You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1819 lines
62KB

  1. /*
  2. * RV30/40 decoder common data
  3. * Copyright (c) 2007 Mike Melanson, Konstantin Shishkov
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * RV30/40 decoder common data
  24. */
  25. #include "libavutil/avassert.h"
  26. #include "libavutil/imgutils.h"
  27. #include "libavutil/internal.h"
  28. #include "libavutil/mem_internal.h"
  29. #include "libavutil/thread.h"
  30. #include "avcodec.h"
  31. #include "error_resilience.h"
  32. #include "mpegutils.h"
  33. #include "mpegvideo.h"
  34. #include "golomb.h"
  35. #include "internal.h"
  36. #include "mathops.h"
  37. #include "mpeg_er.h"
  38. #include "qpeldsp.h"
  39. #include "rectangle.h"
  40. #include "thread.h"
  41. #include "rv34vlc.h"
  42. #include "rv34data.h"
  43. #include "rv34.h"
  44. static inline void ZERO8x2(void* dst, int stride)
  45. {
  46. fill_rectangle(dst, 1, 2, stride, 0, 4);
  47. fill_rectangle(((uint8_t*)(dst))+4, 1, 2, stride, 0, 4);
  48. }
  49. /** translation of RV30/40 macroblock types to lavc ones */
  50. static const int rv34_mb_type_to_lavc[12] = {
  51. MB_TYPE_INTRA,
  52. MB_TYPE_INTRA16x16 | MB_TYPE_SEPARATE_DC,
  53. MB_TYPE_16x16 | MB_TYPE_L0,
  54. MB_TYPE_8x8 | MB_TYPE_L0,
  55. MB_TYPE_16x16 | MB_TYPE_L0,
  56. MB_TYPE_16x16 | MB_TYPE_L1,
  57. MB_TYPE_SKIP,
  58. MB_TYPE_DIRECT2 | MB_TYPE_16x16,
  59. MB_TYPE_16x8 | MB_TYPE_L0,
  60. MB_TYPE_8x16 | MB_TYPE_L0,
  61. MB_TYPE_16x16 | MB_TYPE_L0L1,
  62. MB_TYPE_16x16 | MB_TYPE_L0 | MB_TYPE_SEPARATE_DC
  63. };
  64. static RV34VLC intra_vlcs[NUM_INTRA_TABLES], inter_vlcs[NUM_INTER_TABLES];
  65. static int rv34_decode_mv(RV34DecContext *r, int block_type);
  66. /**
  67. * @name RV30/40 VLC generating functions
  68. * @{
  69. */
  70. static VLC_TYPE table_data[117592][2];
  71. /**
  72. * Generate VLC from codeword lengths.
  73. * @param bits codeword lengths (zeroes are accepted)
  74. * @param size length of input data
  75. * @param vlc output VLC
  76. * @param insyms symbols for input codes (NULL for default ones)
  77. * @param num VLC table number (for static initialization)
  78. */
  79. static void rv34_gen_vlc(const uint8_t *bits, int size, VLC *vlc, const uint8_t *syms,
  80. int *offset)
  81. {
  82. int counts[17] = {0}, codes[17];
  83. uint16_t cw[MAX_VLC_SIZE];
  84. int maxbits;
  85. for (int i = 0; i < size; i++)
  86. counts[bits[i]]++;
  87. /* bits[0] is zero for some tables, i.e. syms actually starts at 1.
  88. * So we reset it here. The code assigned to this element is 0x00. */
  89. codes[0] = counts[0] = 0;
  90. for (int i = 0; i < 16; i++) {
  91. codes[i+1] = (codes[i] + counts[i]) << 1;
  92. if (counts[i])
  93. maxbits = i;
  94. }
  95. for (int i = 0; i < size; i++)
  96. cw[i] = codes[bits[i]]++;
  97. vlc->table = &table_data[*offset];
  98. vlc->table_allocated = FF_ARRAY_ELEMS(table_data) - *offset;
  99. ff_init_vlc_sparse(vlc, FFMIN(maxbits, 9), size,
  100. bits, 1, 1,
  101. cw, 2, 2,
  102. syms, !!syms, !!syms, INIT_VLC_STATIC_OVERLONG);
  103. *offset += vlc->table_size;
  104. }
  105. /**
  106. * Initialize all tables.
  107. */
  108. static av_cold void rv34_init_tables(void)
  109. {
  110. int i, j, k, offset = 0;
  111. for(i = 0; i < NUM_INTRA_TABLES; i++){
  112. for(j = 0; j < 2; j++){
  113. rv34_gen_vlc(rv34_table_intra_cbppat [i][j], CBPPAT_VLC_SIZE,
  114. &intra_vlcs[i].cbppattern[j], NULL, &offset);
  115. rv34_gen_vlc(rv34_table_intra_secondpat[i][j], OTHERBLK_VLC_SIZE,
  116. &intra_vlcs[i].second_pattern[j], NULL, &offset);
  117. rv34_gen_vlc(rv34_table_intra_thirdpat [i][j], OTHERBLK_VLC_SIZE,
  118. &intra_vlcs[i].third_pattern[j], NULL, &offset);
  119. for(k = 0; k < 4; k++){
  120. rv34_gen_vlc(rv34_table_intra_cbp[i][j+k*2], CBP_VLC_SIZE,
  121. &intra_vlcs[i].cbp[j][k], rv34_cbp_code, &offset);
  122. }
  123. }
  124. for(j = 0; j < 4; j++){
  125. rv34_gen_vlc(rv34_table_intra_firstpat[i][j], FIRSTBLK_VLC_SIZE,
  126. &intra_vlcs[i].first_pattern[j], NULL, &offset);
  127. }
  128. rv34_gen_vlc(rv34_intra_coeff[i], COEFF_VLC_SIZE,
  129. &intra_vlcs[i].coefficient, NULL, &offset);
  130. }
  131. for(i = 0; i < NUM_INTER_TABLES; i++){
  132. rv34_gen_vlc(rv34_inter_cbppat[i], CBPPAT_VLC_SIZE,
  133. &inter_vlcs[i].cbppattern[0], NULL, &offset);
  134. for(j = 0; j < 4; j++){
  135. rv34_gen_vlc(rv34_inter_cbp[i][j], CBP_VLC_SIZE,
  136. &inter_vlcs[i].cbp[0][j], rv34_cbp_code, &offset);
  137. }
  138. for(j = 0; j < 2; j++){
  139. rv34_gen_vlc(rv34_table_inter_firstpat [i][j], FIRSTBLK_VLC_SIZE,
  140. &inter_vlcs[i].first_pattern[j], NULL, &offset);
  141. rv34_gen_vlc(rv34_table_inter_secondpat[i][j], OTHERBLK_VLC_SIZE,
  142. &inter_vlcs[i].second_pattern[j], NULL, &offset);
  143. rv34_gen_vlc(rv34_table_inter_thirdpat [i][j], OTHERBLK_VLC_SIZE,
  144. &inter_vlcs[i].third_pattern[j], NULL, &offset);
  145. }
  146. rv34_gen_vlc(rv34_inter_coeff[i], COEFF_VLC_SIZE,
  147. &inter_vlcs[i].coefficient, NULL, &offset);
  148. }
  149. }
  150. /** @} */ // vlc group
  151. /**
  152. * @name RV30/40 4x4 block decoding functions
  153. * @{
  154. */
  155. /**
  156. * Decode coded block pattern.
  157. */
  158. static int rv34_decode_cbp(GetBitContext *gb, RV34VLC *vlc, int table)
  159. {
  160. int pattern, code, cbp=0;
  161. int ones;
  162. static const int cbp_masks[3] = {0x100000, 0x010000, 0x110000};
  163. static const int shifts[4] = { 0, 2, 8, 10 };
  164. const int *curshift = shifts;
  165. int i, t, mask;
  166. code = get_vlc2(gb, vlc->cbppattern[table].table, 9, 2);
  167. pattern = code & 0xF;
  168. code >>= 4;
  169. ones = rv34_count_ones[pattern];
  170. for(mask = 8; mask; mask >>= 1, curshift++){
  171. if(pattern & mask)
  172. cbp |= get_vlc2(gb, vlc->cbp[table][ones].table, vlc->cbp[table][ones].bits, 1) << curshift[0];
  173. }
  174. for(i = 0; i < 4; i++){
  175. t = (modulo_three_table[code] >> (6 - 2*i)) & 3;
  176. if(t == 1)
  177. cbp |= cbp_masks[get_bits1(gb)] << i;
  178. if(t == 2)
  179. cbp |= cbp_masks[2] << i;
  180. }
  181. return cbp;
  182. }
  183. /**
  184. * Get one coefficient value from the bitstream and store it.
  185. */
  186. static inline void decode_coeff(int16_t *dst, int coef, int esc, GetBitContext *gb, VLC* vlc, int q)
  187. {
  188. if(coef){
  189. if(coef == esc){
  190. coef = get_vlc2(gb, vlc->table, 9, 2);
  191. if(coef > 23){
  192. coef -= 23;
  193. coef = 22 + ((1 << coef) | get_bits(gb, coef));
  194. }
  195. coef += esc;
  196. }
  197. if(get_bits1(gb))
  198. coef = -coef;
  199. *dst = (coef*q + 8) >> 4;
  200. }
  201. }
  202. /**
  203. * Decode 2x2 subblock of coefficients.
  204. */
  205. static inline void decode_subblock(int16_t *dst, int code, const int is_block2, GetBitContext *gb, VLC *vlc, int q)
  206. {
  207. int flags = modulo_three_table[code];
  208. decode_coeff( dst+0*4+0, (flags >> 6) , 3, gb, vlc, q);
  209. if(is_block2){
  210. decode_coeff(dst+1*4+0, (flags >> 4) & 3, 2, gb, vlc, q);
  211. decode_coeff(dst+0*4+1, (flags >> 2) & 3, 2, gb, vlc, q);
  212. }else{
  213. decode_coeff(dst+0*4+1, (flags >> 4) & 3, 2, gb, vlc, q);
  214. decode_coeff(dst+1*4+0, (flags >> 2) & 3, 2, gb, vlc, q);
  215. }
  216. decode_coeff( dst+1*4+1, (flags >> 0) & 3, 2, gb, vlc, q);
  217. }
  218. /**
  219. * Decode a single coefficient.
  220. */
  221. static inline void decode_subblock1(int16_t *dst, int code, GetBitContext *gb, VLC *vlc, int q)
  222. {
  223. int coeff = modulo_three_table[code] >> 6;
  224. decode_coeff(dst, coeff, 3, gb, vlc, q);
  225. }
  226. static inline void decode_subblock3(int16_t *dst, int code, GetBitContext *gb, VLC *vlc,
  227. int q_dc, int q_ac1, int q_ac2)
  228. {
  229. int flags = modulo_three_table[code];
  230. decode_coeff(dst+0*4+0, (flags >> 6) , 3, gb, vlc, q_dc);
  231. decode_coeff(dst+0*4+1, (flags >> 4) & 3, 2, gb, vlc, q_ac1);
  232. decode_coeff(dst+1*4+0, (flags >> 2) & 3, 2, gb, vlc, q_ac1);
  233. decode_coeff(dst+1*4+1, (flags >> 0) & 3, 2, gb, vlc, q_ac2);
  234. }
  235. /**
  236. * Decode coefficients for 4x4 block.
  237. *
  238. * This is done by filling 2x2 subblocks with decoded coefficients
  239. * in this order (the same for subblocks and subblock coefficients):
  240. * o--o
  241. * /
  242. * /
  243. * o--o
  244. */
  245. static int rv34_decode_block(int16_t *dst, GetBitContext *gb, RV34VLC *rvlc, int fc, int sc, int q_dc, int q_ac1, int q_ac2)
  246. {
  247. int code, pattern, has_ac = 1;
  248. code = get_vlc2(gb, rvlc->first_pattern[fc].table, 9, 2);
  249. pattern = code & 0x7;
  250. code >>= 3;
  251. if (modulo_three_table[code] & 0x3F) {
  252. decode_subblock3(dst, code, gb, &rvlc->coefficient, q_dc, q_ac1, q_ac2);
  253. } else {
  254. decode_subblock1(dst, code, gb, &rvlc->coefficient, q_dc);
  255. if (!pattern)
  256. return 0;
  257. has_ac = 0;
  258. }
  259. if(pattern & 4){
  260. code = get_vlc2(gb, rvlc->second_pattern[sc].table, 9, 2);
  261. decode_subblock(dst + 4*0+2, code, 0, gb, &rvlc->coefficient, q_ac2);
  262. }
  263. if(pattern & 2){ // Looks like coefficients 1 and 2 are swapped for this block
  264. code = get_vlc2(gb, rvlc->second_pattern[sc].table, 9, 2);
  265. decode_subblock(dst + 4*2+0, code, 1, gb, &rvlc->coefficient, q_ac2);
  266. }
  267. if(pattern & 1){
  268. code = get_vlc2(gb, rvlc->third_pattern[sc].table, 9, 2);
  269. decode_subblock(dst + 4*2+2, code, 0, gb, &rvlc->coefficient, q_ac2);
  270. }
  271. return has_ac | pattern;
  272. }
  273. /**
  274. * @name RV30/40 bitstream parsing
  275. * @{
  276. */
  277. /**
  278. * Decode starting slice position.
  279. * @todo Maybe replace with ff_h263_decode_mba() ?
  280. */
  281. int ff_rv34_get_start_offset(GetBitContext *gb, int mb_size)
  282. {
  283. int i;
  284. for(i = 0; i < 5; i++)
  285. if(rv34_mb_max_sizes[i] >= mb_size - 1)
  286. break;
  287. return rv34_mb_bits_sizes[i];
  288. }
  289. /**
  290. * Select VLC set for decoding from current quantizer, modifier and frame type.
  291. */
  292. static inline RV34VLC* choose_vlc_set(int quant, int mod, int type)
  293. {
  294. if(mod == 2 && quant < 19) quant += 10;
  295. else if(mod && quant < 26) quant += 5;
  296. av_assert2(quant >= 0 && quant < 32);
  297. return type ? &inter_vlcs[rv34_quant_to_vlc_set[1][quant]]
  298. : &intra_vlcs[rv34_quant_to_vlc_set[0][quant]];
  299. }
  300. /**
  301. * Decode intra macroblock header and return CBP in case of success, -1 otherwise.
  302. */
  303. static int rv34_decode_intra_mb_header(RV34DecContext *r, int8_t *intra_types)
  304. {
  305. MpegEncContext *s = &r->s;
  306. GetBitContext *gb = &s->gb;
  307. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  308. int t;
  309. r->is16 = get_bits1(gb);
  310. if(r->is16){
  311. s->current_picture_ptr->mb_type[mb_pos] = MB_TYPE_INTRA16x16;
  312. r->block_type = RV34_MB_TYPE_INTRA16x16;
  313. t = get_bits(gb, 2);
  314. fill_rectangle(intra_types, 4, 4, r->intra_types_stride, t, sizeof(intra_types[0]));
  315. r->luma_vlc = 2;
  316. }else{
  317. if(!r->rv30){
  318. if(!get_bits1(gb))
  319. av_log(s->avctx, AV_LOG_ERROR, "Need DQUANT\n");
  320. }
  321. s->current_picture_ptr->mb_type[mb_pos] = MB_TYPE_INTRA;
  322. r->block_type = RV34_MB_TYPE_INTRA;
  323. if(r->decode_intra_types(r, gb, intra_types) < 0)
  324. return -1;
  325. r->luma_vlc = 1;
  326. }
  327. r->chroma_vlc = 0;
  328. r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 0);
  329. return rv34_decode_cbp(gb, r->cur_vlcs, r->is16);
  330. }
  331. /**
  332. * Decode inter macroblock header and return CBP in case of success, -1 otherwise.
  333. */
  334. static int rv34_decode_inter_mb_header(RV34DecContext *r, int8_t *intra_types)
  335. {
  336. MpegEncContext *s = &r->s;
  337. GetBitContext *gb = &s->gb;
  338. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  339. int i, t;
  340. r->block_type = r->decode_mb_info(r);
  341. if(r->block_type == -1)
  342. return -1;
  343. s->current_picture_ptr->mb_type[mb_pos] = rv34_mb_type_to_lavc[r->block_type];
  344. r->mb_type[mb_pos] = r->block_type;
  345. if(r->block_type == RV34_MB_SKIP){
  346. if(s->pict_type == AV_PICTURE_TYPE_P)
  347. r->mb_type[mb_pos] = RV34_MB_P_16x16;
  348. if(s->pict_type == AV_PICTURE_TYPE_B)
  349. r->mb_type[mb_pos] = RV34_MB_B_DIRECT;
  350. }
  351. r->is16 = !!IS_INTRA16x16(s->current_picture_ptr->mb_type[mb_pos]);
  352. if (rv34_decode_mv(r, r->block_type) < 0)
  353. return -1;
  354. if(r->block_type == RV34_MB_SKIP){
  355. fill_rectangle(intra_types, 4, 4, r->intra_types_stride, 0, sizeof(intra_types[0]));
  356. return 0;
  357. }
  358. r->chroma_vlc = 1;
  359. r->luma_vlc = 0;
  360. if(IS_INTRA(s->current_picture_ptr->mb_type[mb_pos])){
  361. if(r->is16){
  362. t = get_bits(gb, 2);
  363. fill_rectangle(intra_types, 4, 4, r->intra_types_stride, t, sizeof(intra_types[0]));
  364. r->luma_vlc = 2;
  365. }else{
  366. if(r->decode_intra_types(r, gb, intra_types) < 0)
  367. return -1;
  368. r->luma_vlc = 1;
  369. }
  370. r->chroma_vlc = 0;
  371. r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 0);
  372. }else{
  373. for(i = 0; i < 16; i++)
  374. intra_types[(i & 3) + (i>>2) * r->intra_types_stride] = 0;
  375. r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 1);
  376. if(r->mb_type[mb_pos] == RV34_MB_P_MIX16x16){
  377. r->is16 = 1;
  378. r->chroma_vlc = 1;
  379. r->luma_vlc = 2;
  380. r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 0);
  381. }
  382. }
  383. return rv34_decode_cbp(gb, r->cur_vlcs, r->is16);
  384. }
  385. /** @} */ //bitstream functions
  386. /**
  387. * @name motion vector related code (prediction, reconstruction, motion compensation)
  388. * @{
  389. */
  390. /** macroblock partition width in 8x8 blocks */
  391. static const uint8_t part_sizes_w[RV34_MB_TYPES] = { 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2 };
  392. /** macroblock partition height in 8x8 blocks */
  393. static const uint8_t part_sizes_h[RV34_MB_TYPES] = { 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2 };
  394. /** availability index for subblocks */
  395. static const uint8_t avail_indexes[4] = { 6, 7, 10, 11 };
  396. /**
  397. * motion vector prediction
  398. *
  399. * Motion prediction performed for the block by using median prediction of
  400. * motion vectors from the left, top and right top blocks but in corner cases
  401. * some other vectors may be used instead.
  402. */
  403. static void rv34_pred_mv(RV34DecContext *r, int block_type, int subblock_no, int dmv_no)
  404. {
  405. MpegEncContext *s = &r->s;
  406. int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
  407. int A[2] = {0}, B[2], C[2];
  408. int i, j;
  409. int mx, my;
  410. int* avail = r->avail_cache + avail_indexes[subblock_no];
  411. int c_off = part_sizes_w[block_type];
  412. mv_pos += (subblock_no & 1) + (subblock_no >> 1)*s->b8_stride;
  413. if(subblock_no == 3)
  414. c_off = -1;
  415. if(avail[-1]){
  416. A[0] = s->current_picture_ptr->motion_val[0][mv_pos-1][0];
  417. A[1] = s->current_picture_ptr->motion_val[0][mv_pos-1][1];
  418. }
  419. if(avail[-4]){
  420. B[0] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride][0];
  421. B[1] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride][1];
  422. }else{
  423. B[0] = A[0];
  424. B[1] = A[1];
  425. }
  426. if(!avail[c_off-4]){
  427. if(avail[-4] && (avail[-1] || r->rv30)){
  428. C[0] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride-1][0];
  429. C[1] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride-1][1];
  430. }else{
  431. C[0] = A[0];
  432. C[1] = A[1];
  433. }
  434. }else{
  435. C[0] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride+c_off][0];
  436. C[1] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride+c_off][1];
  437. }
  438. mx = mid_pred(A[0], B[0], C[0]);
  439. my = mid_pred(A[1], B[1], C[1]);
  440. mx += r->dmv[dmv_no][0];
  441. my += r->dmv[dmv_no][1];
  442. for(j = 0; j < part_sizes_h[block_type]; j++){
  443. for(i = 0; i < part_sizes_w[block_type]; i++){
  444. s->current_picture_ptr->motion_val[0][mv_pos + i + j*s->b8_stride][0] = mx;
  445. s->current_picture_ptr->motion_val[0][mv_pos + i + j*s->b8_stride][1] = my;
  446. }
  447. }
  448. }
  449. #define GET_PTS_DIFF(a, b) (((a) - (b) + 8192) & 0x1FFF)
  450. /**
  451. * Calculate motion vector component that should be added for direct blocks.
  452. */
  453. static int calc_add_mv(RV34DecContext *r, int dir, int val)
  454. {
  455. int mul = dir ? -r->mv_weight2 : r->mv_weight1;
  456. return (int)(val * (SUINT)mul + 0x2000) >> 14;
  457. }
  458. /**
  459. * Predict motion vector for B-frame macroblock.
  460. */
  461. static inline void rv34_pred_b_vector(int A[2], int B[2], int C[2],
  462. int A_avail, int B_avail, int C_avail,
  463. int *mx, int *my)
  464. {
  465. if(A_avail + B_avail + C_avail != 3){
  466. *mx = A[0] + B[0] + C[0];
  467. *my = A[1] + B[1] + C[1];
  468. if(A_avail + B_avail + C_avail == 2){
  469. *mx /= 2;
  470. *my /= 2;
  471. }
  472. }else{
  473. *mx = mid_pred(A[0], B[0], C[0]);
  474. *my = mid_pred(A[1], B[1], C[1]);
  475. }
  476. }
  477. /**
  478. * motion vector prediction for B-frames
  479. */
  480. static void rv34_pred_mv_b(RV34DecContext *r, int block_type, int dir)
  481. {
  482. MpegEncContext *s = &r->s;
  483. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  484. int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
  485. int A[2] = { 0 }, B[2] = { 0 }, C[2] = { 0 };
  486. int has_A = 0, has_B = 0, has_C = 0;
  487. int mx, my;
  488. int i, j;
  489. Picture *cur_pic = s->current_picture_ptr;
  490. const int mask = dir ? MB_TYPE_L1 : MB_TYPE_L0;
  491. int type = cur_pic->mb_type[mb_pos];
  492. if((r->avail_cache[6-1] & type) & mask){
  493. A[0] = cur_pic->motion_val[dir][mv_pos - 1][0];
  494. A[1] = cur_pic->motion_val[dir][mv_pos - 1][1];
  495. has_A = 1;
  496. }
  497. if((r->avail_cache[6-4] & type) & mask){
  498. B[0] = cur_pic->motion_val[dir][mv_pos - s->b8_stride][0];
  499. B[1] = cur_pic->motion_val[dir][mv_pos - s->b8_stride][1];
  500. has_B = 1;
  501. }
  502. if(r->avail_cache[6-4] && (r->avail_cache[6-2] & type) & mask){
  503. C[0] = cur_pic->motion_val[dir][mv_pos - s->b8_stride + 2][0];
  504. C[1] = cur_pic->motion_val[dir][mv_pos - s->b8_stride + 2][1];
  505. has_C = 1;
  506. }else if((s->mb_x+1) == s->mb_width && (r->avail_cache[6-5] & type) & mask){
  507. C[0] = cur_pic->motion_val[dir][mv_pos - s->b8_stride - 1][0];
  508. C[1] = cur_pic->motion_val[dir][mv_pos - s->b8_stride - 1][1];
  509. has_C = 1;
  510. }
  511. rv34_pred_b_vector(A, B, C, has_A, has_B, has_C, &mx, &my);
  512. mx += r->dmv[dir][0];
  513. my += r->dmv[dir][1];
  514. for(j = 0; j < 2; j++){
  515. for(i = 0; i < 2; i++){
  516. cur_pic->motion_val[dir][mv_pos + i + j*s->b8_stride][0] = mx;
  517. cur_pic->motion_val[dir][mv_pos + i + j*s->b8_stride][1] = my;
  518. }
  519. }
  520. if(block_type == RV34_MB_B_BACKWARD || block_type == RV34_MB_B_FORWARD){
  521. ZERO8x2(cur_pic->motion_val[!dir][mv_pos], s->b8_stride);
  522. }
  523. }
  524. /**
  525. * motion vector prediction - RV3 version
  526. */
  527. static void rv34_pred_mv_rv3(RV34DecContext *r, int block_type, int dir)
  528. {
  529. MpegEncContext *s = &r->s;
  530. int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
  531. int A[2] = {0}, B[2], C[2];
  532. int i, j, k;
  533. int mx, my;
  534. int* avail = r->avail_cache + avail_indexes[0];
  535. if(avail[-1]){
  536. A[0] = s->current_picture_ptr->motion_val[0][mv_pos - 1][0];
  537. A[1] = s->current_picture_ptr->motion_val[0][mv_pos - 1][1];
  538. }
  539. if(avail[-4]){
  540. B[0] = s->current_picture_ptr->motion_val[0][mv_pos - s->b8_stride][0];
  541. B[1] = s->current_picture_ptr->motion_val[0][mv_pos - s->b8_stride][1];
  542. }else{
  543. B[0] = A[0];
  544. B[1] = A[1];
  545. }
  546. if(!avail[-4 + 2]){
  547. if(avail[-4] && (avail[-1])){
  548. C[0] = s->current_picture_ptr->motion_val[0][mv_pos - s->b8_stride - 1][0];
  549. C[1] = s->current_picture_ptr->motion_val[0][mv_pos - s->b8_stride - 1][1];
  550. }else{
  551. C[0] = A[0];
  552. C[1] = A[1];
  553. }
  554. }else{
  555. C[0] = s->current_picture_ptr->motion_val[0][mv_pos - s->b8_stride + 2][0];
  556. C[1] = s->current_picture_ptr->motion_val[0][mv_pos - s->b8_stride + 2][1];
  557. }
  558. mx = mid_pred(A[0], B[0], C[0]);
  559. my = mid_pred(A[1], B[1], C[1]);
  560. mx += r->dmv[0][0];
  561. my += r->dmv[0][1];
  562. for(j = 0; j < 2; j++){
  563. for(i = 0; i < 2; i++){
  564. for(k = 0; k < 2; k++){
  565. s->current_picture_ptr->motion_val[k][mv_pos + i + j*s->b8_stride][0] = mx;
  566. s->current_picture_ptr->motion_val[k][mv_pos + i + j*s->b8_stride][1] = my;
  567. }
  568. }
  569. }
  570. }
  571. static const int chroma_coeffs[3] = { 0, 3, 5 };
  572. /**
  573. * generic motion compensation function
  574. *
  575. * @param r decoder context
  576. * @param block_type type of the current block
  577. * @param xoff horizontal offset from the start of the current block
  578. * @param yoff vertical offset from the start of the current block
  579. * @param mv_off offset to the motion vector information
  580. * @param width width of the current partition in 8x8 blocks
  581. * @param height height of the current partition in 8x8 blocks
  582. * @param dir motion compensation direction (i.e. from the last or the next reference frame)
  583. * @param thirdpel motion vectors are specified in 1/3 of pixel
  584. * @param qpel_mc a set of functions used to perform luma motion compensation
  585. * @param chroma_mc a set of functions used to perform chroma motion compensation
  586. */
  587. static inline void rv34_mc(RV34DecContext *r, const int block_type,
  588. const int xoff, const int yoff, int mv_off,
  589. const int width, const int height, int dir,
  590. const int thirdpel, int weighted,
  591. qpel_mc_func (*qpel_mc)[16],
  592. h264_chroma_mc_func (*chroma_mc))
  593. {
  594. MpegEncContext *s = &r->s;
  595. uint8_t *Y, *U, *V, *srcY, *srcU, *srcV;
  596. int dxy, mx, my, umx, umy, lx, ly, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  597. int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride + mv_off;
  598. int is16x16 = 1;
  599. int emu = 0;
  600. if(thirdpel){
  601. int chroma_mx, chroma_my;
  602. mx = (s->current_picture_ptr->motion_val[dir][mv_pos][0] + (3 << 24)) / 3 - (1 << 24);
  603. my = (s->current_picture_ptr->motion_val[dir][mv_pos][1] + (3 << 24)) / 3 - (1 << 24);
  604. lx = (s->current_picture_ptr->motion_val[dir][mv_pos][0] + (3 << 24)) % 3;
  605. ly = (s->current_picture_ptr->motion_val[dir][mv_pos][1] + (3 << 24)) % 3;
  606. chroma_mx = s->current_picture_ptr->motion_val[dir][mv_pos][0] / 2;
  607. chroma_my = s->current_picture_ptr->motion_val[dir][mv_pos][1] / 2;
  608. umx = (chroma_mx + (3 << 24)) / 3 - (1 << 24);
  609. umy = (chroma_my + (3 << 24)) / 3 - (1 << 24);
  610. uvmx = chroma_coeffs[(chroma_mx + (3 << 24)) % 3];
  611. uvmy = chroma_coeffs[(chroma_my + (3 << 24)) % 3];
  612. }else{
  613. int cx, cy;
  614. mx = s->current_picture_ptr->motion_val[dir][mv_pos][0] >> 2;
  615. my = s->current_picture_ptr->motion_val[dir][mv_pos][1] >> 2;
  616. lx = s->current_picture_ptr->motion_val[dir][mv_pos][0] & 3;
  617. ly = s->current_picture_ptr->motion_val[dir][mv_pos][1] & 3;
  618. cx = s->current_picture_ptr->motion_val[dir][mv_pos][0] / 2;
  619. cy = s->current_picture_ptr->motion_val[dir][mv_pos][1] / 2;
  620. umx = cx >> 2;
  621. umy = cy >> 2;
  622. uvmx = (cx & 3) << 1;
  623. uvmy = (cy & 3) << 1;
  624. //due to some flaw RV40 uses the same MC compensation routine for H2V2 and H3V3
  625. if(uvmx == 6 && uvmy == 6)
  626. uvmx = uvmy = 4;
  627. }
  628. if (HAVE_THREADS && (s->avctx->active_thread_type & FF_THREAD_FRAME)) {
  629. /* wait for the referenced mb row to be finished */
  630. int mb_row = s->mb_y + ((yoff + my + 5 + 8 * height) >> 4);
  631. ThreadFrame *f = dir ? &s->next_picture_ptr->tf : &s->last_picture_ptr->tf;
  632. ff_thread_await_progress(f, mb_row, 0);
  633. }
  634. dxy = ly*4 + lx;
  635. srcY = dir ? s->next_picture_ptr->f->data[0] : s->last_picture_ptr->f->data[0];
  636. srcU = dir ? s->next_picture_ptr->f->data[1] : s->last_picture_ptr->f->data[1];
  637. srcV = dir ? s->next_picture_ptr->f->data[2] : s->last_picture_ptr->f->data[2];
  638. src_x = s->mb_x * 16 + xoff + mx;
  639. src_y = s->mb_y * 16 + yoff + my;
  640. uvsrc_x = s->mb_x * 8 + (xoff >> 1) + umx;
  641. uvsrc_y = s->mb_y * 8 + (yoff >> 1) + umy;
  642. srcY += src_y * s->linesize + src_x;
  643. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  644. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  645. if(s->h_edge_pos - (width << 3) < 6 || s->v_edge_pos - (height << 3) < 6 ||
  646. (unsigned)(src_x - !!lx*2) > s->h_edge_pos - !!lx*2 - (width <<3) - 4 ||
  647. (unsigned)(src_y - !!ly*2) > s->v_edge_pos - !!ly*2 - (height<<3) - 4) {
  648. srcY -= 2 + 2*s->linesize;
  649. s->vdsp.emulated_edge_mc(s->sc.edge_emu_buffer, srcY,
  650. s->linesize, s->linesize,
  651. (width << 3) + 6, (height << 3) + 6,
  652. src_x - 2, src_y - 2,
  653. s->h_edge_pos, s->v_edge_pos);
  654. srcY = s->sc.edge_emu_buffer + 2 + 2*s->linesize;
  655. emu = 1;
  656. }
  657. if(!weighted){
  658. Y = s->dest[0] + xoff + yoff *s->linesize;
  659. U = s->dest[1] + (xoff>>1) + (yoff>>1)*s->uvlinesize;
  660. V = s->dest[2] + (xoff>>1) + (yoff>>1)*s->uvlinesize;
  661. }else{
  662. Y = r->tmp_b_block_y [dir] + xoff + yoff *s->linesize;
  663. U = r->tmp_b_block_uv[dir*2] + (xoff>>1) + (yoff>>1)*s->uvlinesize;
  664. V = r->tmp_b_block_uv[dir*2+1] + (xoff>>1) + (yoff>>1)*s->uvlinesize;
  665. }
  666. if(block_type == RV34_MB_P_16x8){
  667. qpel_mc[1][dxy](Y, srcY, s->linesize);
  668. Y += 8;
  669. srcY += 8;
  670. }else if(block_type == RV34_MB_P_8x16){
  671. qpel_mc[1][dxy](Y, srcY, s->linesize);
  672. Y += 8 * s->linesize;
  673. srcY += 8 * s->linesize;
  674. }
  675. is16x16 = (block_type != RV34_MB_P_8x8) && (block_type != RV34_MB_P_16x8) && (block_type != RV34_MB_P_8x16);
  676. qpel_mc[!is16x16][dxy](Y, srcY, s->linesize);
  677. if (emu) {
  678. uint8_t *uvbuf = s->sc.edge_emu_buffer;
  679. s->vdsp.emulated_edge_mc(uvbuf, srcU,
  680. s->uvlinesize, s->uvlinesize,
  681. (width << 2) + 1, (height << 2) + 1,
  682. uvsrc_x, uvsrc_y,
  683. s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  684. srcU = uvbuf;
  685. uvbuf += 9*s->uvlinesize;
  686. s->vdsp.emulated_edge_mc(uvbuf, srcV,
  687. s->uvlinesize, s->uvlinesize,
  688. (width << 2) + 1, (height << 2) + 1,
  689. uvsrc_x, uvsrc_y,
  690. s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  691. srcV = uvbuf;
  692. }
  693. chroma_mc[2-width] (U, srcU, s->uvlinesize, height*4, uvmx, uvmy);
  694. chroma_mc[2-width] (V, srcV, s->uvlinesize, height*4, uvmx, uvmy);
  695. }
  696. static void rv34_mc_1mv(RV34DecContext *r, const int block_type,
  697. const int xoff, const int yoff, int mv_off,
  698. const int width, const int height, int dir)
  699. {
  700. rv34_mc(r, block_type, xoff, yoff, mv_off, width, height, dir, r->rv30, 0,
  701. r->rdsp.put_pixels_tab,
  702. r->rdsp.put_chroma_pixels_tab);
  703. }
  704. static void rv4_weight(RV34DecContext *r)
  705. {
  706. r->rdsp.rv40_weight_pixels_tab[r->scaled_weight][0](r->s.dest[0],
  707. r->tmp_b_block_y[0],
  708. r->tmp_b_block_y[1],
  709. r->weight1,
  710. r->weight2,
  711. r->s.linesize);
  712. r->rdsp.rv40_weight_pixels_tab[r->scaled_weight][1](r->s.dest[1],
  713. r->tmp_b_block_uv[0],
  714. r->tmp_b_block_uv[2],
  715. r->weight1,
  716. r->weight2,
  717. r->s.uvlinesize);
  718. r->rdsp.rv40_weight_pixels_tab[r->scaled_weight][1](r->s.dest[2],
  719. r->tmp_b_block_uv[1],
  720. r->tmp_b_block_uv[3],
  721. r->weight1,
  722. r->weight2,
  723. r->s.uvlinesize);
  724. }
  725. static void rv34_mc_2mv(RV34DecContext *r, const int block_type)
  726. {
  727. int weighted = !r->rv30 && block_type != RV34_MB_B_BIDIR && r->weight1 != 8192;
  728. rv34_mc(r, block_type, 0, 0, 0, 2, 2, 0, r->rv30, weighted,
  729. r->rdsp.put_pixels_tab,
  730. r->rdsp.put_chroma_pixels_tab);
  731. if(!weighted){
  732. rv34_mc(r, block_type, 0, 0, 0, 2, 2, 1, r->rv30, 0,
  733. r->rdsp.avg_pixels_tab,
  734. r->rdsp.avg_chroma_pixels_tab);
  735. }else{
  736. rv34_mc(r, block_type, 0, 0, 0, 2, 2, 1, r->rv30, 1,
  737. r->rdsp.put_pixels_tab,
  738. r->rdsp.put_chroma_pixels_tab);
  739. rv4_weight(r);
  740. }
  741. }
  742. static void rv34_mc_2mv_skip(RV34DecContext *r)
  743. {
  744. int i, j;
  745. int weighted = !r->rv30 && r->weight1 != 8192;
  746. for(j = 0; j < 2; j++)
  747. for(i = 0; i < 2; i++){
  748. rv34_mc(r, RV34_MB_P_8x8, i*8, j*8, i+j*r->s.b8_stride, 1, 1, 0, r->rv30,
  749. weighted,
  750. r->rdsp.put_pixels_tab,
  751. r->rdsp.put_chroma_pixels_tab);
  752. rv34_mc(r, RV34_MB_P_8x8, i*8, j*8, i+j*r->s.b8_stride, 1, 1, 1, r->rv30,
  753. weighted,
  754. weighted ? r->rdsp.put_pixels_tab : r->rdsp.avg_pixels_tab,
  755. weighted ? r->rdsp.put_chroma_pixels_tab : r->rdsp.avg_chroma_pixels_tab);
  756. }
  757. if(weighted)
  758. rv4_weight(r);
  759. }
  760. /** number of motion vectors in each macroblock type */
  761. static const int num_mvs[RV34_MB_TYPES] = { 0, 0, 1, 4, 1, 1, 0, 0, 2, 2, 2, 1 };
  762. /**
  763. * Decode motion vector differences
  764. * and perform motion vector reconstruction and motion compensation.
  765. */
  766. static int rv34_decode_mv(RV34DecContext *r, int block_type)
  767. {
  768. MpegEncContext *s = &r->s;
  769. GetBitContext *gb = &s->gb;
  770. int i, j, k, l;
  771. int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
  772. int next_bt;
  773. memset(r->dmv, 0, sizeof(r->dmv));
  774. for(i = 0; i < num_mvs[block_type]; i++){
  775. r->dmv[i][0] = get_interleaved_se_golomb(gb);
  776. r->dmv[i][1] = get_interleaved_se_golomb(gb);
  777. if (r->dmv[i][0] == INVALID_VLC ||
  778. r->dmv[i][1] == INVALID_VLC) {
  779. r->dmv[i][0] = r->dmv[i][1] = 0;
  780. return AVERROR_INVALIDDATA;
  781. }
  782. }
  783. switch(block_type){
  784. case RV34_MB_TYPE_INTRA:
  785. case RV34_MB_TYPE_INTRA16x16:
  786. ZERO8x2(s->current_picture_ptr->motion_val[0][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], s->b8_stride);
  787. return 0;
  788. case RV34_MB_SKIP:
  789. if(s->pict_type == AV_PICTURE_TYPE_P){
  790. ZERO8x2(s->current_picture_ptr->motion_val[0][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], s->b8_stride);
  791. rv34_mc_1mv (r, block_type, 0, 0, 0, 2, 2, 0);
  792. break;
  793. }
  794. case RV34_MB_B_DIRECT:
  795. //surprisingly, it uses motion scheme from next reference frame
  796. /* wait for the current mb row to be finished */
  797. if (HAVE_THREADS && (s->avctx->active_thread_type & FF_THREAD_FRAME))
  798. ff_thread_await_progress(&s->next_picture_ptr->tf, FFMAX(0, s->mb_y-1), 0);
  799. next_bt = s->next_picture_ptr->mb_type[s->mb_x + s->mb_y * s->mb_stride];
  800. if(IS_INTRA(next_bt) || IS_SKIP(next_bt)){
  801. ZERO8x2(s->current_picture_ptr->motion_val[0][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], s->b8_stride);
  802. ZERO8x2(s->current_picture_ptr->motion_val[1][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], s->b8_stride);
  803. }else
  804. for(j = 0; j < 2; j++)
  805. for(i = 0; i < 2; i++)
  806. for(k = 0; k < 2; k++)
  807. for(l = 0; l < 2; l++)
  808. s->current_picture_ptr->motion_val[l][mv_pos + i + j*s->b8_stride][k] = calc_add_mv(r, l, s->next_picture_ptr->motion_val[0][mv_pos + i + j*s->b8_stride][k]);
  809. if(!(IS_16X8(next_bt) || IS_8X16(next_bt) || IS_8X8(next_bt))) //we can use whole macroblock MC
  810. rv34_mc_2mv(r, block_type);
  811. else
  812. rv34_mc_2mv_skip(r);
  813. ZERO8x2(s->current_picture_ptr->motion_val[0][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], s->b8_stride);
  814. break;
  815. case RV34_MB_P_16x16:
  816. case RV34_MB_P_MIX16x16:
  817. rv34_pred_mv(r, block_type, 0, 0);
  818. rv34_mc_1mv (r, block_type, 0, 0, 0, 2, 2, 0);
  819. break;
  820. case RV34_MB_B_FORWARD:
  821. case RV34_MB_B_BACKWARD:
  822. r->dmv[1][0] = r->dmv[0][0];
  823. r->dmv[1][1] = r->dmv[0][1];
  824. if(r->rv30)
  825. rv34_pred_mv_rv3(r, block_type, block_type == RV34_MB_B_BACKWARD);
  826. else
  827. rv34_pred_mv_b (r, block_type, block_type == RV34_MB_B_BACKWARD);
  828. rv34_mc_1mv (r, block_type, 0, 0, 0, 2, 2, block_type == RV34_MB_B_BACKWARD);
  829. break;
  830. case RV34_MB_P_16x8:
  831. case RV34_MB_P_8x16:
  832. rv34_pred_mv(r, block_type, 0, 0);
  833. rv34_pred_mv(r, block_type, 1 + (block_type == RV34_MB_P_16x8), 1);
  834. if(block_type == RV34_MB_P_16x8){
  835. rv34_mc_1mv(r, block_type, 0, 0, 0, 2, 1, 0);
  836. rv34_mc_1mv(r, block_type, 0, 8, s->b8_stride, 2, 1, 0);
  837. }
  838. if(block_type == RV34_MB_P_8x16){
  839. rv34_mc_1mv(r, block_type, 0, 0, 0, 1, 2, 0);
  840. rv34_mc_1mv(r, block_type, 8, 0, 1, 1, 2, 0);
  841. }
  842. break;
  843. case RV34_MB_B_BIDIR:
  844. rv34_pred_mv_b (r, block_type, 0);
  845. rv34_pred_mv_b (r, block_type, 1);
  846. rv34_mc_2mv (r, block_type);
  847. break;
  848. case RV34_MB_P_8x8:
  849. for(i=0;i< 4;i++){
  850. rv34_pred_mv(r, block_type, i, i);
  851. rv34_mc_1mv (r, block_type, (i&1)<<3, (i&2)<<2, (i&1)+(i>>1)*s->b8_stride, 1, 1, 0);
  852. }
  853. break;
  854. }
  855. return 0;
  856. }
  857. /** @} */ // mv group
  858. /**
  859. * @name Macroblock reconstruction functions
  860. * @{
  861. */
  862. /** mapping of RV30/40 intra prediction types to standard H.264 types */
  863. static const int ittrans[9] = {
  864. DC_PRED, VERT_PRED, HOR_PRED, DIAG_DOWN_RIGHT_PRED, DIAG_DOWN_LEFT_PRED,
  865. VERT_RIGHT_PRED, VERT_LEFT_PRED, HOR_UP_PRED, HOR_DOWN_PRED,
  866. };
  867. /** mapping of RV30/40 intra 16x16 prediction types to standard H.264 types */
  868. static const int ittrans16[4] = {
  869. DC_PRED8x8, VERT_PRED8x8, HOR_PRED8x8, PLANE_PRED8x8,
  870. };
  871. /**
  872. * Perform 4x4 intra prediction.
  873. */
  874. static void rv34_pred_4x4_block(RV34DecContext *r, uint8_t *dst, int stride, int itype, int up, int left, int down, int right)
  875. {
  876. uint8_t *prev = dst - stride + 4;
  877. uint32_t topleft;
  878. if(!up && !left)
  879. itype = DC_128_PRED;
  880. else if(!up){
  881. if(itype == VERT_PRED) itype = HOR_PRED;
  882. if(itype == DC_PRED) itype = LEFT_DC_PRED;
  883. }else if(!left){
  884. if(itype == HOR_PRED) itype = VERT_PRED;
  885. if(itype == DC_PRED) itype = TOP_DC_PRED;
  886. if(itype == DIAG_DOWN_LEFT_PRED) itype = DIAG_DOWN_LEFT_PRED_RV40_NODOWN;
  887. }
  888. if(!down){
  889. if(itype == DIAG_DOWN_LEFT_PRED) itype = DIAG_DOWN_LEFT_PRED_RV40_NODOWN;
  890. if(itype == HOR_UP_PRED) itype = HOR_UP_PRED_RV40_NODOWN;
  891. if(itype == VERT_LEFT_PRED) itype = VERT_LEFT_PRED_RV40_NODOWN;
  892. }
  893. if(!right && up){
  894. topleft = dst[-stride + 3] * 0x01010101u;
  895. prev = (uint8_t*)&topleft;
  896. }
  897. r->h.pred4x4[itype](dst, prev, stride);
  898. }
  899. static inline int adjust_pred16(int itype, int up, int left)
  900. {
  901. if(!up && !left)
  902. itype = DC_128_PRED8x8;
  903. else if(!up){
  904. if(itype == PLANE_PRED8x8)itype = HOR_PRED8x8;
  905. if(itype == VERT_PRED8x8) itype = HOR_PRED8x8;
  906. if(itype == DC_PRED8x8) itype = LEFT_DC_PRED8x8;
  907. }else if(!left){
  908. if(itype == PLANE_PRED8x8)itype = VERT_PRED8x8;
  909. if(itype == HOR_PRED8x8) itype = VERT_PRED8x8;
  910. if(itype == DC_PRED8x8) itype = TOP_DC_PRED8x8;
  911. }
  912. return itype;
  913. }
  914. static inline void rv34_process_block(RV34DecContext *r,
  915. uint8_t *pdst, int stride,
  916. int fc, int sc, int q_dc, int q_ac)
  917. {
  918. MpegEncContext *s = &r->s;
  919. int16_t *ptr = s->block[0];
  920. int has_ac = rv34_decode_block(ptr, &s->gb, r->cur_vlcs,
  921. fc, sc, q_dc, q_ac, q_ac);
  922. if(has_ac){
  923. r->rdsp.rv34_idct_add(pdst, stride, ptr);
  924. }else{
  925. r->rdsp.rv34_idct_dc_add(pdst, stride, ptr[0]);
  926. ptr[0] = 0;
  927. }
  928. }
  929. static void rv34_output_i16x16(RV34DecContext *r, int8_t *intra_types, int cbp)
  930. {
  931. LOCAL_ALIGNED_16(int16_t, block16, [16]);
  932. MpegEncContext *s = &r->s;
  933. GetBitContext *gb = &s->gb;
  934. int q_dc = rv34_qscale_tab[ r->luma_dc_quant_i[s->qscale] ],
  935. q_ac = rv34_qscale_tab[s->qscale];
  936. uint8_t *dst = s->dest[0];
  937. int16_t *ptr = s->block[0];
  938. int i, j, itype, has_ac;
  939. memset(block16, 0, 16 * sizeof(*block16));
  940. has_ac = rv34_decode_block(block16, gb, r->cur_vlcs, 3, 0, q_dc, q_dc, q_ac);
  941. if(has_ac)
  942. r->rdsp.rv34_inv_transform(block16);
  943. else
  944. r->rdsp.rv34_inv_transform_dc(block16);
  945. itype = ittrans16[intra_types[0]];
  946. itype = adjust_pred16(itype, r->avail_cache[6-4], r->avail_cache[6-1]);
  947. r->h.pred16x16[itype](dst, s->linesize);
  948. for(j = 0; j < 4; j++){
  949. for(i = 0; i < 4; i++, cbp >>= 1){
  950. int dc = block16[i + j*4];
  951. if(cbp & 1){
  952. has_ac = rv34_decode_block(ptr, gb, r->cur_vlcs, r->luma_vlc, 0, q_ac, q_ac, q_ac);
  953. }else
  954. has_ac = 0;
  955. if(has_ac){
  956. ptr[0] = dc;
  957. r->rdsp.rv34_idct_add(dst+4*i, s->linesize, ptr);
  958. }else
  959. r->rdsp.rv34_idct_dc_add(dst+4*i, s->linesize, dc);
  960. }
  961. dst += 4*s->linesize;
  962. }
  963. itype = ittrans16[intra_types[0]];
  964. if(itype == PLANE_PRED8x8) itype = DC_PRED8x8;
  965. itype = adjust_pred16(itype, r->avail_cache[6-4], r->avail_cache[6-1]);
  966. q_dc = rv34_qscale_tab[rv34_chroma_quant[1][s->qscale]];
  967. q_ac = rv34_qscale_tab[rv34_chroma_quant[0][s->qscale]];
  968. for(j = 1; j < 3; j++){
  969. dst = s->dest[j];
  970. r->h.pred8x8[itype](dst, s->uvlinesize);
  971. for(i = 0; i < 4; i++, cbp >>= 1){
  972. uint8_t *pdst;
  973. if(!(cbp & 1)) continue;
  974. pdst = dst + (i&1)*4 + (i&2)*2*s->uvlinesize;
  975. rv34_process_block(r, pdst, s->uvlinesize,
  976. r->chroma_vlc, 1, q_dc, q_ac);
  977. }
  978. }
  979. }
  980. static void rv34_output_intra(RV34DecContext *r, int8_t *intra_types, int cbp)
  981. {
  982. MpegEncContext *s = &r->s;
  983. uint8_t *dst = s->dest[0];
  984. int avail[6*8] = {0};
  985. int i, j, k;
  986. int idx, q_ac, q_dc;
  987. // Set neighbour information.
  988. if(r->avail_cache[1])
  989. avail[0] = 1;
  990. if(r->avail_cache[2])
  991. avail[1] = avail[2] = 1;
  992. if(r->avail_cache[3])
  993. avail[3] = avail[4] = 1;
  994. if(r->avail_cache[4])
  995. avail[5] = 1;
  996. if(r->avail_cache[5])
  997. avail[8] = avail[16] = 1;
  998. if(r->avail_cache[9])
  999. avail[24] = avail[32] = 1;
  1000. q_ac = rv34_qscale_tab[s->qscale];
  1001. for(j = 0; j < 4; j++){
  1002. idx = 9 + j*8;
  1003. for(i = 0; i < 4; i++, cbp >>= 1, dst += 4, idx++){
  1004. rv34_pred_4x4_block(r, dst, s->linesize, ittrans[intra_types[i]], avail[idx-8], avail[idx-1], avail[idx+7], avail[idx-7]);
  1005. avail[idx] = 1;
  1006. if(!(cbp & 1)) continue;
  1007. rv34_process_block(r, dst, s->linesize,
  1008. r->luma_vlc, 0, q_ac, q_ac);
  1009. }
  1010. dst += s->linesize * 4 - 4*4;
  1011. intra_types += r->intra_types_stride;
  1012. }
  1013. intra_types -= r->intra_types_stride * 4;
  1014. q_dc = rv34_qscale_tab[rv34_chroma_quant[1][s->qscale]];
  1015. q_ac = rv34_qscale_tab[rv34_chroma_quant[0][s->qscale]];
  1016. for(k = 0; k < 2; k++){
  1017. dst = s->dest[1+k];
  1018. fill_rectangle(r->avail_cache + 6, 2, 2, 4, 0, 4);
  1019. for(j = 0; j < 2; j++){
  1020. int* acache = r->avail_cache + 6 + j*4;
  1021. for(i = 0; i < 2; i++, cbp >>= 1, acache++){
  1022. int itype = ittrans[intra_types[i*2+j*2*r->intra_types_stride]];
  1023. rv34_pred_4x4_block(r, dst+4*i, s->uvlinesize, itype, acache[-4], acache[-1], !i && !j, acache[-3]);
  1024. acache[0] = 1;
  1025. if(!(cbp&1)) continue;
  1026. rv34_process_block(r, dst + 4*i, s->uvlinesize,
  1027. r->chroma_vlc, 1, q_dc, q_ac);
  1028. }
  1029. dst += 4*s->uvlinesize;
  1030. }
  1031. }
  1032. }
  1033. static int is_mv_diff_gt_3(int16_t (*motion_val)[2], int step)
  1034. {
  1035. int d;
  1036. d = motion_val[0][0] - motion_val[-step][0];
  1037. if(d < -3 || d > 3)
  1038. return 1;
  1039. d = motion_val[0][1] - motion_val[-step][1];
  1040. if(d < -3 || d > 3)
  1041. return 1;
  1042. return 0;
  1043. }
  1044. static int rv34_set_deblock_coef(RV34DecContext *r)
  1045. {
  1046. MpegEncContext *s = &r->s;
  1047. int hmvmask = 0, vmvmask = 0, i, j;
  1048. int midx = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
  1049. int16_t (*motion_val)[2] = &s->current_picture_ptr->motion_val[0][midx];
  1050. for(j = 0; j < 16; j += 8){
  1051. for(i = 0; i < 2; i++){
  1052. if(is_mv_diff_gt_3(motion_val + i, 1))
  1053. vmvmask |= 0x11 << (j + i*2);
  1054. if((j || s->mb_y) && is_mv_diff_gt_3(motion_val + i, s->b8_stride))
  1055. hmvmask |= 0x03 << (j + i*2);
  1056. }
  1057. motion_val += s->b8_stride;
  1058. }
  1059. if(s->first_slice_line)
  1060. hmvmask &= ~0x000F;
  1061. if(!s->mb_x)
  1062. vmvmask &= ~0x1111;
  1063. if(r->rv30){ //RV30 marks both subblocks on the edge for filtering
  1064. vmvmask |= (vmvmask & 0x4444) >> 1;
  1065. hmvmask |= (hmvmask & 0x0F00) >> 4;
  1066. if(s->mb_x)
  1067. r->deblock_coefs[s->mb_x - 1 + s->mb_y*s->mb_stride] |= (vmvmask & 0x1111) << 3;
  1068. if(!s->first_slice_line)
  1069. r->deblock_coefs[s->mb_x + (s->mb_y - 1)*s->mb_stride] |= (hmvmask & 0xF) << 12;
  1070. }
  1071. return hmvmask | vmvmask;
  1072. }
  1073. static int rv34_decode_inter_macroblock(RV34DecContext *r, int8_t *intra_types)
  1074. {
  1075. MpegEncContext *s = &r->s;
  1076. GetBitContext *gb = &s->gb;
  1077. uint8_t *dst = s->dest[0];
  1078. int16_t *ptr = s->block[0];
  1079. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1080. int cbp, cbp2;
  1081. int q_dc, q_ac, has_ac;
  1082. int i, j;
  1083. int dist;
  1084. // Calculate which neighbours are available. Maybe it's worth optimizing too.
  1085. memset(r->avail_cache, 0, sizeof(r->avail_cache));
  1086. fill_rectangle(r->avail_cache + 6, 2, 2, 4, 1, 4);
  1087. dist = (s->mb_x - s->resync_mb_x) + (s->mb_y - s->resync_mb_y) * s->mb_width;
  1088. if(s->mb_x && dist)
  1089. r->avail_cache[5] =
  1090. r->avail_cache[9] = s->current_picture_ptr->mb_type[mb_pos - 1];
  1091. if(dist >= s->mb_width)
  1092. r->avail_cache[2] =
  1093. r->avail_cache[3] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride];
  1094. if(((s->mb_x+1) < s->mb_width) && dist >= s->mb_width - 1)
  1095. r->avail_cache[4] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride + 1];
  1096. if(s->mb_x && dist > s->mb_width)
  1097. r->avail_cache[1] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride - 1];
  1098. s->qscale = r->si.quant;
  1099. cbp = cbp2 = rv34_decode_inter_mb_header(r, intra_types);
  1100. r->cbp_luma [mb_pos] = cbp;
  1101. r->cbp_chroma[mb_pos] = cbp >> 16;
  1102. r->deblock_coefs[mb_pos] = rv34_set_deblock_coef(r) | r->cbp_luma[mb_pos];
  1103. s->current_picture_ptr->qscale_table[mb_pos] = s->qscale;
  1104. if(cbp == -1)
  1105. return -1;
  1106. if (IS_INTRA(s->current_picture_ptr->mb_type[mb_pos])){
  1107. if(r->is16) rv34_output_i16x16(r, intra_types, cbp);
  1108. else rv34_output_intra(r, intra_types, cbp);
  1109. return 0;
  1110. }
  1111. if(r->is16){
  1112. // Only for RV34_MB_P_MIX16x16
  1113. LOCAL_ALIGNED_16(int16_t, block16, [16]);
  1114. memset(block16, 0, 16 * sizeof(*block16));
  1115. q_dc = rv34_qscale_tab[ r->luma_dc_quant_p[s->qscale] ];
  1116. q_ac = rv34_qscale_tab[s->qscale];
  1117. if (rv34_decode_block(block16, gb, r->cur_vlcs, 3, 0, q_dc, q_dc, q_ac))
  1118. r->rdsp.rv34_inv_transform(block16);
  1119. else
  1120. r->rdsp.rv34_inv_transform_dc(block16);
  1121. q_ac = rv34_qscale_tab[s->qscale];
  1122. for(j = 0; j < 4; j++){
  1123. for(i = 0; i < 4; i++, cbp >>= 1){
  1124. int dc = block16[i + j*4];
  1125. if(cbp & 1){
  1126. has_ac = rv34_decode_block(ptr, gb, r->cur_vlcs, r->luma_vlc, 0, q_ac, q_ac, q_ac);
  1127. }else
  1128. has_ac = 0;
  1129. if(has_ac){
  1130. ptr[0] = dc;
  1131. r->rdsp.rv34_idct_add(dst+4*i, s->linesize, ptr);
  1132. }else
  1133. r->rdsp.rv34_idct_dc_add(dst+4*i, s->linesize, dc);
  1134. }
  1135. dst += 4*s->linesize;
  1136. }
  1137. r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 1);
  1138. }else{
  1139. q_ac = rv34_qscale_tab[s->qscale];
  1140. for(j = 0; j < 4; j++){
  1141. for(i = 0; i < 4; i++, cbp >>= 1){
  1142. if(!(cbp & 1)) continue;
  1143. rv34_process_block(r, dst + 4*i, s->linesize,
  1144. r->luma_vlc, 0, q_ac, q_ac);
  1145. }
  1146. dst += 4*s->linesize;
  1147. }
  1148. }
  1149. q_dc = rv34_qscale_tab[rv34_chroma_quant[1][s->qscale]];
  1150. q_ac = rv34_qscale_tab[rv34_chroma_quant[0][s->qscale]];
  1151. for(j = 1; j < 3; j++){
  1152. dst = s->dest[j];
  1153. for(i = 0; i < 4; i++, cbp >>= 1){
  1154. uint8_t *pdst;
  1155. if(!(cbp & 1)) continue;
  1156. pdst = dst + (i&1)*4 + (i&2)*2*s->uvlinesize;
  1157. rv34_process_block(r, pdst, s->uvlinesize,
  1158. r->chroma_vlc, 1, q_dc, q_ac);
  1159. }
  1160. }
  1161. return 0;
  1162. }
  1163. static int rv34_decode_intra_macroblock(RV34DecContext *r, int8_t *intra_types)
  1164. {
  1165. MpegEncContext *s = &r->s;
  1166. int cbp, dist;
  1167. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1168. // Calculate which neighbours are available. Maybe it's worth optimizing too.
  1169. memset(r->avail_cache, 0, sizeof(r->avail_cache));
  1170. fill_rectangle(r->avail_cache + 6, 2, 2, 4, 1, 4);
  1171. dist = (s->mb_x - s->resync_mb_x) + (s->mb_y - s->resync_mb_y) * s->mb_width;
  1172. if(s->mb_x && dist)
  1173. r->avail_cache[5] =
  1174. r->avail_cache[9] = s->current_picture_ptr->mb_type[mb_pos - 1];
  1175. if(dist >= s->mb_width)
  1176. r->avail_cache[2] =
  1177. r->avail_cache[3] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride];
  1178. if(((s->mb_x+1) < s->mb_width) && dist >= s->mb_width - 1)
  1179. r->avail_cache[4] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride + 1];
  1180. if(s->mb_x && dist > s->mb_width)
  1181. r->avail_cache[1] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride - 1];
  1182. s->qscale = r->si.quant;
  1183. cbp = rv34_decode_intra_mb_header(r, intra_types);
  1184. r->cbp_luma [mb_pos] = cbp;
  1185. r->cbp_chroma[mb_pos] = cbp >> 16;
  1186. r->deblock_coefs[mb_pos] = 0xFFFF;
  1187. s->current_picture_ptr->qscale_table[mb_pos] = s->qscale;
  1188. if(cbp == -1)
  1189. return -1;
  1190. if(r->is16){
  1191. rv34_output_i16x16(r, intra_types, cbp);
  1192. return 0;
  1193. }
  1194. rv34_output_intra(r, intra_types, cbp);
  1195. return 0;
  1196. }
  1197. static int check_slice_end(RV34DecContext *r, MpegEncContext *s)
  1198. {
  1199. int bits;
  1200. if(s->mb_y >= s->mb_height)
  1201. return 1;
  1202. if(!s->mb_num_left)
  1203. return 1;
  1204. if(r->s.mb_skip_run > 1)
  1205. return 0;
  1206. bits = get_bits_left(&s->gb);
  1207. if(bits <= 0 || (bits < 8 && !show_bits(&s->gb, bits)))
  1208. return 1;
  1209. return 0;
  1210. }
  1211. static void rv34_decoder_free(RV34DecContext *r)
  1212. {
  1213. av_freep(&r->intra_types_hist);
  1214. r->intra_types = NULL;
  1215. av_freep(&r->tmp_b_block_base);
  1216. av_freep(&r->mb_type);
  1217. av_freep(&r->cbp_luma);
  1218. av_freep(&r->cbp_chroma);
  1219. av_freep(&r->deblock_coefs);
  1220. }
  1221. static int rv34_decoder_alloc(RV34DecContext *r)
  1222. {
  1223. r->intra_types_stride = r->s.mb_width * 4 + 4;
  1224. r->cbp_chroma = av_mallocz(r->s.mb_stride * r->s.mb_height *
  1225. sizeof(*r->cbp_chroma));
  1226. r->cbp_luma = av_mallocz(r->s.mb_stride * r->s.mb_height *
  1227. sizeof(*r->cbp_luma));
  1228. r->deblock_coefs = av_mallocz(r->s.mb_stride * r->s.mb_height *
  1229. sizeof(*r->deblock_coefs));
  1230. r->intra_types_hist = av_malloc(r->intra_types_stride * 4 * 2 *
  1231. sizeof(*r->intra_types_hist));
  1232. r->mb_type = av_mallocz(r->s.mb_stride * r->s.mb_height *
  1233. sizeof(*r->mb_type));
  1234. if (!(r->cbp_chroma && r->cbp_luma && r->deblock_coefs &&
  1235. r->intra_types_hist && r->mb_type)) {
  1236. rv34_decoder_free(r);
  1237. return AVERROR(ENOMEM);
  1238. }
  1239. r->intra_types = r->intra_types_hist + r->intra_types_stride * 4;
  1240. return 0;
  1241. }
  1242. static int rv34_decoder_realloc(RV34DecContext *r)
  1243. {
  1244. rv34_decoder_free(r);
  1245. return rv34_decoder_alloc(r);
  1246. }
  1247. static int rv34_decode_slice(RV34DecContext *r, int end, const uint8_t* buf, int buf_size)
  1248. {
  1249. MpegEncContext *s = &r->s;
  1250. GetBitContext *gb = &s->gb;
  1251. int mb_pos, slice_type;
  1252. int res;
  1253. init_get_bits(&r->s.gb, buf, buf_size*8);
  1254. res = r->parse_slice_header(r, gb, &r->si);
  1255. if(res < 0){
  1256. av_log(s->avctx, AV_LOG_ERROR, "Incorrect or unknown slice header\n");
  1257. return -1;
  1258. }
  1259. slice_type = r->si.type ? r->si.type : AV_PICTURE_TYPE_I;
  1260. if (slice_type != s->pict_type) {
  1261. av_log(s->avctx, AV_LOG_ERROR, "Slice type mismatch\n");
  1262. return AVERROR_INVALIDDATA;
  1263. }
  1264. if (s->width != r->si.width || s->height != r->si.height) {
  1265. av_log(s->avctx, AV_LOG_ERROR, "Size mismatch\n");
  1266. return AVERROR_INVALIDDATA;
  1267. }
  1268. r->si.end = end;
  1269. s->qscale = r->si.quant;
  1270. s->mb_num_left = r->si.end - r->si.start;
  1271. r->s.mb_skip_run = 0;
  1272. mb_pos = s->mb_x + s->mb_y * s->mb_width;
  1273. if(r->si.start != mb_pos){
  1274. av_log(s->avctx, AV_LOG_ERROR, "Slice indicates MB offset %d, got %d\n", r->si.start, mb_pos);
  1275. s->mb_x = r->si.start % s->mb_width;
  1276. s->mb_y = r->si.start / s->mb_width;
  1277. }
  1278. memset(r->intra_types_hist, -1, r->intra_types_stride * 4 * 2 * sizeof(*r->intra_types_hist));
  1279. s->first_slice_line = 1;
  1280. s->resync_mb_x = s->mb_x;
  1281. s->resync_mb_y = s->mb_y;
  1282. ff_init_block_index(s);
  1283. while(!check_slice_end(r, s)) {
  1284. ff_update_block_index(s);
  1285. if(r->si.type)
  1286. res = rv34_decode_inter_macroblock(r, r->intra_types + s->mb_x * 4 + 4);
  1287. else
  1288. res = rv34_decode_intra_macroblock(r, r->intra_types + s->mb_x * 4 + 4);
  1289. if(res < 0){
  1290. ff_er_add_slice(&s->er, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, ER_MB_ERROR);
  1291. return -1;
  1292. }
  1293. if (++s->mb_x == s->mb_width) {
  1294. s->mb_x = 0;
  1295. s->mb_y++;
  1296. ff_init_block_index(s);
  1297. memmove(r->intra_types_hist, r->intra_types, r->intra_types_stride * 4 * sizeof(*r->intra_types_hist));
  1298. memset(r->intra_types, -1, r->intra_types_stride * 4 * sizeof(*r->intra_types_hist));
  1299. if(r->loop_filter && s->mb_y >= 2)
  1300. r->loop_filter(r, s->mb_y - 2);
  1301. if (HAVE_THREADS && (s->avctx->active_thread_type & FF_THREAD_FRAME))
  1302. ff_thread_report_progress(&s->current_picture_ptr->tf,
  1303. s->mb_y - 2, 0);
  1304. }
  1305. if(s->mb_x == s->resync_mb_x)
  1306. s->first_slice_line=0;
  1307. s->mb_num_left--;
  1308. }
  1309. ff_er_add_slice(&s->er, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, ER_MB_END);
  1310. return s->mb_y == s->mb_height;
  1311. }
  1312. /** @} */ // reconstruction group end
  1313. /**
  1314. * Initialize decoder.
  1315. */
  1316. av_cold int ff_rv34_decode_init(AVCodecContext *avctx)
  1317. {
  1318. static AVOnce init_static_once = AV_ONCE_INIT;
  1319. RV34DecContext *r = avctx->priv_data;
  1320. MpegEncContext *s = &r->s;
  1321. int ret;
  1322. ff_mpv_decode_init(s, avctx);
  1323. s->out_format = FMT_H263;
  1324. avctx->pix_fmt = AV_PIX_FMT_YUV420P;
  1325. avctx->has_b_frames = 1;
  1326. s->low_delay = 0;
  1327. ff_mpv_idct_init(s);
  1328. if ((ret = ff_mpv_common_init(s)) < 0)
  1329. return ret;
  1330. ff_h264_pred_init(&r->h, AV_CODEC_ID_RV40, 8, 1);
  1331. #if CONFIG_RV30_DECODER
  1332. if (avctx->codec_id == AV_CODEC_ID_RV30)
  1333. ff_rv30dsp_init(&r->rdsp);
  1334. #endif
  1335. #if CONFIG_RV40_DECODER
  1336. if (avctx->codec_id == AV_CODEC_ID_RV40)
  1337. ff_rv40dsp_init(&r->rdsp);
  1338. #endif
  1339. if ((ret = rv34_decoder_alloc(r)) < 0) {
  1340. ff_mpv_common_end(&r->s);
  1341. return ret;
  1342. }
  1343. ff_thread_once(&init_static_once, rv34_init_tables);
  1344. return 0;
  1345. }
  1346. int ff_rv34_decode_update_thread_context(AVCodecContext *dst, const AVCodecContext *src)
  1347. {
  1348. RV34DecContext *r = dst->priv_data, *r1 = src->priv_data;
  1349. MpegEncContext * const s = &r->s, * const s1 = &r1->s;
  1350. int err;
  1351. if (dst == src || !s1->context_initialized)
  1352. return 0;
  1353. if (s->height != s1->height || s->width != s1->width) {
  1354. s->height = s1->height;
  1355. s->width = s1->width;
  1356. if ((err = ff_mpv_common_frame_size_change(s)) < 0)
  1357. return err;
  1358. if ((err = rv34_decoder_realloc(r)) < 0)
  1359. return err;
  1360. }
  1361. r->cur_pts = r1->cur_pts;
  1362. r->last_pts = r1->last_pts;
  1363. r->next_pts = r1->next_pts;
  1364. memset(&r->si, 0, sizeof(r->si));
  1365. // Do no call ff_mpeg_update_thread_context on a partially initialized
  1366. // decoder context.
  1367. if (!s1->context_initialized)
  1368. return 0;
  1369. return ff_mpeg_update_thread_context(dst, src);
  1370. }
  1371. static int get_slice_offset(AVCodecContext *avctx, const uint8_t *buf, int n, int slice_count, int buf_size)
  1372. {
  1373. if (n < slice_count) {
  1374. if(avctx->slice_count) return avctx->slice_offset[n];
  1375. else return AV_RL32(buf + n*8 - 4) == 1 ? AV_RL32(buf + n*8) : AV_RB32(buf + n*8);
  1376. } else
  1377. return buf_size;
  1378. }
  1379. static int finish_frame(AVCodecContext *avctx, AVFrame *pict)
  1380. {
  1381. RV34DecContext *r = avctx->priv_data;
  1382. MpegEncContext *s = &r->s;
  1383. int got_picture = 0, ret;
  1384. ff_er_frame_end(&s->er);
  1385. ff_mpv_frame_end(s);
  1386. s->mb_num_left = 0;
  1387. if (HAVE_THREADS && (s->avctx->active_thread_type & FF_THREAD_FRAME))
  1388. ff_thread_report_progress(&s->current_picture_ptr->tf, INT_MAX, 0);
  1389. if (s->pict_type == AV_PICTURE_TYPE_B || s->low_delay) {
  1390. if ((ret = av_frame_ref(pict, s->current_picture_ptr->f)) < 0)
  1391. return ret;
  1392. ff_print_debug_info(s, s->current_picture_ptr, pict);
  1393. ff_mpv_export_qp_table(s, pict, s->current_picture_ptr, FF_QSCALE_TYPE_MPEG1);
  1394. got_picture = 1;
  1395. } else if (s->last_picture_ptr) {
  1396. if ((ret = av_frame_ref(pict, s->last_picture_ptr->f)) < 0)
  1397. return ret;
  1398. ff_print_debug_info(s, s->last_picture_ptr, pict);
  1399. ff_mpv_export_qp_table(s, pict, s->last_picture_ptr, FF_QSCALE_TYPE_MPEG1);
  1400. got_picture = 1;
  1401. }
  1402. return got_picture;
  1403. }
  1404. static AVRational update_sar(int old_w, int old_h, AVRational sar, int new_w, int new_h)
  1405. {
  1406. // attempt to keep aspect during typical resolution switches
  1407. if (!sar.num)
  1408. sar = (AVRational){1, 1};
  1409. sar = av_mul_q(sar, av_mul_q((AVRational){new_h, new_w}, (AVRational){old_w, old_h}));
  1410. return sar;
  1411. }
  1412. int ff_rv34_decode_frame(AVCodecContext *avctx,
  1413. void *data, int *got_picture_ptr,
  1414. AVPacket *avpkt)
  1415. {
  1416. const uint8_t *buf = avpkt->data;
  1417. int buf_size = avpkt->size;
  1418. RV34DecContext *r = avctx->priv_data;
  1419. MpegEncContext *s = &r->s;
  1420. AVFrame *pict = data;
  1421. SliceInfo si;
  1422. int i, ret;
  1423. int slice_count;
  1424. const uint8_t *slices_hdr = NULL;
  1425. int last = 0;
  1426. int faulty_b = 0;
  1427. int offset;
  1428. /* no supplementary picture */
  1429. if (buf_size == 0) {
  1430. /* special case for last picture */
  1431. if (s->low_delay==0 && s->next_picture_ptr) {
  1432. if ((ret = av_frame_ref(pict, s->next_picture_ptr->f)) < 0)
  1433. return ret;
  1434. s->next_picture_ptr = NULL;
  1435. *got_picture_ptr = 1;
  1436. }
  1437. return 0;
  1438. }
  1439. if(!avctx->slice_count){
  1440. slice_count = (*buf++) + 1;
  1441. slices_hdr = buf + 4;
  1442. buf += 8 * slice_count;
  1443. buf_size -= 1 + 8 * slice_count;
  1444. }else
  1445. slice_count = avctx->slice_count;
  1446. offset = get_slice_offset(avctx, slices_hdr, 0, slice_count, buf_size);
  1447. //parse first slice header to check whether this frame can be decoded
  1448. if(offset < 0 || offset > buf_size){
  1449. av_log(avctx, AV_LOG_ERROR, "Slice offset is invalid\n");
  1450. return AVERROR_INVALIDDATA;
  1451. }
  1452. init_get_bits(&s->gb, buf+offset, (buf_size-offset)*8);
  1453. if(r->parse_slice_header(r, &r->s.gb, &si) < 0 || si.start){
  1454. av_log(avctx, AV_LOG_ERROR, "First slice header is incorrect\n");
  1455. return AVERROR_INVALIDDATA;
  1456. }
  1457. if ((!s->last_picture_ptr || !s->last_picture_ptr->f->data[0]) &&
  1458. si.type == AV_PICTURE_TYPE_B) {
  1459. av_log(avctx, AV_LOG_ERROR, "Invalid decoder state: B-frame without "
  1460. "reference data.\n");
  1461. faulty_b = 1;
  1462. }
  1463. if( (avctx->skip_frame >= AVDISCARD_NONREF && si.type==AV_PICTURE_TYPE_B)
  1464. || (avctx->skip_frame >= AVDISCARD_NONKEY && si.type!=AV_PICTURE_TYPE_I)
  1465. || avctx->skip_frame >= AVDISCARD_ALL)
  1466. return avpkt->size;
  1467. /* first slice */
  1468. if (si.start == 0) {
  1469. if (s->mb_num_left > 0 && s->current_picture_ptr) {
  1470. av_log(avctx, AV_LOG_ERROR, "New frame but still %d MB left.\n",
  1471. s->mb_num_left);
  1472. ff_er_frame_end(&s->er);
  1473. ff_mpv_frame_end(s);
  1474. }
  1475. if (s->width != si.width || s->height != si.height) {
  1476. int err;
  1477. av_log(s->avctx, AV_LOG_WARNING, "Changing dimensions to %dx%d\n",
  1478. si.width, si.height);
  1479. if (av_image_check_size(si.width, si.height, 0, s->avctx))
  1480. return AVERROR_INVALIDDATA;
  1481. s->avctx->sample_aspect_ratio = update_sar(
  1482. s->width, s->height, s->avctx->sample_aspect_ratio,
  1483. si.width, si.height);
  1484. s->width = si.width;
  1485. s->height = si.height;
  1486. err = ff_set_dimensions(s->avctx, s->width, s->height);
  1487. if (err < 0)
  1488. return err;
  1489. if ((err = ff_mpv_common_frame_size_change(s)) < 0)
  1490. return err;
  1491. if ((err = rv34_decoder_realloc(r)) < 0)
  1492. return err;
  1493. }
  1494. if (faulty_b)
  1495. return AVERROR_INVALIDDATA;
  1496. s->pict_type = si.type ? si.type : AV_PICTURE_TYPE_I;
  1497. if (ff_mpv_frame_start(s, s->avctx) < 0)
  1498. return -1;
  1499. ff_mpeg_er_frame_start(s);
  1500. if (!r->tmp_b_block_base) {
  1501. int i;
  1502. r->tmp_b_block_base = av_malloc(s->linesize * 48);
  1503. for (i = 0; i < 2; i++)
  1504. r->tmp_b_block_y[i] = r->tmp_b_block_base
  1505. + i * 16 * s->linesize;
  1506. for (i = 0; i < 4; i++)
  1507. r->tmp_b_block_uv[i] = r->tmp_b_block_base + 32 * s->linesize
  1508. + (i >> 1) * 8 * s->uvlinesize
  1509. + (i & 1) * 16;
  1510. }
  1511. r->cur_pts = si.pts;
  1512. if (s->pict_type != AV_PICTURE_TYPE_B) {
  1513. r->last_pts = r->next_pts;
  1514. r->next_pts = r->cur_pts;
  1515. } else {
  1516. int refdist = GET_PTS_DIFF(r->next_pts, r->last_pts);
  1517. int dist0 = GET_PTS_DIFF(r->cur_pts, r->last_pts);
  1518. int dist1 = GET_PTS_DIFF(r->next_pts, r->cur_pts);
  1519. if(!refdist){
  1520. r->mv_weight1 = r->mv_weight2 = r->weight1 = r->weight2 = 8192;
  1521. r->scaled_weight = 0;
  1522. }else{
  1523. if (FFMAX(dist0, dist1) > refdist)
  1524. av_log(avctx, AV_LOG_TRACE, "distance overflow\n");
  1525. r->mv_weight1 = (dist0 << 14) / refdist;
  1526. r->mv_weight2 = (dist1 << 14) / refdist;
  1527. if((r->mv_weight1|r->mv_weight2) & 511){
  1528. r->weight1 = r->mv_weight1;
  1529. r->weight2 = r->mv_weight2;
  1530. r->scaled_weight = 0;
  1531. }else{
  1532. r->weight1 = r->mv_weight1 >> 9;
  1533. r->weight2 = r->mv_weight2 >> 9;
  1534. r->scaled_weight = 1;
  1535. }
  1536. }
  1537. }
  1538. s->mb_x = s->mb_y = 0;
  1539. ff_thread_finish_setup(s->avctx);
  1540. } else if (HAVE_THREADS &&
  1541. (s->avctx->active_thread_type & FF_THREAD_FRAME)) {
  1542. av_log(s->avctx, AV_LOG_ERROR, "Decoder needs full frames in frame "
  1543. "multithreading mode (start MB is %d).\n", si.start);
  1544. return AVERROR_INVALIDDATA;
  1545. }
  1546. for(i = 0; i < slice_count; i++){
  1547. int offset = get_slice_offset(avctx, slices_hdr, i , slice_count, buf_size);
  1548. int offset1 = get_slice_offset(avctx, slices_hdr, i+1, slice_count, buf_size);
  1549. int size;
  1550. if(offset < 0 || offset > offset1 || offset1 > buf_size){
  1551. av_log(avctx, AV_LOG_ERROR, "Slice offset is invalid\n");
  1552. break;
  1553. }
  1554. size = offset1 - offset;
  1555. r->si.end = s->mb_width * s->mb_height;
  1556. s->mb_num_left = r->s.mb_x + r->s.mb_y*r->s.mb_width - r->si.start;
  1557. if(i+1 < slice_count){
  1558. int offset2 = get_slice_offset(avctx, slices_hdr, i+2, slice_count, buf_size);
  1559. if (offset2 < offset1 || offset2 > buf_size) {
  1560. av_log(avctx, AV_LOG_ERROR, "Slice offset is invalid\n");
  1561. break;
  1562. }
  1563. init_get_bits(&s->gb, buf+offset1, (buf_size-offset1)*8);
  1564. if(r->parse_slice_header(r, &r->s.gb, &si) < 0){
  1565. size = offset2 - offset;
  1566. }else
  1567. r->si.end = si.start;
  1568. }
  1569. av_assert0 (size >= 0 && size <= buf_size - offset);
  1570. last = rv34_decode_slice(r, r->si.end, buf + offset, size);
  1571. if(last)
  1572. break;
  1573. }
  1574. if (s->current_picture_ptr) {
  1575. if (last) {
  1576. if(r->loop_filter)
  1577. r->loop_filter(r, s->mb_height - 1);
  1578. ret = finish_frame(avctx, pict);
  1579. if (ret < 0)
  1580. return ret;
  1581. *got_picture_ptr = ret;
  1582. } else if (HAVE_THREADS &&
  1583. (s->avctx->active_thread_type & FF_THREAD_FRAME)) {
  1584. av_log(avctx, AV_LOG_INFO, "marking unfished frame as finished\n");
  1585. /* always mark the current frame as finished, frame-mt supports
  1586. * only complete frames */
  1587. ff_er_frame_end(&s->er);
  1588. ff_mpv_frame_end(s);
  1589. s->mb_num_left = 0;
  1590. ff_thread_report_progress(&s->current_picture_ptr->tf, INT_MAX, 0);
  1591. return AVERROR_INVALIDDATA;
  1592. }
  1593. }
  1594. return avpkt->size;
  1595. }
  1596. av_cold int ff_rv34_decode_end(AVCodecContext *avctx)
  1597. {
  1598. RV34DecContext *r = avctx->priv_data;
  1599. ff_mpv_common_end(&r->s);
  1600. rv34_decoder_free(r);
  1601. return 0;
  1602. }