(s->avctx, AV_LOG_ERROR, "too many slice_header_extension_data_bytes\n");
  712. return AVERROR_INVALIDDATA;
  713. }
  714. for (i = 0; i < length; i++)
  715. skip_bits(gb, 8); // slice_header_extension_data_byte
  716. }
  717. // Inferred parameters
  718. sh->slice_qp = 26U + s->ps.pps->pic_init_qp_minus26 + sh->slice_qp_delta;
  719. if (sh->slice_qp > 51 ||
  720. sh->slice_qp < -s->ps.sps->qp_bd_offset) {
  721. av_log(s->avctx, AV_LOG_ERROR,
  722. "The slice_qp %d is outside the valid range "
  723. "[%d, 51].\n",
  724. sh->slice_qp,
  725. -s->ps.sps->qp_bd_offset);
  726. return AVERROR_INVALIDDATA;
  727. }
  728. sh->slice_ctb_addr_rs = sh->slice_segment_addr;
  729. if (!s->sh.slice_ctb_addr_rs && s->sh.dependent_slice_segment_flag) {
  730. av_log(s->avctx, AV_LOG_ERROR, "Impossible slice segment.\n");
  731. return AVERROR_INVALIDDATA;
  732. }
  733. if (get_bits_left(gb) < 0) {
  734. av_log(s->avctx, AV_LOG_ERROR,
  735. "Overread slice header by %d bits\n", -get_bits_left(gb));
  736. return AVERROR_INVALIDDATA;
  737. }
  738. s->HEVClc->first_qp_group = !s->sh.dependent_slice_segment_flag;
  739. if (!s->ps.pps->cu_qp_delta_enabled_flag)
  740. s->HEVClc->qp_y = s->sh.slice_qp;
  741. s->slice_initialized = 1;
  742. s->HEVClc->tu.cu_qp_offset_cb = 0;
  743. s->HEVClc->tu.cu_qp_offset_cr = 0;
  744. return 0;
  745. }
  746. #define CTB(tab, x, y) ((tab)[(y) * s->ps.sps->ctb_width + (x)])
  747. #define SET_SAO(elem, value) \
  748. do { \
  749. if (!sao_merge_up_flag && !sao_merge_left_flag) \
  750. sao->elem = value; \
  751. else if (sao_merge_left_flag) \
  752. sao->elem = CTB(s->sao, rx-1, ry).elem; \
  753. else if (sao_merge_up_flag) \
  754. sao->elem = CTB(s->sao, rx, ry-1).elem; \
  755. else \
  756. sao->elem = 0; \
  757. } while (0)
  758. static void hls_sao_param(HEVCContext *s, int rx, int ry)
  759. {
  760. HEVCLocalContext *lc = s->HEVClc;
  761. int sao_merge_left_flag = 0;
  762. int sao_merge_up_flag = 0;
  763. SAOParams *sao = &CTB(s->sao, rx, ry);
  764. int c_idx, i;
  765. if (s->sh.slice_sample_adaptive_offset_flag[0] ||
  766. s->sh.slice_sample_adaptive_offset_flag[1]) {
  767. if (rx > 0) {
  768. if (lc->ctb_left_flag)
  769. sao_merge_left_flag = ff_hevc_sao_merge_flag_decode(s);
  770. }
  771. if (ry > 0 && !sao_merge_left_flag) {
  772. if (lc->ctb_up_flag)
  773. sao_merge_up_flag = ff_hevc_sao_merge_flag_decode(s);
  774. }
  775. }
  776. for (c_idx = 0; c_idx < (s->ps.sps->chroma_format_idc ? 3 : 1); c_idx++) {
  777. int log2_sao_offset_scale = c_idx == 0 ? s->ps.pps->log2_sao_offset_scale_luma :
  778. s->ps.pps->log2_sao_offset_scale_chroma;
  779. if (!s->sh.slice_sample_adaptive_offset_flag[c_idx]) {
  780. sao->type_idx[c_idx] = SAO_NOT_APPLIED;
  781. continue;
  782. }
  783. if (c_idx == 2) {
  784. sao->type_idx[2] = sao->type_idx[1];
  785. sao->eo_class[2] = sao->eo_class[1];
  786. } else {
  787. SET_SAO(type_idx[c_idx], ff_hevc_sao_type_idx_decode(s));
  788. }
  789. if (sao->type_idx[c_idx] == SAO_NOT_APPLIED)
  790. continue;
  791. for (i = 0; i < 4; i++)
  792. SET_SAO(offset_abs[c_idx][i], ff_hevc_sao_offset_abs_decode(s));
  793. if (sao->type_idx[c_idx] == SAO_BAND) {
  794. for (i = 0; i < 4; i++) {
  795. if (sao->offset_abs[c_idx][i]) {
  796. SET_SAO(offset_sign[c_idx][i],
  797. ff_hevc_sao_offset_sign_decode(s));
  798. } else {
  799. sao->offset_sign[c_idx][i] = 0;
  800. }
  801. }
  802. SET_SAO(band_position[c_idx], ff_hevc_sao_band_position_decode(s));
  803. } else if (c_idx != 2) {
  804. SET_SAO(eo_class[c_idx], ff_hevc_sao_eo_class_decode(s));
  805. }
  806. // Inferred parameters
  807. sao->offset_val[c_idx][0] = 0;
  808. for (i = 0; i < 4; i++) {
  809. sao->offset_val[c_idx][i + 1] = sao->offset_abs[c_idx][i];
  810. if (sao->type_idx[c_idx] == SAO_EDGE) {
  811. if (i > 1)
  812. sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1];
  813. } else if (sao->offset_sign[c_idx][i]) {
  814. sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1];
  815. }
  816. sao->offset_val[c_idx][i + 1] *= 1 << log2_sao_offset_scale;
  817. }
  818. }
  819. }
  820. #undef SET_SAO
  821. #undef CTB
  822. static int hls_cross_component_pred(HEVCContext *s, int idx) {
  823. HEVCLocalContext *lc = s->HEVClc;
  824. int log2_res_scale_abs_plus1 = ff_hevc_log2_res_scale_abs(s, idx);
  825. if (log2_res_scale_abs_plus1 != 0) {
  826. int res_scale_sign_flag = ff_hevc_res_scale_sign_flag(s, idx);
  827. lc->tu.res_scale_val = (1 << (log2_res_scale_abs_plus1 - 1)) *
  828. (1 - 2 * res_scale_sign_flag);
  829. } else {
  830. lc->tu.res_scale_val = 0;
  831. }
  832. return 0;
  833. }
  834. static int hls_transform_unit(HEVCContext *s, int x0, int y0,
  835. int xBase, int yBase, int cb_xBase, int cb_yBase,
  836. int log2_cb_size, int log2_trafo_size,
  837. int blk_idx, int cbf_luma, int *cbf_cb, int *cbf_cr)
  838. {
  839. HEVCLocalContext *lc = s->HEVClc;
  840. const int log2_trafo_size_c = log2_trafo_size - s->ps.sps->hshift[1];
  841. int i;
  842. if (lc->cu.pred_mode == MODE_INTRA) {
  843. int trafo_size = 1 << log2_trafo_size;
  844. ff_hevc_set_neighbour_available(s, x0, y0, trafo_size, trafo_size);
  845. s->hpc.intra_pred[log2_trafo_size - 2](s, x0, y0, 0);
  846. }
  847. if (cbf_luma || cbf_cb[0] || cbf_cr[0] ||
  848. (s->ps.sps->chroma_format_idc == 2 && (cbf_cb[1] || cbf_cr[1]))) {
  849. int scan_idx = SCAN_DIAG;
  850. int scan_idx_c = SCAN_DIAG;
  851. int cbf_chroma = cbf_cb[0] || cbf_cr[0] ||
  852. (s->ps.sps->chroma_format_idc == 2 &&
  853. (cbf_cb[1] || cbf_cr[1]));
  854. if (s->ps.pps->cu_qp_delta_enabled_flag && !lc->tu.is_cu_qp_delta_coded) {
  855. lc->tu.cu_qp_delta = ff_hevc_cu_qp_delta_abs(s);
  856. if (lc->tu.cu_qp_delta != 0)
  857. if (ff_hevc_cu_qp_delta_sign_flag(s) == 1)
  858. lc->tu.cu_qp_delta = -lc->tu.cu_qp_delta;
  859. lc->tu.is_cu_qp_delta_coded = 1;
  860. if (lc->tu.cu_qp_delta < -(26 + s->ps.sps->qp_bd_offset / 2) ||
  861. lc->tu.cu_qp_delta > (25 + s->ps.sps->qp_bd_offset / 2)) {
  862. av_log(s->avctx, AV_LOG_ERROR,
  863. "The cu_qp_delta %d is outside the valid range "
  864. "[%d, %d].\n",
  865. lc->tu.cu_qp_delta,
  866. -(26 + s->ps.sps->qp_bd_offset / 2),
  867. (25 + s->ps.sps->qp_bd_offset / 2));
  868. return AVERROR_INVALIDDATA;
  869. }
  870. ff_hevc_set_qPy(s, cb_xBase, cb_yBase, log2_cb_size);
  871. }
  872. if (s->sh.cu_chroma_qp_offset_enabled_flag && cbf_chroma &&
  873. !lc->cu.cu_transquant_bypass_flag && !lc->tu.is_cu_chroma_qp_offset_coded) {
  874. int cu_chroma_qp_offset_flag = ff_hevc_cu_chroma_qp_offset_flag(s);
  875. if (cu_chroma_qp_offset_flag) {
  876. int cu_chroma_qp_offset_idx = 0;
  877. if (s->ps.pps->chroma_qp_offset_list_len_minus1 > 0) {
  878. cu_chroma_qp_offset_idx = ff_hevc_cu_chroma_qp_offset_idx(s);
  879. av_log(s->avctx, AV_LOG_ERROR,
  880. "cu_chroma_qp_offset_idx not yet tested.\n");
  881. }
  882. lc->tu.cu_qp_offset_cb = s->ps.pps->cb_qp_offset_list[cu_chroma_qp_offset_idx];
  883. lc->tu.cu_qp_offset_cr = s->ps.pps->cr_qp_offset_list[cu_chroma_qp_offset_idx];
  884. } else {
  885. lc->tu.cu_qp_offset_cb = 0;
  886. lc->tu.cu_qp_offset_cr = 0;
  887. }
  888. lc->tu.is_cu_chroma_qp_offset_coded = 1;
  889. }
  890. if (lc->cu.pred_mode == MODE_INTRA && log2_trafo_size < 4) {
  891. if (lc->tu.intra_pred_mode >= 6 &&
  892. lc->tu.intra_pred_mode <= 14) {
  893. scan_idx = SCAN_VERT;
  894. } else if (lc->tu.intra_pred_mode >= 22 &&
  895. lc->tu.intra_pred_mode <= 30) {
  896. scan_idx = SCAN_HORIZ;
  897. }
  898. if (lc->tu.intra_pred_mode_c >= 6 &&
  899. lc->tu.intra_pred_mode_c <= 14) {
  900. scan_idx_c = SCAN_VERT;
  901. } else if (lc->tu.intra_pred_mode_c >= 22 &&
  902. lc->tu.intra_pred_mode_c <= 30) {
  903. scan_idx_c = SCAN_HORIZ;
  904. }
  905. }
  906. lc->tu.cross_pf = 0;
  907. if (cbf_luma)
  908. ff_hevc_hls_residual_coding(s, x0, y0, log2_trafo_size, scan_idx, 0);
  909. if (s->ps.sps->chroma_format_idc && (log2_trafo_size > 2 || s->ps.sps->chroma_format_idc == 3)) {
  910. int trafo_size_h = 1 << (log2_trafo_size_c + s->ps.sps->hshift[1]);
  911. int trafo_size_v = 1 << (log2_trafo_size_c + s->ps.sps->vshift[1]);
  912. lc->tu.cross_pf = (s->ps.pps->cross_component_prediction_enabled_flag && cbf_luma &&
  913. (lc->cu.pred_mode == MODE_INTER ||
  914. (lc->tu.chroma_mode_c == 4)));
  915. if (lc->tu.cross_pf) {
  916. hls_cross_component_pred(s, 0);
  917. }
  918. for (i = 0; i < (s->ps.sps->chroma_format_idc == 2 ? 2 : 1); i++) {
  919. if (lc->cu.pred_mode == MODE_INTRA) {
  920. ff_hevc_set_neighbour_available(s, x0, y0 + (i << log2_trafo_size_c), trafo_size_h, trafo_size_v);
  921. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0 + (i << log2_trafo_size_c), 1);
  922. }
  923. if (cbf_cb[i])
  924. ff_hevc_hls_residual_coding(s, x0, y0 + (i << log2_trafo_size_c),
  925. log2_trafo_size_c, scan_idx_c, 1);
  926. else
  927. if (lc->tu.cross_pf) {
  928. ptrdiff_t stride = s->frame->linesize[1];
  929. int hshift = s->ps.sps->hshift[1];
  930. int vshift = s->ps.sps->vshift[1];
  931. int16_t *coeffs_y = (int16_t*)lc->edge_emu_buffer;
  932. int16_t *coeffs = (int16_t*)lc->edge_emu_buffer2;
  933. int size = 1 << log2_trafo_size_c;
  934. uint8_t *dst = &s->frame->data[1][(y0 >> vshift) * stride +
  935. ((x0 >> hshift) << s->ps.sps->pixel_shift)];
  936. for (i = 0; i < (size * size); i++) {
  937. coeffs[i] = ((lc->tu.res_scale_val * coeffs_y[i]) >> 3);
  938. }
  939. s->hevcdsp.add_residual[log2_trafo_size_c-2](dst, coeffs, stride);
  940. }
  941. }
  942. if (lc->tu.cross_pf) {
  943. hls_cross_component_pred(s, 1);
  944. }
  945. for (i = 0; i < (s->ps.sps->chroma_format_idc == 2 ? 2 : 1); i++) {
  946. if (lc->cu.pred_mode == MODE_INTRA) {
  947. ff_hevc_set_neighbour_available(s, x0, y0 + (i << log2_trafo_size_c), trafo_size_h, trafo_size_v);
  948. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0 + (i << log2_trafo_size_c), 2);
  949. }
  950. if (cbf_cr[i])
  951. ff_hevc_hls_residual_coding(s, x0, y0 + (i << log2_trafo_size_c),
  952. log2_trafo_size_c, scan_idx_c, 2);
  953. else
  954. if (lc->tu.cross_pf) {
  955. ptrdiff_t stride = s->frame->linesize[2];
  956. int hshift = s->ps.sps->hshift[2];
  957. int vshift = s->ps.sps->vshift[2];
  958. int16_t *coeffs_y = (int16_t*)lc->edge_emu_buffer;
  959. int16_t *coeffs = (int16_t*)lc->edge_emu_buffer2;
  960. int size = 1 << log2_trafo_size_c;
  961. uint8_t *dst = &s->frame->data[2][(y0 >> vshift) * stride +
  962. ((x0 >> hshift) << s->ps.sps->pixel_shift)];
  963. for (i = 0; i < (size * size); i++) {
  964. coeffs[i] = ((lc->tu.res_scale_val * coeffs_y[i]) >> 3);
  965. }
  966. s->hevcdsp.add_residual[log2_trafo_size_c-2](dst, coeffs, stride);
  967. }
  968. }
  969. } else if (s->ps.sps->chroma_format_idc && blk_idx == 3) {
  970. int trafo_size_h = 1 << (log2_trafo_size + 1);
  971. int trafo_size_v = 1 << (log2_trafo_size + s->ps.sps->vshift[1]);
  972. for (i = 0; i < (s->ps.sps->chroma_format_idc == 2 ? 2 : 1); i++) {
  973. if (lc->cu.pred_mode == MODE_INTRA) {
  974. ff_hevc_set_neighbour_available(s, xBase, yBase + (i << log2_trafo_size),
  975. trafo_size_h, trafo_size_v);
  976. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase + (i << log2_trafo_size), 1);
  977. }
  978. if (cbf_cb[i])
  979. ff_hevc_hls_residual_coding(s, xBase, yBase + (i << log2_trafo_size),
  980. log2_trafo_size, scan_idx_c, 1);
  981. }
  982. for (i = 0; i < (s->ps.sps->chroma_format_idc == 2 ? 2 : 1); i++) {
  983. if (lc->cu.pred_mode == MODE_INTRA) {
  984. ff_hevc_set_neighbour_available(s, xBase, yBase + (i << log2_trafo_size),
  985. trafo_size_h, trafo_size_v);
  986. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase + (i << log2_trafo_size), 2);
  987. }
  988. if (cbf_cr[i])
  989. ff_hevc_hls_residual_coding(s, xBase, yBase + (i << log2_trafo_size),
  990. log2_trafo_size, scan_idx_c, 2);
  991. }
  992. }
  993. } else if (s->ps.sps->chroma_format_idc && lc->cu.pred_mode == MODE_INTRA) {
  994. if (log2_trafo_size > 2 || s->ps.sps->chroma_format_idc == 3) {
  995. int trafo_size_h = 1 << (log2_trafo_size_c + s->ps.sps->hshift[1]);
  996. int trafo_size_v = 1 << (log2_trafo_size_c + s->ps.sps->vshift[1]);
  997. ff_hevc_set_neighbour_available(s, x0, y0, trafo_size_h, trafo_size_v);
  998. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0, 1);
  999. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0, 2);
  1000. if (s->ps.sps->chroma_format_idc == 2) {
  1001. ff_hevc_set_neighbour_available(s, x0, y0 + (1 << log2_trafo_size_c),
  1002. trafo_size_h, trafo_size_v);
  1003. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0 + (1 << log2_trafo_size_c), 1);
  1004. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0 + (1 << log2_trafo_size_c), 2);
  1005. }
  1006. } else if (blk_idx == 3) {
  1007. int trafo_size_h = 1 << (log2_trafo_size + 1);
  1008. int trafo_size_v = 1 << (log2_trafo_size + s->ps.sps->vshift[1]);
  1009. ff_hevc_set_neighbour_available(s, xBase, yBase,
  1010. trafo_size_h, trafo_size_v);
  1011. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase, 1);
  1012. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase, 2);
  1013. if (s->ps.sps->chroma_format_idc == 2) {
  1014. ff_hevc_set_neighbour_available(s, xBase, yBase + (1 << (log2_trafo_size)),
  1015. trafo_size_h, trafo_size_v);
  1016. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase + (1 << (log2_trafo_size)), 1);
  1017. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase + (1 << (log2_trafo_size)), 2);
  1018. }
  1019. }
  1020. }
  1021. return 0;
  1022. }
  1023. static void set_deblocking_bypass(HEVCContext *s, int x0, int y0, int log2_cb_size)
  1024. {
  1025. int cb_size = 1 << log2_cb_size;
  1026. int log2_min_pu_size = s->ps.sps->log2_min_pu_size;
  1027. int min_pu_width = s->ps.sps->min_pu_width;
  1028. int x_end = FFMIN(x0 + cb_size, s->ps.sps->width);
  1029. int y_end = FFMIN(y0 + cb_size, s->ps.sps->height);
  1030. int i, j;
  1031. for (j = (y0 >> log2_min_pu_size); j < (y_end >> log2_min_pu_size); j++)
  1032. for (i = (x0 >> log2_min_pu_size); i < (x_end >> log2_min_pu_size); i++)
  1033. s->is_pcm[i + j * min_pu_width] = 2;
  1034. }
  1035. static int hls_transform_tree(HEVCContext *s, int x0, int y0,
  1036. int xBase, int yBase, int cb_xBase, int cb_yBase,
  1037. int log2_cb_size, int log2_trafo_size,
  1038. int trafo_depth, int blk_idx,
  1039. const int *base_cbf_cb, const int *base_cbf_cr)
  1040. {
  1041. HEVCLocalContext *lc = s->HEVClc;
  1042. uint8_t split_transform_flag;
  1043. int cbf_cb[2];
  1044. int cbf_cr[2];
  1045. int ret;
  1046. cbf_cb[0] = base_cbf_cb[0];
  1047. cbf_cb[1] = base_cbf_cb[1];
  1048. cbf_cr[0] = base_cbf_cr[0];
  1049. cbf_cr[1] = base_cbf_cr[1];
  1050. if (lc->cu.intra_split_flag) {
  1051. if (trafo_depth == 1) {
  1052. lc->tu.intra_pred_mode = lc->pu.intra_pred_mode[blk_idx];
  1053. if (s->ps.sps->chroma_format_idc == 3) {
  1054. lc->tu.intra_pred_mode_c = lc->pu.intra_pred_mode_c[blk_idx];
  1055. lc->tu.chroma_mode_c = lc->pu.chroma_mode_c[blk_idx];
  1056. } else {
  1057. lc->tu.intra_pred_mode_c = lc->pu.intra_pred_mode_c[0];
  1058. lc->tu.chroma_mode_c = lc->pu.chroma_mode_c[0];
  1059. }
  1060. }
  1061. } else {
  1062. lc->tu.intra_pred_mode = lc->pu.intra_pred_mode[0];
  1063. lc->tu.intra_pred_mode_c = lc->pu.intra_pred_mode_c[0];
  1064. lc->tu.chroma_mode_c = lc->pu.chroma_mode_c[0];
  1065. }
  1066. if (log2_trafo_size <= s->ps.sps->log2_max_trafo_size &&
  1067. log2_trafo_size > s->ps.sps->log2_min_tb_size &&
  1068. trafo_depth < lc->cu.max_trafo_depth &&
  1069. !(lc->cu.intra_split_flag && trafo_depth == 0)) {
  1070. split_transform_flag = ff_hevc_split_transform_flag_decode(s, log2_trafo_size);
  1071. } else {
  1072. int inter_split = s->ps.sps->max_transform_hierarchy_depth_inter == 0 &&
  1073. lc->cu.pred_mode == MODE_INTER &&
  1074. lc->cu.part_mode != PART_2Nx2N &&
  1075. trafo_depth == 0;
  1076. split_transform_flag = log2_trafo_size > s->ps.sps->log2_max_trafo_size ||
  1077. (lc->cu.intra_split_flag && trafo_depth == 0) ||
  1078. inter_split;
  1079. }
  1080. if (s->ps.sps->chroma_format_idc && (log2_trafo_size > 2 || s->ps.sps->chroma_format_idc == 3)) {
  1081. if (trafo_depth == 0 || cbf_cb[0]) {
  1082. cbf_cb[0] = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
  1083. if (s->ps.sps->chroma_format_idc == 2 && (!split_transform_flag || log2_trafo_size == 3)) {
  1084. cbf_cb[1] = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
  1085. }
  1086. }
  1087. if (trafo_depth == 0 || cbf_cr[0]) {
  1088. cbf_cr[0] = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
  1089. if (s->ps.sps->chroma_format_idc == 2 && (!split_transform_flag || log2_trafo_size == 3)) {
  1090. cbf_cr[1] = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
  1091. }
  1092. }
  1093. }
  1094. if (split_transform_flag) {
  1095. const int trafo_size_split = 1 << (log2_trafo_size - 1);
  1096. const int x1 = x0 + trafo_size_split;
  1097. const int y1 = y0 + trafo_size_split;
  1098. #define SUBDIVIDE(x, y, idx) \
  1099. do { \
  1100. ret = hls_transform_tree(s, x, y, x0, y0, cb_xBase, cb_yBase, log2_cb_size, \
  1101. log2_trafo_size - 1, trafo_depth + 1, idx, \
  1102. cbf_cb, cbf_cr); \
  1103. if (ret < 0) \
  1104. return ret; \
  1105. } while (0)
  1106. SUBDIVIDE(x0, y0, 0);
  1107. SUBDIVIDE(x1, y0, 1);
  1108. SUBDIVIDE(x0, y1, 2);
  1109. SUBDIVIDE(x1, y1, 3);
  1110. #undef SUBDIVIDE
  1111. } else {
  1112. int min_tu_size = 1 << s->ps.sps->log2_min_tb_size;
  1113. int log2_min_tu_size = s->ps.sps->log2_min_tb_size;
  1114. int min_tu_width = s->ps.sps->min_tb_width;
  1115. int cbf_luma = 1;
  1116. if (lc->cu.pred_mode == MODE_INTRA || trafo_depth != 0 ||
  1117. cbf_cb[0] || cbf_cr[0] ||
  1118. (s->ps.sps->chroma_format_idc == 2 && (cbf_cb[1] || cbf_cr[1]))) {
  1119. cbf_luma = ff_hevc_cbf_luma_decode(s, trafo_depth);
  1120. }
  1121. ret = hls_transform_unit(s, x0, y0, xBase, yBase, cb_xBase, cb_yBase,
  1122. log2_cb_size, log2_trafo_size,
  1123. blk_idx, cbf_luma, cbf_cb, cbf_cr);
  1124. if (ret < 0)
  1125. return ret;
  1126. // TODO: store cbf_luma somewhere else
  1127. if (cbf_luma) {
  1128. int i, j;
  1129. for (i = 0; i < (1 << log2_trafo_size); i += min_tu_size)
  1130. for (j = 0; j < (1 << log2_trafo_size); j += min_tu_size) {
  1131. int x_tu = (x0 + j) >> log2_min_tu_size;
  1132. int y_tu = (y0 + i) >> log2_min_tu_size;
  1133. s->cbf_luma[y_tu * min_tu_width + x_tu] = 1;
  1134. }
  1135. }
  1136. if (!s->sh.disable_deblocking_filter_flag) {
  1137. ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_trafo_size);
  1138. if (s->ps.pps->transquant_bypass_enable_flag &&
  1139. lc->cu.cu_transquant_bypass_flag)
  1140. set_deblocking_bypass(s, x0, y0, log2_trafo_size);
  1141. }
  1142. }
  1143. return 0;
  1144. }
  1145. static int hls_pcm_sample(HEVCContext *s, int x0, int y0, int log2_cb_size)
  1146. {
  1147. HEVCLocalContext *lc = s->HEVClc;
  1148. GetBitContext gb;
  1149. int cb_size = 1 << log2_cb_size;
  1150. ptrdiff_t stride0 = s->frame->linesize[0];
  1151. ptrdiff_t stride1 = s->frame->linesize[1];
  1152. ptrdiff_t stride2 = s->frame->linesize[2];
  1153. uint8_t *dst0 = &s->frame->data[0][y0 * stride0 + (x0 << s->ps.sps->pixel_shift)];
  1154. uint8_t *dst1 = &s->frame->data[1][(y0 >> s->ps.sps->vshift[1]) * stride1 + ((x0 >> s->ps.sps->hshift[1]) << s->ps.sps->pixel_shift)];
  1155. uint8_t *dst2 = &s->frame->data[2][(y0 >> s->ps.sps->vshift[2]) * stride2 + ((x0 >> s->ps.sps->hshift[2]) << s->ps.sps->pixel_shift)];
  1156. int length = cb_size * cb_size * s->ps.sps->pcm.bit_depth +
  1157. (((cb_size >> s->ps.sps->hshift[1]) * (cb_size >> s->ps.sps->vshift[1])) +
  1158. ((cb_size >> s->ps.sps->hshift[2]) * (cb_size >> s->ps.sps->vshift[2]))) *
  1159. s->ps.sps->pcm.bit_depth_chroma;
  1160. const uint8_t *pcm = skip_bytes(&lc->cc, (length + 7) >> 3);
  1161. int ret;
  1162. if (!s->sh.disable_deblocking_filter_flag)
  1163. ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
  1164. ret = init_get_bits(&gb, pcm, length);
  1165. if (ret < 0)
  1166. return ret;
  1167. s->hevcdsp.put_pcm(dst0, stride0, cb_size, cb_size, &gb, s->ps.sps->pcm.bit_depth);
  1168. if (s->ps.sps->chroma_format_idc) {
  1169. s->hevcdsp.put_pcm(dst1, stride1,
  1170. cb_size >> s->ps.sps->hshift[1],
  1171. cb_size >> s->ps.sps->vshift[1],
  1172. &gb, s->ps.sps->pcm.bit_depth_chroma);
  1173. s->hevcdsp.put_pcm(dst2, stride2,
  1174. cb_size >> s->ps.sps->hshift[2],
  1175. cb_size >> s->ps.sps->vshift[2],
  1176. &gb, s->ps.sps->pcm.bit_depth_chroma);
  1177. }
  1178. return 0;
  1179. }
  1180. /**
  1181. * 8.5.3.2.2.1 Luma sample unidirectional interpolation process
  1182. *
  1183. * @param s HEVC decoding context
  1184. * @param dst target buffer for block data at block position
  1185. * @param dststride stride of the dst buffer
  1186. * @param ref reference picture buffer at origin (0, 0)
  1187. * @param mv motion vector (relative to block position) to get pixel data from
  1188. * @param x_off horizontal position of block from origin (0, 0)
  1189. * @param y_off vertical position of block from origin (0, 0)
  1190. * @param block_w width of block
  1191. * @param block_h height of block
  1192. * @param luma_weight weighting factor applied to the luma prediction
  1193. * @param luma_offset additive offset applied to the luma prediction value
  1194. */
  1195. static void luma_mc_uni(HEVCContext *s, uint8_t *dst, ptrdiff_t dststride,
  1196. AVFrame *ref, const Mv *mv, int x_off, int y_off,
  1197. int block_w, int block_h, int luma_weight, int luma_offset)
  1198. {
  1199. HEVCLocalContext *lc = s->HEVClc;
  1200. uint8_t *src = ref->data[0];
  1201. ptrdiff_t srcstride = ref->linesize[0];
  1202. int pic_width = s->ps.sps->width;
  1203. int pic_height = s->ps.sps->height;
  1204. int mx = mv->x & 3;
  1205. int my = mv->y & 3;
  1206. int weight_flag = (s->sh.slice_type == HEVC_SLICE_P && s->ps.pps->weighted_pred_flag) ||
  1207. (s->sh.slice_type == HEVC_SLICE_B && s->ps.pps->weighted_bipred_flag);
  1208. int idx = ff_hevc_pel_weight[block_w];
  1209. x_off += mv->x >> 2;
  1210. y_off += mv->y >> 2;
  1211. src += y_off * srcstride + (x_off * (1 << s->ps.sps->pixel_shift));
  1212. if (x_off < QPEL_EXTRA_BEFORE || y_off < QPEL_EXTRA_AFTER ||
  1213. x_off >= pic_width - block_w - QPEL_EXTRA_AFTER ||
  1214. y_off >= pic_height - block_h - QPEL_EXTRA_AFTER) {
  1215. const ptrdiff_t edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1216. int offset = QPEL_EXTRA_BEFORE * srcstride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1217. int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1218. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src - offset,
  1219. edge_emu_stride, srcstride,
  1220. block_w + QPEL_EXTRA,
  1221. block_h + QPEL_EXTRA,
  1222. x_off - QPEL_EXTRA_BEFORE, y_off - QPEL_EXTRA_BEFORE,
  1223. pic_width, pic_height);
  1224. src = lc->edge_emu_buffer + buf_offset;
  1225. srcstride = edge_emu_stride;
  1226. }
  1227. if (!weight_flag)
  1228. s->hevcdsp.put_hevc_qpel_uni[idx][!!my][!!mx](dst, dststride, src, srcstride,
  1229. block_h, mx, my, block_w);
  1230. else
  1231. s->hevcdsp.put_hevc_qpel_uni_w[idx][!!my][!!mx](dst, dststride, src, srcstride,
  1232. block_h, s->sh.luma_log2_weight_denom,
  1233. luma_weight, luma_offset, mx, my, block_w);
  1234. }
  1235. /**
  1236. * 8.5.3.2.2.1 Luma sample bidirectional interpolation process
  1237. *
  1238. * @param s HEVC decoding context
  1239. * @param dst target buffer for block data at block position
  1240. * @param dststride stride of the dst buffer
  1241. * @param ref0 reference picture0 buffer at origin (0, 0)
  1242. * @param mv0 motion vector0 (relative to block position) to get pixel data from
  1243. * @param x_off horizontal position of block from origin (0, 0)
  1244. * @param y_off vertical position of block from origin (0, 0)
  1245. * @param block_w width of block
  1246. * @param block_h height of block
  1247. * @param ref1 reference picture1 buffer at origin (0, 0)
  1248. * @param mv1 motion vector1 (relative to block position) to get pixel data from
  1249. * @param current_mv current motion vector structure
  1250. */
  1251. static void luma_mc_bi(HEVCContext *s, uint8_t *dst, ptrdiff_t dststride,
  1252. AVFrame *ref0, const Mv *mv0, int x_off, int y_off,
  1253. int block_w, int block_h, AVFrame *ref1, const Mv *mv1, struct MvField *current_mv)
  1254. {
  1255. HEVCLocalContext *lc = s->HEVClc;
  1256. ptrdiff_t src0stride = ref0->linesize[0];
  1257. ptrdiff_t src1stride = ref1->linesize[0];
  1258. int pic_width = s->ps.sps->width;
  1259. int pic_height = s->ps.sps->height;
  1260. int mx0 = mv0->x & 3;
  1261. int my0 = mv0->y & 3;
  1262. int mx1 = mv1->x & 3;
  1263. int my1 = mv1->y & 3;
  1264. int weight_flag = (s->sh.slice_type == HEVC_SLICE_P && s->ps.pps->weighted_pred_flag) ||
  1265. (s->sh.slice_type == HEVC_SLICE_B && s->ps.pps->weighted_bipred_flag);
  1266. int x_off0 = x_off + (mv0->x >> 2);
  1267. int y_off0 = y_off + (mv0->y >> 2);
  1268. int x_off1 = x_off + (mv1->x >> 2);
  1269. int y_off1 = y_off + (mv1->y >> 2);
  1270. int idx = ff_hevc_pel_weight[block_w];
  1271. uint8_t *src0 = ref0->data[0] + y_off0 * src0stride + (int)((unsigned)x_off0 << s->ps.sps->pixel_shift);
  1272. uint8_t *src1 = ref1->data[0] + y_off1 * src1stride + (int)((unsigned)x_off1 << s->ps.sps->pixel_shift);
  1273. if (x_off0 < QPEL_EXTRA_BEFORE || y_off0 < QPEL_EXTRA_AFTER ||
  1274. x_off0 >= pic_width - block_w - QPEL_EXTRA_AFTER ||
  1275. y_off0 >= pic_height - block_h - QPEL_EXTRA_AFTER) {
  1276. const ptrdiff_t edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1277. int offset = QPEL_EXTRA_BEFORE * src0stride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1278. int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1279. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src0 - offset,
  1280. edge_emu_stride, src0stride,
  1281. block_w + QPEL_EXTRA,
  1282. block_h + QPEL_EXTRA,
  1283. x_off0 - QPEL_EXTRA_BEFORE, y_off0 - QPEL_EXTRA_BEFORE,
  1284. pic_width, pic_height);
  1285. src0 = lc->edge_emu_buffer + buf_offset;
  1286. src0stride = edge_emu_stride;
  1287. }
  1288. if (x_off1 < QPEL_EXTRA_BEFORE || y_off1 < QPEL_EXTRA_AFTER ||
  1289. x_off1 >= pic_width - block_w - QPEL_EXTRA_AFTER ||
  1290. y_off1 >= pic_height - block_h - QPEL_EXTRA_AFTER) {
  1291. const ptrdiff_t edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1292. int offset = QPEL_EXTRA_BEFORE * src1stride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1293. int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1294. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer2, src1 - offset,
  1295. edge_emu_stride, src1stride,
  1296. block_w + QPEL_EXTRA,
  1297. block_h + QPEL_EXTRA,
  1298. x_off1 - QPEL_EXTRA_BEFORE, y_off1 - QPEL_EXTRA_BEFORE,
  1299. pic_width, pic_height);
  1300. src1 = lc->edge_emu_buffer2 + buf_offset;
  1301. src1stride = edge_emu_stride;
  1302. }
  1303. s->hevcdsp.put_hevc_qpel[idx][!!my0][!!mx0](lc->tmp, src0, src0stride,
  1304. block_h, mx0, my0, block_w);
  1305. if (!weight_flag)
  1306. s->hevcdsp.put_hevc_qpel_bi[idx][!!my1][!!mx1](dst, dststride, src1, src1stride, lc->tmp,
  1307. block_h, mx1, my1, block_w);
  1308. else
  1309. s->hevcdsp.put_hevc_qpel_bi_w[idx][!!my1][!!mx1](dst, dststride, src1, src1stride, lc->tmp,
  1310. block_h, s->sh.luma_log2_weight_denom,
  1311. s->sh.luma_weight_l0[current_mv->ref_idx[0]],
  1312. s->sh.luma_weight_l1[current_mv->ref_idx[1]],
  1313. s->sh.luma_offset_l0[current_mv->ref_idx[0]],
  1314. s->sh.luma_offset_l1[current_mv->ref_idx[1]],
  1315. mx1, my1, block_w);
  1316. }
  1317. /**
  1318. * 8.5.3.2.2.2 Chroma sample uniprediction interpolation process
  1319. *
  1320. * @param s HEVC decoding context
  1321. * @param dst1 target buffer for block data at block position (U plane)
  1322. * @param dst2 target buffer for block data at block position (V plane)
  1323. * @param dststride stride of the dst1 and dst2 buffers
  1324. * @param ref reference picture buffer at origin (0, 0)
  1325. * @param mv motion vector (relative to block position) to get pixel data from
  1326. * @param x_off horizontal position of block from origin (0, 0)
  1327. * @param y_off vertical position of block from origin (0, 0)
  1328. * @param block_w width of block
  1329. * @param block_h height of block
  1330. * @param chroma_weight weighting factor applied to the chroma prediction
  1331. * @param chroma_offset additive offset applied to the chroma prediction value
  1332. */
  1333. static void chroma_mc_uni(HEVCContext *s, uint8_t *dst0,
  1334. ptrdiff_t dststride, uint8_t *src0, ptrdiff_t srcstride, int reflist,
  1335. int x_off, int y_off, int block_w, int block_h, struct MvField *current_mv, int chroma_weight, int chroma_offset)
  1336. {
  1337. HEVCLocalContext *lc = s->HEVClc;
  1338. int pic_width = s->ps.sps->width >> s->ps.sps->hshift[1];
  1339. int pic_height = s->ps.sps->height >> s->ps.sps->vshift[1];
  1340. const Mv *mv = &current_mv->mv[reflist];
  1341. int weight_flag = (s->sh.slice_type == HEVC_SLICE_P && s->ps.pps->weighted_pred_flag) ||
  1342. (s->sh.slice_type == HEVC_SLICE_B && s->ps.pps->weighted_bipred_flag);
  1343. int idx = ff_hevc_pel_weight[block_w];
  1344. int hshift = s->ps.sps->hshift[1];
  1345. int vshift = s->ps.sps->vshift[1];
  1346. intptr_t mx = av_mod_uintp2(mv->x, 2 + hshift);
  1347. intptr_t my = av_mod_uintp2(mv->y, 2 + vshift);
  1348. intptr_t _mx = mx << (1 - hshift);
  1349. intptr_t _my = my << (1 - vshift);
  1350. x_off += mv->x >> (2 + hshift);
  1351. y_off += mv->y >> (2 + vshift);
  1352. src0 += y_off * srcstride + (x_off * (1 << s->ps.sps->pixel_shift));
  1353. if (x_off < EPEL_EXTRA_BEFORE || y_off < EPEL_EXTRA_AFTER ||
  1354. x_off >= pic_width - block_w - EPEL_EXTRA_AFTER ||
  1355. y_off >= pic_height - block_h - EPEL_EXTRA_AFTER) {
  1356. const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1357. int offset0 = EPEL_EXTRA_BEFORE * (srcstride + (1 << s->ps.sps->pixel_shift));
  1358. int buf_offset0 = EPEL_EXTRA_BEFORE *
  1359. (edge_emu_stride + (1 << s->ps.sps->pixel_shift));
  1360. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src0 - offset0,
  1361. edge_emu_stride, srcstride,
  1362. block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
  1363. x_off - EPEL_EXTRA_BEFORE,
  1364. y_off - EPEL_EXTRA_BEFORE,
  1365. pic_width, pic_height);
  1366. src0 = lc->edge_emu_buffer + buf_offset0;
  1367. srcstride = edge_emu_stride;
  1368. }
  1369. if (!weight_flag)
  1370. s->hevcdsp.put_hevc_epel_uni[idx][!!my][!!mx](dst0, dststride, src0, srcstride,
  1371. block_h, _mx, _my, block_w);
  1372. else
  1373. s->hevcdsp.put_hevc_epel_uni_w[idx][!!my][!!mx](dst0, dststride, src0, srcstride,
  1374. block_h, s->sh.chroma_log2_weight_denom,
  1375. chroma_weight, chroma_offset, _mx, _my, block_w);
  1376. }
  1377. /**
  1378. * 8.5.3.2.2.2 Chroma sample bidirectional interpolation process
  1379. *
  1380. * @param s HEVC decoding context
  1381. * @param dst target buffer for block data at block position
  1382. * @param dststride stride of the dst buffer
  1383. * @param ref0 reference picture0 buffer at origin (0, 0)
  1384. * @param mv0 motion vector0 (relative to block position) to get pixel data from
  1385. * @param x_off horizontal position of block from origin (0, 0)
  1386. * @param y_off vertical position of block from origin (0, 0)
  1387. * @param block_w width of block
  1388. * @param block_h height of block
  1389. * @param ref1 reference picture1 buffer at origin (0, 0)
  1390. * @param mv1 motion vector1 (relative to block position) to get pixel data from
  1391. * @param current_mv current motion vector structure
  1392. * @param cidx chroma component(cb, cr)
  1393. */
  1394. static void chroma_mc_bi(HEVCContext *s, uint8_t *dst0, ptrdiff_t dststride, AVFrame *ref0, AVFrame *ref1,
  1395. int x_off, int y_off, int block_w, int block_h, struct MvField *current_mv, int cidx)
  1396. {
  1397. HEVCLocalContext *lc = s->HEVClc;
  1398. uint8_t *src1 = ref0->data[cidx+1];
  1399. uint8_t *src2 = ref1->data[cidx+1];
  1400. ptrdiff_t src1stride = ref0->linesize[cidx+1];
  1401. ptrdiff_t src2stride = ref1->linesize[cidx+1];
  1402. int weight_flag = (s->sh.slice_type == HEVC_SLICE_P && s->ps.pps->weighted_pred_flag) ||
  1403. (s->sh.slice_type == HEVC_SLICE_B && s->ps.pps->weighted_bipred_flag);
  1404. int pic_width = s->ps.sps->width >> s->ps.sps->hshift[1];
  1405. int pic_height = s->ps.sps->height >> s->ps.sps->vshift[1];
  1406. Mv *mv0 = &current_mv->mv[0];
  1407. Mv *mv1 = &current_mv->mv[1];
  1408. int hshift = s->ps.sps->hshift[1];
  1409. int vshift = s->ps.sps->vshift[1];
  1410. intptr_t mx0 = av_mod_uintp2(mv0->x, 2 + hshift);
  1411. intptr_t my0 = av_mod_uintp2(mv0->y, 2 + vshift);
  1412. intptr_t mx1 = av_mod_uintp2(mv1->x, 2 + hshift);
  1413. intptr_t my1 = av_mod_uintp2(mv1->y, 2 + vshift);
  1414. intptr_t _mx0 = mx0 << (1 - hshift);
  1415. intptr_t _my0 = my0 << (1 - vshift);
  1416. intptr_t _mx1 = mx1 << (1 - hshift);
  1417. intptr_t _my1 = my1 << (1 - vshift);
  1418. int x_off0 = x_off + (mv0->x >> (2 + hshift));
  1419. int y_off0 = y_off + (mv0->y >> (2 + vshift));
  1420. int x_off1 = x_off + (mv1->x >> (2 + hshift));
  1421. int y_off1 = y_off + (mv1->y >> (2 + vshift));
  1422. int idx = ff_hevc_pel_weight[block_w];
  1423. src1 += y_off0 * src1stride + (int)((unsigned)x_off0 << s->ps.sps->pixel_shift);
  1424. src2 += y_off1 * src2stride + (int)((unsigned)x_off1 << s->ps.sps->pixel_shift);
  1425. if (x_off0 < EPEL_EXTRA_BEFORE || y_off0 < EPEL_EXTRA_AFTER ||
  1426. x_off0 >= pic_width - block_w - EPEL_EXTRA_AFTER ||
  1427. y_off0 >= pic_height - block_h - EPEL_EXTRA_AFTER) {
  1428. const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1429. int offset1 = EPEL_EXTRA_BEFORE * (src1stride + (1 << s->ps.sps->pixel_shift));
  1430. int buf_offset1 = EPEL_EXTRA_BEFORE *
  1431. (edge_emu_stride + (1 << s->ps.sps->pixel_shift));
  1432. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src1 - offset1,
  1433. edge_emu_stride, src1stride,
  1434. block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
  1435. x_off0 - EPEL_EXTRA_BEFORE,
  1436. y_off0 - EPEL_EXTRA_BEFORE,
  1437. pic_width, pic_height);
  1438. src1 = lc->edge_emu_buffer + buf_offset1;
  1439. src1stride = edge_emu_stride;
  1440. }
  1441. if (x_off1 < EPEL_EXTRA_BEFORE || y_off1 < EPEL_EXTRA_AFTER ||
  1442. x_off1 >= pic_width - block_w - EPEL_EXTRA_AFTER ||
  1443. y_off1 >= pic_height - block_h - EPEL_EXTRA_AFTER) {
  1444. const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1445. int offset1 = EPEL_EXTRA_BEFORE * (src2stride + (1 << s->ps.sps->pixel_shift));
  1446. int buf_offset1 = EPEL_EXTRA_BEFORE *
  1447. (edge_emu_stride + (1 << s->ps.sps->pixel_shift));
  1448. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer2, src2 - offset1,
  1449. edge_emu_stride, src2stride,
  1450. block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
  1451. x_off1 - EPEL_EXTRA_BEFORE,
  1452. y_off1 - EPEL_EXTRA_BEFORE,
  1453. pic_width, pic_height);
  1454. src2 = lc->edge_emu_buffer2 + buf_offset1;
  1455. src2stride = edge_emu_stride;
  1456. }
  1457. s->hevcdsp.put_hevc_epel[idx][!!my0][!!mx0](lc->tmp, src1, src1stride,
  1458. block_h, _mx0, _my0, block_w);
  1459. if (!weight_flag)
  1460. s->hevcdsp.put_hevc_epel_bi[idx][!!my1][!!mx1](dst0, s->frame->linesize[cidx+1],
  1461. src2, src2stride, lc->tmp,
  1462. block_h, _mx1, _my1, block_w);
  1463. else
  1464. s->hevcdsp.put_hevc_epel_bi_w[idx][!!my1][!!mx1](dst0, s->frame->linesize[cidx+1],
  1465. src2, src2stride, lc->tmp,
  1466. block_h,
  1467. s->sh.chroma_log2_weight_denom,
  1468. s->sh.chroma_weight_l0[current_mv->ref_idx[0]][cidx],
  1469. s->sh.chroma_weight_l1[current_mv->ref_idx[1]][cidx],
  1470. s->sh.chroma_offset_l0[current_mv->ref_idx[0]][cidx],
  1471. s->sh.chroma_offset_l1[current_mv->ref_idx[1]][cidx],
  1472. _mx1, _my1, block_w);
  1473. }
  1474. static void hevc_await_progress(HEVCContext *s, HEVCFrame *ref,
  1475. const Mv *mv, int y0, int height)
  1476. {
  1477. int y = FFMAX(0, (mv->y >> 2) + y0 + height + 9);
  1478. if (s->threads_type == FF_THREAD_FRAME )
  1479. ff_thread_await_progress(&ref->tf, y, 0);
  1480. }
  1481. static void hevc_luma_mv_mvp_mode(HEVCContext *s, int x0, int y0, int nPbW,
  1482. int nPbH, int log2_cb_size, int part_idx,
  1483. int merge_idx, MvField *mv)
  1484. {
  1485. HEVCLocalContext *lc = s->HEVClc;
  1486. enum InterPredIdc inter_pred_idc = PRED_L0;
  1487. int mvp_flag;
  1488. ff_hevc_set_neighbour_available(s, x0, y0, nPbW, nPbH);
  1489. mv->pred_flag = 0;
  1490. if (s->sh.slice_type == HEVC_SLICE_B)
  1491. inter_pred_idc = ff_hevc_inter_pred_idc_decode(s, nPbW, nPbH);
  1492. if (inter_pred_idc != PRED_L1) {
  1493. if (s->sh.nb_refs[L0])
  1494. mv->ref_idx[0]= ff_hevc_ref_idx_lx_decode(s, s->sh.nb_refs[L0]);
  1495. mv->pred_flag = PF_L0;
  1496. ff_hevc_hls_mvd_coding(s, x0, y0, 0);
  1497. mvp_flag = ff_hevc_mvp_lx_flag_decode(s);
  1498. ff_hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
  1499. part_idx, merge_idx, mv, mvp_flag, 0);
  1500. mv->mv[0].x += lc->pu.mvd.x;
  1501. mv->mv[0].y += lc->pu.mvd.y;
  1502. }
  1503. if (inter_pred_idc != PRED_L0) {
  1504. if (s->sh.nb_refs[L1])
  1505. mv->ref_idx[1]= ff_hevc_ref_idx_lx_decode(s, s->sh.nb_refs[L1]);
  1506. if (s->sh.mvd_l1_zero_flag == 1 && inter_pred_idc == PRED_BI) {
  1507. AV_ZERO32(&lc->pu.mvd);
  1508. } else {
  1509. ff_hevc_hls_mvd_coding(s, x0, y0, 1);
  1510. }
  1511. mv->pred_flag += PF_L1;
  1512. mvp_flag = ff_hevc_mvp_lx_flag_decode(s);
  1513. ff_hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
  1514. part_idx, merge_idx, mv, mvp_flag, 1);
  1515. mv->mv[1].x += lc->pu.mvd.x;
  1516. mv->mv[1].y += lc->pu.mvd.y;
  1517. }
  1518. }
  1519. static void hls_prediction_unit(HEVCContext *s, int x0, int y0,
  1520. int nPbW, int nPbH,
  1521. int log2_cb_size, int partIdx, int idx)
  1522. {
  1523. #define POS(c_idx, x, y) \
  1524. &s->frame->data[c_idx][((y) >> s->ps.sps->vshift[c_idx]) * s->frame->linesize[c_idx] + \
  1525. (((x) >> s->ps.sps->hshift[c_idx]) << s->ps.sps->pixel_shift)]
  1526. HEVCLocalContext *lc = s->HEVClc;
  1527. int merge_idx = 0;
  1528. struct MvField current_mv = {{{ 0 }}};
  1529. int min_pu_width = s->ps.sps->min_pu_width;
  1530. MvField *tab_mvf = s->ref->tab_mvf;
  1531. RefPicList *refPicList = s->ref->refPicList;
  1532. HEVCFrame *ref0 = NULL, *ref1 = NULL;
  1533. uint8_t *dst0 = POS(0, x0, y0);
  1534. uint8_t *dst1 = POS(1, x0, y0);
  1535. uint8_t *dst2 = POS(2, x0, y0);
  1536. int log2_min_cb_size = s->ps.sps->log2_min_cb_size;
  1537. int min_cb_width = s->ps.sps->min_cb_width;
  1538. int x_cb = x0 >> log2_min_cb_size;
  1539. int y_cb = y0 >> log2_min_cb_size;
  1540. int x_pu, y_pu;
  1541. int i, j;
  1542. int skip_flag = SAMPLE_CTB(s->skip_flag, x_cb, y_cb);
  1543. if (!skip_flag)
  1544. lc->pu.merge_flag = ff_hevc_merge_flag_decode(s);
  1545. if (skip_flag || lc->pu.merge_flag) {
  1546. if (s->sh.max_num_merge_cand > 1)
  1547. merge_idx = ff_hevc_merge_idx_decode(s);
  1548. else
  1549. merge_idx = 0;
  1550. ff_hevc_luma_mv_merge_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
  1551. partIdx, merge_idx, &current_mv);
  1552. } else {
  1553. hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
  1554. partIdx, merge_idx, &current_mv);
  1555. }
  1556. x_pu = x0 >> s->ps.sps->log2_min_pu_size;
  1557. y_pu = y0 >> s->ps.sps->log2_min_pu_size;
  1558. for (j = 0; j < nPbH >> s->ps.sps->log2_min_pu_size; j++)
  1559. for (i = 0; i < nPbW >> s->ps.sps->log2_min_pu_size; i++)
  1560. tab_mvf[(y_pu + j) * min_pu_width + x_pu + i] = current_mv;
  1561. if (current_mv.pred_flag & PF_L0) {
  1562. ref0 = refPicList[0].ref[current_mv.ref_idx[0]];
  1563. if (!ref0)
  1564. return;
  1565. hevc_await_progress(s, ref0, &current_mv.mv[0], y0, nPbH);
  1566. }
  1567. if (current_mv.pred_flag & PF_L1) {
  1568. ref1 = refPicList[1].ref[current_mv.ref_idx[1]];
  1569. if (!ref1)
  1570. return;
  1571. hevc_await_progress(s, ref1, &current_mv.mv[1], y0, nPbH);
  1572. }
  1573. if (current_mv.pred_flag == PF_L0) {
  1574. int x0_c = x0 >> s->ps.sps->hshift[1];
  1575. int y0_c = y0 >> s->ps.sps->vshift[1];
  1576. int nPbW_c = nPbW >> s->ps.sps->hshift[1];
  1577. int nPbH_c = nPbH >> s->ps.sps->vshift[1];
  1578. luma_mc_uni(s, dst0, s->frame->linesize[0], ref0->frame,
  1579. &current_mv.mv[0], x0, y0, nPbW, nPbH,
  1580. s->sh.luma_weight_l0[current_mv.ref_idx[0]],
  1581. s->sh.luma_offset_l0[current_mv.ref_idx[0]]);
  1582. if (s->ps.sps->chroma_format_idc) {
  1583. chroma_mc_uni(s, dst1, s->frame->linesize[1], ref0->frame->data[1], ref0->frame->linesize[1],
  1584. 0, x0_c, y0_c, nPbW_c, nPbH_c, &current_mv,
  1585. s->sh.chroma_weight_l0[current_mv.ref_idx[0]][0], s->sh.chroma_offset_l0[current_mv.ref_idx[0]][0]);
  1586. chroma_mc_uni(s, dst2, s->frame->linesize[2], ref0->frame->data[2], ref0->frame->linesize[2],
  1587. 0, x0_c, y0_c, nPbW_c, nPbH_c, &current_mv,
  1588. s->sh.chroma_weight_l0[current_mv.ref_idx[0]][1], s->sh.chroma_offset_l0[current_mv.ref_idx[0]][1]);
  1589. }
  1590. } else if (current_mv.pred_flag == PF_L1) {
  1591. int x0_c = x0 >> s->ps.sps->hshift[1];
  1592. int y0_c = y0 >> s->ps.sps->vshift[1];
  1593. int nPbW_c = nPbW >> s->ps.sps->hshift[1];
  1594. int nPbH_c = nPbH >> s->ps.sps->vshift[1];
  1595. luma_mc_uni(s, dst0, s->frame->linesize[0], ref1->frame,
  1596. &current_mv.mv[1], x0, y0, nPbW, nPbH,
  1597. s->sh.luma_weight_l1[current_mv.ref_idx[1]],
  1598. s->sh.luma_offset_l1[current_mv.ref_idx[1]]);
  1599. if (s->ps.sps->chroma_format_idc) {
  1600. chroma_mc_uni(s, dst1, s->frame->linesize[1], ref1->frame->data[1], ref1->frame->linesize[1],
  1601. 1, x0_c, y0_c, nPbW_c, nPbH_c, &current_mv,
  1602. s->sh.chroma_weight_l1[current_mv.ref_idx[1]][0], s->sh.chroma_offset_l1[current_mv.ref_idx[1]][0]);
  1603. chroma_mc_uni(s, dst2, s->frame->linesize[2], ref1->frame->data[2], ref1->frame->linesize[2],
  1604. 1, x0_c, y0_c, nPbW_c, nPbH_c, &current_mv,
  1605. s->sh.chroma_weight_l1[current_mv.ref_idx[1]][1], s->sh.chroma_offset_l1[current_mv.ref_idx[1]][1]);
  1606. }
  1607. } else if (current_mv.pred_flag == PF_BI) {
  1608. int x0_c = x0 >> s->ps.sps->hshift[1];
  1609. int y0_c = y0 >> s->ps.sps->vshift[1];
  1610. int nPbW_c = nPbW >> s->ps.sps->hshift[1];
  1611. int nPbH_c = nPbH >> s->ps.sps->vshift[1];
  1612. luma_mc_bi(s, dst0, s->frame->linesize[0], ref0->frame,
  1613. &current_mv.mv[0], x0, y0, nPbW, nPbH,
  1614. ref1->frame, &current_mv.mv[1], &current_mv);
  1615. if (s->ps.sps->chroma_format_idc) {
  1616. chroma_mc_bi(s, dst1, s->frame->linesize[1], ref0->frame, ref1->frame,
  1617. x0_c, y0_c, nPbW_c, nPbH_c, &current_mv, 0);
  1618. chroma_mc_bi(s, dst2, s->frame->linesize[2], ref0->frame, ref1->frame,
  1619. x0_c, y0_c, nPbW_c, nPbH_c, &current_mv, 1);
  1620. }
  1621. }
  1622. }
  1623. /**
  1624. * 8.4.1
  1625. */
  1626. static int luma_intra_pred_mode(HEVCContext *s, int x0, int y0, int pu_size,
  1627. int prev_intra_luma_pred_flag)
  1628. {
  1629. HEVCLocalContext *lc = s->HEVClc;
  1630. int x_pu = x0 >> s->ps.sps->log2_min_pu_size;
  1631. int y_pu = y0 >> s->ps.sps->log2_min_pu_size;
  1632. int min_pu_width = s->ps.sps->min_pu_width;
  1633. int size_in_pus = pu_size >> s->ps.sps->log2_min_pu_size;
  1634. int x0b = av_mod_uintp2(x0, s->ps.sps->log2_ctb_size);
  1635. int y0b = av_mod_uintp2(y0, s->ps.sps->log2_ctb_size);
  1636. int cand_up = (lc->ctb_up_flag || y0b) ?
  1637. s->tab_ipm[(y_pu - 1) * min_pu_width + x_pu] : INTRA_DC;
  1638. int cand_left = (lc->ctb_left_flag || x0b) ?
  1639. s->tab_ipm[y_pu * min_pu_width + x_pu - 1] : INTRA_DC;
  1640. int y_ctb = (y0 >> (s->ps.sps->log2_ctb_size)) << (s->ps.sps->log2_ctb_size);
  1641. MvField *tab_mvf = s->ref->tab_mvf;
  1642. int intra_pred_mode;
  1643. int candidate[3];
  1644. int i, j;
  1645. // intra_pred_mode prediction does not cross vertical CTB boundaries
  1646. if ((y0 - 1) < y_ctb)
  1647. cand_up = INTRA_DC;
  1648. if (cand_left == cand_up) {
  1649. if (cand_left < 2) {
  1650. candidate[0] = INTRA_PLANAR;
  1651. candidate[1] = INTRA_DC;
  1652. candidate[2] = INTRA_ANGULAR_26;
  1653. } else {
  1654. candidate[0] = cand_left;
  1655. candidate[1] = 2 + ((cand_left - 2 - 1 + 32) & 31);
  1656. candidate[2] = 2 + ((cand_left - 2 + 1) & 31);
  1657. }
  1658. } else {
  1659. candidate[0] = cand_left;
  1660. candidate[1] = cand_up;
  1661. if (candidate[0] != INTRA_PLANAR && candidate[1] != INTRA_PLANAR) {
  1662. candidate[2] = INTRA_PLANAR;
  1663. } else if (candidate[0] != INTRA_DC && candidate[1] != INTRA_DC) {
  1664. candidate[2] = INTRA_DC;
  1665. } else {
  1666. candidate[2] = INTRA_ANGULAR_26;
  1667. }
  1668. }
  1669. if (prev_intra_luma_pred_flag) {
  1670. intra_pred_mode = candidate[lc->pu.mpm_idx];
  1671. } else {
  1672. if (candidate[0] > candidate[1])
  1673. FFSWAP(uint8_t, candidate[0], candidate[1]);
  1674. if (candidate[0] > candidate[2])
  1675. FFSWAP(uint8_t, candidate[0], candidate[2]);
  1676. if (candidate[1] > candidate[2])
  1677. FFSWAP(uint8_t, candidate[1], candidate[2]);
  1678. intra_pred_mode = lc->pu.rem_intra_luma_pred_mode;
  1679. for (i = 0; i < 3; i++)
  1680. if (intra_pred_mode >= candidate[i])
  1681. intra_pred_mode++;
  1682. }
  1683. /* write the intra prediction units into the mv array */
  1684. if (!size_in_pus)
  1685. size_in_pus = 1;
  1686. for (i = 0; i < size_in_pus; i++) {
  1687. memset(&s->tab_ipm[(y_pu + i) * min_pu_width + x_pu],
  1688. intra_pred_mode, size_in_pus);
  1689. for (j = 0; j < size_in_pus; j++) {
  1690. tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].pred_flag = PF_INTRA;
  1691. }
  1692. }
  1693. return intra_pred_mode;
  1694. }
  1695. static av_always_inline void set_ct_depth(HEVCContext *s, int x0, int y0,
  1696. int log2_cb_size, int ct_depth)
  1697. {
  1698. int length = (1 << log2_cb_size) >> s->ps.sps->log2_min_cb_size;
  1699. int x_cb = x0 >> s->ps.sps->log2_min_cb_size;
  1700. int y_cb = y0 >> s->ps.sps->log2_min_cb_size;
  1701. int y;
  1702. for (y = 0; y < length; y++)
  1703. memset(&s->tab_ct_depth[(y_cb + y) * s->ps.sps->min_cb_width + x_cb],
  1704. ct_depth, length);
  1705. }
  1706. static const uint8_t tab_mode_idx[] = {
  1707. 0, 1, 2, 2, 2, 2, 3, 5, 7, 8, 10, 12, 13, 15, 17, 18, 19, 20,
  1708. 21, 22, 23, 23, 24, 24, 25, 25, 26, 27, 27, 28, 28, 29, 29, 30, 31};
  1709. static void intra_prediction_unit(HEVCContext *s, int x0, int y0,
  1710. int log2_cb_size)
  1711. {
  1712. HEVCLocalContext *lc = s->HEVClc;
  1713. static const uint8_t intra_chroma_table[4] = { 0, 26, 10, 1 };
  1714. uint8_t prev_intra_luma_pred_flag[4];
  1715. int split = lc->cu.part_mode == PART_NxN;
  1716. int pb_size = (1 << log2_cb_size) >> split;
  1717. int side = split + 1;
  1718. int chroma_mode;
  1719. int i, j;
  1720. for (i = 0; i < side; i++)
  1721. for (j = 0; j < side; j++)
  1722. prev_intra_luma_pred_flag[2 * i + j] = ff_hevc_prev_intra_luma_pred_flag_decode(s);
  1723. for (i = 0; i < side; i++) {
  1724. for (j = 0; j < side; j++) {
  1725. if (prev_intra_luma_pred_flag[2 * i + j])
  1726. lc->pu.mpm_idx = ff_hevc_mpm_idx_decode(s);
  1727. else
  1728. lc->pu.rem_intra_luma_pred_mode = ff_hevc_rem_intra_luma_pred_mode_decode(s);
  1729. lc->pu.intra_pred_mode[2 * i + j] =
  1730. luma_intra_pred_mode(s, x0 + pb_size * j, y0 + pb_size * i, pb_size,
  1731. prev_intra_luma_pred_flag[2 * i + j]);
  1732. }
  1733. }
  1734. if (s->ps.sps->chroma_format_idc == 3) {
  1735. for (i = 0; i < side; i++) {
  1736. for (j = 0; j < side; j++) {
  1737. lc->pu.chroma_mode_c[2 * i + j] = chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(s);
  1738. if (chroma_mode != 4) {
  1739. if (lc->pu.intra_pred_mode[2 * i + j] == intra_chroma_table[chroma_mode])
  1740. lc->pu.intra_pred_mode_c[2 * i + j] = 34;
  1741. else
  1742. lc->pu.intra_pred_mode_c[2 * i + j] = intra_chroma_table[chroma_mode];
  1743. } else {
  1744. lc->pu.intra_pred_mode_c[2 * i + j] = lc->pu.intra_pred_mode[2 * i + j];
  1745. }
  1746. }
  1747. }
  1748. } else if (s->ps.sps->chroma_format_idc == 2) {
  1749. int mode_idx;
  1750. lc->pu.chroma_mode_c[0] = chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(s);
  1751. if (chroma_mode != 4) {
  1752. if (lc->pu.intra_pred_mode[0] == intra_chroma_table[chroma_mode])
  1753. mode_idx = 34;
  1754. else
  1755. mode_idx = intra_chroma_table[chroma_mode];
  1756. } else {
  1757. mode_idx = lc->pu.intra_pred_mode[0];
  1758. }
  1759. lc->pu.intra_pred_mode_c[0] = tab_mode_idx[mode_idx];
  1760. } else if (s->ps.sps->chroma_format_idc != 0) {
  1761. chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(s);
  1762. if (chroma_mode != 4) {
  1763. if (lc->pu.intra_pred_mode[0] == intra_chroma_table[chroma_mode])
  1764. lc->pu.intra_pred_mode_c[0] = 34;
  1765. else
  1766. lc->pu.intra_pred_mode_c[0] = intra_chroma_table[chroma_mode];
  1767. } else {
  1768. lc->pu.intra_pred_mode_c[0] = lc->pu.intra_pred_mode[0];
  1769. }
  1770. }
  1771. }
  1772. static void intra_prediction_unit_default_value(HEVCContext *s,
  1773. int x0, int y0,
  1774. int log2_cb_size)
  1775. {
  1776. HEVCLocalContext *lc = s->HEVClc;
  1777. int pb_size = 1 << log2_cb_size;
  1778. int size_in_pus = pb_size >> s->ps.sps->log2_min_pu_size;
  1779. int min_pu_width = s->ps.sps->min_pu_width;
  1780. MvField *tab_mvf = s->ref->tab_mvf;
  1781. int x_pu = x0 >> s->ps.sps->log2_min_pu_size;
  1782. int y_pu = y0 >> s->ps.sps->log2_min_pu_size;
  1783. int j, k;
  1784. if (size_in_pus == 0)
  1785. size_in_pus = 1;
  1786. for (j = 0; j < size_in_pus; j++)
  1787. memset(&s->tab_ipm[(y_pu + j) * min_pu_width + x_pu], INTRA_DC, size_in_pus);
  1788. if (lc->cu.pred_mode == MODE_INTRA)
  1789. for (j = 0; j < size_in_pus; j++)
  1790. for (k = 0; k < size_in_pus; k++)
  1791. tab_mvf[(y_pu + j) * min_pu_width + x_pu + k].pred_flag = PF_INTRA;
  1792. }
  1793. static int hls_coding_unit(HEVCContext *s, int x0, int y0, int log2_cb_size)
  1794. {
  1795. int cb_size = 1 << log2_cb_size;
  1796. HEVCLocalContext *lc = s->HEVClc;
  1797. int log2_min_cb_size = s->ps.sps->log2_min_cb_size;
  1798. int length = cb_size >> log2_min_cb_size;
  1799. int min_cb_width = s->ps.sps->min_cb_width;
  1800. int x_cb = x0 >> log2_min_cb_size;
  1801. int y_cb = y0 >> log2_min_cb_size;
  1802. int idx = log2_cb_size - 2;
  1803. int qp_block_mask = (1<<(s->ps.sps->log2_ctb_size - s->ps.pps->diff_cu_qp_delta_depth)) - 1;
  1804. int x, y, ret;
  1805. lc->cu.x = x0;
  1806. lc->cu.y = y0;
  1807. lc->cu.pred_mode = MODE_INTRA;
  1808. lc->cu.part_mode = PART_2Nx2N;
  1809. lc->cu.intra_split_flag = 0;
  1810. SAMPLE_CTB(s->skip_flag, x_cb, y_cb) = 0;
  1811. for (x = 0; x < 4; x++)
  1812. lc->pu.intra_pred_mode[x] = 1;
  1813. if (s->ps.pps->transquant_bypass_enable_flag) {
  1814. lc->cu.cu_transquant_bypass_flag = ff_hevc_cu_transquant_bypass_flag_decode(s);
  1815. if (lc->cu.cu_transquant_bypass_flag)
  1816. set_deblocking_bypass(s, x0, y0, log2_cb_size);
  1817. } else
  1818. lc->cu.cu_transquant_bypass_flag = 0;
  1819. if (s->sh.slice_type != HEVC_SLICE_I) {
  1820. uint8_t skip_flag = ff_hevc_skip_flag_decode(s, x0, y0, x_cb, y_cb);
  1821. x = y_cb * min_cb_width + x_cb;
  1822. for (y = 0; y < length; y++) {
  1823. memset(&s->skip_flag[x], skip_flag, length);
  1824. x += min_cb_width;
  1825. }
  1826. lc->cu.pred_mode = skip_flag ? MODE_SKIP : MODE_INTER;
  1827. } else {
  1828. x = y_cb * min_cb_width + x_cb;
  1829. for (y = 0; y < length; y++) {
  1830. memset(&s->skip_flag[x], 0, length);
  1831. x += min_cb_width;
  1832. }
  1833. }
  1834. if (SAMPLE_CTB(s->skip_flag, x_cb, y_cb)) {
  1835. hls_prediction_unit(s, x0, y0, cb_size, cb_size, log2_cb_size, 0, idx);
  1836. intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
  1837. if (!s->sh.disable_deblocking_filter_flag)
  1838. ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
  1839. } else {
  1840. int pcm_flag = 0;
  1841. if (s->sh.slice_type != HEVC_SLICE_I)
  1842. lc->cu.pred_mode = ff_hevc_pred_mode_decode(s);
  1843. if (lc->cu.pred_mode != MODE_INTRA ||
  1844. log2_cb_size == s->ps.sps->log2_min_cb_size) {
  1845. lc->cu.part_mode = ff_hevc_part_mode_decode(s, log2_cb_size);
  1846. lc->cu.intra_split_flag = lc->cu.part_mode == PART_NxN &&
  1847. lc->cu.pred_mode == MODE_INTRA;
  1848. }
  1849. if (lc->cu.pred_mode == MODE_INTRA) {
  1850. if (lc->cu.part_mode == PART_2Nx2N && s->ps.sps->pcm_enabled_flag &&
  1851. log2_cb_size >= s->ps.sps->pcm.log2_min_pcm_cb_size &&
  1852. log2_cb_size <= s->ps.sps->pcm.log2_max_pcm_cb_size) {
  1853. pcm_flag = ff_hevc_pcm_flag_decode(s);
  1854. }
  1855. if (pcm_flag) {
  1856. intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
  1857. ret = hls_pcm_sample(s, x0, y0, log2_cb_size);
  1858. if (s->ps.sps->pcm.loop_filter_disable_flag)
  1859. set_deblocking_bypass(s, x0, y0, log2_cb_size);
  1860. if (ret < 0)
  1861. return ret;
  1862. } else {
  1863. intra_prediction_unit(s, x0, y0, log2_cb_size);
  1864. }
  1865. } else {
  1866. intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
  1867. switch (lc->cu.part_mode) {
  1868. case PART_2Nx2N:
  1869. hls_prediction_unit(s, x0, y0, cb_size, cb_size, log2_cb_size, 0, idx);
  1870. break;
  1871. case PART_2NxN:
  1872. hls_prediction_unit(s, x0, y0, cb_size, cb_size / 2, log2_cb_size, 0, idx);
  1873. hls_prediction_unit(s, x0, y0 + cb_size / 2, cb_size, cb_size / 2, log2_cb_size, 1, idx);
  1874. break;
  1875. case PART_Nx2N:
  1876. hls_prediction_unit(s, x0, y0, cb_size / 2, cb_size, log2_cb_size, 0, idx - 1);
  1877. hls_prediction_unit(s, x0 + cb_size / 2, y0, cb_size / 2, cb_size, log2_cb_size, 1, idx - 1);
  1878. break;
  1879. case PART_2NxnU:
  1880. hls_prediction_unit(s, x0, y0, cb_size, cb_size / 4, log2_cb_size, 0, idx);
  1881. hls_prediction_unit(s, x0, y0 + cb_size / 4, cb_size, cb_size * 3 / 4, log2_cb_size, 1, idx);
  1882. break;
  1883. case PART_2NxnD:
  1884. hls_prediction_unit(s, x0, y0, cb_size, cb_size * 3 / 4, log2_cb_size, 0, idx);
  1885. hls_prediction_unit(s, x0, y0 + cb_size * 3 / 4, cb_size, cb_size / 4, log2_cb_size, 1, idx);
  1886. break;
  1887. case PART_nLx2N:
  1888. hls_prediction_unit(s, x0, y0, cb_size / 4, cb_size, log2_cb_size, 0, idx - 2);
  1889. hls_prediction_unit(s, x0 + cb_size / 4, y0, cb_size * 3 / 4, cb_size, log2_cb_size, 1, idx - 2);
  1890. break;
  1891. case PART_nRx2N:
  1892. hls_prediction_unit(s, x0, y0, cb_size * 3 / 4, cb_size, log2_cb_size, 0, idx - 2);
  1893. hls_prediction_unit(s, x0 + cb_size * 3 / 4, y0, cb_size / 4, cb_size, log2_cb_size, 1, idx - 2);
  1894. break;
  1895. case PART_NxN:
  1896. hls_prediction_unit(s, x0, y0, cb_size / 2, cb_size / 2, log2_cb_size, 0, idx - 1);
  1897. hls_prediction_unit(s, x0 + cb_size / 2, y0, cb_size / 2, cb_size / 2, log2_cb_size, 1, idx - 1);
  1898. hls_prediction_unit(s, x0, y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 2, idx - 1);
  1899. hls_prediction_unit(s, x0 + cb_size / 2, y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 3, idx - 1);
  1900. break;
  1901. }
  1902. }
  1903. if (!pcm_flag) {
  1904. int rqt_root_cbf = 1;
  1905. if (lc->cu.pred_mode != MODE_INTRA &&
  1906. !(lc->cu.part_mode == PART_2Nx2N && lc->pu.merge_flag)) {
  1907. rqt_root_cbf = ff_hevc_no_residual_syntax_flag_decode(s);
  1908. }
  1909. if (rqt_root_cbf) {
  1910. const static int cbf[2] = { 0 };
  1911. lc->cu.max_trafo_depth = lc->cu.pred_mode == MODE_INTRA ?
  1912. s->ps.sps->max_transform_hierarchy_depth_intra + lc->cu.intra_split_flag :
  1913. s->ps.sps->max_transform_hierarchy_depth_inter;
  1914. ret = hls_transform_tree(s, x0, y0, x0, y0, x0, y0,
  1915. log2_cb_size,
  1916. log2_cb_size, 0, 0, cbf, cbf);
  1917. if (ret < 0)
  1918. return ret;
  1919. } else {
  1920. if (!s->sh.disable_deblocking_filter_flag)
  1921. ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
  1922. }
  1923. }
  1924. }
  1925. if (s->ps.pps->cu_qp_delta_enabled_flag && lc->tu.is_cu_qp_delta_coded == 0)
  1926. ff_hevc_set_qPy(s, x0, y0, log2_cb_size);
  1927. x = y_cb * min_cb_width + x_cb;
  1928. for (y = 0; y < length; y++) {
  1929. memset(&s->qp_y_tab[x], lc->qp_y, length);
  1930. x += min_cb_width;
  1931. }
  1932. if(((x0 + (1<<log2_cb_size)) & qp_block_mask) == 0 &&
  1933. ((y0 + (1<<log2_cb_size)) & qp_block_mask) == 0) {
  1934. lc->qPy_pred = lc->qp_y;
  1935. }
  1936. set_ct_depth(s, x0, y0, log2_cb_size, lc->ct_depth);
  1937. return 0;
  1938. }
  1939. static int hls_coding_quadtree(HEVCContext *s, int x0, int y0,
  1940. int log2_cb_size, int cb_depth)
  1941. {
  1942. HEVCLocalContext *lc = s->HEVClc;
  1943. const int cb_size = 1 << log2_cb_size;
  1944. int ret;
  1945. int split_cu;
  1946. lc->ct_depth = cb_depth;
  1947. if (x0 + cb_size <= s->ps.sps->width &&
  1948. y0 + cb_size <= s->ps.sps->height &&
  1949. log2_cb_size > s->ps.sps->log2_min_cb_size) {
  1950. split_cu = ff_hevc_split_coding_unit_flag_decode(s, cb_depth, x0, y0);
  1951. } else {
  1952. split_cu = (log2_cb_size > s->ps.sps->log2_min_cb_size);
  1953. }
  1954. if (s->ps.pps->cu_qp_delta_enabled_flag &&
  1955. log2_cb_size >= s->ps.sps->log2_ctb_size - s->ps.pps->diff_cu_qp_delta_depth) {
  1956. lc->tu.is_cu_qp_delta_coded = 0;
  1957. lc->tu.cu_qp_delta = 0;
  1958. }
  1959. if (s->sh.cu_chroma_qp_offset_enabled_flag &&
  1960. log2_cb_size >= s->ps.sps->log2_ctb_size - s->ps.pps->diff_cu_chroma_qp_offset_depth) {
  1961. lc->tu.is_cu_chroma_qp_offset_coded = 0;
  1962. }
  1963. if (split_cu) {
  1964. int qp_block_mask = (1<<(s->ps.sps->log2_ctb_size - s->ps.pps->diff_cu_qp_delta_depth)) - 1;
  1965. const int cb_size_split = cb_size >> 1;
  1966. const int x1 = x0 + cb_size_split;
  1967. const int y1 = y0 + cb_size_split;
  1968. int more_data = 0;
  1969. more_data = hls_coding_quadtree(s, x0, y0, log2_cb_size - 1, cb_depth + 1);
  1970. if (more_data < 0)
  1971. return more_data;
  1972. if (more_data && x1 < s->ps.sps->width) {
  1973. more_data = hls_coding_quadtree(s, x1, y0, log2_cb_size - 1, cb_depth + 1);
  1974. if (more_data < 0)
  1975. return more_data;
  1976. }
  1977. if (more_data && y1 < s->ps.sps->height) {
  1978. more_data = hls_coding_quadtree(s, x0, y1, log2_cb_size - 1, cb_depth + 1);
  1979. if (more_data < 0)
  1980. return more_data;
  1981. }
  1982. if (more_data && x1 < s->ps.sps->width &&
  1983. y1 < s->ps.sps->height) {
  1984. more_data = hls_coding_quadtree(s, x1, y1, log2_cb_size - 1, cb_depth + 1);
  1985. if (more_data < 0)
  1986. return more_data;
  1987. }
  1988. if(((x0 + (1<<log2_cb_size)) & qp_block_mask) == 0 &&
  1989. ((y0 + (1<<log2_cb_size)) & qp_block_mask) == 0)
  1990. lc->qPy_pred = lc->qp_y;
  1991. if (more_data)
  1992. return ((x1 + cb_size_split) < s->ps.sps->width ||
  1993. (y1 + cb_size_split) < s->ps.sps->height);
  1994. else
  1995. return 0;
  1996. } else {
  1997. ret = hls_coding_unit(s, x0, y0, log2_cb_size);
  1998. if (ret < 0)
  1999. return ret;
  2000. if ((!((x0 + cb_size) %
  2001. (1 << (s->ps.sps->log2_ctb_size))) ||
  2002. (x0 + cb_size >= s->ps.sps->width)) &&
  2003. (!((y0 + cb_size) %
  2004. (1 << (s->ps.sps->log2_ctb_size))) ||
  2005. (y0 + cb_size >= s->ps.sps->height))) {
  2006. int end_of_slice_flag = ff_hevc_end_of_slice_flag_decode(s);
  2007. return !end_of_slice_flag;
  2008. } else {
  2009. return 1;
  2010. }
  2011. }
  2012. return 0;
  2013. }
  2014. static void hls_decode_neighbour(HEVCContext *s, int x_ctb, int y_ctb,
  2015. int ctb_addr_ts)
  2016. {
  2017. HEVCLocalContext *lc = s->HEVClc;
  2018. int ctb_size = 1 << s->ps.sps->log2_ctb_size;
  2019. int ctb_addr_rs = s->ps.pps->ctb_addr_ts_to_rs[ctb_addr_ts];
  2020. int ctb_addr_in_slice = ctb_addr_rs - s->sh.slice_addr;
  2021. s->tab_slice_address[ctb_addr_rs] = s->sh.slice_addr;
  2022. if (s->ps.pps->entropy_coding_sync_enabled_flag) {
  2023. if (x_ctb == 0 && (y_ctb & (ctb_size - 1)) == 0)
  2024. lc->first_qp_group = 1;
  2025. lc->end_of_tiles_x = s->ps.sps->width;
  2026. } else if (s->ps.pps->tiles_enabled_flag) {
  2027. if (ctb_addr_ts && s->ps.pps->tile_id[ctb_addr_ts] != s->ps.pps->tile_id[ctb_addr_ts - 1]) {
  2028. int idxX = s->ps.pps->col_idxX[x_ctb >> s->ps.sps->log2_ctb_size];
  2029. lc->end_of_tiles_x = x_ctb + (s->ps.pps->column_width[idxX] << s->ps.sps->log2_ctb_size);
  2030. lc->first_qp_group = 1;
  2031. }
  2032. } else {
  2033. lc->end_of_tiles_x = s->ps.sps->width;
  2034. }
  2035. lc->end_of_tiles_y = FFMIN(y_ctb + ctb_size, s->ps.sps->height);
  2036. lc->boundary_flags = 0;
  2037. if (s->ps.pps->tiles_enabled_flag) {
  2038. if (x_ctb > 0 && s->ps.pps->tile_id[ctb_addr_ts] != s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs - 1]])
  2039. lc->boundary_flags |= BOUNDARY_LEFT_TILE;
  2040. if (x_ctb > 0 && s->tab_slice_address[ctb_addr_rs] != s->tab_slice_address[ctb_addr_rs - 1])
  2041. lc->boundary_flags |= BOUNDARY_LEFT_SLICE;
  2042. if (y_ctb > 0 && s->ps.pps->tile_id[ctb_addr_ts] != s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs - s->ps.sps->ctb_width]])
  2043. lc->boundary_flags |= BOUNDARY_UPPER_TILE;
  2044. if (y_ctb > 0 && s->tab_slice_address[ctb_addr_rs] != s->tab_slice_address[ctb_addr_rs - s->ps.sps->ctb_width])
  2045. lc->boundary_flags |= BOUNDARY_UPPER_SLICE;
  2046. } else {
  2047. if (ctb_addr_in_slice <= 0)
  2048. lc->boundary_flags |= BOUNDARY_LEFT_SLICE;
  2049. if (ctb_addr_in_slice < s->ps.sps->ctb_width)
  2050. lc->boundary_flags |= BOUNDARY_UPPER_SLICE;
  2051. }
  2052. lc->ctb_left_flag = ((x_ctb > 0) && (ctb_addr_in_slice > 0) && !(lc->boundary_flags & BOUNDARY_LEFT_TILE));
  2053. lc->ctb_up_flag = ((y_ctb > 0) && (ctb_addr_in_slice >= s->ps.sps->ctb_width) && !(lc->boundary_flags & BOUNDARY_UPPER_TILE));
  2054. lc->ctb_up_right_flag = ((y_ctb > 0) && (ctb_addr_in_slice+1 >= s->ps.sps->ctb_width) && (s->ps.pps->tile_id[ctb_addr_ts] == s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs+1 - s->ps.sps->ctb_width]]));
  2055. lc->ctb_up_left_flag = ((x_ctb > 0) && (y_ctb > 0) && (ctb_addr_in_slice-1 >= s->ps.sps->ctb_width) && (s->ps.pps->tile_id[ctb_addr_ts] == s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs-1 - s->ps.sps->ctb_width]]));
  2056. }
  2057. static int hls_decode_entry(AVCodecContext *avctxt, void *isFilterThread)
  2058. {
  2059. HEVCContext *s = avctxt->priv_data;
  2060. int ctb_size = 1 << s->ps.sps->log2_ctb_size;
  2061. int more_data = 1;
  2062. int x_ctb = 0;
  2063. int y_ctb = 0;
  2064. int ctb_addr_ts = s->ps.pps->ctb_addr_rs_to_ts[s->sh.slice_ctb_addr_rs];
  2065. int ret;
  2066. if (!ctb_addr_ts && s->sh.dependent_slice_segment_flag) {
  2067. av_log(s->avctx, AV_LOG_ERROR, "Impossible initial tile.\n");
  2068. return AVERROR_INVALIDDATA;
  2069. }
  2070. if (s->sh.dependent_slice_segment_flag) {
  2071. int prev_rs = s->ps.pps->ctb_addr_ts_to_rs[ctb_addr_ts - 1];
  2072. if (s->tab_slice_address[prev_rs] != s->sh.slice_addr) {
  2073. av_log(s->avctx, AV_LOG_ERROR, "Previous slice segment missing\n");
  2074. return AVERROR_INVALIDDATA;
  2075. }
  2076. }
  2077. while (more_data && ctb_addr_ts < s->ps.sps->ctb_size) {
  2078. int ctb_addr_rs = s->ps.pps->ctb_addr_ts_to_rs[ctb_addr_ts];
  2079. x_ctb = (ctb_addr_rs % ((s->ps.sps->width + ctb_size - 1) >> s->ps.sps->log2_ctb_size)) << s->ps.sps->log2_ctb_size;
  2080. y_ctb = (ctb_addr_rs / ((s->ps.sps->width + ctb_size - 1) >> s->ps.sps->log2_ctb_size)) << s->ps.sps->log2_ctb_size;
  2081. hls_decode_neighbour(s, x_ctb, y_ctb, ctb_addr_ts);
  2082. ret = ff_hevc_cabac_init(s, ctb_addr_ts);
  2083. if (ret < 0) {
  2084. s->tab_slice_address[ctb_addr_rs] = -1;
  2085. return ret;
  2086. }
  2087. hls_sao_param(s, x_ctb >> s->ps.sps->log2_ctb_size, y_ctb >> s->ps.sps->log2_ctb_size);
  2088. s->deblock[ctb_addr_rs].beta_offset = s->sh.beta_offset;
  2089. s->deblock[ctb_addr_rs].tc_offset = s->sh.tc_offset;
  2090. s->filter_slice_edges[ctb_addr_rs] = s->sh.slice_loop_filter_across_slices_enabled_flag;
  2091. more_data = hls_coding_quadtree(s, x_ctb, y_ctb, s->ps.sps->log2_ctb_size, 0);
  2092. if (more_data < 0) {
  2093. s->tab_slice_address[ctb_addr_rs] = -1;
  2094. return more_data;
  2095. }
  2096. ctb_addr_ts++;
  2097. ff_hevc_save_states(s, ctb_addr_ts);
  2098. ff_hevc_hls_filters(s, x_ctb, y_ctb, ctb_size);
  2099. }
  2100. if (x_ctb + ctb_size >= s->ps.sps->width &&
  2101. y_ctb + ctb_size >= s->ps.sps->height)
  2102. ff_hevc_hls_filter(s, x_ctb, y_ctb, ctb_size);
  2103. return ctb_addr_ts;
  2104. }
  2105. static int hls_slice_data(HEVCContext *s)
  2106. {
  2107. int arg[2];
  2108. int ret[2];
  2109. arg[0] = 0;
  2110. arg[1] = 1;
  2111. s->avctx->execute(s->avctx, hls_decode_entry, arg, ret , 1, sizeof(int));
  2112. return ret[0];
  2113. }
  2114. static int hls_decode_entry_wpp(AVCodecContext *avctxt, void *input_ctb_row, int job, int self_id)
  2115. {
  2116. HEVCContext *s1 = avctxt->priv_data, *s;
  2117. HEVCLocalContext *lc;
  2118. int ctb_size = 1<< s1->ps.sps->log2_ctb_size;
  2119. int more_data = 1;
  2120. int *ctb_row_p = input_ctb_row;
  2121. int ctb_row = ctb_row_p[job];
  2122. int ctb_addr_rs = s1->sh.slice_ctb_addr_rs + ctb_row * ((s1->ps.sps->width + ctb_size - 1) >> s1->ps.sps->log2_ctb_size);
  2123. int ctb_addr_ts = s1->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs];
  2124. int thread = ctb_row % s1->threads_number;
  2125. int ret;
  2126. s = s1->sList[self_id];
  2127. lc = s->HEVClc;
  2128. if(ctb_row) {
  2129. ret = init_get_bits8(&lc->gb, s->data + s->sh.offset[ctb_row - 1], s->sh.size[ctb_row - 1]);
  2130. if (ret < 0)
  2131. goto error;
  2132. ff_init_cabac_decoder(&lc->cc, s->data + s->sh.offset[(ctb_row)-1], s->sh.size[ctb_row - 1]);
  2133. }
  2134. while(more_data && ctb_addr_ts < s->ps.sps->ctb_size) {
  2135. int x_ctb = (ctb_addr_rs % s->ps.sps->ctb_width) << s->ps.sps->log2_ctb_size;
  2136. int y_ctb = (ctb_addr_rs / s->ps.sps->ctb_width) << s->ps.sps->log2_ctb_size;
  2137. hls_decode_neighbour(s, x_ctb, y_ctb, ctb_addr_ts);
  2138. ff_thread_await_progress2(s->avctx, ctb_row, thread, SHIFT_CTB_WPP);
  2139. if (atomic_load(&s1->wpp_err)) {
  2140. ff_thread_report_progress2(s->avctx, ctb_row , thread, SHIFT_CTB_WPP);
  2141. return 0;
  2142. }
  2143. ret = ff_hevc_cabac_init(s, ctb_addr_ts);
  2144. if (ret < 0)
  2145. goto error;
  2146. hls_sao_param(s, x_ctb >> s->ps.sps->log2_ctb_size, y_ctb >> s->ps.sps->log2_ctb_size);
  2147. more_data = hls_coding_quadtree(s, x_ctb, y_ctb, s->ps.sps->log2_ctb_size, 0);
  2148. if (more_data < 0) {
  2149. ret = more_data;
  2150. goto error;
  2151. }
  2152. ctb_addr_ts++;
  2153. ff_hevc_save_states(s, ctb_addr_ts);
  2154. ff_thread_report_progress2(s->avctx, ctb_row, thread, 1);
  2155. ff_hevc_hls_filters(s, x_ctb, y_ctb, ctb_size);
  2156. if (!more_data && (x_ctb+ctb_size) < s->ps.sps->width && ctb_row != s->sh.num_entry_point_offsets) {
  2157. atomic_store(&s1->wpp_err, 1);
  2158. ff_thread_report_progress2(s->avctx, ctb_row ,thread, SHIFT_CTB_WPP);
  2159. return 0;
  2160. }
  2161. if ((x_ctb+ctb_size) >= s->ps.sps->width && (y_ctb+ctb_size) >= s->ps.sps->height ) {
  2162. ff_hevc_hls_filter(s, x_ctb, y_ctb, ctb_size);
  2163. ff_thread_report_progress2(s->avctx, ctb_row , thread, SHIFT_CTB_WPP);
  2164. return ctb_addr_ts;
  2165. }
  2166. ctb_addr_rs = s->ps.pps->ctb_addr_ts_to_rs[ctb_addr_ts];
  2167. x_ctb+=ctb_size;
  2168. if(x_ctb >= s->ps.sps->width) {
  2169. break;
  2170. }
  2171. }
  2172. ff_thread_report_progress2(s->avctx, ctb_row ,thread, SHIFT_CTB_WPP);
  2173. return 0;
  2174. error:
  2175. s->tab_slice_address[ctb_addr_rs] = -1;
  2176. atomic_store(&s1->wpp_err, 1);
  2177. ff_thread_report_progress2(s->avctx, ctb_row ,thread, SHIFT_CTB_WPP);
  2178. return ret;
  2179. }
  2180. static int hls_slice_data_wpp(HEVCContext *s, const H2645NAL *nal)
  2181. {
  2182. const uint8_t *data = nal->data;
  2183. int length = nal->size;
  2184. HEVCLocalContext *lc = s->HEVClc;
  2185. int *ret = av_malloc_array(s->sh.num_entry_point_offsets + 1, sizeof(int));
  2186. int *arg = av_malloc_array(s->sh.num_entry_point_offsets + 1, sizeof(int));
  2187. int64_t offset;
  2188. int64_t startheader, cmpt = 0;
  2189. int i, j, res = 0;
  2190. if (!ret || !arg) {
  2191. av_free(ret);
  2192. av_free(arg);
  2193. return AVERROR(ENOMEM);
  2194. }
  2195. if (s->sh.slice_ctb_addr_rs + s->sh.num_entry_point_offsets * s->ps.sps->ctb_width >= s->ps.sps->ctb_width * s->ps.sps->ctb_height) {
  2196. av_log(s->avctx, AV_LOG_ERROR, "WPP ctb addresses are wrong (%d %d %d %d)\n",
  2197. s->sh.slice_ctb_addr_rs, s->sh.num_entry_point_offsets,
  2198. s->ps.sps->ctb_width, s->ps.sps->ctb_height
  2199. );
  2200. res = AVERROR_INVALIDDATA;
  2201. goto error;
  2202. }
  2203. ff_alloc_entries(s->avctx, s->sh.num_entry_point_offsets + 1);
  2204. if (!s->sList[1]) {
  2205. for (i = 1; i < s->threads_number; i++) {
  2206. s->sList[i] = av_malloc(sizeof(HEVCContext));
  2207. memcpy(s->sList[i], s, sizeof(HEVCContext));
  2208. s->HEVClcList[i] = av_mallocz(sizeof(HEVCLocalContext));
  2209. s->sList[i]->HEVClc = s->HEVClcList[i];
  2210. }
  2211. }
  2212. offset = (lc->gb.index >> 3);
  2213. for (j = 0, cmpt = 0, startheader = offset + s->sh.entry_point_offset[0]; j < nal->skipped_bytes; j++) {
  2214. if (nal->skipped_bytes_pos[j] >= offset && nal->skipped_bytes_pos[j] < startheader) {
  2215. startheader--;
  2216. cmpt++;
  2217. }
  2218. }
  2219. for (i = 1; i < s->sh.num_entry_point_offsets; i++) {
  2220. offset += (s->sh.entry_point_offset[i - 1] - cmpt);
  2221. for (j = 0, cmpt = 0, startheader = offset
  2222. + s->sh.entry_point_offset[i]; j < nal->skipped_bytes; j++) {
  2223. if (nal->skipped_bytes_pos[j] >= offset && nal->skipped_bytes_pos[j] < startheader) {
  2224. startheader--;
  2225. cmpt++;
  2226. }
  2227. }
  2228. s->sh.size[i - 1] = s->sh.entry_point_offset[i] - cmpt;
  2229. s->sh.offset[i - 1] = offset;
  2230. }
  2231. if (s->sh.num_entry_point_offsets != 0) {
  2232. offset += s->sh.entry_point_offset[s->sh.num_entry_point_offsets - 1] - cmpt;
  2233. if (length < offset) {
  2234. av_log(s->avctx, AV_LOG_ERROR, "entry_point_offset table is corrupted\n");
  2235. res = AVERROR_INVALIDDATA;
  2236. goto error;
  2237. }
  2238. s->sh.size[s->sh.num_entry_point_offsets - 1] = length - offset;
  2239. s->sh.offset[s->sh.num_entry_point_offsets - 1] = offset;
  2240. }
  2241. s->data = data;
  2242. for (i = 1; i < s->threads_number; i++) {
  2243. s->sList[i]->HEVClc->first_qp_group = 1;
  2244. s->sList[i]->HEVClc->qp_y = s->sList[0]->HEVClc->qp_y;
  2245. memcpy(s->sList[i], s, sizeof(HEVCContext));
  2246. s->sList[i]->HEVClc = s->HEVClcList[i];
  2247. }
  2248. atomic_store(&s->wpp_err, 0);
  2249. ff_reset_entries(s->avctx);
  2250. for (i = 0; i <= s->sh.num_entry_point_offsets; i++) {
  2251. arg[i] = i;
  2252. ret[i] = 0;
  2253. }
  2254. if (s->ps.pps->entropy_coding_sync_enabled_flag)
  2255. s->avctx->execute2(s->avctx, hls_decode_entry_wpp, arg, ret, s->sh.num_entry_point_offsets + 1);
  2256. for (i = 0; i <= s->sh.num_entry_point_offsets; i++)
  2257. res += ret[i];
  2258. error:
  2259. av_free(ret);
  2260. av_free(arg);
  2261. return res;
  2262. }
  2263. static int set_side_data(HEVCContext *s)
  2264. {
  2265. AVFrame *out = s->ref->frame;
  2266. if (s->sei.frame_packing.present &&
  2267. s->sei.frame_packing.arrangement_type >= 3 &&
  2268. s->sei.frame_packing.arrangement_type <= 5 &&
  2269. s->sei.frame_packing.content_interpretation_type > 0 &&
  2270. s->sei.frame_packing.content_interpretation_type < 3) {
  2271. AVStereo3D *stereo = av_stereo3d_create_side_data(out);
  2272. if (!stereo)
  2273. return AVERROR(ENOMEM);
  2274. switch (s->sei.frame_packing.arrangement_type) {
  2275. case 3:
  2276. if (s->sei.frame_packing.quincunx_subsampling)
  2277. stereo->type = AV_STEREO3D_SIDEBYSIDE_QUINCUNX;
  2278. else
  2279. stereo->type = AV_STEREO3D_SIDEBYSIDE;
  2280. break;
  2281. case 4:
  2282. stereo->type = AV_STEREO3D_TOPBOTTOM;
  2283. break;
  2284. case 5:
  2285. stereo->type = AV_STEREO3D_FRAMESEQUENCE;
  2286. break;
  2287. }
  2288. if (s->sei.frame_packing.content_interpretation_type == 2)
  2289. stereo->flags = AV_STEREO3D_FLAG_INVERT;
  2290. }
  2291. if (s->sei.display_orientation.present &&
  2292. (s->sei.display_orientation.anticlockwise_rotation ||
  2293. s->sei.display_orientation.hflip || s->sei.display_orientation.vflip)) {
  2294. double angle = s->sei.display_orientation.anticlockwise_rotation * 360 / (double) (1 << 16);
  2295. AVFrameSideData *rotation = av_frame_new_side_data(out,
  2296. AV_FRAME_DATA_DISPLAYMATRIX,
  2297. sizeof(int32_t) * 9);
  2298. if (!rotation)
  2299. return AVERROR(ENOMEM);
  2300. av_display_rotation_set((int32_t *)rotation->data, angle);
  2301. av_display_matrix_flip((int32_t *)rotation->data,
  2302. s->sei.display_orientation.hflip,
  2303. s->sei.display_orientation.vflip);
  2304. }
  2305. // Decrement the mastering display flag when IRAP frame has no_rasl_output_flag=1
  2306. // so the side data persists for the entire coded video sequence.
  2307. if (s->sei.mastering_display.present > 0 &&
  2308. IS_IRAP(s) && s->no_rasl_output_flag) {
  2309. s->sei.mastering_display.present--;
  2310. }
  2311. if (s->sei.mastering_display.present) {
  2312. // HEVC uses a g,b,r ordering, which we convert to a more natural r,g,b
  2313. const int mapping[3] = {2, 0, 1};
  2314. const int chroma_den = 50000;
  2315. const int luma_den = 10000;
  2316. int i;
  2317. AVMasteringDisplayMetadata *metadata =
  2318. av_mastering_display_metadata_create_side_data(out);
  2319. if (!metadata)
  2320. return AVERROR(ENOMEM);
  2321. for (i = 0; i < 3; i++) {
  2322. const int j = mapping[i];
  2323. metadata->display_primaries[i][0].num = s->sei.mastering_display.display_primaries[j][0];
  2324. metadata->display_primaries[i][0].den = chroma_den;
  2325. metadata->display_primaries[i][1].num = s->sei.mastering_display.display_primaries[j][1];
  2326. metadata->display_primaries[i][1].den = chroma_den;
  2327. }
  2328. metadata->white_point[0].num = s->sei.mastering_display.white_point[0];
  2329. metadata->white_point[0].den = chroma_den;
  2330. metadata->white_point[1].num = s->sei.mastering_display.white_point[1];
  2331. metadata->white_point[1].den = chroma_den;
  2332. metadata->max_luminance.num = s->sei.mastering_display.max_luminance;
  2333. metadata->max_luminance.den = luma_den;
  2334. metadata->min_luminance.num = s->sei.mastering_display.min_luminance;
  2335. metadata->min_luminance.den = luma_den;
  2336. metadata->has_luminance = 1;
  2337. metadata->has_primaries = 1;
  2338. av_log(s->avctx, AV_LOG_DEBUG, "Mastering Display Metadata:\n");
  2339. av_log(s->avctx, AV_LOG_DEBUG,
  2340. "r(%5.4f,%5.4f) g(%5.4f,%5.4f) b(%5.4f %5.4f) wp(%5.4f, %5.4f)\n",
  2341. av_q2d(metadata->display_primaries[0][0]),
  2342. av_q2d(metadata->display_primaries[0][1]),
  2343. av_q2d(metadata->display_primaries[1][0]),
  2344. av_q2d(metadata->display_primaries[1][1]),
  2345. av_q2d(metadata->display_primaries[2][0]),
  2346. av_q2d(metadata->display_primaries[2][1]),
  2347. av_q2d(metadata->white_point[0]), av_q2d(metadata->white_point[1]));
  2348. av_log(s->avctx, AV_LOG_DEBUG,
  2349. "min_luminance=%f, max_luminance=%f\n",
  2350. av_q2d(metadata->min_luminance), av_q2d(metadata->max_luminance));
  2351. }
  2352. // Decrement the mastering display flag when IRAP frame has no_rasl_output_flag=1
  2353. // so the side data persists for the entire coded video sequence.
  2354. if (s->sei.content_light.present > 0 &&
  2355. IS_IRAP(s) && s->no_rasl_output_flag) {
  2356. s->sei.content_light.present--;
  2357. }
  2358. if (s->sei.content_light.present) {
  2359. AVContentLightMetadata *metadata =
  2360. av_content_light_metadata_create_side_data(out);
  2361. if (!metadata)
  2362. return AVERROR(ENOMEM);
  2363. metadata->MaxCLL = s->sei.content_light.max_content_light_level;
  2364. metadata->MaxFALL = s->sei.content_light.max_pic_average_light_level;
  2365. av_log(s->avctx, AV_LOG_DEBUG, "Content Light Level Metadata:\n");
  2366. av_log(s->avctx, AV_LOG_DEBUG, "MaxCLL=%d, MaxFALL=%d\n",
  2367. metadata->MaxCLL, metadata->MaxFALL);
  2368. }
  2369. if (s->sei.a53_caption.a53_caption) {
  2370. AVFrameSideData* sd = av_frame_new_side_data(out,
  2371. AV_FRAME_DATA_A53_CC,
  2372. s->sei.a53_caption.a53_caption_size);
  2373. if (sd)
  2374. memcpy(sd->data, s->sei.a53_caption.a53_caption, s->sei.a53_caption.a53_caption_size);
  2375. av_freep(&s->sei.a53_caption.a53_caption);
  2376. s->sei.a53_caption.a53_caption_size = 0;
  2377. s->avctx->properties |= FF_CODEC_PROPERTY_CLOSED_CAPTIONS;
  2378. }
  2379. if (s->sei.alternative_transfer.present &&
  2380. av_color_transfer_name(s->sei.alternative_transfer.preferred_transfer_characteristics) &&
  2381. s->sei.alternative_transfer.preferred_transfer_characteristics != AVCOL_TRC_UNSPECIFIED) {
  2382. s->avctx->color_trc = s->sei.alternative_transfer.preferred_transfer_characteristics;
  2383. }
  2384. return 0;
  2385. }
  2386. static int hevc_frame_start(HEVCContext *s)
  2387. {
  2388. HEVCLocalContext *lc = s->HEVClc;
  2389. int pic_size_in_ctb = ((s->ps.sps->width >> s->ps.sps->log2_min_cb_size) + 1) *
  2390. ((s->ps.sps->height >> s->ps.sps->log2_min_cb_size) + 1);
  2391. int ret;
  2392. memset(s->horizontal_bs, 0, s->bs_width * s->bs_height);
  2393. memset(s->vertical_bs, 0, s->bs_width * s->bs_height);
  2394. memset(s->cbf_luma, 0, s->ps.sps->min_tb_width * s->ps.sps->min_tb_height);
  2395. memset(s->is_pcm, 0, (s->ps.sps->min_pu_width + 1) * (s->ps.sps->min_pu_height + 1));
  2396. memset(s->tab_slice_address, -1, pic_size_in_ctb * sizeof(*s->tab_slice_address));
  2397. s->is_decoded = 0;
  2398. s->first_nal_type = s->nal_unit_type;
  2399. s->no_rasl_output_flag = IS_IDR(s) || IS_BLA(s) || (s->nal_unit_type == HEVC_NAL_CRA_NUT && s->last_eos);
  2400. if (s->ps.pps->tiles_enabled_flag)
  2401. lc->end_of_tiles_x = s->ps.pps->column_width[0] << s->ps.sps->log2_ctb_size;
  2402. ret = ff_hevc_set_new_ref(s, &s->frame, s->poc);
  2403. if (ret < 0)
  2404. goto fail;
  2405. ret = ff_hevc_frame_rps(s);
  2406. if (ret < 0) {
  2407. av_log(s->avctx, AV_LOG_ERROR, "Error constructing the frame RPS.\n");
  2408. goto fail;
  2409. }
  2410. s->ref->frame->key_frame = IS_IRAP(s);
  2411. ret = set_side_data(s);
  2412. if (ret < 0)
  2413. goto fail;
  2414. s->frame->pict_type = 3 - s->sh.slice_type;
  2415. if (!IS_IRAP(s))
  2416. ff_hevc_bump_frame(s);
  2417. av_frame_unref(s->output_frame);
  2418. ret = ff_hevc_output_frame(s, s->output_frame, 0);
  2419. if (ret < 0)
  2420. goto fail;
  2421. if (!s->avctx->hwaccel)
  2422. ff_thread_finish_setup(s->avctx);
  2423. return 0;
  2424. fail:
  2425. if (s->ref)
  2426. ff_hevc_unref_frame(s, s->ref, ~0);
  2427. s->ref = NULL;
  2428. return ret;
  2429. }
  2430. static int decode_nal_unit(HEVCContext *s, const H2645NAL *nal)
  2431. {
  2432. HEVCLocalContext *lc = s->HEVClc;
  2433. GetBitContext *gb = &lc->gb;
  2434. int ctb_addr_ts, ret;
  2435. *gb = nal->gb;
  2436. s->nal_unit_type = nal->type;
  2437. s->temporal_id = nal->temporal_id;
  2438. switch (s->nal_unit_type) {
  2439. case HEVC_NAL_VPS:
  2440. ret = ff_hevc_decode_nal_vps(gb, s->avctx, &s->ps);
  2441. if (ret < 0)
  2442. goto fail;
  2443. break;
  2444. case HEVC_NAL_SPS:
  2445. ret = ff_hevc_decode_nal_sps(gb, s->avctx, &s->ps,
  2446. s->apply_defdispwin);
  2447. if (ret < 0)
  2448. goto fail;
  2449. break;
  2450. case HEVC_NAL_PPS:
  2451. ret = ff_hevc_decode_nal_pps(gb, s->avctx, &s->ps);
  2452. if (ret < 0)
  2453. goto fail;
  2454. break;
  2455. case HEVC_NAL_SEI_PREFIX:
  2456. case HEVC_NAL_SEI_SUFFIX:
  2457. ret = ff_hevc_decode_nal_sei(gb, s->avctx, &s->sei, &s->ps, s->nal_unit_type);
  2458. if (ret < 0)
  2459. goto fail;
  2460. break;
  2461. case HEVC_NAL_TRAIL_R:
  2462. case HEVC_NAL_TRAIL_N:
  2463. case HEVC_NAL_TSA_N:
  2464. case HEVC_NAL_TSA_R:
  2465. case HEVC_NAL_STSA_N:
  2466. case HEVC_NAL_STSA_R:
  2467. case HEVC_NAL_BLA_W_LP:
  2468. case HEVC_NAL_BLA_W_RADL:
  2469. case HEVC_NAL_BLA_N_LP:
  2470. case HEVC_NAL_IDR_W_RADL:
  2471. case HEVC_NAL_IDR_N_LP:
  2472. case HEVC_NAL_CRA_NUT:
  2473. case HEVC_NAL_RADL_N:
  2474. case HEVC_NAL_RADL_R:
  2475. case HEVC_NAL_RASL_N:
  2476. case HEVC_NAL_RASL_R:
  2477. ret = hls_slice_header(s);
  2478. if (ret < 0)
  2479. return ret;
  2480. if (s->sh.first_slice_in_pic_flag) {
  2481. if (s->max_ra == INT_MAX) {
  2482. if (s->nal_unit_type == HEVC_NAL_CRA_NUT || IS_BLA(s)) {
  2483. s->max_ra = s->poc;
  2484. } else {
  2485. if (IS_IDR(s))
  2486. s->max_ra = INT_MIN;
  2487. }
  2488. }
  2489. if ((s->nal_unit_type == HEVC_NAL_RASL_R || s->nal_unit_type == HEVC_NAL_RASL_N) &&
  2490. s->poc <= s->max_ra) {
  2491. s->is_decoded = 0;
  2492. break;
  2493. } else {
  2494. if (s->nal_unit_type == HEVC_NAL_RASL_R && s->poc > s->max_ra)
  2495. s->max_ra = INT_MIN;
  2496. }
  2497. ret = hevc_frame_start(s);
  2498. if (ret < 0)
  2499. return ret;
  2500. } else if (!s->ref) {
  2501. av_log(s->avctx, AV_LOG_ERROR, "First slice in a frame missing.\n");
  2502. goto fail;
  2503. }
  2504. if (s->nal_unit_type != s->first_nal_type) {
  2505. av_log(s->avctx, AV_LOG_ERROR,
  2506. "Non-matching NAL types of the VCL NALUs: %d %d\n",
  2507. s->first_nal_type, s->nal_unit_type);
  2508. return AVERROR_INVALIDDATA;
  2509. }
  2510. if (!s->sh.dependent_slice_segment_flag &&
  2511. s->sh.slice_type != HEVC_SLICE_I) {
  2512. ret = ff_hevc_slice_rpl(s);
  2513. if (ret < 0) {
  2514. av_log(s->avctx, AV_LOG_WARNING,
  2515. "Error constructing the reference lists for the current slice.\n");
  2516. goto fail;
  2517. }
  2518. }
  2519. if (s->sh.first_slice_in_pic_flag && s->avctx->hwaccel) {
  2520. ret = s->avctx->hwaccel->start_frame(s->avctx, NULL, 0);
  2521. if (ret < 0)
  2522. goto fail;
  2523. }
  2524. if (s->avctx->hwaccel) {
  2525. ret = s->avctx->hwaccel->decode_slice(s->avctx, nal->raw_data, nal->raw_size);
  2526. if (ret < 0)
  2527. goto fail;
  2528. } else {
  2529. if (s->threads_number > 1 && s->sh.num_entry_point_offsets > 0)
  2530. ctb_addr_ts = hls_slice_data_wpp(s, nal);
  2531. else
  2532. ctb_addr_ts = hls_slice_data(s);
  2533. if (ctb_addr_ts >= (s->ps.sps->ctb_width * s->ps.sps->ctb_height)) {
  2534. s->is_decoded = 1;
  2535. }
  2536. if (ctb_addr_ts < 0) {
  2537. ret = ctb_addr_ts;
  2538. goto fail;
  2539. }
  2540. }
  2541. break;
  2542. case HEVC_NAL_EOS_NUT:
  2543. case HEVC_NAL_EOB_NUT:
  2544. s->seq_decode = (s->seq_decode + 1) & 0xff;
  2545. s->max_ra = INT_MAX;
  2546. break;
  2547. case HEVC_NAL_AUD:
  2548. case HEVC_NAL_FD_NUT:
  2549. break;
  2550. default:
  2551. av_log(s->avctx, AV_LOG_INFO,
  2552. "Skipping NAL unit %d\n", s->nal_unit_type);
  2553. }
  2554. return 0;
  2555. fail:
  2556. if (s->avctx->err_recognition & AV_EF_EXPLODE)
  2557. return ret;
  2558. return 0;
  2559. }
  2560. static int decode_nal_units(HEVCContext *s, const uint8_t *buf, int length)
  2561. {
  2562. int i, ret = 0;
  2563. int eos_at_start = 1;
  2564. s->ref = NULL;
  2565. s->last_eos = s->eos;
  2566. s->eos = 0;
  2567. /* split the input packet into NAL units, so we know the upper bound on the
  2568. * number of slices in the frame */
  2569. ret = ff_h2645_packet_split(&s->pkt, buf, length, s->avctx, s->is_nalff,
  2570. s->nal_length_size, s->avctx->codec_id, 1);
  2571. if (ret < 0) {
  2572. av_log(s->avctx, AV_LOG_ERROR,
  2573. "Error splitting the input into NAL units.\n");
  2574. return ret;
  2575. }
  2576. for (i = 0; i < s->pkt.nb_nals; i++) {
  2577. if (s->pkt.nals[i].type == HEVC_NAL_EOB_NUT ||
  2578. s->pkt.nals[i].type == HEVC_NAL_EOS_NUT) {
  2579. if (eos_at_start) {
  2580. s->last_eos = 1;
  2581. } else {
  2582. s->eos = 1;
  2583. }
  2584. } else {
  2585. eos_at_start = 0;
  2586. }
  2587. }
  2588. /* decode the NAL units */
  2589. for (i = 0; i < s->pkt.nb_nals; i++) {
  2590. ret = decode_nal_unit(s, &s->pkt.nals[i]);
  2591. if (ret < 0) {
  2592. av_log(s->avctx, AV_LOG_WARNING,
  2593. "Error parsing NAL unit #%d.\n", i);
  2594. goto fail;
  2595. }
  2596. }
  2597. fail:
  2598. if (s->ref && s->threads_type == FF_THREAD_FRAME)
  2599. ff_thread_report_progress(&s->ref->tf, INT_MAX, 0);
  2600. return ret;
  2601. }
  2602. static void print_md5(void *log_ctx, int level, uint8_t md5[16])
  2603. {
  2604. int i;
  2605. for (i = 0; i < 16; i++)
  2606. av_log(log_ctx, level, "%02"PRIx8, md5[i]);
  2607. }
  2608. static int verify_md5(HEVCContext *s, AVFrame *frame)
  2609. {
  2610. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(frame->format);
  2611. int pixel_shift;
  2612. int i, j;
  2613. if (!desc)
  2614. return AVERROR(EINVAL);
  2615. pixel_shift = desc->comp[0].depth > 8;
  2616. av_log(s->avctx, AV_LOG_DEBUG, "Verifying checksum for frame with POC %d: ",
  2617. s->poc);
  2618. /* the checksums are LE, so we have to byteswap for >8bpp formats
  2619. * on BE arches */
  2620. #if HAVE_BIGENDIAN
  2621. if (pixel_shift && !s->checksum_buf) {
  2622. av_fast_malloc(&s->checksum_buf, &s->checksum_buf_size,
  2623. FFMAX3(frame->linesize[0], frame->linesize[1],
  2624. frame->linesize[2]));
  2625. if (!s->checksum_buf)
  2626. return AVERROR(ENOMEM);
  2627. }
  2628. #endif
  2629. for (i = 0; frame->data[i]; i++) {
  2630. int width = s->avctx->coded_width;
  2631. int height = s->avctx->coded_height;
  2632. int w = (i == 1 || i == 2) ? (width >> desc->log2_chroma_w) : width;
  2633. int h = (i == 1 || i == 2) ? (height >> desc->log2_chroma_h) : height;
  2634. uint8_t md5[16];
  2635. av_md5_init(s->sei.picture_hash.md5_ctx);
  2636. for (j = 0; j < h; j++) {
  2637. const uint8_t *src = frame->data[i] + j * frame->linesize[i];
  2638. #if HAVE_BIGENDIAN
  2639. if (pixel_shift) {
  2640. s->bdsp.bswap16_buf((uint16_t *) s->checksum_buf,
  2641. (const uint16_t *) src, w);
  2642. src = s->checksum_buf;
  2643. }
  2644. #endif
  2645. av_md5_update(s->sei.picture_hash.md5_ctx, src, w << pixel_shift);
  2646. }
  2647. av_md5_final(s->sei.picture_hash.md5_ctx, md5);
  2648. if (!memcmp(md5, s->sei.picture_hash.md5[i], 16)) {
  2649. av_log (s->avctx, AV_LOG_DEBUG, "plane %d - correct ", i);
  2650. print_md5(s->avctx, AV_LOG_DEBUG, md5);
  2651. av_log (s->avctx, AV_LOG_DEBUG, "; ");
  2652. } else {
  2653. av_log (s->avctx, AV_LOG_ERROR, "mismatching checksum of plane %d - ", i);
  2654. print_md5(s->avctx, AV_LOG_ERROR, md5);
  2655. av_log (s->avctx, AV_LOG_ERROR, " != ");
  2656. print_md5(s->avctx, AV_LOG_ERROR, s->sei.picture_hash.md5[i]);
  2657. av_log (s->avctx, AV_LOG_ERROR, "\n");
  2658. return AVERROR_INVALIDDATA;
  2659. }
  2660. }
  2661. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  2662. return 0;
  2663. }
  2664. static int hevc_decode_extradata(HEVCContext *s, uint8_t *buf, int length, int first)
  2665. {
  2666. int ret, i;
  2667. ret = ff_hevc_decode_extradata(buf, length, &s->ps, &s->sei, &s->is_nalff,
  2668. &s->nal_length_size, s->avctx->err_recognition,
  2669. s->apply_defdispwin, s->avctx);
  2670. if (ret < 0)
  2671. return ret;
  2672. /* export stream parameters from the first SPS */
  2673. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.sps_list); i++) {
  2674. if (first && s->ps.sps_list[i]) {
  2675. const HEVCSPS *sps = (const HEVCSPS*)s->ps.sps_list[i]->data;
  2676. export_stream_params(s->avctx, &s->ps, sps);
  2677. break;
  2678. }
  2679. }
  2680. return 0;
  2681. }
  2682. static int hevc_decode_frame(AVCodecContext *avctx, void *data, int *got_output,
  2683. AVPacket *avpkt)
  2684. {
  2685. int ret;
  2686. int new_extradata_size;
  2687. uint8_t *new_extradata;
  2688. HEVCContext *s = avctx->priv_data;
  2689. if (!avpkt->size) {
  2690. ret = ff_hevc_output_frame(s, data, 1);
  2691. if (ret < 0)
  2692. return ret;
  2693. *got_output = ret;
  2694. return 0;
  2695. }
  2696. new_extradata = av_packet_get_side_data(avpkt, AV_PKT_DATA_NEW_EXTRADATA,
  2697. &new_extradata_size);
  2698. if (new_extradata && new_extradata_size > 0) {
  2699. ret = hevc_decode_extradata(s, new_extradata, new_extradata_size, 0);
  2700. if (ret < 0)
  2701. return ret;
  2702. }
  2703. s->ref = NULL;
  2704. ret = decode_nal_units(s, avpkt->data, avpkt->size);
  2705. if (ret < 0)
  2706. return ret;
  2707. if (avctx->hwaccel) {
  2708. if (s->ref && (ret = avctx->hwaccel->end_frame(avctx)) < 0) {
  2709. av_log(avctx, AV_LOG_ERROR,
  2710. "hardware accelerator failed to decode picture\n");
  2711. ff_hevc_unref_frame(s, s->ref, ~0);
  2712. return ret;
  2713. }
  2714. } else {
  2715. /* verify the SEI checksum */
  2716. if (avctx->err_recognition & AV_EF_CRCCHECK && s->is_decoded &&
  2717. s->sei.picture_hash.is_md5) {
  2718. ret = verify_md5(s, s->ref->frame);
  2719. if (ret < 0 && avctx->err_recognition & AV_EF_EXPLODE) {
  2720. ff_hevc_unref_frame(s, s->ref, ~0);
  2721. return ret;
  2722. }
  2723. }
  2724. }
  2725. s->sei.picture_hash.is_md5 = 0;
  2726. if (s->is_decoded) {
  2727. av_log(avctx, AV_LOG_DEBUG, "Decoded frame with POC %d.\n", s->poc);
  2728. s->is_decoded = 0;
  2729. }
  2730. if (s->output_frame->buf[0]) {
  2731. av_frame_move_ref(data, s->output_frame);
  2732. *got_output = 1;
  2733. }
  2734. return avpkt->size;
  2735. }
  2736. static int hevc_ref_frame(HEVCContext *s, HEVCFrame *dst, HEVCFrame *src)
  2737. {
  2738. int ret;
  2739. ret = ff_thread_ref_frame(&dst->tf, &src->tf);
  2740. if (ret < 0)
  2741. return ret;
  2742. dst->tab_mvf_buf = av_buffer_ref(src->tab_mvf_buf);
  2743. if (!dst->tab_mvf_buf)
  2744. goto fail;
  2745. dst->tab_mvf = src->tab_mvf;
  2746. dst->rpl_tab_buf = av_buffer_ref(src->rpl_tab_buf);
  2747. if (!dst->rpl_tab_buf)
  2748. goto fail;
  2749. dst->rpl_tab = src->rpl_tab;
  2750. dst->rpl_buf = av_buffer_ref(src->rpl_buf);
  2751. if (!dst->rpl_buf)
  2752. goto fail;
  2753. dst->poc = src->poc;
  2754. dst->ctb_count = src->ctb_count;
  2755. dst->flags = src->flags;
  2756. dst->sequence = src->sequence;
  2757. if (src->hwaccel_picture_private) {
  2758. dst->hwaccel_priv_buf = av_buffer_ref(src->hwaccel_priv_buf);
  2759. if (!dst->hwaccel_priv_buf)
  2760. goto fail;
  2761. dst->hwaccel_picture_private = dst->hwaccel_priv_buf->data;
  2762. }
  2763. return 0;
  2764. fail:
  2765. ff_hevc_unref_frame(s, dst, ~0);
  2766. return AVERROR(ENOMEM);
  2767. }
  2768. static av_cold int hevc_decode_free(AVCodecContext *avctx)
  2769. {
  2770. HEVCContext *s = avctx->priv_data;
  2771. int i;
  2772. pic_arrays_free(s);
  2773. av_freep(&s->sei.picture_hash.md5_ctx);
  2774. av_freep(&s->cabac_state);
  2775. for (i = 0; i < 3; i++) {
  2776. av_freep(&s->sao_pixel_buffer_h[i]);
  2777. av_freep(&s->sao_pixel_buffer_v[i]);
  2778. }
  2779. av_frame_free(&s->output_frame);
  2780. for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
  2781. ff_hevc_unref_frame(s, &s->DPB[i], ~0);
  2782. av_frame_free(&s->DPB[i].frame);
  2783. }
  2784. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.vps_list); i++)
  2785. av_buffer_unref(&s->ps.vps_list[i]);
  2786. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.sps_list); i++)
  2787. av_buffer_unref(&s->ps.sps_list[i]);
  2788. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.pps_list); i++)
  2789. av_buffer_unref(&s->ps.pps_list[i]);
  2790. s->ps.sps = NULL;
  2791. s->ps.pps = NULL;
  2792. s->ps.vps = NULL;
  2793. av_freep(&s->sh.entry_point_offset);
  2794. av_freep(&s->sh.offset);
  2795. av_freep(&s->sh.size);
  2796. for (i = 1; i < s->threads_number; i++) {
  2797. HEVCLocalContext *lc = s->HEVClcList[i];
  2798. if (lc) {
  2799. av_freep(&s->HEVClcList[i]);
  2800. av_freep(&s->sList[i]);
  2801. }
  2802. }
  2803. if (s->HEVClc == s->HEVClcList[0])
  2804. s->HEVClc = NULL;
  2805. av_freep(&s->HEVClcList[0]);
  2806. ff_h2645_packet_uninit(&s->pkt);
  2807. return 0;
  2808. }
  2809. static av_cold int hevc_init_context(AVCodecContext *avctx)
  2810. {
  2811. HEVCContext *s = avctx->priv_data;
  2812. int i;
  2813. s->avctx = avctx;
  2814. s->HEVClc = av_mallocz(sizeof(HEVCLocalContext));
  2815. if (!s->HEVClc)
  2816. goto fail;
  2817. s->HEVClcList[0] = s->HEVClc;
  2818. s->sList[0] = s;
  2819. s->cabac_state = av_malloc(HEVC_CONTEXTS);
  2820. if (!s->cabac_state)
  2821. goto fail;
  2822. s->output_frame = av_frame_alloc();
  2823. if (!s->output_frame)
  2824. goto fail;
  2825. for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
  2826. s->DPB[i].frame = av_frame_alloc();
  2827. if (!s->DPB[i].frame)
  2828. goto fail;
  2829. s->DPB[i].tf.f = s->DPB[i].frame;
  2830. }
  2831. s->max_ra = INT_MAX;
  2832. s->sei.picture_hash.md5_ctx = av_md5_alloc();
  2833. if (!s->sei.picture_hash.md5_ctx)
  2834. goto fail;
  2835. ff_bswapdsp_init(&s->bdsp);
  2836. s->context_initialized = 1;
  2837. s->eos = 0;
  2838. ff_hevc_reset_sei(&s->sei);
  2839. return 0;
  2840. fail:
  2841. hevc_decode_free(avctx);
  2842. return AVERROR(ENOMEM);
  2843. }
  2844. static int hevc_update_thread_context(AVCodecContext *dst,
  2845. const AVCodecContext *src)
  2846. {
  2847. HEVCContext *s = dst->priv_data;
  2848. HEVCContext *s0 = src->priv_data;
  2849. int i, ret;
  2850. if (!s->context_initialized) {
  2851. ret = hevc_init_context(dst);
  2852. if (ret < 0)
  2853. return ret;
  2854. }
  2855. for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
  2856. ff_hevc_unref_frame(s, &s->DPB[i], ~0);
  2857. if (s0->DPB[i].frame->buf[0]) {
  2858. ret = hevc_ref_frame(s, &s->DPB[i], &s0->DPB[i]);
  2859. if (ret < 0)
  2860. return ret;
  2861. }
  2862. }
  2863. if (s->ps.sps != s0->ps.sps)
  2864. s->ps.sps = NULL;
  2865. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.vps_list); i++) {
  2866. av_buffer_unref(&s->ps.vps_list[i]);
  2867. if (s0->ps.vps_list[i]) {
  2868. s->ps.vps_list[i] = av_buffer_ref(s0->ps.vps_list[i]);
  2869. if (!s->ps.vps_list[i])
  2870. return AVERROR(ENOMEM);
  2871. }
  2872. }
  2873. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.sps_list); i++) {
  2874. av_buffer_unref(&s->ps.sps_list[i]);
  2875. if (s0->ps.sps_list[i]) {
  2876. s->ps.sps_list[i] = av_buffer_ref(s0->ps.sps_list[i]);
  2877. if (!s->ps.sps_list[i])
  2878. return AVERROR(ENOMEM);
  2879. }
  2880. }
  2881. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.pps_list); i++) {
  2882. av_buffer_unref(&s->ps.pps_list[i]);
  2883. if (s0->ps.pps_list[i]) {
  2884. s->ps.pps_list[i] = av_buffer_ref(s0->ps.pps_list[i]);
  2885. if (!s->ps.pps_list[i])
  2886. return AVERROR(ENOMEM);
  2887. }
  2888. }
  2889. if (s->ps.sps != s0->ps.sps)
  2890. if ((ret = set_sps(s, s0->ps.sps, src->pix_fmt)) < 0)
  2891. return ret;
  2892. s->seq_decode = s0->seq_decode;
  2893. s->seq_output = s0->seq_output;
  2894. s->pocTid0 = s0->pocTid0;
  2895. s->max_ra = s0->max_ra;
  2896. s->eos = s0->eos;
  2897. s->no_rasl_output_flag = s0->no_rasl_output_flag;
  2898. s->is_nalff = s0->is_nalff;
  2899. s->nal_length_size = s0->nal_length_size;
  2900. s->threads_number = s0->threads_number;
  2901. s->threads_type = s0->threads_type;
  2902. if (s0->eos) {
  2903. s->seq_decode = (s->seq_decode + 1) & 0xff;
  2904. s->max_ra = INT_MAX;
  2905. }
  2906. s->sei.frame_packing = s0->sei.frame_packing;
  2907. s->sei.display_orientation = s0->sei.display_orientation;
  2908. s->sei.mastering_display = s0->sei.mastering_display;
  2909. s->sei.content_light = s0->sei.content_light;
  2910. s->sei.alternative_transfer = s0->sei.alternative_transfer;
  2911. return 0;
  2912. }
  2913. static av_cold int hevc_decode_init(AVCodecContext *avctx)
  2914. {
  2915. HEVCContext *s = avctx->priv_data;
  2916. int ret;
  2917. avctx->internal->allocate_progress = 1;
  2918. ret = hevc_init_context(avctx);
  2919. if (ret < 0)
  2920. return ret;
  2921. s->enable_parallel_tiles = 0;
  2922. s->sei.picture_timing.picture_struct = 0;
  2923. s->eos = 1;
  2924. atomic_init(&s->wpp_err, 0);
  2925. if(avctx->active_thread_type & FF_THREAD_SLICE)
  2926. s->threads_number = avctx->thread_count;
  2927. else
  2928. s->threads_number = 1;
  2929. if (avctx->extradata_size > 0 && avctx->extradata) {
  2930. ret = hevc_decode_extradata(s, avctx->extradata, avctx->extradata_size, 1);
  2931. if (ret < 0) {
  2932. hevc_decode_free(avctx);
  2933. return ret;
  2934. }
  2935. }
  2936. if((avctx->active_thread_type & FF_THREAD_FRAME) && avctx->thread_count > 1)
  2937. s->threads_type = FF_THREAD_FRAME;
  2938. else
  2939. s->threads_type = FF_THREAD_SLICE;
  2940. return 0;
  2941. }
  2942. static av_cold int hevc_init_thread_copy(AVCodecContext *avctx)
  2943. {
  2944. HEVCContext *s = avctx->priv_data;
  2945. int ret;
  2946. memset(s, 0, sizeof(*s));
  2947. ret = hevc_init_context(avctx);
  2948. if (ret < 0)
  2949. return ret;
  2950. return 0;
  2951. }
  2952. static void hevc_decode_flush(AVCodecContext *avctx)
  2953. {
  2954. HEVCContext *s = avctx->priv_data;
  2955. ff_hevc_flush_dpb(s);
  2956. s->max_ra = INT_MAX;
  2957. s->eos = 1;
  2958. }
  2959. #define OFFSET(x) offsetof(HEVCContext, x)
  2960. #define PAR (AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_VIDEO_PARAM)
  2961. static const AVOption options[] = {
  2962. { "apply_defdispwin", "Apply default display window from VUI", OFFSET(apply_defdispwin),
  2963. AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, PAR },
  2964. { "strict-displaywin", "stricly apply default display window size", OFFSET(apply_defdispwin),
  2965. AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, PAR },
  2966. { NULL },
  2967. };
  2968. static const AVClass hevc_decoder_class = {
  2969. .class_name = "HEVC decoder",
  2970. .item_name = av_default_item_name,
  2971. .option = options,
  2972. .version = LIBAVUTIL_VERSION_INT,
  2973. };
  2974. AVCodec ff_hevc_decoder = {
  2975. .name = "hevc",
  2976. .long_name = NULL_IF_CONFIG_SMALL("HEVC (High Efficiency Video Coding)"),
  2977. .type = AVMEDIA_TYPE_VIDEO,
  2978. .id = AV_CODEC_ID_HEVC,
  2979. .priv_data_size = sizeof(HEVCContext),
  2980. .priv_class = &hevc_decoder_class,
  2981. .init = hevc_decode_init,
  2982. .close = hevc_decode_free,
  2983. .decode = hevc_decode_frame,
  2984. .flush = hevc_decode_flush,
  2985. .update_thread_context = hevc_update_thread_context,
  2986. .init_thread_copy = hevc_init_thread_copy,
  2987. .capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DELAY |
  2988. AV_CODEC_CAP_SLICE_THREADS | AV_CODEC_CAP_FRAME_THREADS,
  2989. .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE | FF_CODEC_CAP_EXPORTS_CROPPING,
  2990. .profiles = NULL_IF_CONFIG_SMALL(ff_hevc_profiles),
  2991. };