You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

327 lines
9.5KB

  1. /*
  2. * LPC utility code
  3. * Copyright (c) 2006 Justin Ruggles <justin.ruggles@gmail.com>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include "libavutil/common.h"
  22. #include "libavutil/lls.h"
  23. #include "libavutil/mem_internal.h"
  24. #define LPC_USE_DOUBLE
  25. #include "lpc.h"
  26. #include "libavutil/avassert.h"
  27. /**
  28. * Apply Welch window function to audio block
  29. */
  30. static void lpc_apply_welch_window_c(const int32_t *data, int len,
  31. double *w_data)
  32. {
  33. int i, n2;
  34. double w;
  35. double c;
  36. n2 = (len >> 1);
  37. c = 2.0 / (len - 1.0);
  38. if (len & 1) {
  39. for(i=0; i<n2; i++) {
  40. w = c - i - 1.0;
  41. w = 1.0 - (w * w);
  42. w_data[i] = data[i] * w;
  43. w_data[len-1-i] = data[len-1-i] * w;
  44. }
  45. return;
  46. }
  47. w_data+=n2;
  48. data+=n2;
  49. for(i=0; i<n2; i++) {
  50. w = c - n2 + i;
  51. w = 1.0 - (w * w);
  52. w_data[-i-1] = data[-i-1] * w;
  53. w_data[+i ] = data[+i ] * w;
  54. }
  55. }
  56. /**
  57. * Calculate autocorrelation data from audio samples
  58. * A Welch window function is applied before calculation.
  59. */
  60. static void lpc_compute_autocorr_c(const double *data, int len, int lag,
  61. double *autoc)
  62. {
  63. int i, j;
  64. for(j=0; j<lag; j+=2){
  65. double sum0 = 1.0, sum1 = 1.0;
  66. for(i=j; i<len; i++){
  67. sum0 += data[i] * data[i-j];
  68. sum1 += data[i] * data[i-j-1];
  69. }
  70. autoc[j ] = sum0;
  71. autoc[j+1] = sum1;
  72. }
  73. if(j==lag){
  74. double sum = 1.0;
  75. for(i=j-1; i<len; i+=2){
  76. sum += data[i ] * data[i-j ]
  77. + data[i+1] * data[i-j+1];
  78. }
  79. autoc[j] = sum;
  80. }
  81. }
  82. /**
  83. * Quantize LPC coefficients
  84. */
  85. static void quantize_lpc_coefs(double *lpc_in, int order, int precision,
  86. int32_t *lpc_out, int *shift, int min_shift,
  87. int max_shift, int zero_shift)
  88. {
  89. int i;
  90. double cmax, error;
  91. int32_t qmax;
  92. int sh;
  93. /* define maximum levels */
  94. qmax = (1 << (precision - 1)) - 1;
  95. /* find maximum coefficient value */
  96. cmax = 0.0;
  97. for(i=0; i<order; i++) {
  98. cmax= FFMAX(cmax, fabs(lpc_in[i]));
  99. }
  100. /* if maximum value quantizes to zero, return all zeros */
  101. if(cmax * (1 << max_shift) < 1.0) {
  102. *shift = zero_shift;
  103. memset(lpc_out, 0, sizeof(int32_t) * order);
  104. return;
  105. }
  106. /* calculate level shift which scales max coeff to available bits */
  107. sh = max_shift;
  108. while((cmax * (1 << sh) > qmax) && (sh > min_shift)) {
  109. sh--;
  110. }
  111. /* since negative shift values are unsupported in decoder, scale down
  112. coefficients instead */
  113. if(sh == 0 && cmax > qmax) {
  114. double scale = ((double)qmax) / cmax;
  115. for(i=0; i<order; i++) {
  116. lpc_in[i] *= scale;
  117. }
  118. }
  119. /* output quantized coefficients and level shift */
  120. error=0;
  121. for(i=0; i<order; i++) {
  122. error -= lpc_in[i] * (1 << sh);
  123. lpc_out[i] = av_clip(lrintf(error), -qmax, qmax);
  124. error -= lpc_out[i];
  125. }
  126. *shift = sh;
  127. }
  128. static int estimate_best_order(double *ref, int min_order, int max_order)
  129. {
  130. int i, est;
  131. est = min_order;
  132. for(i=max_order-1; i>=min_order-1; i--) {
  133. if(ref[i] > 0.10) {
  134. est = i+1;
  135. break;
  136. }
  137. }
  138. return est;
  139. }
  140. int ff_lpc_calc_ref_coefs(LPCContext *s,
  141. const int32_t *samples, int order, double *ref)
  142. {
  143. double autoc[MAX_LPC_ORDER + 1];
  144. s->lpc_apply_welch_window(samples, s->blocksize, s->windowed_samples);
  145. s->lpc_compute_autocorr(s->windowed_samples, s->blocksize, order, autoc);
  146. compute_ref_coefs(autoc, order, ref, NULL);
  147. return order;
  148. }
  149. double ff_lpc_calc_ref_coefs_f(LPCContext *s, const float *samples, int len,
  150. int order, double *ref)
  151. {
  152. int i;
  153. double signal = 0.0f, avg_err = 0.0f;
  154. double autoc[MAX_LPC_ORDER+1] = {0}, error[MAX_LPC_ORDER+1] = {0};
  155. const double a = 0.5f, b = 1.0f - a;
  156. /* Apply windowing */
  157. for (i = 0; i <= len / 2; i++) {
  158. double weight = a - b*cos((2*M_PI*i)/(len - 1));
  159. s->windowed_samples[i] = weight*samples[i];
  160. s->windowed_samples[len-1-i] = weight*samples[len-1-i];
  161. }
  162. s->lpc_compute_autocorr(s->windowed_samples, len, order, autoc);
  163. signal = autoc[0];
  164. compute_ref_coefs(autoc, order, ref, error);
  165. for (i = 0; i < order; i++)
  166. avg_err = (avg_err + error[i])/2.0f;
  167. return signal/avg_err;
  168. }
  169. /**
  170. * Calculate LPC coefficients for multiple orders
  171. *
  172. * @param lpc_type LPC method for determining coefficients,
  173. * see #FFLPCType for details
  174. */
  175. int ff_lpc_calc_coefs(LPCContext *s,
  176. const int32_t *samples, int blocksize, int min_order,
  177. int max_order, int precision,
  178. int32_t coefs[][MAX_LPC_ORDER], int *shift,
  179. enum FFLPCType lpc_type, int lpc_passes,
  180. int omethod, int min_shift, int max_shift, int zero_shift)
  181. {
  182. double autoc[MAX_LPC_ORDER+1];
  183. double ref[MAX_LPC_ORDER] = { 0 };
  184. double lpc[MAX_LPC_ORDER][MAX_LPC_ORDER];
  185. int i, j, pass = 0;
  186. int opt_order;
  187. av_assert2(max_order >= MIN_LPC_ORDER && max_order <= MAX_LPC_ORDER &&
  188. lpc_type > FF_LPC_TYPE_FIXED);
  189. av_assert0(lpc_type == FF_LPC_TYPE_CHOLESKY || lpc_type == FF_LPC_TYPE_LEVINSON);
  190. /* reinit LPC context if parameters have changed */
  191. if (blocksize != s->blocksize || max_order != s->max_order ||
  192. lpc_type != s->lpc_type) {
  193. ff_lpc_end(s);
  194. ff_lpc_init(s, blocksize, max_order, lpc_type);
  195. }
  196. if(lpc_passes <= 0)
  197. lpc_passes = 2;
  198. if (lpc_type == FF_LPC_TYPE_LEVINSON || (lpc_type == FF_LPC_TYPE_CHOLESKY && lpc_passes > 1)) {
  199. s->lpc_apply_welch_window(samples, blocksize, s->windowed_samples);
  200. s->lpc_compute_autocorr(s->windowed_samples, blocksize, max_order, autoc);
  201. compute_lpc_coefs(autoc, max_order, &lpc[0][0], MAX_LPC_ORDER, 0, 1);
  202. for(i=0; i<max_order; i++)
  203. ref[i] = fabs(lpc[i][i]);
  204. pass++;
  205. }
  206. if (lpc_type == FF_LPC_TYPE_CHOLESKY) {
  207. LLSModel *m = s->lls_models;
  208. LOCAL_ALIGNED(32, double, var, [FFALIGN(MAX_LPC_ORDER+1,4)]);
  209. double av_uninit(weight);
  210. memset(var, 0, FFALIGN(MAX_LPC_ORDER+1,4)*sizeof(*var));
  211. for(j=0; j<max_order; j++)
  212. m[0].coeff[max_order-1][j] = -lpc[max_order-1][j];
  213. for(; pass<lpc_passes; pass++){
  214. avpriv_init_lls(&m[pass&1], max_order);
  215. weight=0;
  216. for(i=max_order; i<blocksize; i++){
  217. for(j=0; j<=max_order; j++)
  218. var[j]= samples[i-j];
  219. if(pass){
  220. double eval, inv, rinv;
  221. eval= m[pass&1].evaluate_lls(&m[(pass-1)&1], var+1, max_order-1);
  222. eval= (512>>pass) + fabs(eval - var[0]);
  223. inv = 1/eval;
  224. rinv = sqrt(inv);
  225. for(j=0; j<=max_order; j++)
  226. var[j] *= rinv;
  227. weight += inv;
  228. }else
  229. weight++;
  230. m[pass&1].update_lls(&m[pass&1], var);
  231. }
  232. avpriv_solve_lls(&m[pass&1], 0.001, 0);
  233. }
  234. for(i=0; i<max_order; i++){
  235. for(j=0; j<max_order; j++)
  236. lpc[i][j]=-m[(pass-1)&1].coeff[i][j];
  237. ref[i]= sqrt(m[(pass-1)&1].variance[i] / weight) * (blocksize - max_order) / 4000;
  238. }
  239. for(i=max_order-1; i>0; i--)
  240. ref[i] = ref[i-1] - ref[i];
  241. }
  242. opt_order = max_order;
  243. if(omethod == ORDER_METHOD_EST) {
  244. opt_order = estimate_best_order(ref, min_order, max_order);
  245. i = opt_order-1;
  246. quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i],
  247. min_shift, max_shift, zero_shift);
  248. } else {
  249. for(i=min_order-1; i<max_order; i++) {
  250. quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i],
  251. min_shift, max_shift, zero_shift);
  252. }
  253. }
  254. return opt_order;
  255. }
  256. av_cold int ff_lpc_init(LPCContext *s, int blocksize, int max_order,
  257. enum FFLPCType lpc_type)
  258. {
  259. s->blocksize = blocksize;
  260. s->max_order = max_order;
  261. s->lpc_type = lpc_type;
  262. s->windowed_buffer = av_mallocz((blocksize + 2 + FFALIGN(max_order, 4)) *
  263. sizeof(*s->windowed_samples));
  264. if (!s->windowed_buffer)
  265. return AVERROR(ENOMEM);
  266. s->windowed_samples = s->windowed_buffer + FFALIGN(max_order, 4);
  267. s->lpc_apply_welch_window = lpc_apply_welch_window_c;
  268. s->lpc_compute_autocorr = lpc_compute_autocorr_c;
  269. if (ARCH_X86)
  270. ff_lpc_init_x86(s);
  271. return 0;
  272. }
  273. av_cold void ff_lpc_end(LPCContext *s)
  274. {
  275. av_freep(&s->windowed_buffer);
  276. }