You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1773 lines
63KB

  1. /*
  2. * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of Libav.
  5. *
  6. * Libav is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * Libav is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with Libav; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include "config.h"
  21. #define _SVID_SOURCE // needed for MAP_ANONYMOUS
  22. #include <assert.h>
  23. #include <inttypes.h>
  24. #include <math.h>
  25. #include <stdio.h>
  26. #include <string.h>
  27. #if HAVE_SYS_MMAN_H
  28. #include <sys/mman.h>
  29. #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
  30. #define MAP_ANONYMOUS MAP_ANON
  31. #endif
  32. #endif
  33. #if HAVE_VIRTUALALLOC
  34. #define WIN32_LEAN_AND_MEAN
  35. #include <windows.h>
  36. #endif
  37. #include "libavutil/attributes.h"
  38. #include "libavutil/avutil.h"
  39. #include "libavutil/bswap.h"
  40. #include "libavutil/cpu.h"
  41. #include "libavutil/intreadwrite.h"
  42. #include "libavutil/mathematics.h"
  43. #include "libavutil/opt.h"
  44. #include "libavutil/pixdesc.h"
  45. #include "libavutil/x86/asm.h"
  46. #include "libavutil/x86/cpu.h"
  47. #include "rgb2rgb.h"
  48. #include "swscale.h"
  49. #include "swscale_internal.h"
  50. unsigned swscale_version(void)
  51. {
  52. return LIBSWSCALE_VERSION_INT;
  53. }
  54. const char *swscale_configuration(void)
  55. {
  56. return LIBAV_CONFIGURATION;
  57. }
  58. const char *swscale_license(void)
  59. {
  60. #define LICENSE_PREFIX "libswscale license: "
  61. return LICENSE_PREFIX LIBAV_LICENSE + sizeof(LICENSE_PREFIX) - 1;
  62. }
  63. #define RET 0xC3 // near return opcode for x86
  64. typedef struct FormatEntry {
  65. uint8_t is_supported_in :1;
  66. uint8_t is_supported_out :1;
  67. uint8_t is_supported_endianness :1;
  68. } FormatEntry;
  69. static const FormatEntry format_entries[AV_PIX_FMT_NB] = {
  70. [AV_PIX_FMT_YUV420P] = { 1, 1 },
  71. [AV_PIX_FMT_YUYV422] = { 1, 1 },
  72. [AV_PIX_FMT_RGB24] = { 1, 1 },
  73. [AV_PIX_FMT_BGR24] = { 1, 1 },
  74. [AV_PIX_FMT_YUV422P] = { 1, 1 },
  75. [AV_PIX_FMT_YUV444P] = { 1, 1 },
  76. [AV_PIX_FMT_YUV410P] = { 1, 1 },
  77. [AV_PIX_FMT_YUV411P] = { 1, 1 },
  78. [AV_PIX_FMT_GRAY8] = { 1, 1 },
  79. [AV_PIX_FMT_MONOWHITE] = { 1, 1 },
  80. [AV_PIX_FMT_MONOBLACK] = { 1, 1 },
  81. [AV_PIX_FMT_PAL8] = { 1, 0 },
  82. [AV_PIX_FMT_YUVJ420P] = { 1, 1 },
  83. [AV_PIX_FMT_YUVJ422P] = { 1, 1 },
  84. [AV_PIX_FMT_YUVJ444P] = { 1, 1 },
  85. [AV_PIX_FMT_UYVY422] = { 1, 1 },
  86. [AV_PIX_FMT_UYYVYY411] = { 0, 0 },
  87. [AV_PIX_FMT_BGR8] = { 1, 1 },
  88. [AV_PIX_FMT_BGR4] = { 0, 1 },
  89. [AV_PIX_FMT_BGR4_BYTE] = { 1, 1 },
  90. [AV_PIX_FMT_RGB8] = { 1, 1 },
  91. [AV_PIX_FMT_RGB4] = { 0, 1 },
  92. [AV_PIX_FMT_RGB4_BYTE] = { 1, 1 },
  93. [AV_PIX_FMT_NV12] = { 1, 1 },
  94. [AV_PIX_FMT_NV21] = { 1, 1 },
  95. [AV_PIX_FMT_ARGB] = { 1, 1 },
  96. [AV_PIX_FMT_RGBA] = { 1, 1 },
  97. [AV_PIX_FMT_ABGR] = { 1, 1 },
  98. [AV_PIX_FMT_BGRA] = { 1, 1 },
  99. [AV_PIX_FMT_GRAY16BE] = { 1, 1 },
  100. [AV_PIX_FMT_GRAY16LE] = { 1, 1 },
  101. [AV_PIX_FMT_YUV440P] = { 1, 1 },
  102. [AV_PIX_FMT_YUVJ440P] = { 1, 1 },
  103. [AV_PIX_FMT_YUVA420P] = { 1, 1 },
  104. [AV_PIX_FMT_YUVA422P] = { 1, 1 },
  105. [AV_PIX_FMT_YUVA444P] = { 1, 1 },
  106. [AV_PIX_FMT_YUVA420P9BE] = { 1, 1 },
  107. [AV_PIX_FMT_YUVA420P9LE] = { 1, 1 },
  108. [AV_PIX_FMT_YUVA422P9BE] = { 1, 1 },
  109. [AV_PIX_FMT_YUVA422P9LE] = { 1, 1 },
  110. [AV_PIX_FMT_YUVA444P9BE] = { 1, 1 },
  111. [AV_PIX_FMT_YUVA444P9LE] = { 1, 1 },
  112. [AV_PIX_FMT_YUVA420P10BE]= { 1, 1 },
  113. [AV_PIX_FMT_YUVA420P10LE]= { 1, 1 },
  114. [AV_PIX_FMT_YUVA422P10BE]= { 1, 1 },
  115. [AV_PIX_FMT_YUVA422P10LE]= { 1, 1 },
  116. [AV_PIX_FMT_YUVA444P10BE]= { 1, 1 },
  117. [AV_PIX_FMT_YUVA444P10LE]= { 1, 1 },
  118. [AV_PIX_FMT_YUVA420P16BE]= { 1, 1 },
  119. [AV_PIX_FMT_YUVA420P16LE]= { 1, 1 },
  120. [AV_PIX_FMT_YUVA422P16BE]= { 1, 1 },
  121. [AV_PIX_FMT_YUVA422P16LE]= { 1, 1 },
  122. [AV_PIX_FMT_YUVA444P16BE]= { 1, 1 },
  123. [AV_PIX_FMT_YUVA444P16LE]= { 1, 1 },
  124. [AV_PIX_FMT_RGB48BE] = { 1, 1 },
  125. [AV_PIX_FMT_RGB48LE] = { 1, 1 },
  126. [AV_PIX_FMT_RGB565BE] = { 1, 1 },
  127. [AV_PIX_FMT_RGB565LE] = { 1, 1 },
  128. [AV_PIX_FMT_RGB555BE] = { 1, 1 },
  129. [AV_PIX_FMT_RGB555LE] = { 1, 1 },
  130. [AV_PIX_FMT_BGR565BE] = { 1, 1 },
  131. [AV_PIX_FMT_BGR565LE] = { 1, 1 },
  132. [AV_PIX_FMT_BGR555BE] = { 1, 1 },
  133. [AV_PIX_FMT_BGR555LE] = { 1, 1 },
  134. [AV_PIX_FMT_YUV420P16LE] = { 1, 1 },
  135. [AV_PIX_FMT_YUV420P16BE] = { 1, 1 },
  136. [AV_PIX_FMT_YUV422P16LE] = { 1, 1 },
  137. [AV_PIX_FMT_YUV422P16BE] = { 1, 1 },
  138. [AV_PIX_FMT_YUV444P16LE] = { 1, 1 },
  139. [AV_PIX_FMT_YUV444P16BE] = { 1, 1 },
  140. [AV_PIX_FMT_RGB444LE] = { 1, 1 },
  141. [AV_PIX_FMT_RGB444BE] = { 1, 1 },
  142. [AV_PIX_FMT_BGR444LE] = { 1, 1 },
  143. [AV_PIX_FMT_BGR444BE] = { 1, 1 },
  144. [AV_PIX_FMT_Y400A] = { 1, 0 },
  145. [AV_PIX_FMT_BGR48BE] = { 1, 1 },
  146. [AV_PIX_FMT_BGR48LE] = { 1, 1 },
  147. [AV_PIX_FMT_YUV420P9BE] = { 1, 1 },
  148. [AV_PIX_FMT_YUV420P9LE] = { 1, 1 },
  149. [AV_PIX_FMT_YUV420P10BE] = { 1, 1 },
  150. [AV_PIX_FMT_YUV420P10LE] = { 1, 1 },
  151. [AV_PIX_FMT_YUV422P9BE] = { 1, 1 },
  152. [AV_PIX_FMT_YUV422P9LE] = { 1, 1 },
  153. [AV_PIX_FMT_YUV422P10BE] = { 1, 1 },
  154. [AV_PIX_FMT_YUV422P10LE] = { 1, 1 },
  155. [AV_PIX_FMT_YUV444P9BE] = { 1, 1 },
  156. [AV_PIX_FMT_YUV444P9LE] = { 1, 1 },
  157. [AV_PIX_FMT_YUV444P10BE] = { 1, 1 },
  158. [AV_PIX_FMT_YUV444P10LE] = { 1, 1 },
  159. [AV_PIX_FMT_GBRP] = { 1, 1 },
  160. [AV_PIX_FMT_GBRP9LE] = { 1, 1 },
  161. [AV_PIX_FMT_GBRP9BE] = { 1, 1 },
  162. [AV_PIX_FMT_GBRP10LE] = { 1, 1 },
  163. [AV_PIX_FMT_GBRP10BE] = { 1, 1 },
  164. [AV_PIX_FMT_GBRP16LE] = { 1, 0 },
  165. [AV_PIX_FMT_GBRP16BE] = { 1, 0 },
  166. [AV_PIX_FMT_XYZ12BE] = { 0, 0, 1 },
  167. [AV_PIX_FMT_XYZ12LE] = { 0, 0, 1 },
  168. };
  169. int sws_isSupportedInput(enum AVPixelFormat pix_fmt)
  170. {
  171. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  172. format_entries[pix_fmt].is_supported_in : 0;
  173. }
  174. int sws_isSupportedOutput(enum AVPixelFormat pix_fmt)
  175. {
  176. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  177. format_entries[pix_fmt].is_supported_out : 0;
  178. }
  179. int sws_isSupportedEndiannessConversion(enum AVPixelFormat pix_fmt)
  180. {
  181. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  182. format_entries[pix_fmt].is_supported_endianness : 0;
  183. }
  184. extern const int32_t ff_yuv2rgb_coeffs[8][4];
  185. const char *sws_format_name(enum AVPixelFormat format)
  186. {
  187. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(format);
  188. if (desc)
  189. return desc->name;
  190. else
  191. return "Unknown format";
  192. }
  193. static double getSplineCoeff(double a, double b, double c, double d,
  194. double dist)
  195. {
  196. if (dist <= 1.0)
  197. return ((d * dist + c) * dist + b) * dist + a;
  198. else
  199. return getSplineCoeff(0.0,
  200. b + 2.0 * c + 3.0 * d,
  201. c + 3.0 * d,
  202. -b - 3.0 * c - 6.0 * d,
  203. dist - 1.0);
  204. }
  205. static av_cold int initFilter(int16_t **outFilter, int32_t **filterPos,
  206. int *outFilterSize, int xInc, int srcW,
  207. int dstW, int filterAlign, int one,
  208. int flags, int cpu_flags,
  209. SwsVector *srcFilter, SwsVector *dstFilter,
  210. double param[2], int is_horizontal)
  211. {
  212. int i;
  213. int filterSize;
  214. int filter2Size;
  215. int minFilterSize;
  216. int64_t *filter = NULL;
  217. int64_t *filter2 = NULL;
  218. const int64_t fone = 1LL << 54;
  219. int ret = -1;
  220. emms_c(); // FIXME should not be required but IS (even for non-MMX versions)
  221. // NOTE: the +3 is for the MMX(+1) / SSE(+3) scaler which reads over the end
  222. FF_ALLOC_OR_GOTO(NULL, *filterPos, (dstW + 3) * sizeof(**filterPos), fail);
  223. if (FFABS(xInc - 0x10000) < 10) { // unscaled
  224. int i;
  225. filterSize = 1;
  226. FF_ALLOCZ_OR_GOTO(NULL, filter,
  227. dstW * sizeof(*filter) * filterSize, fail);
  228. for (i = 0; i < dstW; i++) {
  229. filter[i * filterSize] = fone;
  230. (*filterPos)[i] = i;
  231. }
  232. } else if (flags & SWS_POINT) { // lame looking point sampling mode
  233. int i;
  234. int xDstInSrc;
  235. filterSize = 1;
  236. FF_ALLOC_OR_GOTO(NULL, filter,
  237. dstW * sizeof(*filter) * filterSize, fail);
  238. xDstInSrc = xInc / 2 - 0x8000;
  239. for (i = 0; i < dstW; i++) {
  240. int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
  241. (*filterPos)[i] = xx;
  242. filter[i] = fone;
  243. xDstInSrc += xInc;
  244. }
  245. } else if ((xInc <= (1 << 16) && (flags & SWS_AREA)) ||
  246. (flags & SWS_FAST_BILINEAR)) { // bilinear upscale
  247. int i;
  248. int xDstInSrc;
  249. filterSize = 2;
  250. FF_ALLOC_OR_GOTO(NULL, filter,
  251. dstW * sizeof(*filter) * filterSize, fail);
  252. xDstInSrc = xInc / 2 - 0x8000;
  253. for (i = 0; i < dstW; i++) {
  254. int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
  255. int j;
  256. (*filterPos)[i] = xx;
  257. // bilinear upscale / linear interpolate / area averaging
  258. for (j = 0; j < filterSize; j++) {
  259. int64_t coeff = fone - FFABS((xx << 16) - xDstInSrc) *
  260. (fone >> 16);
  261. if (coeff < 0)
  262. coeff = 0;
  263. filter[i * filterSize + j] = coeff;
  264. xx++;
  265. }
  266. xDstInSrc += xInc;
  267. }
  268. } else {
  269. int64_t xDstInSrc;
  270. int sizeFactor;
  271. if (flags & SWS_BICUBIC)
  272. sizeFactor = 4;
  273. else if (flags & SWS_X)
  274. sizeFactor = 8;
  275. else if (flags & SWS_AREA)
  276. sizeFactor = 1; // downscale only, for upscale it is bilinear
  277. else if (flags & SWS_GAUSS)
  278. sizeFactor = 8; // infinite ;)
  279. else if (flags & SWS_LANCZOS)
  280. sizeFactor = param[0] != SWS_PARAM_DEFAULT ? ceil(2 * param[0]) : 6;
  281. else if (flags & SWS_SINC)
  282. sizeFactor = 20; // infinite ;)
  283. else if (flags & SWS_SPLINE)
  284. sizeFactor = 20; // infinite ;)
  285. else if (flags & SWS_BILINEAR)
  286. sizeFactor = 2;
  287. else {
  288. sizeFactor = 0; // GCC warning killer
  289. assert(0);
  290. }
  291. if (xInc <= 1 << 16)
  292. filterSize = 1 + sizeFactor; // upscale
  293. else
  294. filterSize = 1 + (sizeFactor * srcW + dstW - 1) / dstW;
  295. filterSize = FFMIN(filterSize, srcW - 2);
  296. filterSize = FFMAX(filterSize, 1);
  297. FF_ALLOC_OR_GOTO(NULL, filter,
  298. dstW * sizeof(*filter) * filterSize, fail);
  299. xDstInSrc = xInc - 0x10000;
  300. for (i = 0; i < dstW; i++) {
  301. int xx = (xDstInSrc - ((filterSize - 2) << 16)) / (1 << 17);
  302. int j;
  303. (*filterPos)[i] = xx;
  304. for (j = 0; j < filterSize; j++) {
  305. int64_t d = (FFABS(((int64_t)xx << 17) - xDstInSrc)) << 13;
  306. double floatd;
  307. int64_t coeff;
  308. if (xInc > 1 << 16)
  309. d = d * dstW / srcW;
  310. floatd = d * (1.0 / (1 << 30));
  311. if (flags & SWS_BICUBIC) {
  312. int64_t B = (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1 << 24);
  313. int64_t C = (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1 << 24);
  314. if (d >= 1LL << 31) {
  315. coeff = 0.0;
  316. } else {
  317. int64_t dd = (d * d) >> 30;
  318. int64_t ddd = (dd * d) >> 30;
  319. if (d < 1LL << 30)
  320. coeff = (12 * (1 << 24) - 9 * B - 6 * C) * ddd +
  321. (-18 * (1 << 24) + 12 * B + 6 * C) * dd +
  322. (6 * (1 << 24) - 2 * B) * (1 << 30);
  323. else
  324. coeff = (-B - 6 * C) * ddd +
  325. (6 * B + 30 * C) * dd +
  326. (-12 * B - 48 * C) * d +
  327. (8 * B + 24 * C) * (1 << 30);
  328. }
  329. coeff *= fone >> (30 + 24);
  330. }
  331. #if 0
  332. else if (flags & SWS_X) {
  333. double p = param ? param * 0.01 : 0.3;
  334. coeff = d ? sin(d * M_PI) / (d * M_PI) : 1.0;
  335. coeff *= pow(2.0, -p * d * d);
  336. }
  337. #endif
  338. else if (flags & SWS_X) {
  339. double A = param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
  340. double c;
  341. if (floatd < 1.0)
  342. c = cos(floatd * M_PI);
  343. else
  344. c = -1.0;
  345. if (c < 0.0)
  346. c = -pow(-c, A);
  347. else
  348. c = pow(c, A);
  349. coeff = (c * 0.5 + 0.5) * fone;
  350. } else if (flags & SWS_AREA) {
  351. int64_t d2 = d - (1 << 29);
  352. if (d2 * xInc < -(1LL << (29 + 16)))
  353. coeff = 1.0 * (1LL << (30 + 16));
  354. else if (d2 * xInc < (1LL << (29 + 16)))
  355. coeff = -d2 * xInc + (1LL << (29 + 16));
  356. else
  357. coeff = 0.0;
  358. coeff *= fone >> (30 + 16);
  359. } else if (flags & SWS_GAUSS) {
  360. double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  361. coeff = (pow(2.0, -p * floatd * floatd)) * fone;
  362. } else if (flags & SWS_SINC) {
  363. coeff = (d ? sin(floatd * M_PI) / (floatd * M_PI) : 1.0) * fone;
  364. } else if (flags & SWS_LANCZOS) {
  365. double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  366. coeff = (d ? sin(floatd * M_PI) * sin(floatd * M_PI / p) /
  367. (floatd * floatd * M_PI * M_PI / p) : 1.0) * fone;
  368. if (floatd > p)
  369. coeff = 0;
  370. } else if (flags & SWS_BILINEAR) {
  371. coeff = (1 << 30) - d;
  372. if (coeff < 0)
  373. coeff = 0;
  374. coeff *= fone >> 30;
  375. } else if (flags & SWS_SPLINE) {
  376. double p = -2.196152422706632;
  377. coeff = getSplineCoeff(1.0, 0.0, p, -p - 1.0, floatd) * fone;
  378. } else {
  379. coeff = 0.0; // GCC warning killer
  380. assert(0);
  381. }
  382. filter[i * filterSize + j] = coeff;
  383. xx++;
  384. }
  385. xDstInSrc += 2 * xInc;
  386. }
  387. }
  388. /* apply src & dst Filter to filter -> filter2
  389. * av_free(filter);
  390. */
  391. assert(filterSize > 0);
  392. filter2Size = filterSize;
  393. if (srcFilter)
  394. filter2Size += srcFilter->length - 1;
  395. if (dstFilter)
  396. filter2Size += dstFilter->length - 1;
  397. assert(filter2Size > 0);
  398. FF_ALLOCZ_OR_GOTO(NULL, filter2, filter2Size * dstW * sizeof(*filter2), fail);
  399. for (i = 0; i < dstW; i++) {
  400. int j, k;
  401. if (srcFilter) {
  402. for (k = 0; k < srcFilter->length; k++) {
  403. for (j = 0; j < filterSize; j++)
  404. filter2[i * filter2Size + k + j] +=
  405. srcFilter->coeff[k] * filter[i * filterSize + j];
  406. }
  407. } else {
  408. for (j = 0; j < filterSize; j++)
  409. filter2[i * filter2Size + j] = filter[i * filterSize + j];
  410. }
  411. // FIXME dstFilter
  412. (*filterPos)[i] += (filterSize - 1) / 2 - (filter2Size - 1) / 2;
  413. }
  414. av_freep(&filter);
  415. /* try to reduce the filter-size (step1 find size and shift left) */
  416. // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
  417. minFilterSize = 0;
  418. for (i = dstW - 1; i >= 0; i--) {
  419. int min = filter2Size;
  420. int j;
  421. int64_t cutOff = 0.0;
  422. /* get rid of near zero elements on the left by shifting left */
  423. for (j = 0; j < filter2Size; j++) {
  424. int k;
  425. cutOff += FFABS(filter2[i * filter2Size]);
  426. if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
  427. break;
  428. /* preserve monotonicity because the core can't handle the
  429. * filter otherwise */
  430. if (i < dstW - 1 && (*filterPos)[i] >= (*filterPos)[i + 1])
  431. break;
  432. // move filter coefficients left
  433. for (k = 1; k < filter2Size; k++)
  434. filter2[i * filter2Size + k - 1] = filter2[i * filter2Size + k];
  435. filter2[i * filter2Size + k - 1] = 0;
  436. (*filterPos)[i]++;
  437. }
  438. cutOff = 0;
  439. /* count near zeros on the right */
  440. for (j = filter2Size - 1; j > 0; j--) {
  441. cutOff += FFABS(filter2[i * filter2Size + j]);
  442. if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
  443. break;
  444. min--;
  445. }
  446. if (min > minFilterSize)
  447. minFilterSize = min;
  448. }
  449. if (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC) {
  450. // we can handle the special case 4, so we don't want to go the full 8
  451. if (minFilterSize < 5)
  452. filterAlign = 4;
  453. /* We really don't want to waste our time doing useless computation, so
  454. * fall back on the scalar C code for very small filters.
  455. * Vectorizing is worth it only if you have a decent-sized vector. */
  456. if (minFilterSize < 3)
  457. filterAlign = 1;
  458. }
  459. if (INLINE_MMX(cpu_flags)) {
  460. // special case for unscaled vertical filtering
  461. if (minFilterSize == 1 && filterAlign == 2)
  462. filterAlign = 1;
  463. }
  464. assert(minFilterSize > 0);
  465. filterSize = (minFilterSize + (filterAlign - 1)) & (~(filterAlign - 1));
  466. assert(filterSize > 0);
  467. filter = av_malloc(filterSize * dstW * sizeof(*filter));
  468. if (filterSize >= MAX_FILTER_SIZE * 16 /
  469. ((flags & SWS_ACCURATE_RND) ? APCK_SIZE : 16) || !filter)
  470. goto fail;
  471. *outFilterSize = filterSize;
  472. if (flags & SWS_PRINT_INFO)
  473. av_log(NULL, AV_LOG_VERBOSE,
  474. "SwScaler: reducing / aligning filtersize %d -> %d\n",
  475. filter2Size, filterSize);
  476. /* try to reduce the filter-size (step2 reduce it) */
  477. for (i = 0; i < dstW; i++) {
  478. int j;
  479. for (j = 0; j < filterSize; j++) {
  480. if (j >= filter2Size)
  481. filter[i * filterSize + j] = 0;
  482. else
  483. filter[i * filterSize + j] = filter2[i * filter2Size + j];
  484. if ((flags & SWS_BITEXACT) && j >= minFilterSize)
  485. filter[i * filterSize + j] = 0;
  486. }
  487. }
  488. // FIXME try to align filterPos if possible
  489. // fix borders
  490. if (is_horizontal) {
  491. for (i = 0; i < dstW; i++) {
  492. int j;
  493. if ((*filterPos)[i] < 0) {
  494. // move filter coefficients left to compensate for filterPos
  495. for (j = 1; j < filterSize; j++) {
  496. int left = FFMAX(j + (*filterPos)[i], 0);
  497. filter[i * filterSize + left] += filter[i * filterSize + j];
  498. filter[i * filterSize + j] = 0;
  499. }
  500. (*filterPos)[i] = 0;
  501. }
  502. if ((*filterPos)[i] + filterSize > srcW) {
  503. int shift = (*filterPos)[i] + filterSize - srcW;
  504. // move filter coefficients right to compensate for filterPos
  505. for (j = filterSize - 2; j >= 0; j--) {
  506. int right = FFMIN(j + shift, filterSize - 1);
  507. filter[i * filterSize + right] += filter[i * filterSize + j];
  508. filter[i * filterSize + j] = 0;
  509. }
  510. (*filterPos)[i] = srcW - filterSize;
  511. }
  512. }
  513. }
  514. // Note the +1 is for the MMX scaler which reads over the end
  515. /* align at 16 for AltiVec (needed by hScale_altivec_real) */
  516. FF_ALLOCZ_OR_GOTO(NULL, *outFilter,
  517. *outFilterSize * (dstW + 3) * sizeof(int16_t), fail);
  518. /* normalize & store in outFilter */
  519. for (i = 0; i < dstW; i++) {
  520. int j;
  521. int64_t error = 0;
  522. int64_t sum = 0;
  523. for (j = 0; j < filterSize; j++) {
  524. sum += filter[i * filterSize + j];
  525. }
  526. sum = (sum + one / 2) / one;
  527. for (j = 0; j < *outFilterSize; j++) {
  528. int64_t v = filter[i * filterSize + j] + error;
  529. int intV = ROUNDED_DIV(v, sum);
  530. (*outFilter)[i * (*outFilterSize) + j] = intV;
  531. error = v - intV * sum;
  532. }
  533. }
  534. (*filterPos)[dstW + 0] =
  535. (*filterPos)[dstW + 1] =
  536. (*filterPos)[dstW + 2] = (*filterPos)[dstW - 1]; /* the MMX/SSE scaler will
  537. * read over the end */
  538. for (i = 0; i < *outFilterSize; i++) {
  539. int k = (dstW - 1) * (*outFilterSize) + i;
  540. (*outFilter)[k + 1 * (*outFilterSize)] =
  541. (*outFilter)[k + 2 * (*outFilterSize)] =
  542. (*outFilter)[k + 3 * (*outFilterSize)] = (*outFilter)[k];
  543. }
  544. ret = 0;
  545. fail:
  546. av_free(filter);
  547. av_free(filter2);
  548. return ret;
  549. }
  550. #if HAVE_MMXEXT_INLINE
  551. static av_cold int init_hscaler_mmxext(int dstW, int xInc, uint8_t *filterCode,
  552. int16_t *filter, int32_t *filterPos,
  553. int numSplits)
  554. {
  555. uint8_t *fragmentA;
  556. x86_reg imm8OfPShufW1A;
  557. x86_reg imm8OfPShufW2A;
  558. x86_reg fragmentLengthA;
  559. uint8_t *fragmentB;
  560. x86_reg imm8OfPShufW1B;
  561. x86_reg imm8OfPShufW2B;
  562. x86_reg fragmentLengthB;
  563. int fragmentPos;
  564. int xpos, i;
  565. // create an optimized horizontal scaling routine
  566. /* This scaler is made of runtime-generated MMXEXT code using specially tuned
  567. * pshufw instructions. For every four output pixels, if four input pixels
  568. * are enough for the fast bilinear scaling, then a chunk of fragmentB is
  569. * used. If five input pixels are needed, then a chunk of fragmentA is used.
  570. */
  571. // code fragment
  572. __asm__ volatile (
  573. "jmp 9f \n\t"
  574. // Begin
  575. "0: \n\t"
  576. "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
  577. "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
  578. "movd 1(%%"REG_c", %%"REG_S"), %%mm1 \n\t"
  579. "punpcklbw %%mm7, %%mm1 \n\t"
  580. "punpcklbw %%mm7, %%mm0 \n\t"
  581. "pshufw $0xFF, %%mm1, %%mm1 \n\t"
  582. "1: \n\t"
  583. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  584. "2: \n\t"
  585. "psubw %%mm1, %%mm0 \n\t"
  586. "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
  587. "pmullw %%mm3, %%mm0 \n\t"
  588. "psllw $7, %%mm1 \n\t"
  589. "paddw %%mm1, %%mm0 \n\t"
  590. "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
  591. "add $8, %%"REG_a" \n\t"
  592. // End
  593. "9: \n\t"
  594. // "int $3 \n\t"
  595. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  596. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  597. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  598. "dec %1 \n\t"
  599. "dec %2 \n\t"
  600. "sub %0, %1 \n\t"
  601. "sub %0, %2 \n\t"
  602. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  603. "sub %0, %3 \n\t"
  604. : "=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
  605. "=r" (fragmentLengthA)
  606. );
  607. __asm__ volatile (
  608. "jmp 9f \n\t"
  609. // Begin
  610. "0: \n\t"
  611. "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
  612. "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
  613. "punpcklbw %%mm7, %%mm0 \n\t"
  614. "pshufw $0xFF, %%mm0, %%mm1 \n\t"
  615. "1: \n\t"
  616. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  617. "2: \n\t"
  618. "psubw %%mm1, %%mm0 \n\t"
  619. "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
  620. "pmullw %%mm3, %%mm0 \n\t"
  621. "psllw $7, %%mm1 \n\t"
  622. "paddw %%mm1, %%mm0 \n\t"
  623. "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
  624. "add $8, %%"REG_a" \n\t"
  625. // End
  626. "9: \n\t"
  627. // "int $3 \n\t"
  628. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  629. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  630. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  631. "dec %1 \n\t"
  632. "dec %2 \n\t"
  633. "sub %0, %1 \n\t"
  634. "sub %0, %2 \n\t"
  635. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  636. "sub %0, %3 \n\t"
  637. : "=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
  638. "=r" (fragmentLengthB)
  639. );
  640. xpos = 0; // lumXInc/2 - 0x8000; // difference between pixel centers
  641. fragmentPos = 0;
  642. for (i = 0; i < dstW / numSplits; i++) {
  643. int xx = xpos >> 16;
  644. if ((i & 3) == 0) {
  645. int a = 0;
  646. int b = ((xpos + xInc) >> 16) - xx;
  647. int c = ((xpos + xInc * 2) >> 16) - xx;
  648. int d = ((xpos + xInc * 3) >> 16) - xx;
  649. int inc = (d + 1 < 4);
  650. uint8_t *fragment = (d + 1 < 4) ? fragmentB : fragmentA;
  651. x86_reg imm8OfPShufW1 = (d + 1 < 4) ? imm8OfPShufW1B : imm8OfPShufW1A;
  652. x86_reg imm8OfPShufW2 = (d + 1 < 4) ? imm8OfPShufW2B : imm8OfPShufW2A;
  653. x86_reg fragmentLength = (d + 1 < 4) ? fragmentLengthB : fragmentLengthA;
  654. int maxShift = 3 - (d + inc);
  655. int shift = 0;
  656. if (filterCode) {
  657. filter[i] = ((xpos & 0xFFFF) ^ 0xFFFF) >> 9;
  658. filter[i + 1] = (((xpos + xInc) & 0xFFFF) ^ 0xFFFF) >> 9;
  659. filter[i + 2] = (((xpos + xInc * 2) & 0xFFFF) ^ 0xFFFF) >> 9;
  660. filter[i + 3] = (((xpos + xInc * 3) & 0xFFFF) ^ 0xFFFF) >> 9;
  661. filterPos[i / 2] = xx;
  662. memcpy(filterCode + fragmentPos, fragment, fragmentLength);
  663. filterCode[fragmentPos + imm8OfPShufW1] = (a + inc) |
  664. ((b + inc) << 2) |
  665. ((c + inc) << 4) |
  666. ((d + inc) << 6);
  667. filterCode[fragmentPos + imm8OfPShufW2] = a | (b << 2) |
  668. (c << 4) |
  669. (d << 6);
  670. if (i + 4 - inc >= dstW)
  671. shift = maxShift; // avoid overread
  672. else if ((filterPos[i / 2] & 3) <= maxShift)
  673. shift = filterPos[i / 2] & 3; // align
  674. if (shift && i >= shift) {
  675. filterCode[fragmentPos + imm8OfPShufW1] += 0x55 * shift;
  676. filterCode[fragmentPos + imm8OfPShufW2] += 0x55 * shift;
  677. filterPos[i / 2] -= shift;
  678. }
  679. }
  680. fragmentPos += fragmentLength;
  681. if (filterCode)
  682. filterCode[fragmentPos] = RET;
  683. }
  684. xpos += xInc;
  685. }
  686. if (filterCode)
  687. filterPos[((i / 2) + 1) & (~1)] = xpos >> 16; // needed to jump to the next part
  688. return fragmentPos + 1;
  689. }
  690. #endif /* HAVE_MMXEXT_INLINE */
  691. static void getSubSampleFactors(int *h, int *v, enum AVPixelFormat format)
  692. {
  693. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(format);
  694. *h = desc->log2_chroma_w;
  695. *v = desc->log2_chroma_h;
  696. }
  697. int sws_setColorspaceDetails(struct SwsContext *c, const int inv_table[4],
  698. int srcRange, const int table[4], int dstRange,
  699. int brightness, int contrast, int saturation)
  700. {
  701. const AVPixFmtDescriptor *desc_dst = av_pix_fmt_desc_get(c->dstFormat);
  702. const AVPixFmtDescriptor *desc_src = av_pix_fmt_desc_get(c->srcFormat);
  703. memcpy(c->srcColorspaceTable, inv_table, sizeof(int) * 4);
  704. memcpy(c->dstColorspaceTable, table, sizeof(int) * 4);
  705. c->brightness = brightness;
  706. c->contrast = contrast;
  707. c->saturation = saturation;
  708. c->srcRange = srcRange;
  709. c->dstRange = dstRange;
  710. if (isYUV(c->dstFormat) || isGray(c->dstFormat))
  711. return -1;
  712. c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
  713. c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
  714. ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness,
  715. contrast, saturation);
  716. // FIXME factorize
  717. if (HAVE_ALTIVEC && av_get_cpu_flags() & AV_CPU_FLAG_ALTIVEC)
  718. ff_yuv2rgb_init_tables_altivec(c, inv_table, brightness,
  719. contrast, saturation);
  720. return 0;
  721. }
  722. int sws_getColorspaceDetails(struct SwsContext *c, int **inv_table,
  723. int *srcRange, int **table, int *dstRange,
  724. int *brightness, int *contrast, int *saturation)
  725. {
  726. if (isYUV(c->dstFormat) || isGray(c->dstFormat))
  727. return -1;
  728. *inv_table = c->srcColorspaceTable;
  729. *table = c->dstColorspaceTable;
  730. *srcRange = c->srcRange;
  731. *dstRange = c->dstRange;
  732. *brightness = c->brightness;
  733. *contrast = c->contrast;
  734. *saturation = c->saturation;
  735. return 0;
  736. }
  737. static int handle_jpeg(enum AVPixelFormat *format)
  738. {
  739. switch (*format) {
  740. case AV_PIX_FMT_YUVJ420P:
  741. *format = AV_PIX_FMT_YUV420P;
  742. return 1;
  743. case AV_PIX_FMT_YUVJ422P:
  744. *format = AV_PIX_FMT_YUV422P;
  745. return 1;
  746. case AV_PIX_FMT_YUVJ444P:
  747. *format = AV_PIX_FMT_YUV444P;
  748. return 1;
  749. case AV_PIX_FMT_YUVJ440P:
  750. *format = AV_PIX_FMT_YUV440P;
  751. return 1;
  752. default:
  753. return 0;
  754. }
  755. }
  756. SwsContext *sws_alloc_context(void)
  757. {
  758. SwsContext *c = av_mallocz(sizeof(SwsContext));
  759. if (c) {
  760. c->av_class = &sws_context_class;
  761. av_opt_set_defaults(c);
  762. }
  763. return c;
  764. }
  765. av_cold int sws_init_context(SwsContext *c, SwsFilter *srcFilter,
  766. SwsFilter *dstFilter)
  767. {
  768. int i;
  769. int usesVFilter, usesHFilter;
  770. int unscaled;
  771. SwsFilter dummyFilter = { NULL, NULL, NULL, NULL };
  772. int srcW = c->srcW;
  773. int srcH = c->srcH;
  774. int dstW = c->dstW;
  775. int dstH = c->dstH;
  776. int dst_stride = FFALIGN(dstW * sizeof(int16_t) + 16, 16);
  777. int dst_stride_px = dst_stride >> 1;
  778. int flags, cpu_flags;
  779. enum AVPixelFormat srcFormat = c->srcFormat;
  780. enum AVPixelFormat dstFormat = c->dstFormat;
  781. const AVPixFmtDescriptor *desc_src = av_pix_fmt_desc_get(srcFormat);
  782. const AVPixFmtDescriptor *desc_dst = av_pix_fmt_desc_get(dstFormat);
  783. cpu_flags = av_get_cpu_flags();
  784. flags = c->flags;
  785. emms_c();
  786. if (!rgb15to16)
  787. sws_rgb2rgb_init();
  788. unscaled = (srcW == dstW && srcH == dstH);
  789. if (!(unscaled && sws_isSupportedEndiannessConversion(srcFormat) &&
  790. av_pix_fmt_swap_endianness(srcFormat) == dstFormat)) {
  791. if (!sws_isSupportedInput(srcFormat)) {
  792. av_log(c, AV_LOG_ERROR, "%s is not supported as input pixel format\n",
  793. sws_format_name(srcFormat));
  794. return AVERROR(EINVAL);
  795. }
  796. if (!sws_isSupportedOutput(dstFormat)) {
  797. av_log(c, AV_LOG_ERROR, "%s is not supported as output pixel format\n",
  798. sws_format_name(dstFormat));
  799. return AVERROR(EINVAL);
  800. }
  801. }
  802. i = flags & (SWS_POINT |
  803. SWS_AREA |
  804. SWS_BILINEAR |
  805. SWS_FAST_BILINEAR |
  806. SWS_BICUBIC |
  807. SWS_X |
  808. SWS_GAUSS |
  809. SWS_LANCZOS |
  810. SWS_SINC |
  811. SWS_SPLINE |
  812. SWS_BICUBLIN);
  813. if (!i || (i & (i - 1))) {
  814. av_log(c, AV_LOG_ERROR,
  815. "Exactly one scaler algorithm must be chosen\n");
  816. return AVERROR(EINVAL);
  817. }
  818. /* sanity check */
  819. if (srcW < 4 || srcH < 1 || dstW < 8 || dstH < 1) {
  820. /* FIXME check if these are enough and try to lower them after
  821. * fixing the relevant parts of the code */
  822. av_log(c, AV_LOG_ERROR, "%dx%d -> %dx%d is invalid scaling dimension\n",
  823. srcW, srcH, dstW, dstH);
  824. return AVERROR(EINVAL);
  825. }
  826. if (!dstFilter)
  827. dstFilter = &dummyFilter;
  828. if (!srcFilter)
  829. srcFilter = &dummyFilter;
  830. c->lumXInc = (((int64_t)srcW << 16) + (dstW >> 1)) / dstW;
  831. c->lumYInc = (((int64_t)srcH << 16) + (dstH >> 1)) / dstH;
  832. c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
  833. c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
  834. c->vRounder = 4 * 0x0001000100010001ULL;
  835. usesVFilter = (srcFilter->lumV && srcFilter->lumV->length > 1) ||
  836. (srcFilter->chrV && srcFilter->chrV->length > 1) ||
  837. (dstFilter->lumV && dstFilter->lumV->length > 1) ||
  838. (dstFilter->chrV && dstFilter->chrV->length > 1);
  839. usesHFilter = (srcFilter->lumH && srcFilter->lumH->length > 1) ||
  840. (srcFilter->chrH && srcFilter->chrH->length > 1) ||
  841. (dstFilter->lumH && dstFilter->lumH->length > 1) ||
  842. (dstFilter->chrH && dstFilter->chrH->length > 1);
  843. getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
  844. getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
  845. if (isPlanarRGB(dstFormat)) {
  846. if (!(flags & SWS_FULL_CHR_H_INT)) {
  847. av_log(c, AV_LOG_DEBUG,
  848. "%s output is not supported with half chroma resolution, switching to full\n",
  849. av_get_pix_fmt_name(dstFormat));
  850. flags |= SWS_FULL_CHR_H_INT;
  851. c->flags = flags;
  852. }
  853. }
  854. /* reuse chroma for 2 pixels RGB/BGR unless user wants full
  855. * chroma interpolation */
  856. if (flags & SWS_FULL_CHR_H_INT &&
  857. isAnyRGB(dstFormat) &&
  858. !isPlanarRGB(dstFormat) &&
  859. dstFormat != AV_PIX_FMT_RGBA &&
  860. dstFormat != AV_PIX_FMT_ARGB &&
  861. dstFormat != AV_PIX_FMT_BGRA &&
  862. dstFormat != AV_PIX_FMT_ABGR &&
  863. dstFormat != AV_PIX_FMT_RGB24 &&
  864. dstFormat != AV_PIX_FMT_BGR24) {
  865. av_log(c, AV_LOG_ERROR,
  866. "full chroma interpolation for destination format '%s' not yet implemented\n",
  867. sws_format_name(dstFormat));
  868. flags &= ~SWS_FULL_CHR_H_INT;
  869. c->flags = flags;
  870. }
  871. if (isAnyRGB(dstFormat) && !(flags & SWS_FULL_CHR_H_INT))
  872. c->chrDstHSubSample = 1;
  873. // drop some chroma lines if the user wants it
  874. c->vChrDrop = (flags & SWS_SRC_V_CHR_DROP_MASK) >>
  875. SWS_SRC_V_CHR_DROP_SHIFT;
  876. c->chrSrcVSubSample += c->vChrDrop;
  877. /* drop every other pixel for chroma calculation unless user
  878. * wants full chroma */
  879. if (isAnyRGB(srcFormat) && !(flags & SWS_FULL_CHR_H_INP) &&
  880. srcFormat != AV_PIX_FMT_RGB8 && srcFormat != AV_PIX_FMT_BGR8 &&
  881. srcFormat != AV_PIX_FMT_RGB4 && srcFormat != AV_PIX_FMT_BGR4 &&
  882. srcFormat != AV_PIX_FMT_RGB4_BYTE && srcFormat != AV_PIX_FMT_BGR4_BYTE &&
  883. srcFormat != AV_PIX_FMT_GBRP9BE && srcFormat != AV_PIX_FMT_GBRP9LE &&
  884. srcFormat != AV_PIX_FMT_GBRP10BE && srcFormat != AV_PIX_FMT_GBRP10LE &&
  885. srcFormat != AV_PIX_FMT_GBRP16BE && srcFormat != AV_PIX_FMT_GBRP16LE &&
  886. ((dstW >> c->chrDstHSubSample) <= (srcW >> 1) ||
  887. (flags & SWS_FAST_BILINEAR)))
  888. c->chrSrcHSubSample = 1;
  889. // Note the -((-x)>>y) is so that we always round toward +inf.
  890. c->chrSrcW = -((-srcW) >> c->chrSrcHSubSample);
  891. c->chrSrcH = -((-srcH) >> c->chrSrcVSubSample);
  892. c->chrDstW = -((-dstW) >> c->chrDstHSubSample);
  893. c->chrDstH = -((-dstH) >> c->chrDstVSubSample);
  894. /* unscaled special cases */
  895. if (unscaled && !usesHFilter && !usesVFilter &&
  896. (c->srcRange == c->dstRange || isAnyRGB(dstFormat))) {
  897. ff_get_unscaled_swscale(c);
  898. if (c->swScale) {
  899. if (flags & SWS_PRINT_INFO)
  900. av_log(c, AV_LOG_INFO,
  901. "using unscaled %s -> %s special converter\n",
  902. sws_format_name(srcFormat), sws_format_name(dstFormat));
  903. return 0;
  904. }
  905. }
  906. c->srcBpc = 1 + desc_src->comp[0].depth_minus1;
  907. if (c->srcBpc < 8)
  908. c->srcBpc = 8;
  909. c->dstBpc = 1 + desc_dst->comp[0].depth_minus1;
  910. if (c->dstBpc < 8)
  911. c->dstBpc = 8;
  912. if (c->dstBpc == 16)
  913. dst_stride <<= 1;
  914. FF_ALLOC_OR_GOTO(c, c->formatConvBuffer,
  915. (FFALIGN(srcW, 16) * 2 * FFALIGN(c->srcBpc, 8) >> 3) + 16,
  916. fail);
  917. if (INLINE_MMXEXT(cpu_flags) && c->srcBpc == 8 && c->dstBpc <= 10) {
  918. c->canMMXEXTBeUsed = (dstW >= srcW && (dstW & 31) == 0 &&
  919. (srcW & 15) == 0) ? 1 : 0;
  920. if (!c->canMMXEXTBeUsed && dstW >= srcW && (srcW & 15) == 0
  921. && (flags & SWS_FAST_BILINEAR)) {
  922. if (flags & SWS_PRINT_INFO)
  923. av_log(c, AV_LOG_INFO,
  924. "output width is not a multiple of 32 -> no MMXEXT scaler\n");
  925. }
  926. if (usesHFilter)
  927. c->canMMXEXTBeUsed = 0;
  928. } else
  929. c->canMMXEXTBeUsed = 0;
  930. c->chrXInc = (((int64_t)c->chrSrcW << 16) + (c->chrDstW >> 1)) / c->chrDstW;
  931. c->chrYInc = (((int64_t)c->chrSrcH << 16) + (c->chrDstH >> 1)) / c->chrDstH;
  932. /* Match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src
  933. * to pixel n-2 of dst, but only for the FAST_BILINEAR mode otherwise do
  934. * correct scaling.
  935. * n-2 is the last chrominance sample available.
  936. * This is not perfect, but no one should notice the difference, the more
  937. * correct variant would be like the vertical one, but that would require
  938. * some special code for the first and last pixel */
  939. if (flags & SWS_FAST_BILINEAR) {
  940. if (c->canMMXEXTBeUsed) {
  941. c->lumXInc += 20;
  942. c->chrXInc += 20;
  943. }
  944. // we don't use the x86 asm scaler if MMX is available
  945. else if (INLINE_MMX(cpu_flags)) {
  946. c->lumXInc = ((int64_t)(srcW - 2) << 16) / (dstW - 2) - 20;
  947. c->chrXInc = ((int64_t)(c->chrSrcW - 2) << 16) / (c->chrDstW - 2) - 20;
  948. }
  949. }
  950. #define USE_MMAP (HAVE_MMAP && HAVE_MPROTECT && defined MAP_ANONYMOUS)
  951. /* precalculate horizontal scaler filter coefficients */
  952. {
  953. #if HAVE_MMXEXT_INLINE
  954. // can't downscale !!!
  955. if (c->canMMXEXTBeUsed && (flags & SWS_FAST_BILINEAR)) {
  956. c->lumMmxextFilterCodeSize = init_hscaler_mmxext(dstW, c->lumXInc, NULL,
  957. NULL, NULL, 8);
  958. c->chrMmxextFilterCodeSize = init_hscaler_mmxext(c->chrDstW, c->chrXInc,
  959. NULL, NULL, NULL, 4);
  960. #if USE_MMAP
  961. c->lumMmxextFilterCode = mmap(NULL, c->lumMmxextFilterCodeSize,
  962. PROT_READ | PROT_WRITE,
  963. MAP_PRIVATE | MAP_ANONYMOUS,
  964. -1, 0);
  965. c->chrMmxextFilterCode = mmap(NULL, c->chrMmxextFilterCodeSize,
  966. PROT_READ | PROT_WRITE,
  967. MAP_PRIVATE | MAP_ANONYMOUS,
  968. -1, 0);
  969. #elif HAVE_VIRTUALALLOC
  970. c->lumMmxextFilterCode = VirtualAlloc(NULL,
  971. c->lumMmxextFilterCodeSize,
  972. MEM_COMMIT,
  973. PAGE_EXECUTE_READWRITE);
  974. c->chrMmxextFilterCode = VirtualAlloc(NULL,
  975. c->chrMmxextFilterCodeSize,
  976. MEM_COMMIT,
  977. PAGE_EXECUTE_READWRITE);
  978. #else
  979. c->lumMmxextFilterCode = av_malloc(c->lumMmxextFilterCodeSize);
  980. c->chrMmxextFilterCode = av_malloc(c->chrMmxextFilterCodeSize);
  981. #endif
  982. if (!c->lumMmxextFilterCode || !c->chrMmxextFilterCode)
  983. return AVERROR(ENOMEM);
  984. FF_ALLOCZ_OR_GOTO(c, c->hLumFilter, (dstW / 8 + 8) * sizeof(int16_t), fail);
  985. FF_ALLOCZ_OR_GOTO(c, c->hChrFilter, (c->chrDstW / 4 + 8) * sizeof(int16_t), fail);
  986. FF_ALLOCZ_OR_GOTO(c, c->hLumFilterPos, (dstW / 2 / 8 + 8) * sizeof(int32_t), fail);
  987. FF_ALLOCZ_OR_GOTO(c, c->hChrFilterPos, (c->chrDstW / 2 / 4 + 8) * sizeof(int32_t), fail);
  988. init_hscaler_mmxext(dstW, c->lumXInc, c->lumMmxextFilterCode,
  989. c->hLumFilter, c->hLumFilterPos, 8);
  990. init_hscaler_mmxext(c->chrDstW, c->chrXInc, c->chrMmxextFilterCode,
  991. c->hChrFilter, c->hChrFilterPos, 4);
  992. #if USE_MMAP
  993. mprotect(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize, PROT_EXEC | PROT_READ);
  994. mprotect(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize, PROT_EXEC | PROT_READ);
  995. #endif
  996. } else
  997. #endif /* HAVE_MMXEXT_INLINE */
  998. {
  999. const int filterAlign =
  1000. (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? 4 :
  1001. (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC) ? 8 :
  1002. 1;
  1003. if (initFilter(&c->hLumFilter, &c->hLumFilterPos,
  1004. &c->hLumFilterSize, c->lumXInc,
  1005. srcW, dstW, filterAlign, 1 << 14,
  1006. (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
  1007. cpu_flags, srcFilter->lumH, dstFilter->lumH,
  1008. c->param, 1) < 0)
  1009. goto fail;
  1010. if (initFilter(&c->hChrFilter, &c->hChrFilterPos,
  1011. &c->hChrFilterSize, c->chrXInc,
  1012. c->chrSrcW, c->chrDstW, filterAlign, 1 << 14,
  1013. (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
  1014. cpu_flags, srcFilter->chrH, dstFilter->chrH,
  1015. c->param, 1) < 0)
  1016. goto fail;
  1017. }
  1018. } // initialize horizontal stuff
  1019. /* precalculate vertical scaler filter coefficients */
  1020. {
  1021. const int filterAlign =
  1022. (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? 2 :
  1023. (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC) ? 8 :
  1024. 1;
  1025. if (initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize,
  1026. c->lumYInc, srcH, dstH, filterAlign, (1 << 12),
  1027. (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
  1028. cpu_flags, srcFilter->lumV, dstFilter->lumV,
  1029. c->param, 0) < 0)
  1030. goto fail;
  1031. if (initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize,
  1032. c->chrYInc, c->chrSrcH, c->chrDstH,
  1033. filterAlign, (1 << 12),
  1034. (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
  1035. cpu_flags, srcFilter->chrV, dstFilter->chrV,
  1036. c->param, 0) < 0)
  1037. goto fail;
  1038. #if HAVE_ALTIVEC
  1039. FF_ALLOC_OR_GOTO(c, c->vYCoeffsBank, sizeof(vector signed short) * c->vLumFilterSize * c->dstH, fail);
  1040. FF_ALLOC_OR_GOTO(c, c->vCCoeffsBank, sizeof(vector signed short) * c->vChrFilterSize * c->chrDstH, fail);
  1041. for (i = 0; i < c->vLumFilterSize * c->dstH; i++) {
  1042. int j;
  1043. short *p = (short *)&c->vYCoeffsBank[i];
  1044. for (j = 0; j < 8; j++)
  1045. p[j] = c->vLumFilter[i];
  1046. }
  1047. for (i = 0; i < c->vChrFilterSize * c->chrDstH; i++) {
  1048. int j;
  1049. short *p = (short *)&c->vCCoeffsBank[i];
  1050. for (j = 0; j < 8; j++)
  1051. p[j] = c->vChrFilter[i];
  1052. }
  1053. #endif
  1054. }
  1055. // calculate buffer sizes so that they won't run out while handling these damn slices
  1056. c->vLumBufSize = c->vLumFilterSize;
  1057. c->vChrBufSize = c->vChrFilterSize;
  1058. for (i = 0; i < dstH; i++) {
  1059. int chrI = (int64_t)i * c->chrDstH / dstH;
  1060. int nextSlice = FFMAX(c->vLumFilterPos[i] + c->vLumFilterSize - 1,
  1061. ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)
  1062. << c->chrSrcVSubSample));
  1063. nextSlice >>= c->chrSrcVSubSample;
  1064. nextSlice <<= c->chrSrcVSubSample;
  1065. if (c->vLumFilterPos[i] + c->vLumBufSize < nextSlice)
  1066. c->vLumBufSize = nextSlice - c->vLumFilterPos[i];
  1067. if (c->vChrFilterPos[chrI] + c->vChrBufSize <
  1068. (nextSlice >> c->chrSrcVSubSample))
  1069. c->vChrBufSize = (nextSlice >> c->chrSrcVSubSample) -
  1070. c->vChrFilterPos[chrI];
  1071. }
  1072. /* Allocate pixbufs (we use dynamic allocation because otherwise we would
  1073. * need to allocate several megabytes to handle all possible cases) */
  1074. FF_ALLOC_OR_GOTO(c, c->lumPixBuf, c->vLumBufSize * 3 * sizeof(int16_t *), fail);
  1075. FF_ALLOC_OR_GOTO(c, c->chrUPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail);
  1076. FF_ALLOC_OR_GOTO(c, c->chrVPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail);
  1077. if (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat))
  1078. FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf, c->vLumBufSize * 3 * sizeof(int16_t *), fail);
  1079. /* Note we need at least one pixel more at the end because of the MMX code
  1080. * (just in case someone wants to replace the 4000/8000). */
  1081. /* align at 16 bytes for AltiVec */
  1082. for (i = 0; i < c->vLumBufSize; i++) {
  1083. FF_ALLOCZ_OR_GOTO(c, c->lumPixBuf[i + c->vLumBufSize],
  1084. dst_stride + 16, fail);
  1085. c->lumPixBuf[i] = c->lumPixBuf[i + c->vLumBufSize];
  1086. }
  1087. // 64 / (c->dstBpc & ~7) is the same as 16 / sizeof(scaling_intermediate)
  1088. c->uv_off_px = dst_stride_px + 64 / (c->dstBpc & ~7);
  1089. c->uv_off_byte = dst_stride + 16;
  1090. for (i = 0; i < c->vChrBufSize; i++) {
  1091. FF_ALLOC_OR_GOTO(c, c->chrUPixBuf[i + c->vChrBufSize],
  1092. dst_stride * 2 + 32, fail);
  1093. c->chrUPixBuf[i] = c->chrUPixBuf[i + c->vChrBufSize];
  1094. c->chrVPixBuf[i] = c->chrVPixBuf[i + c->vChrBufSize]
  1095. = c->chrUPixBuf[i] + (dst_stride >> 1) + 8;
  1096. }
  1097. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf)
  1098. for (i = 0; i < c->vLumBufSize; i++) {
  1099. FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf[i + c->vLumBufSize],
  1100. dst_stride + 16, fail);
  1101. c->alpPixBuf[i] = c->alpPixBuf[i + c->vLumBufSize];
  1102. }
  1103. // try to avoid drawing green stuff between the right end and the stride end
  1104. for (i = 0; i < c->vChrBufSize; i++)
  1105. memset(c->chrUPixBuf[i], 64, dst_stride * 2 + 1);
  1106. assert(c->chrDstH <= dstH);
  1107. if (flags & SWS_PRINT_INFO) {
  1108. if (flags & SWS_FAST_BILINEAR)
  1109. av_log(c, AV_LOG_INFO, "FAST_BILINEAR scaler, ");
  1110. else if (flags & SWS_BILINEAR)
  1111. av_log(c, AV_LOG_INFO, "BILINEAR scaler, ");
  1112. else if (flags & SWS_BICUBIC)
  1113. av_log(c, AV_LOG_INFO, "BICUBIC scaler, ");
  1114. else if (flags & SWS_X)
  1115. av_log(c, AV_LOG_INFO, "Experimental scaler, ");
  1116. else if (flags & SWS_POINT)
  1117. av_log(c, AV_LOG_INFO, "Nearest Neighbor / POINT scaler, ");
  1118. else if (flags & SWS_AREA)
  1119. av_log(c, AV_LOG_INFO, "Area Averaging scaler, ");
  1120. else if (flags & SWS_BICUBLIN)
  1121. av_log(c, AV_LOG_INFO, "luma BICUBIC / chroma BILINEAR scaler, ");
  1122. else if (flags & SWS_GAUSS)
  1123. av_log(c, AV_LOG_INFO, "Gaussian scaler, ");
  1124. else if (flags & SWS_SINC)
  1125. av_log(c, AV_LOG_INFO, "Sinc scaler, ");
  1126. else if (flags & SWS_LANCZOS)
  1127. av_log(c, AV_LOG_INFO, "Lanczos scaler, ");
  1128. else if (flags & SWS_SPLINE)
  1129. av_log(c, AV_LOG_INFO, "Bicubic spline scaler, ");
  1130. else
  1131. av_log(c, AV_LOG_INFO, "ehh flags invalid?! ");
  1132. av_log(c, AV_LOG_INFO, "from %s to %s%s ",
  1133. sws_format_name(srcFormat),
  1134. #ifdef DITHER1XBPP
  1135. dstFormat == AV_PIX_FMT_BGR555 || dstFormat == AV_PIX_FMT_BGR565 ||
  1136. dstFormat == AV_PIX_FMT_RGB444BE || dstFormat == AV_PIX_FMT_RGB444LE ||
  1137. dstFormat == AV_PIX_FMT_BGR444BE || dstFormat == AV_PIX_FMT_BGR444LE ?
  1138. "dithered " : "",
  1139. #else
  1140. "",
  1141. #endif
  1142. sws_format_name(dstFormat));
  1143. if (INLINE_MMXEXT(cpu_flags))
  1144. av_log(c, AV_LOG_INFO, "using MMXEXT\n");
  1145. else if (INLINE_AMD3DNOW(cpu_flags))
  1146. av_log(c, AV_LOG_INFO, "using 3DNOW\n");
  1147. else if (INLINE_MMX(cpu_flags))
  1148. av_log(c, AV_LOG_INFO, "using MMX\n");
  1149. else if (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC)
  1150. av_log(c, AV_LOG_INFO, "using AltiVec\n");
  1151. else
  1152. av_log(c, AV_LOG_INFO, "using C\n");
  1153. av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
  1154. av_log(c, AV_LOG_DEBUG,
  1155. "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1156. c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
  1157. av_log(c, AV_LOG_DEBUG,
  1158. "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1159. c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH,
  1160. c->chrXInc, c->chrYInc);
  1161. }
  1162. c->swScale = ff_getSwsFunc(c);
  1163. return 0;
  1164. fail: // FIXME replace things by appropriate error codes
  1165. return -1;
  1166. }
  1167. #if FF_API_SWS_GETCONTEXT
  1168. SwsContext *sws_getContext(int srcW, int srcH, enum AVPixelFormat srcFormat,
  1169. int dstW, int dstH, enum AVPixelFormat dstFormat,
  1170. int flags, SwsFilter *srcFilter,
  1171. SwsFilter *dstFilter, const double *param)
  1172. {
  1173. SwsContext *c;
  1174. if (!(c = sws_alloc_context()))
  1175. return NULL;
  1176. c->flags = flags;
  1177. c->srcW = srcW;
  1178. c->srcH = srcH;
  1179. c->dstW = dstW;
  1180. c->dstH = dstH;
  1181. c->srcRange = handle_jpeg(&srcFormat);
  1182. c->dstRange = handle_jpeg(&dstFormat);
  1183. c->srcFormat = srcFormat;
  1184. c->dstFormat = dstFormat;
  1185. if (param) {
  1186. c->param[0] = param[0];
  1187. c->param[1] = param[1];
  1188. }
  1189. sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], c->srcRange,
  1190. ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/,
  1191. c->dstRange, 0, 1 << 16, 1 << 16);
  1192. if (sws_init_context(c, srcFilter, dstFilter) < 0) {
  1193. sws_freeContext(c);
  1194. return NULL;
  1195. }
  1196. return c;
  1197. }
  1198. #endif
  1199. SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
  1200. float lumaSharpen, float chromaSharpen,
  1201. float chromaHShift, float chromaVShift,
  1202. int verbose)
  1203. {
  1204. SwsFilter *filter = av_malloc(sizeof(SwsFilter));
  1205. if (!filter)
  1206. return NULL;
  1207. if (lumaGBlur != 0.0) {
  1208. filter->lumH = sws_getGaussianVec(lumaGBlur, 3.0);
  1209. filter->lumV = sws_getGaussianVec(lumaGBlur, 3.0);
  1210. } else {
  1211. filter->lumH = sws_getIdentityVec();
  1212. filter->lumV = sws_getIdentityVec();
  1213. }
  1214. if (chromaGBlur != 0.0) {
  1215. filter->chrH = sws_getGaussianVec(chromaGBlur, 3.0);
  1216. filter->chrV = sws_getGaussianVec(chromaGBlur, 3.0);
  1217. } else {
  1218. filter->chrH = sws_getIdentityVec();
  1219. filter->chrV = sws_getIdentityVec();
  1220. }
  1221. if (chromaSharpen != 0.0) {
  1222. SwsVector *id = sws_getIdentityVec();
  1223. sws_scaleVec(filter->chrH, -chromaSharpen);
  1224. sws_scaleVec(filter->chrV, -chromaSharpen);
  1225. sws_addVec(filter->chrH, id);
  1226. sws_addVec(filter->chrV, id);
  1227. sws_freeVec(id);
  1228. }
  1229. if (lumaSharpen != 0.0) {
  1230. SwsVector *id = sws_getIdentityVec();
  1231. sws_scaleVec(filter->lumH, -lumaSharpen);
  1232. sws_scaleVec(filter->lumV, -lumaSharpen);
  1233. sws_addVec(filter->lumH, id);
  1234. sws_addVec(filter->lumV, id);
  1235. sws_freeVec(id);
  1236. }
  1237. if (chromaHShift != 0.0)
  1238. sws_shiftVec(filter->chrH, (int)(chromaHShift + 0.5));
  1239. if (chromaVShift != 0.0)
  1240. sws_shiftVec(filter->chrV, (int)(chromaVShift + 0.5));
  1241. sws_normalizeVec(filter->chrH, 1.0);
  1242. sws_normalizeVec(filter->chrV, 1.0);
  1243. sws_normalizeVec(filter->lumH, 1.0);
  1244. sws_normalizeVec(filter->lumV, 1.0);
  1245. if (verbose)
  1246. sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
  1247. if (verbose)
  1248. sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
  1249. return filter;
  1250. }
  1251. SwsVector *sws_allocVec(int length)
  1252. {
  1253. SwsVector *vec = av_malloc(sizeof(SwsVector));
  1254. if (!vec)
  1255. return NULL;
  1256. vec->length = length;
  1257. vec->coeff = av_malloc(sizeof(double) * length);
  1258. if (!vec->coeff)
  1259. av_freep(&vec);
  1260. return vec;
  1261. }
  1262. SwsVector *sws_getGaussianVec(double variance, double quality)
  1263. {
  1264. const int length = (int)(variance * quality + 0.5) | 1;
  1265. int i;
  1266. double middle = (length - 1) * 0.5;
  1267. SwsVector *vec = sws_allocVec(length);
  1268. if (!vec)
  1269. return NULL;
  1270. for (i = 0; i < length; i++) {
  1271. double dist = i - middle;
  1272. vec->coeff[i] = exp(-dist * dist / (2 * variance * variance)) /
  1273. sqrt(2 * variance * M_PI);
  1274. }
  1275. sws_normalizeVec(vec, 1.0);
  1276. return vec;
  1277. }
  1278. SwsVector *sws_getConstVec(double c, int length)
  1279. {
  1280. int i;
  1281. SwsVector *vec = sws_allocVec(length);
  1282. if (!vec)
  1283. return NULL;
  1284. for (i = 0; i < length; i++)
  1285. vec->coeff[i] = c;
  1286. return vec;
  1287. }
  1288. SwsVector *sws_getIdentityVec(void)
  1289. {
  1290. return sws_getConstVec(1.0, 1);
  1291. }
  1292. static double sws_dcVec(SwsVector *a)
  1293. {
  1294. int i;
  1295. double sum = 0;
  1296. for (i = 0; i < a->length; i++)
  1297. sum += a->coeff[i];
  1298. return sum;
  1299. }
  1300. void sws_scaleVec(SwsVector *a, double scalar)
  1301. {
  1302. int i;
  1303. for (i = 0; i < a->length; i++)
  1304. a->coeff[i] *= scalar;
  1305. }
  1306. void sws_normalizeVec(SwsVector *a, double height)
  1307. {
  1308. sws_scaleVec(a, height / sws_dcVec(a));
  1309. }
  1310. static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b)
  1311. {
  1312. int length = a->length + b->length - 1;
  1313. int i, j;
  1314. SwsVector *vec = sws_getConstVec(0.0, length);
  1315. if (!vec)
  1316. return NULL;
  1317. for (i = 0; i < a->length; i++) {
  1318. for (j = 0; j < b->length; j++) {
  1319. vec->coeff[i + j] += a->coeff[i] * b->coeff[j];
  1320. }
  1321. }
  1322. return vec;
  1323. }
  1324. static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b)
  1325. {
  1326. int length = FFMAX(a->length, b->length);
  1327. int i;
  1328. SwsVector *vec = sws_getConstVec(0.0, length);
  1329. if (!vec)
  1330. return NULL;
  1331. for (i = 0; i < a->length; i++)
  1332. vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
  1333. for (i = 0; i < b->length; i++)
  1334. vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] += b->coeff[i];
  1335. return vec;
  1336. }
  1337. static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b)
  1338. {
  1339. int length = FFMAX(a->length, b->length);
  1340. int i;
  1341. SwsVector *vec = sws_getConstVec(0.0, length);
  1342. if (!vec)
  1343. return NULL;
  1344. for (i = 0; i < a->length; i++)
  1345. vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
  1346. for (i = 0; i < b->length; i++)
  1347. vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] -= b->coeff[i];
  1348. return vec;
  1349. }
  1350. /* shift left / or right if "shift" is negative */
  1351. static SwsVector *sws_getShiftedVec(SwsVector *a, int shift)
  1352. {
  1353. int length = a->length + FFABS(shift) * 2;
  1354. int i;
  1355. SwsVector *vec = sws_getConstVec(0.0, length);
  1356. if (!vec)
  1357. return NULL;
  1358. for (i = 0; i < a->length; i++) {
  1359. vec->coeff[i + (length - 1) / 2 -
  1360. (a->length - 1) / 2 - shift] = a->coeff[i];
  1361. }
  1362. return vec;
  1363. }
  1364. void sws_shiftVec(SwsVector *a, int shift)
  1365. {
  1366. SwsVector *shifted = sws_getShiftedVec(a, shift);
  1367. av_free(a->coeff);
  1368. a->coeff = shifted->coeff;
  1369. a->length = shifted->length;
  1370. av_free(shifted);
  1371. }
  1372. void sws_addVec(SwsVector *a, SwsVector *b)
  1373. {
  1374. SwsVector *sum = sws_sumVec(a, b);
  1375. av_free(a->coeff);
  1376. a->coeff = sum->coeff;
  1377. a->length = sum->length;
  1378. av_free(sum);
  1379. }
  1380. void sws_subVec(SwsVector *a, SwsVector *b)
  1381. {
  1382. SwsVector *diff = sws_diffVec(a, b);
  1383. av_free(a->coeff);
  1384. a->coeff = diff->coeff;
  1385. a->length = diff->length;
  1386. av_free(diff);
  1387. }
  1388. void sws_convVec(SwsVector *a, SwsVector *b)
  1389. {
  1390. SwsVector *conv = sws_getConvVec(a, b);
  1391. av_free(a->coeff);
  1392. a->coeff = conv->coeff;
  1393. a->length = conv->length;
  1394. av_free(conv);
  1395. }
  1396. SwsVector *sws_cloneVec(SwsVector *a)
  1397. {
  1398. int i;
  1399. SwsVector *vec = sws_allocVec(a->length);
  1400. if (!vec)
  1401. return NULL;
  1402. for (i = 0; i < a->length; i++)
  1403. vec->coeff[i] = a->coeff[i];
  1404. return vec;
  1405. }
  1406. void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
  1407. {
  1408. int i;
  1409. double max = 0;
  1410. double min = 0;
  1411. double range;
  1412. for (i = 0; i < a->length; i++)
  1413. if (a->coeff[i] > max)
  1414. max = a->coeff[i];
  1415. for (i = 0; i < a->length; i++)
  1416. if (a->coeff[i] < min)
  1417. min = a->coeff[i];
  1418. range = max - min;
  1419. for (i = 0; i < a->length; i++) {
  1420. int x = (int)((a->coeff[i] - min) * 60.0 / range + 0.5);
  1421. av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
  1422. for (; x > 0; x--)
  1423. av_log(log_ctx, log_level, " ");
  1424. av_log(log_ctx, log_level, "|\n");
  1425. }
  1426. }
  1427. void sws_freeVec(SwsVector *a)
  1428. {
  1429. if (!a)
  1430. return;
  1431. av_freep(&a->coeff);
  1432. a->length = 0;
  1433. av_free(a);
  1434. }
  1435. void sws_freeFilter(SwsFilter *filter)
  1436. {
  1437. if (!filter)
  1438. return;
  1439. if (filter->lumH)
  1440. sws_freeVec(filter->lumH);
  1441. if (filter->lumV)
  1442. sws_freeVec(filter->lumV);
  1443. if (filter->chrH)
  1444. sws_freeVec(filter->chrH);
  1445. if (filter->chrV)
  1446. sws_freeVec(filter->chrV);
  1447. av_free(filter);
  1448. }
  1449. void sws_freeContext(SwsContext *c)
  1450. {
  1451. int i;
  1452. if (!c)
  1453. return;
  1454. if (c->lumPixBuf) {
  1455. for (i = 0; i < c->vLumBufSize; i++)
  1456. av_freep(&c->lumPixBuf[i]);
  1457. av_freep(&c->lumPixBuf);
  1458. }
  1459. if (c->chrUPixBuf) {
  1460. for (i = 0; i < c->vChrBufSize; i++)
  1461. av_freep(&c->chrUPixBuf[i]);
  1462. av_freep(&c->chrUPixBuf);
  1463. av_freep(&c->chrVPixBuf);
  1464. }
  1465. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf) {
  1466. for (i = 0; i < c->vLumBufSize; i++)
  1467. av_freep(&c->alpPixBuf[i]);
  1468. av_freep(&c->alpPixBuf);
  1469. }
  1470. av_freep(&c->vLumFilter);
  1471. av_freep(&c->vChrFilter);
  1472. av_freep(&c->hLumFilter);
  1473. av_freep(&c->hChrFilter);
  1474. #if HAVE_ALTIVEC
  1475. av_freep(&c->vYCoeffsBank);
  1476. av_freep(&c->vCCoeffsBank);
  1477. #endif
  1478. av_freep(&c->vLumFilterPos);
  1479. av_freep(&c->vChrFilterPos);
  1480. av_freep(&c->hLumFilterPos);
  1481. av_freep(&c->hChrFilterPos);
  1482. #if HAVE_MMX_INLINE
  1483. #if USE_MMAP
  1484. if (c->lumMmxextFilterCode)
  1485. munmap(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize);
  1486. if (c->chrMmxextFilterCode)
  1487. munmap(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize);
  1488. #elif HAVE_VIRTUALALLOC
  1489. if (c->lumMmxextFilterCode)
  1490. VirtualFree(c->lumMmxextFilterCode, 0, MEM_RELEASE);
  1491. if (c->chrMmxextFilterCode)
  1492. VirtualFree(c->chrMmxextFilterCode, 0, MEM_RELEASE);
  1493. #else
  1494. av_free(c->lumMmxextFilterCode);
  1495. av_free(c->chrMmxextFilterCode);
  1496. #endif
  1497. c->lumMmxextFilterCode = NULL;
  1498. c->chrMmxextFilterCode = NULL;
  1499. #endif /* HAVE_MMX_INLINE */
  1500. av_freep(&c->yuvTable);
  1501. av_free(c->formatConvBuffer);
  1502. av_free(c);
  1503. }
  1504. struct SwsContext *sws_getCachedContext(struct SwsContext *context, int srcW,
  1505. int srcH, enum AVPixelFormat srcFormat,
  1506. int dstW, int dstH,
  1507. enum AVPixelFormat dstFormat, int flags,
  1508. SwsFilter *srcFilter,
  1509. SwsFilter *dstFilter,
  1510. const double *param)
  1511. {
  1512. static const double default_param[2] = { SWS_PARAM_DEFAULT,
  1513. SWS_PARAM_DEFAULT };
  1514. if (!param)
  1515. param = default_param;
  1516. if (context &&
  1517. (context->srcW != srcW ||
  1518. context->srcH != srcH ||
  1519. context->srcFormat != srcFormat ||
  1520. context->dstW != dstW ||
  1521. context->dstH != dstH ||
  1522. context->dstFormat != dstFormat ||
  1523. context->flags != flags ||
  1524. context->param[0] != param[0] ||
  1525. context->param[1] != param[1])) {
  1526. sws_freeContext(context);
  1527. context = NULL;
  1528. }
  1529. if (!context) {
  1530. if (!(context = sws_alloc_context()))
  1531. return NULL;
  1532. context->srcW = srcW;
  1533. context->srcH = srcH;
  1534. context->srcRange = handle_jpeg(&srcFormat);
  1535. context->srcFormat = srcFormat;
  1536. context->dstW = dstW;
  1537. context->dstH = dstH;
  1538. context->dstRange = handle_jpeg(&dstFormat);
  1539. context->dstFormat = dstFormat;
  1540. context->flags = flags;
  1541. context->param[0] = param[0];
  1542. context->param[1] = param[1];
  1543. sws_setColorspaceDetails(context, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT],
  1544. context->srcRange,
  1545. ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/,
  1546. context->dstRange, 0, 1 << 16, 1 << 16);
  1547. if (sws_init_context(context, srcFilter, dstFilter) < 0) {
  1548. sws_freeContext(context);
  1549. return NULL;
  1550. }
  1551. }
  1552. return context;
  1553. }