You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2577 lines
73KB

  1. ;******************************************************************************
  2. ;* VP8 MMXEXT optimizations
  3. ;* Copyright (c) 2010 Ronald S. Bultje <rsbultje@gmail.com>
  4. ;* Copyright (c) 2010 Jason Garrett-Glaser <darkshikari@gmail.com>
  5. ;*
  6. ;* This file is part of FFmpeg.
  7. ;*
  8. ;* FFmpeg is free software; you can redistribute it and/or
  9. ;* modify it under the terms of the GNU Lesser General Public
  10. ;* License as published by the Free Software Foundation; either
  11. ;* version 2.1 of the License, or (at your option) any later version.
  12. ;*
  13. ;* FFmpeg is distributed in the hope that it will be useful,
  14. ;* but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. ;* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. ;* Lesser General Public License for more details.
  17. ;*
  18. ;* You should have received a copy of the GNU Lesser General Public
  19. ;* License along with FFmpeg; if not, write to the Free Software
  20. ;* 51, Inc., Foundation Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. ;******************************************************************************
  22. %include "x86inc.asm"
  23. %include "x86util.asm"
  24. SECTION_RODATA
  25. fourtap_filter_hw_m: times 4 dw -6, 123
  26. times 4 dw 12, -1
  27. times 4 dw -9, 93
  28. times 4 dw 50, -6
  29. times 4 dw -6, 50
  30. times 4 dw 93, -9
  31. times 4 dw -1, 12
  32. times 4 dw 123, -6
  33. sixtap_filter_hw_m: times 4 dw 2, -11
  34. times 4 dw 108, 36
  35. times 4 dw -8, 1
  36. times 4 dw 3, -16
  37. times 4 dw 77, 77
  38. times 4 dw -16, 3
  39. times 4 dw 1, -8
  40. times 4 dw 36, 108
  41. times 4 dw -11, 2
  42. fourtap_filter_hb_m: times 8 db -6, 123
  43. times 8 db 12, -1
  44. times 8 db -9, 93
  45. times 8 db 50, -6
  46. times 8 db -6, 50
  47. times 8 db 93, -9
  48. times 8 db -1, 12
  49. times 8 db 123, -6
  50. sixtap_filter_hb_m: times 8 db 2, 1
  51. times 8 db -11, 108
  52. times 8 db 36, -8
  53. times 8 db 3, 3
  54. times 8 db -16, 77
  55. times 8 db 77, -16
  56. times 8 db 1, 2
  57. times 8 db -8, 36
  58. times 8 db 108, -11
  59. fourtap_filter_v_m: times 8 dw -6
  60. times 8 dw 123
  61. times 8 dw 12
  62. times 8 dw -1
  63. times 8 dw -9
  64. times 8 dw 93
  65. times 8 dw 50
  66. times 8 dw -6
  67. times 8 dw -6
  68. times 8 dw 50
  69. times 8 dw 93
  70. times 8 dw -9
  71. times 8 dw -1
  72. times 8 dw 12
  73. times 8 dw 123
  74. times 8 dw -6
  75. sixtap_filter_v_m: times 8 dw 2
  76. times 8 dw -11
  77. times 8 dw 108
  78. times 8 dw 36
  79. times 8 dw -8
  80. times 8 dw 1
  81. times 8 dw 3
  82. times 8 dw -16
  83. times 8 dw 77
  84. times 8 dw 77
  85. times 8 dw -16
  86. times 8 dw 3
  87. times 8 dw 1
  88. times 8 dw -8
  89. times 8 dw 36
  90. times 8 dw 108
  91. times 8 dw -11
  92. times 8 dw 2
  93. bilinear_filter_vw_m: times 8 dw 1
  94. times 8 dw 2
  95. times 8 dw 3
  96. times 8 dw 4
  97. times 8 dw 5
  98. times 8 dw 6
  99. times 8 dw 7
  100. bilinear_filter_vb_m: times 8 db 7, 1
  101. times 8 db 6, 2
  102. times 8 db 5, 3
  103. times 8 db 4, 4
  104. times 8 db 3, 5
  105. times 8 db 2, 6
  106. times 8 db 1, 7
  107. %ifdef PIC
  108. %define fourtap_filter_hw r11
  109. %define sixtap_filter_hw r11
  110. %define fourtap_filter_hb r11
  111. %define sixtap_filter_hb r11
  112. %define fourtap_filter_v r11
  113. %define sixtap_filter_v r11
  114. %define bilinear_filter_vw r11
  115. %define bilinear_filter_vb r11
  116. %else
  117. %define fourtap_filter_hw fourtap_filter_hw_m
  118. %define sixtap_filter_hw sixtap_filter_hw_m
  119. %define fourtap_filter_hb fourtap_filter_hb_m
  120. %define sixtap_filter_hb sixtap_filter_hb_m
  121. %define fourtap_filter_v fourtap_filter_v_m
  122. %define sixtap_filter_v sixtap_filter_v_m
  123. %define bilinear_filter_vw bilinear_filter_vw_m
  124. %define bilinear_filter_vb bilinear_filter_vb_m
  125. %endif
  126. filter_h2_shuf: db 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8
  127. filter_h4_shuf: db 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10
  128. filter_h6_shuf1: db 0, 5, 1, 6, 2, 7, 3, 8, 4, 9, 5, 10, 6, 11, 7, 12
  129. filter_h6_shuf2: db 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9
  130. filter_h6_shuf3: db 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11
  131. pw_20091: times 4 dw 20091
  132. pw_17734: times 4 dw 17734
  133. cextern pb_1
  134. cextern pw_3
  135. cextern pb_3
  136. cextern pw_4
  137. cextern pb_4
  138. cextern pw_9
  139. cextern pw_18
  140. cextern pw_27
  141. cextern pw_63
  142. cextern pw_64
  143. cextern pb_80
  144. cextern pb_F8
  145. cextern pb_FE
  146. SECTION .text
  147. ;-----------------------------------------------------------------------------
  148. ; subpel MC functions:
  149. ;
  150. ; void put_vp8_epel<size>_h<htap>v<vtap>_<opt>(uint8_t *dst, int deststride,
  151. ; uint8_t *src, int srcstride,
  152. ; int height, int mx, int my);
  153. ;-----------------------------------------------------------------------------
  154. %macro FILTER_SSSE3 3
  155. cglobal put_vp8_epel%1_h6_ssse3, 6, 6, %2
  156. lea r5d, [r5*3]
  157. mova m3, [filter_h6_shuf2]
  158. mova m4, [filter_h6_shuf3]
  159. %ifdef PIC
  160. lea r11, [sixtap_filter_hb_m]
  161. %endif
  162. mova m5, [sixtap_filter_hb+r5*8-48] ; set up 6tap filter in bytes
  163. mova m6, [sixtap_filter_hb+r5*8-32]
  164. mova m7, [sixtap_filter_hb+r5*8-16]
  165. .nextrow
  166. movu m0, [r2-2]
  167. mova m1, m0
  168. mova m2, m0
  169. %ifidn %1, 4
  170. ; For epel4, we need 9 bytes, but only 8 get loaded; to compensate, do the
  171. ; shuffle with a memory operand
  172. punpcklbw m0, [r2+3]
  173. %else
  174. pshufb m0, [filter_h6_shuf1]
  175. %endif
  176. pshufb m1, m3
  177. pshufb m2, m4
  178. pmaddubsw m0, m5
  179. pmaddubsw m1, m6
  180. pmaddubsw m2, m7
  181. paddsw m0, m1
  182. paddsw m0, m2
  183. paddsw m0, [pw_64]
  184. psraw m0, 7
  185. packuswb m0, m0
  186. movh [r0], m0 ; store
  187. ; go to next line
  188. add r0, r1
  189. add r2, r3
  190. dec r4 ; next row
  191. jg .nextrow
  192. REP_RET
  193. cglobal put_vp8_epel%1_h4_ssse3, 6, 6, %3
  194. shl r5d, 4
  195. mova m2, [pw_64]
  196. mova m3, [filter_h2_shuf]
  197. mova m4, [filter_h4_shuf]
  198. %ifdef PIC
  199. lea r11, [fourtap_filter_hb_m]
  200. %endif
  201. mova m5, [fourtap_filter_hb+r5-16] ; set up 4tap filter in bytes
  202. mova m6, [fourtap_filter_hb+r5]
  203. .nextrow
  204. movu m0, [r2-1]
  205. mova m1, m0
  206. pshufb m0, m3
  207. pshufb m1, m4
  208. pmaddubsw m0, m5
  209. pmaddubsw m1, m6
  210. paddsw m0, m2
  211. paddsw m0, m1
  212. psraw m0, 7
  213. packuswb m0, m0
  214. movh [r0], m0 ; store
  215. ; go to next line
  216. add r0, r1
  217. add r2, r3
  218. dec r4 ; next row
  219. jg .nextrow
  220. REP_RET
  221. cglobal put_vp8_epel%1_v4_ssse3, 7, 7, %2
  222. shl r6d, 4
  223. %ifdef PIC
  224. lea r11, [fourtap_filter_hb_m]
  225. %endif
  226. mova m5, [fourtap_filter_hb+r6-16]
  227. mova m6, [fourtap_filter_hb+r6]
  228. mova m7, [pw_64]
  229. ; read 3 lines
  230. sub r2, r3
  231. movh m0, [r2]
  232. movh m1, [r2+ r3]
  233. movh m2, [r2+2*r3]
  234. add r2, r3
  235. .nextrow
  236. movh m3, [r2+2*r3] ; read new row
  237. mova m4, m0
  238. mova m0, m1
  239. punpcklbw m4, m1
  240. mova m1, m2
  241. punpcklbw m2, m3
  242. pmaddubsw m4, m5
  243. pmaddubsw m2, m6
  244. paddsw m4, m2
  245. mova m2, m3
  246. paddsw m4, m7
  247. psraw m4, 7
  248. packuswb m4, m4
  249. movh [r0], m4
  250. ; go to next line
  251. add r0, r1
  252. add r2, r3
  253. dec r4 ; next row
  254. jg .nextrow
  255. REP_RET
  256. cglobal put_vp8_epel%1_v6_ssse3, 7, 7, %2
  257. lea r6d, [r6*3]
  258. %ifdef PIC
  259. lea r11, [sixtap_filter_hb_m]
  260. %endif
  261. lea r6, [sixtap_filter_hb+r6*8]
  262. ; read 5 lines
  263. sub r2, r3
  264. sub r2, r3
  265. movh m0, [r2]
  266. movh m1, [r2+r3]
  267. movh m2, [r2+r3*2]
  268. lea r2, [r2+r3*2]
  269. add r2, r3
  270. movh m3, [r2]
  271. movh m4, [r2+r3]
  272. .nextrow
  273. movh m5, [r2+2*r3] ; read new row
  274. mova m6, m0
  275. punpcklbw m6, m5
  276. mova m0, m1
  277. punpcklbw m1, m2
  278. mova m7, m3
  279. punpcklbw m7, m4
  280. pmaddubsw m6, [r6-48]
  281. pmaddubsw m1, [r6-32]
  282. pmaddubsw m7, [r6-16]
  283. paddsw m6, m1
  284. paddsw m6, m7
  285. mova m1, m2
  286. paddsw m6, [pw_64]
  287. mova m2, m3
  288. psraw m6, 7
  289. mova m3, m4
  290. packuswb m6, m6
  291. mova m4, m5
  292. movh [r0], m6
  293. ; go to next line
  294. add r0, r1
  295. add r2, r3
  296. dec r4 ; next row
  297. jg .nextrow
  298. REP_RET
  299. %endmacro
  300. INIT_MMX
  301. FILTER_SSSE3 4, 0, 0
  302. INIT_XMM
  303. FILTER_SSSE3 8, 8, 7
  304. ; 4x4 block, H-only 4-tap filter
  305. cglobal put_vp8_epel4_h4_mmxext, 6, 6
  306. shl r5d, 4
  307. %ifdef PIC
  308. lea r11, [fourtap_filter_hw_m]
  309. %endif
  310. movq mm4, [fourtap_filter_hw+r5-16] ; set up 4tap filter in words
  311. movq mm5, [fourtap_filter_hw+r5]
  312. movq mm7, [pw_64]
  313. pxor mm6, mm6
  314. .nextrow
  315. movq mm1, [r2-1] ; (ABCDEFGH) load 8 horizontal pixels
  316. ; first set of 2 pixels
  317. movq mm2, mm1 ; byte ABCD..
  318. punpcklbw mm1, mm6 ; byte->word ABCD
  319. pshufw mm0, mm2, 9 ; byte CDEF..
  320. punpcklbw mm0, mm6 ; byte->word CDEF
  321. pshufw mm3, mm1, 0x94 ; word ABBC
  322. pshufw mm1, mm0, 0x94 ; word CDDE
  323. pmaddwd mm3, mm4 ; multiply 2px with F0/F1
  324. movq mm0, mm1 ; backup for second set of pixels
  325. pmaddwd mm1, mm5 ; multiply 2px with F2/F3
  326. paddd mm3, mm1 ; finish 1st 2px
  327. ; second set of 2 pixels, use backup of above
  328. punpckhbw mm2, mm6 ; byte->word EFGH
  329. pmaddwd mm0, mm4 ; multiply backed up 2px with F0/F1
  330. pshufw mm1, mm2, 0x94 ; word EFFG
  331. pmaddwd mm1, mm5 ; multiply 2px with F2/F3
  332. paddd mm0, mm1 ; finish 2nd 2px
  333. ; merge two sets of 2 pixels into one set of 4, round/clip/store
  334. packssdw mm3, mm0 ; merge dword->word (4px)
  335. paddsw mm3, mm7 ; rounding
  336. psraw mm3, 7
  337. packuswb mm3, mm6 ; clip and word->bytes
  338. movd [r0], mm3 ; store
  339. ; go to next line
  340. add r0, r1
  341. add r2, r3
  342. dec r4 ; next row
  343. jg .nextrow
  344. REP_RET
  345. ; 4x4 block, H-only 6-tap filter
  346. cglobal put_vp8_epel4_h6_mmxext, 6, 6
  347. lea r5d, [r5*3]
  348. %ifdef PIC
  349. lea r11, [sixtap_filter_hw_m]
  350. %endif
  351. movq mm4, [sixtap_filter_hw+r5*8-48] ; set up 4tap filter in words
  352. movq mm5, [sixtap_filter_hw+r5*8-32]
  353. movq mm6, [sixtap_filter_hw+r5*8-16]
  354. movq mm7, [pw_64]
  355. pxor mm3, mm3
  356. .nextrow
  357. movq mm1, [r2-2] ; (ABCDEFGH) load 8 horizontal pixels
  358. ; first set of 2 pixels
  359. movq mm2, mm1 ; byte ABCD..
  360. punpcklbw mm1, mm3 ; byte->word ABCD
  361. pshufw mm0, mm2, 0x9 ; byte CDEF..
  362. punpckhbw mm2, mm3 ; byte->word EFGH
  363. punpcklbw mm0, mm3 ; byte->word CDEF
  364. pshufw mm1, mm1, 0x94 ; word ABBC
  365. pshufw mm2, mm2, 0x94 ; word EFFG
  366. pmaddwd mm1, mm4 ; multiply 2px with F0/F1
  367. pshufw mm3, mm0, 0x94 ; word CDDE
  368. movq mm0, mm3 ; backup for second set of pixels
  369. pmaddwd mm3, mm5 ; multiply 2px with F2/F3
  370. paddd mm1, mm3 ; add to 1st 2px cache
  371. movq mm3, mm2 ; backup for second set of pixels
  372. pmaddwd mm2, mm6 ; multiply 2px with F4/F5
  373. paddd mm1, mm2 ; finish 1st 2px
  374. ; second set of 2 pixels, use backup of above
  375. movd mm2, [r2+3] ; byte FGHI (prevent overreads)
  376. pmaddwd mm0, mm4 ; multiply 1st backed up 2px with F0/F1
  377. pmaddwd mm3, mm5 ; multiply 2nd backed up 2px with F2/F3
  378. paddd mm0, mm3 ; add to 2nd 2px cache
  379. pxor mm3, mm3
  380. punpcklbw mm2, mm3 ; byte->word FGHI
  381. pshufw mm2, mm2, 0xE9 ; word GHHI
  382. pmaddwd mm2, mm6 ; multiply 2px with F4/F5
  383. paddd mm0, mm2 ; finish 2nd 2px
  384. ; merge two sets of 2 pixels into one set of 4, round/clip/store
  385. packssdw mm1, mm0 ; merge dword->word (4px)
  386. paddsw mm1, mm7 ; rounding
  387. psraw mm1, 7
  388. packuswb mm1, mm3 ; clip and word->bytes
  389. movd [r0], mm1 ; store
  390. ; go to next line
  391. add r0, r1
  392. add r2, r3
  393. dec r4 ; next row
  394. jg .nextrow
  395. REP_RET
  396. ; 4x4 block, H-only 4-tap filter
  397. INIT_XMM
  398. cglobal put_vp8_epel8_h4_sse2, 6, 6, 8
  399. shl r5d, 4
  400. %ifdef PIC
  401. lea r11, [fourtap_filter_hw_m]
  402. %endif
  403. mova m5, [fourtap_filter_hw+r5-16] ; set up 4tap filter in words
  404. mova m6, [fourtap_filter_hw+r5]
  405. pxor m7, m7
  406. .nextrow
  407. movh m0, [r2-1]
  408. punpcklbw m0, m7 ; ABCDEFGH
  409. mova m1, m0
  410. mova m2, m0
  411. mova m3, m0
  412. psrldq m1, 2 ; BCDEFGH
  413. psrldq m2, 4 ; CDEFGH
  414. psrldq m3, 6 ; DEFGH
  415. punpcklwd m0, m1 ; ABBCCDDE
  416. punpcklwd m2, m3 ; CDDEEFFG
  417. pmaddwd m0, m5
  418. pmaddwd m2, m6
  419. paddd m0, m2
  420. movh m1, [r2+3]
  421. punpcklbw m1, m7 ; ABCDEFGH
  422. mova m2, m1
  423. mova m3, m1
  424. mova m4, m1
  425. psrldq m2, 2 ; BCDEFGH
  426. psrldq m3, 4 ; CDEFGH
  427. psrldq m4, 6 ; DEFGH
  428. punpcklwd m1, m2 ; ABBCCDDE
  429. punpcklwd m3, m4 ; CDDEEFFG
  430. pmaddwd m1, m5
  431. pmaddwd m3, m6
  432. paddd m1, m3
  433. packssdw m0, m1
  434. paddsw m0, [pw_64]
  435. psraw m0, 7
  436. packuswb m0, m7
  437. movh [r0], m0 ; store
  438. ; go to next line
  439. add r0, r1
  440. add r2, r3
  441. dec r4 ; next row
  442. jg .nextrow
  443. REP_RET
  444. cglobal put_vp8_epel8_h6_sse2, 6, 6, 8
  445. lea r5d, [r5*3]
  446. %ifdef PIC
  447. lea r11, [sixtap_filter_hw_m]
  448. %endif
  449. lea r5, [sixtap_filter_hw+r5*8]
  450. pxor m7, m7
  451. .nextrow
  452. movu m0, [r2-2]
  453. mova m6, m0
  454. mova m4, m0
  455. punpcklbw m0, m7 ; ABCDEFGHI
  456. mova m1, m0
  457. mova m2, m0
  458. mova m3, m0
  459. psrldq m1, 2 ; BCDEFGH
  460. psrldq m2, 4 ; CDEFGH
  461. psrldq m3, 6 ; DEFGH
  462. psrldq m4, 4
  463. punpcklbw m4, m7 ; EFGH
  464. mova m5, m4
  465. psrldq m5, 2 ; FGH
  466. punpcklwd m0, m1 ; ABBCCDDE
  467. punpcklwd m2, m3 ; CDDEEFFG
  468. punpcklwd m4, m5 ; EFFGGHHI
  469. pmaddwd m0, [r5-48]
  470. pmaddwd m2, [r5-32]
  471. pmaddwd m4, [r5-16]
  472. paddd m0, m2
  473. paddd m0, m4
  474. psrldq m6, 4
  475. mova m4, m6
  476. punpcklbw m6, m7 ; ABCDEFGHI
  477. mova m1, m6
  478. mova m2, m6
  479. mova m3, m6
  480. psrldq m1, 2 ; BCDEFGH
  481. psrldq m2, 4 ; CDEFGH
  482. psrldq m3, 6 ; DEFGH
  483. psrldq m4, 4
  484. punpcklbw m4, m7 ; EFGH
  485. mova m5, m4
  486. psrldq m5, 2 ; FGH
  487. punpcklwd m6, m1 ; ABBCCDDE
  488. punpcklwd m2, m3 ; CDDEEFFG
  489. punpcklwd m4, m5 ; EFFGGHHI
  490. pmaddwd m6, [r5-48]
  491. pmaddwd m2, [r5-32]
  492. pmaddwd m4, [r5-16]
  493. paddd m6, m2
  494. paddd m6, m4
  495. packssdw m0, m6
  496. paddsw m0, [pw_64]
  497. psraw m0, 7
  498. packuswb m0, m7
  499. movh [r0], m0 ; store
  500. ; go to next line
  501. add r0, r1
  502. add r2, r3
  503. dec r4 ; next row
  504. jg .nextrow
  505. REP_RET
  506. %macro FILTER_V 3
  507. ; 4x4 block, V-only 4-tap filter
  508. cglobal put_vp8_epel%2_v4_%1, 7, 7, %3
  509. shl r6d, 5
  510. %ifdef PIC
  511. lea r11, [fourtap_filter_v_m]
  512. %endif
  513. lea r6, [fourtap_filter_v+r6-32]
  514. mova m6, [pw_64]
  515. pxor m7, m7
  516. mova m5, [r6+48]
  517. ; read 3 lines
  518. sub r2, r3
  519. movh m0, [r2]
  520. movh m1, [r2+ r3]
  521. movh m2, [r2+2*r3]
  522. add r2, r3
  523. punpcklbw m0, m7
  524. punpcklbw m1, m7
  525. punpcklbw m2, m7
  526. .nextrow
  527. ; first calculate negative taps (to prevent losing positive overflows)
  528. movh m4, [r2+2*r3] ; read new row
  529. punpcklbw m4, m7
  530. mova m3, m4
  531. pmullw m0, [r6+0]
  532. pmullw m4, m5
  533. paddsw m4, m0
  534. ; then calculate positive taps
  535. mova m0, m1
  536. pmullw m1, [r6+16]
  537. paddsw m4, m1
  538. mova m1, m2
  539. pmullw m2, [r6+32]
  540. paddsw m4, m2
  541. mova m2, m3
  542. ; round/clip/store
  543. paddsw m4, m6
  544. psraw m4, 7
  545. packuswb m4, m7
  546. movh [r0], m4
  547. ; go to next line
  548. add r0, r1
  549. add r2, r3
  550. dec r4 ; next row
  551. jg .nextrow
  552. REP_RET
  553. ; 4x4 block, V-only 6-tap filter
  554. cglobal put_vp8_epel%2_v6_%1, 7, 7, %3
  555. shl r6d, 4
  556. lea r6, [r6*3]
  557. %ifdef PIC
  558. lea r11, [sixtap_filter_v_m]
  559. %endif
  560. lea r6, [sixtap_filter_v+r6-96]
  561. pxor m7, m7
  562. ; read 5 lines
  563. sub r2, r3
  564. sub r2, r3
  565. movh m0, [r2]
  566. movh m1, [r2+r3]
  567. movh m2, [r2+r3*2]
  568. lea r2, [r2+r3*2]
  569. add r2, r3
  570. movh m3, [r2]
  571. movh m4, [r2+r3]
  572. punpcklbw m0, m7
  573. punpcklbw m1, m7
  574. punpcklbw m2, m7
  575. punpcklbw m3, m7
  576. punpcklbw m4, m7
  577. .nextrow
  578. ; first calculate negative taps (to prevent losing positive overflows)
  579. mova m5, m1
  580. pmullw m5, [r6+16]
  581. mova m6, m4
  582. pmullw m6, [r6+64]
  583. paddsw m6, m5
  584. ; then calculate positive taps
  585. movh m5, [r2+2*r3] ; read new row
  586. punpcklbw m5, m7
  587. pmullw m0, [r6+0]
  588. paddsw m6, m0
  589. mova m0, m1
  590. mova m1, m2
  591. pmullw m2, [r6+32]
  592. paddsw m6, m2
  593. mova m2, m3
  594. pmullw m3, [r6+48]
  595. paddsw m6, m3
  596. mova m3, m4
  597. mova m4, m5
  598. pmullw m5, [r6+80]
  599. paddsw m6, m5
  600. ; round/clip/store
  601. paddsw m6, [pw_64]
  602. psraw m6, 7
  603. packuswb m6, m7
  604. movh [r0], m6
  605. ; go to next line
  606. add r0, r1
  607. add r2, r3
  608. dec r4 ; next row
  609. jg .nextrow
  610. REP_RET
  611. %endmacro
  612. INIT_MMX
  613. FILTER_V mmxext, 4, 0
  614. INIT_XMM
  615. FILTER_V sse2, 8, 8
  616. %macro FILTER_BILINEAR 3
  617. cglobal put_vp8_bilinear%2_v_%1, 7,7,%3
  618. mov r5d, 8*16
  619. shl r6d, 4
  620. sub r5d, r6d
  621. %ifdef PIC
  622. lea r11, [bilinear_filter_vw_m]
  623. %endif
  624. pxor m6, m6
  625. mova m4, [bilinear_filter_vw+r5-16]
  626. mova m5, [bilinear_filter_vw+r6-16]
  627. .nextrow
  628. movh m0, [r2+r3*0]
  629. movh m1, [r2+r3*1]
  630. movh m3, [r2+r3*2]
  631. punpcklbw m0, m6
  632. punpcklbw m1, m6
  633. punpcklbw m3, m6
  634. mova m2, m1
  635. pmullw m0, m4
  636. pmullw m1, m5
  637. pmullw m2, m4
  638. pmullw m3, m5
  639. paddsw m0, m1
  640. paddsw m2, m3
  641. psraw m0, 2
  642. psraw m2, 2
  643. pavgw m0, m6
  644. pavgw m2, m6
  645. %ifidn %1, mmxext
  646. packuswb m0, m0
  647. packuswb m2, m2
  648. movh [r0+r1*0], m0
  649. movh [r0+r1*1], m2
  650. %else
  651. packuswb m0, m2
  652. movh [r0+r1*0], m0
  653. movhps [r0+r1*1], m0
  654. %endif
  655. lea r0, [r0+r1*2]
  656. lea r2, [r2+r3*2]
  657. sub r4, 2
  658. jg .nextrow
  659. REP_RET
  660. cglobal put_vp8_bilinear%2_h_%1, 7,7,%3
  661. mov r6d, 8*16
  662. shl r5d, 4
  663. sub r6d, r5d
  664. %ifdef PIC
  665. lea r11, [bilinear_filter_vw_m]
  666. %endif
  667. pxor m6, m6
  668. mova m4, [bilinear_filter_vw+r6-16]
  669. mova m5, [bilinear_filter_vw+r5-16]
  670. .nextrow
  671. movh m0, [r2+r3*0+0]
  672. movh m1, [r2+r3*0+1]
  673. movh m2, [r2+r3*1+0]
  674. movh m3, [r2+r3*1+1]
  675. punpcklbw m0, m6
  676. punpcklbw m1, m6
  677. punpcklbw m2, m6
  678. punpcklbw m3, m6
  679. pmullw m0, m4
  680. pmullw m1, m5
  681. pmullw m2, m4
  682. pmullw m3, m5
  683. paddsw m0, m1
  684. paddsw m2, m3
  685. psraw m0, 2
  686. psraw m2, 2
  687. pavgw m0, m6
  688. pavgw m2, m6
  689. %ifidn %1, mmxext
  690. packuswb m0, m0
  691. packuswb m2, m2
  692. movh [r0+r1*0], m0
  693. movh [r0+r1*1], m2
  694. %else
  695. packuswb m0, m2
  696. movh [r0+r1*0], m0
  697. movhps [r0+r1*1], m0
  698. %endif
  699. lea r0, [r0+r1*2]
  700. lea r2, [r2+r3*2]
  701. sub r4, 2
  702. jg .nextrow
  703. REP_RET
  704. %endmacro
  705. INIT_MMX
  706. FILTER_BILINEAR mmxext, 4, 0
  707. INIT_XMM
  708. FILTER_BILINEAR sse2, 8, 7
  709. %macro FILTER_BILINEAR_SSSE3 1
  710. cglobal put_vp8_bilinear%1_v_ssse3, 7,7
  711. shl r6d, 4
  712. %ifdef PIC
  713. lea r11, [bilinear_filter_vb_m]
  714. %endif
  715. pxor m4, m4
  716. mova m3, [bilinear_filter_vb+r6-16]
  717. .nextrow
  718. movh m0, [r2+r3*0]
  719. movh m1, [r2+r3*1]
  720. movh m2, [r2+r3*2]
  721. punpcklbw m0, m1
  722. punpcklbw m1, m2
  723. pmaddubsw m0, m3
  724. pmaddubsw m1, m3
  725. psraw m0, 2
  726. psraw m1, 2
  727. pavgw m0, m4
  728. pavgw m1, m4
  729. %if mmsize==8
  730. packuswb m0, m0
  731. packuswb m1, m1
  732. movh [r0+r1*0], m0
  733. movh [r0+r1*1], m1
  734. %else
  735. packuswb m0, m1
  736. movh [r0+r1*0], m0
  737. movhps [r0+r1*1], m0
  738. %endif
  739. lea r0, [r0+r1*2]
  740. lea r2, [r2+r3*2]
  741. sub r4, 2
  742. jg .nextrow
  743. REP_RET
  744. cglobal put_vp8_bilinear%1_h_ssse3, 7,7
  745. shl r5d, 4
  746. %ifdef PIC
  747. lea r11, [bilinear_filter_vb_m]
  748. %endif
  749. pxor m4, m4
  750. mova m2, [filter_h2_shuf]
  751. mova m3, [bilinear_filter_vb+r5-16]
  752. .nextrow
  753. movu m0, [r2+r3*0]
  754. movu m1, [r2+r3*1]
  755. pshufb m0, m2
  756. pshufb m1, m2
  757. pmaddubsw m0, m3
  758. pmaddubsw m1, m3
  759. psraw m0, 2
  760. psraw m1, 2
  761. pavgw m0, m4
  762. pavgw m1, m4
  763. %if mmsize==8
  764. packuswb m0, m0
  765. packuswb m1, m1
  766. movh [r0+r1*0], m0
  767. movh [r0+r1*1], m1
  768. %else
  769. packuswb m0, m1
  770. movh [r0+r1*0], m0
  771. movhps [r0+r1*1], m0
  772. %endif
  773. lea r0, [r0+r1*2]
  774. lea r2, [r2+r3*2]
  775. sub r4, 2
  776. jg .nextrow
  777. REP_RET
  778. %endmacro
  779. INIT_MMX
  780. FILTER_BILINEAR_SSSE3 4
  781. INIT_XMM
  782. FILTER_BILINEAR_SSSE3 8
  783. cglobal put_vp8_pixels8_mmx, 5,5
  784. .nextrow:
  785. movq mm0, [r2+r3*0]
  786. movq mm1, [r2+r3*1]
  787. lea r2, [r2+r3*2]
  788. movq [r0+r1*0], mm0
  789. movq [r0+r1*1], mm1
  790. lea r0, [r0+r1*2]
  791. sub r4d, 2
  792. jg .nextrow
  793. REP_RET
  794. cglobal put_vp8_pixels16_mmx, 5,5
  795. .nextrow:
  796. movq mm0, [r2+r3*0+0]
  797. movq mm1, [r2+r3*0+8]
  798. movq mm2, [r2+r3*1+0]
  799. movq mm3, [r2+r3*1+8]
  800. lea r2, [r2+r3*2]
  801. movq [r0+r1*0+0], mm0
  802. movq [r0+r1*0+8], mm1
  803. movq [r0+r1*1+0], mm2
  804. movq [r0+r1*1+8], mm3
  805. lea r0, [r0+r1*2]
  806. sub r4d, 2
  807. jg .nextrow
  808. REP_RET
  809. cglobal put_vp8_pixels16_sse, 5,5,2
  810. .nextrow:
  811. movups xmm0, [r2+r3*0]
  812. movups xmm1, [r2+r3*1]
  813. lea r2, [r2+r3*2]
  814. movaps [r0+r1*0], xmm0
  815. movaps [r0+r1*1], xmm1
  816. lea r0, [r0+r1*2]
  817. sub r4d, 2
  818. jg .nextrow
  819. REP_RET
  820. ;-----------------------------------------------------------------------------
  821. ; IDCT functions:
  822. ;
  823. ; void vp8_idct_dc_add_<opt>(uint8_t *dst, DCTELEM block[16], int stride);
  824. ;-----------------------------------------------------------------------------
  825. cglobal vp8_idct_dc_add_mmx, 3, 3
  826. ; load data
  827. movd mm0, [r1]
  828. ; calculate DC
  829. paddw mm0, [pw_4]
  830. pxor mm1, mm1
  831. psraw mm0, 3
  832. psubw mm1, mm0
  833. packuswb mm0, mm0
  834. packuswb mm1, mm1
  835. punpcklbw mm0, mm0
  836. punpcklbw mm1, mm1
  837. punpcklwd mm0, mm0
  838. punpcklwd mm1, mm1
  839. ; add DC
  840. lea r1, [r0+r2*2]
  841. movd mm2, [r0]
  842. movd mm3, [r0+r2]
  843. movd mm4, [r1]
  844. movd mm5, [r1+r2]
  845. paddusb mm2, mm0
  846. paddusb mm3, mm0
  847. paddusb mm4, mm0
  848. paddusb mm5, mm0
  849. psubusb mm2, mm1
  850. psubusb mm3, mm1
  851. psubusb mm4, mm1
  852. psubusb mm5, mm1
  853. movd [r0], mm2
  854. movd [r0+r2], mm3
  855. movd [r1], mm4
  856. movd [r1+r2], mm5
  857. RET
  858. cglobal vp8_idct_dc_add_sse4, 3, 3, 6
  859. ; load data
  860. movd xmm0, [r1]
  861. lea r1, [r0+r2*2]
  862. pxor xmm1, xmm1
  863. ; calculate DC
  864. paddw xmm0, [pw_4]
  865. movd xmm2, [r0]
  866. movd xmm3, [r0+r2]
  867. movd xmm4, [r1]
  868. movd xmm5, [r1+r2]
  869. psraw xmm0, 3
  870. pshuflw xmm0, xmm0, 0
  871. punpcklqdq xmm0, xmm0
  872. punpckldq xmm2, xmm3
  873. punpckldq xmm4, xmm5
  874. punpcklbw xmm2, xmm1
  875. punpcklbw xmm4, xmm1
  876. paddw xmm2, xmm0
  877. paddw xmm4, xmm0
  878. packuswb xmm2, xmm4
  879. movd [r0], xmm2
  880. pextrd [r0+r2], xmm2, 1
  881. pextrd [r1], xmm2, 2
  882. pextrd [r1+r2], xmm2, 3
  883. RET
  884. ;-----------------------------------------------------------------------------
  885. ; void vp8_idct_add_<opt>(uint8_t *dst, DCTELEM block[16], int stride);
  886. ;-----------------------------------------------------------------------------
  887. ; calculate %1=mul_35468(%1)-mul_20091(%2); %2=mul_20091(%1)+mul_35468(%2)
  888. ; this macro assumes that m6/m7 have words for 20091/17734 loaded
  889. %macro VP8_MULTIPLY_SUMSUB 4
  890. mova %3, %1
  891. mova %4, %2
  892. pmulhw %3, m6 ;20091(1)
  893. pmulhw %4, m6 ;20091(2)
  894. paddw %3, %1
  895. paddw %4, %2
  896. paddw %1, %1
  897. paddw %2, %2
  898. pmulhw %1, m7 ;35468(1)
  899. pmulhw %2, m7 ;35468(2)
  900. psubw %1, %4
  901. paddw %2, %3
  902. %endmacro
  903. ; calculate x0=%1+%3; x1=%1-%3
  904. ; x2=mul_35468(%2)-mul_20091(%4); x3=mul_20091(%2)+mul_35468(%4)
  905. ; %1=x0+x3 (tmp0); %2=x1+x2 (tmp1); %3=x1-x2 (tmp2); %4=x0-x3 (tmp3)
  906. ; %5/%6 are temporary registers
  907. ; we assume m6/m7 have constant words 20091/17734 loaded in them
  908. %macro VP8_IDCT_TRANSFORM4x4_1D 6
  909. SUMSUB_BA m%3, m%1, m%5 ;t0, t1
  910. VP8_MULTIPLY_SUMSUB m%2, m%4, m%5,m%6 ;t2, t3
  911. SUMSUB_BA m%4, m%3, m%5 ;tmp0, tmp3
  912. SUMSUB_BA m%2, m%1, m%5 ;tmp1, tmp2
  913. SWAP %4, %1
  914. SWAP %4, %3
  915. %endmacro
  916. INIT_MMX
  917. cglobal vp8_idct_add_mmx, 3, 3
  918. ; load block data
  919. movq m0, [r1]
  920. movq m1, [r1+8]
  921. movq m2, [r1+16]
  922. movq m3, [r1+24]
  923. movq m6, [pw_20091]
  924. movq m7, [pw_17734]
  925. ; actual IDCT
  926. VP8_IDCT_TRANSFORM4x4_1D 0, 1, 2, 3, 4, 5
  927. TRANSPOSE4x4W 0, 1, 2, 3, 4
  928. paddw m0, [pw_4]
  929. VP8_IDCT_TRANSFORM4x4_1D 0, 1, 2, 3, 4, 5
  930. TRANSPOSE4x4W 0, 1, 2, 3, 4
  931. ; store
  932. pxor m4, m4
  933. lea r1, [r0+2*r2]
  934. STORE_DIFFx2 m0, m1, m6, m7, m4, 3, r0, r2
  935. STORE_DIFFx2 m2, m3, m6, m7, m4, 3, r1, r2
  936. RET
  937. ;-----------------------------------------------------------------------------
  938. ; void vp8_luma_dc_wht_mmxext(DCTELEM block[4][4][16], DCTELEM dc[16])
  939. ;-----------------------------------------------------------------------------
  940. %macro SCATTER_WHT 3
  941. movd r1d, m%1
  942. movd r2d, m%2
  943. mov [r0+2*16*(0+%3)], r1w
  944. mov [r0+2*16*(1+%3)], r2w
  945. shr r1d, 16
  946. shr r2d, 16
  947. psrlq m%1, 32
  948. psrlq m%2, 32
  949. mov [r0+2*16*(4+%3)], r1w
  950. mov [r0+2*16*(5+%3)], r2w
  951. movd r1d, m%1
  952. movd r2d, m%2
  953. mov [r0+2*16*(8+%3)], r1w
  954. mov [r0+2*16*(9+%3)], r2w
  955. shr r1d, 16
  956. shr r2d, 16
  957. mov [r0+2*16*(12+%3)], r1w
  958. mov [r0+2*16*(13+%3)], r2w
  959. %endmacro
  960. %macro HADAMARD4_1D 4
  961. SUMSUB_BADC m%2, m%1, m%4, m%3
  962. SUMSUB_BADC m%4, m%2, m%3, m%1
  963. SWAP %1, %4, %3
  964. %endmacro
  965. INIT_MMX
  966. cglobal vp8_luma_dc_wht_mmx, 2,3
  967. movq m0, [r1]
  968. movq m1, [r1+8]
  969. movq m2, [r1+16]
  970. movq m3, [r1+24]
  971. HADAMARD4_1D 0, 1, 2, 3
  972. TRANSPOSE4x4W 0, 1, 2, 3, 4
  973. paddw m0, [pw_3]
  974. HADAMARD4_1D 0, 1, 2, 3
  975. psraw m0, 3
  976. psraw m1, 3
  977. psraw m2, 3
  978. psraw m3, 3
  979. SCATTER_WHT 0, 1, 0
  980. SCATTER_WHT 2, 3, 2
  981. RET
  982. ;-----------------------------------------------------------------------------
  983. ; void vp8_h/v_loop_filter_simple_<opt>(uint8_t *dst, int stride, int flim);
  984. ;-----------------------------------------------------------------------------
  985. ; macro called with 7 mm register indexes as argument, and 4 regular registers
  986. ;
  987. ; first 4 mm registers will carry the transposed pixel data
  988. ; the other three are scratchspace (one would be sufficient, but this allows
  989. ; for more spreading/pipelining and thus faster execution on OOE CPUs)
  990. ;
  991. ; first two regular registers are buf+4*stride and buf+5*stride
  992. ; third is -stride, fourth is +stride
  993. %macro READ_8x4_INTERLEAVED 11
  994. ; interleave 8 (A-H) rows of 4 pixels each
  995. movd m%1, [%8+%10*4] ; A0-3
  996. movd m%5, [%9+%10*4] ; B0-3
  997. movd m%2, [%8+%10*2] ; C0-3
  998. movd m%6, [%8+%10] ; D0-3
  999. movd m%3, [%8] ; E0-3
  1000. movd m%7, [%9] ; F0-3
  1001. movd m%4, [%9+%11] ; G0-3
  1002. punpcklbw m%1, m%5 ; A/B interleaved
  1003. movd m%5, [%9+%11*2] ; H0-3
  1004. punpcklbw m%2, m%6 ; C/D interleaved
  1005. punpcklbw m%3, m%7 ; E/F interleaved
  1006. punpcklbw m%4, m%5 ; G/H interleaved
  1007. %endmacro
  1008. ; macro called with 7 mm register indexes as argument, and 5 regular registers
  1009. ; first 11 mean the same as READ_8x4_TRANSPOSED above
  1010. ; fifth regular register is scratchspace to reach the bottom 8 rows, it
  1011. ; will be set to second regular register + 8*stride at the end
  1012. %macro READ_16x4_INTERLEAVED 12
  1013. ; transpose 16 (A-P) rows of 4 pixels each
  1014. lea %12, [r0+8*r2]
  1015. ; read (and interleave) those addressable by %8 (=r0), A/C/D/E/I/K/L/M
  1016. movd m%1, [%8+%10*4] ; A0-3
  1017. movd m%3, [%12+%10*4] ; I0-3
  1018. movd m%2, [%8+%10*2] ; C0-3
  1019. movd m%4, [%12+%10*2] ; K0-3
  1020. movd m%6, [%8+%10] ; D0-3
  1021. movd m%5, [%12+%10] ; L0-3
  1022. movd m%7, [%12] ; M0-3
  1023. add %12, %11
  1024. punpcklbw m%1, m%3 ; A/I
  1025. movd m%3, [%8] ; E0-3
  1026. punpcklbw m%2, m%4 ; C/K
  1027. punpcklbw m%6, m%5 ; D/L
  1028. punpcklbw m%3, m%7 ; E/M
  1029. punpcklbw m%2, m%6 ; C/D/K/L interleaved
  1030. ; read (and interleave) those addressable by %9 (=r4), B/F/G/H/J/N/O/P
  1031. movd m%5, [%9+%10*4] ; B0-3
  1032. movd m%4, [%12+%10*4] ; J0-3
  1033. movd m%7, [%9] ; F0-3
  1034. movd m%6, [%12] ; N0-3
  1035. punpcklbw m%5, m%4 ; B/J
  1036. punpcklbw m%7, m%6 ; F/N
  1037. punpcklbw m%1, m%5 ; A/B/I/J interleaved
  1038. punpcklbw m%3, m%7 ; E/F/M/N interleaved
  1039. movd m%4, [%9+%11] ; G0-3
  1040. movd m%6, [%12+%11] ; O0-3
  1041. movd m%5, [%9+%11*2] ; H0-3
  1042. movd m%7, [%12+%11*2] ; P0-3
  1043. punpcklbw m%4, m%6 ; G/O
  1044. punpcklbw m%5, m%7 ; H/P
  1045. punpcklbw m%4, m%5 ; G/H/O/P interleaved
  1046. %endmacro
  1047. ; write 4 mm registers of 2 dwords each
  1048. ; first four arguments are mm register indexes containing source data
  1049. ; last four are registers containing buf+4*stride, buf+5*stride,
  1050. ; -stride and +stride
  1051. %macro WRITE_4x2D 8
  1052. ; write out (2 dwords per register)
  1053. movd [%5+%7*4], m%1
  1054. movd [%5+%7*2], m%2
  1055. movd [%5], m%3
  1056. movd [%6+%8], m%4
  1057. punpckhdq m%1, m%1
  1058. punpckhdq m%2, m%2
  1059. punpckhdq m%3, m%3
  1060. punpckhdq m%4, m%4
  1061. movd [%6+%7*4], m%1
  1062. movd [%5+%7], m%2
  1063. movd [%6], m%3
  1064. movd [%6+%8*2], m%4
  1065. %endmacro
  1066. ; write 4 xmm registers of 4 dwords each
  1067. ; arguments same as WRITE_2x4D, but with an extra register, so that the 5 regular
  1068. ; registers contain buf+4*stride, buf+5*stride, buf+12*stride, -stride and +stride
  1069. ; we add 1*stride to the third regular registry in the process
  1070. ; the 10th argument is 16 if it's a Y filter (i.e. all regular registers cover the
  1071. ; same memory region), or 8 if they cover two separate buffers (third one points to
  1072. ; a different memory region than the first two), allowing for more optimal code for
  1073. ; the 16-width case
  1074. %macro WRITE_4x4D 10
  1075. ; write out (4 dwords per register), start with dwords zero
  1076. movd [%5+%8*4], m%1
  1077. movd [%5], m%2
  1078. movd [%7+%8*4], m%3
  1079. movd [%7], m%4
  1080. ; store dwords 1
  1081. psrldq m%1, 4
  1082. psrldq m%2, 4
  1083. psrldq m%3, 4
  1084. psrldq m%4, 4
  1085. movd [%6+%8*4], m%1
  1086. movd [%6], m%2
  1087. %if %10 == 16
  1088. movd [%6+%9*4], m%3
  1089. %endif
  1090. movd [%7+%9], m%4
  1091. ; write dwords 2
  1092. psrldq m%1, 4
  1093. psrldq m%2, 4
  1094. %if %10 == 8
  1095. movd [%5+%8*2], m%1
  1096. movd %5, m%3
  1097. %endif
  1098. psrldq m%3, 4
  1099. psrldq m%4, 4
  1100. %if %10 == 16
  1101. movd [%5+%8*2], m%1
  1102. %endif
  1103. movd [%6+%9], m%2
  1104. movd [%7+%8*2], m%3
  1105. movd [%7+%9*2], m%4
  1106. add %7, %9
  1107. ; store dwords 3
  1108. psrldq m%1, 4
  1109. psrldq m%2, 4
  1110. psrldq m%3, 4
  1111. psrldq m%4, 4
  1112. %if %10 == 8
  1113. mov [%7+%8*4], %5d
  1114. movd [%6+%8*2], m%1
  1115. %else
  1116. movd [%5+%8], m%1
  1117. %endif
  1118. movd [%6+%9*2], m%2
  1119. movd [%7+%8*2], m%3
  1120. movd [%7+%9*2], m%4
  1121. %endmacro
  1122. %macro SPLATB_REG 3-4
  1123. movd %1, %2
  1124. %ifidn %3, ssse3
  1125. pshufb %1, %4
  1126. %else
  1127. punpcklbw %1, %1
  1128. %if mmsize == 16 ; sse2
  1129. pshuflw %1, %1, 0x0
  1130. punpcklqdq %1, %1
  1131. %elifidn %3, mmx
  1132. punpcklwd %1, %1
  1133. punpckldq %1, %1
  1134. %else ; mmxext
  1135. pshufw %1, %1, 0x0
  1136. %endif
  1137. %endif
  1138. %endmacro
  1139. %macro SIMPLE_LOOPFILTER 3
  1140. cglobal vp8_%2_loop_filter_simple_%1, 3, %3
  1141. %ifidn %2, h
  1142. mov r5, rsp ; backup stack pointer
  1143. and rsp, ~(mmsize-1) ; align stack
  1144. %endif
  1145. %if mmsize == 8 ; mmx/mmxext
  1146. mov r3, 2
  1147. %endif
  1148. %ifidn %1, ssse3
  1149. pxor m0, m0
  1150. %endif
  1151. SPLATB_REG m7, r2, %1, m0 ; splat "flim" into register
  1152. ; set up indexes to address 4 rows
  1153. mov r2, r1
  1154. neg r1
  1155. %ifidn %2, h
  1156. lea r0, [r0+4*r2-2]
  1157. sub rsp, mmsize*2 ; (aligned) storage space for saving p1/q1
  1158. %endif
  1159. %if mmsize == 8 ; mmx / mmxext
  1160. .next8px
  1161. %endif
  1162. %ifidn %2, v
  1163. ; read 4 half/full rows of pixels
  1164. mova m0, [r0+r1*2] ; p1
  1165. mova m1, [r0+r1] ; p0
  1166. mova m2, [r0] ; q0
  1167. mova m3, [r0+r2] ; q1
  1168. %else ; h
  1169. lea r4, [r0+r2]
  1170. %if mmsize == 8 ; mmx/mmxext
  1171. READ_8x4_INTERLEAVED 0, 1, 2, 3, 4, 5, 6, r0, r4, r1, r2
  1172. %else ; sse2
  1173. READ_16x4_INTERLEAVED 0, 1, 2, 3, 4, 5, 6, r0, r4, r1, r2, r3
  1174. %endif
  1175. TRANSPOSE4x4W 0, 1, 2, 3, 4
  1176. mova [rsp], m0 ; store p1
  1177. mova [rsp+mmsize], m3 ; store q1
  1178. %endif
  1179. ; simple_limit
  1180. mova m5, m2 ; m5=backup of q0
  1181. mova m6, m1 ; m6=backup of p0
  1182. psubusb m1, m2 ; p0-q0
  1183. psubusb m2, m6 ; q0-p0
  1184. por m1, m2 ; FFABS(p0-q0)
  1185. paddusb m1, m1 ; m1=FFABS(p0-q0)*2
  1186. mova m4, m3
  1187. mova m2, m0
  1188. psubusb m3, m0 ; q1-p1
  1189. psubusb m0, m4 ; p1-q1
  1190. por m3, m0 ; FFABS(p1-q1)
  1191. mova m0, [pb_80]
  1192. pxor m2, m0
  1193. pxor m4, m0
  1194. psubsb m2, m4 ; m2=p1-q1 (signed) backup for below
  1195. pand m3, [pb_FE]
  1196. psrlq m3, 1 ; m3=FFABS(p1-q1)/2, this can be used signed
  1197. paddusb m3, m1
  1198. psubusb m3, m7
  1199. pxor m1, m1
  1200. pcmpeqb m3, m1 ; abs(p0-q0)*2+abs(p1-q1)/2<=flim mask(0xff/0x0)
  1201. ; filter_common (use m2/p1-q1, m4=q0, m6=p0, m5/q0-p0 and m3/mask)
  1202. mova m4, m5
  1203. pxor m5, m0
  1204. pxor m0, m6
  1205. psubsb m5, m0 ; q0-p0 (signed)
  1206. paddsb m2, m5
  1207. paddsb m2, m5
  1208. paddsb m2, m5 ; a=(p1-q1) + 3*(q0-p0)
  1209. pand m2, m3 ; apply filter mask (m3)
  1210. mova m3, [pb_F8]
  1211. mova m1, m2
  1212. paddsb m2, [pb_4] ; f1<<3=a+4
  1213. paddsb m1, [pb_3] ; f2<<3=a+3
  1214. pand m2, m3
  1215. pand m1, m3 ; cache f2<<3
  1216. pxor m0, m0
  1217. pxor m3, m3
  1218. pcmpgtb m0, m2 ; which values are <0?
  1219. psubb m3, m2 ; -f1<<3
  1220. psrlq m2, 3 ; +f1
  1221. psrlq m3, 3 ; -f1
  1222. pand m3, m0
  1223. pandn m0, m2
  1224. psubusb m4, m0
  1225. paddusb m4, m3 ; q0-f1
  1226. pxor m0, m0
  1227. pxor m3, m3
  1228. pcmpgtb m0, m1 ; which values are <0?
  1229. psubb m3, m1 ; -f2<<3
  1230. psrlq m1, 3 ; +f2
  1231. psrlq m3, 3 ; -f2
  1232. pand m3, m0
  1233. pandn m0, m1
  1234. paddusb m6, m0
  1235. psubusb m6, m3 ; p0+f2
  1236. ; store
  1237. %ifidn %2, v
  1238. mova [r0], m4
  1239. mova [r0+r1], m6
  1240. %else ; h
  1241. mova m0, [rsp] ; p1
  1242. SWAP 2, 4 ; p0
  1243. SWAP 1, 6 ; q0
  1244. mova m3, [rsp+mmsize] ; q1
  1245. TRANSPOSE4x4B 0, 1, 2, 3, 4
  1246. %if mmsize == 16 ; sse2
  1247. add r3, r1 ; change from r4*8*stride to r0+8*stride
  1248. WRITE_4x4D 0, 1, 2, 3, r0, r4, r3, r1, r2, 16
  1249. %else ; mmx/mmxext
  1250. WRITE_4x2D 0, 1, 2, 3, r0, r4, r1, r2
  1251. %endif
  1252. %endif
  1253. %if mmsize == 8 ; mmx/mmxext
  1254. ; next 8 pixels
  1255. %ifidn %2, v
  1256. add r0, 8 ; advance 8 cols = pixels
  1257. %else ; h
  1258. lea r0, [r0+r2*8] ; advance 8 rows = lines
  1259. %endif
  1260. dec r3
  1261. jg .next8px
  1262. %ifidn %2, v
  1263. REP_RET
  1264. %else ; h
  1265. mov rsp, r5 ; restore stack pointer
  1266. RET
  1267. %endif
  1268. %else ; sse2
  1269. %ifidn %2, h
  1270. mov rsp, r5 ; restore stack pointer
  1271. %endif
  1272. RET
  1273. %endif
  1274. %endmacro
  1275. INIT_MMX
  1276. SIMPLE_LOOPFILTER mmx, v, 4
  1277. SIMPLE_LOOPFILTER mmx, h, 6
  1278. SIMPLE_LOOPFILTER mmxext, v, 4
  1279. SIMPLE_LOOPFILTER mmxext, h, 6
  1280. INIT_XMM
  1281. SIMPLE_LOOPFILTER sse2, v, 3
  1282. SIMPLE_LOOPFILTER sse2, h, 6
  1283. SIMPLE_LOOPFILTER ssse3, v, 3
  1284. SIMPLE_LOOPFILTER ssse3, h, 6
  1285. ;-----------------------------------------------------------------------------
  1286. ; void vp8_h/v_loop_filter<size>_inner_<opt>(uint8_t *dst, [uint8_t *v,] int stride,
  1287. ; int flimE, int flimI, int hev_thr);
  1288. ;-----------------------------------------------------------------------------
  1289. %macro INNER_LOOPFILTER 5
  1290. %if %4 == 8 ; chroma
  1291. cglobal vp8_%2_loop_filter8uv_inner_%1, 6, %3, %5
  1292. %define dst8_reg r1
  1293. %define mstride_reg r2
  1294. %define E_reg r3
  1295. %define I_reg r4
  1296. %define hev_thr_reg r5
  1297. %else ; luma
  1298. cglobal vp8_%2_loop_filter16y_inner_%1, 5, %3, %5
  1299. %define mstride_reg r1
  1300. %define E_reg r2
  1301. %define I_reg r3
  1302. %define hev_thr_reg r4
  1303. %ifdef m8 ; x86-64, sse2
  1304. %define dst8_reg r4
  1305. %elif mmsize == 16 ; x86-32, sse2
  1306. %define dst8_reg r5
  1307. %else ; x86-32, mmx/mmxext
  1308. %define cnt_reg r5
  1309. %endif
  1310. %endif
  1311. %define dst_reg r0
  1312. %define stride_reg E_reg
  1313. %define dst2_reg I_reg
  1314. %ifndef m8
  1315. %define stack_reg hev_thr_reg
  1316. %endif
  1317. %ifidn %1, ssse3
  1318. pxor m7, m7
  1319. %endif
  1320. %ifndef m8 ; mmx/mmxext or sse2 on x86-32
  1321. ; splat function arguments
  1322. SPLATB_REG m0, E_reg, %1, m7 ; E
  1323. SPLATB_REG m1, I_reg, %1, m7 ; I
  1324. SPLATB_REG m2, hev_thr_reg, %1, m7 ; hev_thresh
  1325. ; align stack
  1326. mov stack_reg, rsp ; backup stack pointer
  1327. and rsp, ~(mmsize-1) ; align stack
  1328. %ifidn %2, v
  1329. sub rsp, mmsize * 4 ; stack layout: [0]=E, [1]=I, [2]=hev_thr
  1330. ; [3]=hev() result
  1331. %else ; h
  1332. sub rsp, mmsize * 5 ; extra storage space for transposes
  1333. %endif
  1334. %define flim_E [rsp]
  1335. %define flim_I [rsp+mmsize]
  1336. %define hev_thr [rsp+mmsize*2]
  1337. %define mask_res [rsp+mmsize*3]
  1338. %define p0backup [rsp+mmsize*3]
  1339. %define q0backup [rsp+mmsize*4]
  1340. mova flim_E, m0
  1341. mova flim_I, m1
  1342. mova hev_thr, m2
  1343. %else ; sse2 on x86-64
  1344. %define flim_E m9
  1345. %define flim_I m10
  1346. %define hev_thr m11
  1347. %define mask_res m12
  1348. %define p0backup m12
  1349. %define q0backup m8
  1350. ; splat function arguments
  1351. SPLATB_REG flim_E, E_reg, %1, m7 ; E
  1352. SPLATB_REG flim_I, I_reg, %1, m7 ; I
  1353. SPLATB_REG hev_thr, hev_thr_reg, %1, m7 ; hev_thresh
  1354. %endif
  1355. %if mmsize == 8 && %4 == 16 ; mmx/mmxext
  1356. mov cnt_reg, 2
  1357. %endif
  1358. mov stride_reg, mstride_reg
  1359. neg mstride_reg
  1360. %ifidn %2, h
  1361. lea dst_reg, [dst_reg + stride_reg*4-4]
  1362. %if %4 == 8
  1363. lea dst8_reg, [dst8_reg+ stride_reg*4-4]
  1364. %endif
  1365. %endif
  1366. %if mmsize == 8
  1367. .next8px
  1368. %endif
  1369. ; read
  1370. lea dst2_reg, [dst_reg + stride_reg]
  1371. %ifidn %2, v
  1372. %if %4 == 8 && mmsize == 16
  1373. %define movrow movh
  1374. %else
  1375. %define movrow mova
  1376. %endif
  1377. movrow m0, [dst_reg +mstride_reg*4] ; p3
  1378. movrow m1, [dst2_reg+mstride_reg*4] ; p2
  1379. movrow m2, [dst_reg +mstride_reg*2] ; p1
  1380. movrow m5, [dst2_reg] ; q1
  1381. movrow m6, [dst2_reg+ stride_reg] ; q2
  1382. movrow m7, [dst2_reg+ stride_reg*2] ; q3
  1383. %if mmsize == 16 && %4 == 8
  1384. movhps m0, [dst8_reg+mstride_reg*4]
  1385. movhps m2, [dst8_reg+mstride_reg*2]
  1386. add dst8_reg, stride_reg
  1387. movhps m1, [dst8_reg+mstride_reg*4]
  1388. movhps m5, [dst8_reg]
  1389. movhps m6, [dst8_reg+ stride_reg]
  1390. movhps m7, [dst8_reg+ stride_reg*2]
  1391. add dst8_reg, mstride_reg
  1392. %endif
  1393. %elif mmsize == 8 ; mmx/mmxext (h)
  1394. ; read 8 rows of 8px each
  1395. movu m0, [dst_reg +mstride_reg*4]
  1396. movu m1, [dst2_reg+mstride_reg*4]
  1397. movu m2, [dst_reg +mstride_reg*2]
  1398. movu m3, [dst_reg +mstride_reg]
  1399. movu m4, [dst_reg]
  1400. movu m5, [dst2_reg]
  1401. movu m6, [dst2_reg+ stride_reg]
  1402. ; 8x8 transpose
  1403. TRANSPOSE4x4B 0, 1, 2, 3, 7
  1404. mova q0backup, m1
  1405. movu m7, [dst2_reg+ stride_reg*2]
  1406. TRANSPOSE4x4B 4, 5, 6, 7, 1
  1407. SBUTTERFLY dq, 0, 4, 1 ; p3/p2
  1408. SBUTTERFLY dq, 2, 6, 1 ; q0/q1
  1409. SBUTTERFLY dq, 3, 7, 1 ; q2/q3
  1410. mova m1, q0backup
  1411. mova q0backup, m2 ; store q0
  1412. SBUTTERFLY dq, 1, 5, 2 ; p1/p0
  1413. mova p0backup, m5 ; store p0
  1414. SWAP 1, 4
  1415. SWAP 2, 4
  1416. SWAP 6, 3
  1417. SWAP 5, 3
  1418. %else ; sse2 (h)
  1419. %if %4 == 16
  1420. lea dst8_reg, [dst_reg + stride_reg*8]
  1421. %endif
  1422. ; read 16 rows of 8px each, interleave
  1423. movh m0, [dst_reg +mstride_reg*4]
  1424. movh m1, [dst8_reg+mstride_reg*4]
  1425. movh m2, [dst_reg +mstride_reg*2]
  1426. movh m5, [dst8_reg+mstride_reg*2]
  1427. movh m3, [dst_reg +mstride_reg]
  1428. movh m6, [dst8_reg+mstride_reg]
  1429. movh m4, [dst_reg]
  1430. movh m7, [dst8_reg]
  1431. punpcklbw m0, m1 ; A/I
  1432. punpcklbw m2, m5 ; C/K
  1433. punpcklbw m3, m6 ; D/L
  1434. punpcklbw m4, m7 ; E/M
  1435. add dst8_reg, stride_reg
  1436. movh m1, [dst2_reg+mstride_reg*4]
  1437. movh m6, [dst8_reg+mstride_reg*4]
  1438. movh m5, [dst2_reg]
  1439. movh m7, [dst8_reg]
  1440. punpcklbw m1, m6 ; B/J
  1441. punpcklbw m5, m7 ; F/N
  1442. movh m6, [dst2_reg+ stride_reg]
  1443. movh m7, [dst8_reg+ stride_reg]
  1444. punpcklbw m6, m7 ; G/O
  1445. ; 8x16 transpose
  1446. TRANSPOSE4x4B 0, 1, 2, 3, 7
  1447. %ifdef m8
  1448. SWAP 1, 8
  1449. %else
  1450. mova q0backup, m1
  1451. %endif
  1452. movh m7, [dst2_reg+ stride_reg*2]
  1453. movh m1, [dst8_reg+ stride_reg*2]
  1454. punpcklbw m7, m1 ; H/P
  1455. TRANSPOSE4x4B 4, 5, 6, 7, 1
  1456. SBUTTERFLY dq, 0, 4, 1 ; p3/p2
  1457. SBUTTERFLY dq, 2, 6, 1 ; q0/q1
  1458. SBUTTERFLY dq, 3, 7, 1 ; q2/q3
  1459. %ifdef m8
  1460. SWAP 1, 8
  1461. SWAP 2, 8
  1462. %else
  1463. mova m1, q0backup
  1464. mova q0backup, m2 ; store q0
  1465. %endif
  1466. SBUTTERFLY dq, 1, 5, 2 ; p1/p0
  1467. %ifdef m12
  1468. SWAP 5, 12
  1469. %else
  1470. mova p0backup, m5 ; store p0
  1471. %endif
  1472. SWAP 1, 4
  1473. SWAP 2, 4
  1474. SWAP 6, 3
  1475. SWAP 5, 3
  1476. %endif
  1477. ; normal_limit for p3-p2, p2-p1, q3-q2 and q2-q1
  1478. mova m4, m1
  1479. SWAP 4, 1
  1480. psubusb m4, m0 ; p2-p3
  1481. psubusb m0, m1 ; p3-p2
  1482. por m0, m4 ; abs(p3-p2)
  1483. mova m4, m2
  1484. SWAP 4, 2
  1485. psubusb m4, m1 ; p1-p2
  1486. psubusb m1, m2 ; p2-p1
  1487. por m1, m4 ; abs(p2-p1)
  1488. mova m4, m6
  1489. SWAP 4, 6
  1490. psubusb m4, m7 ; q2-q3
  1491. psubusb m7, m6 ; q3-q2
  1492. por m7, m4 ; abs(q3-q2)
  1493. mova m4, m5
  1494. SWAP 4, 5
  1495. psubusb m4, m6 ; q1-q2
  1496. psubusb m6, m5 ; q2-q1
  1497. por m6, m4 ; abs(q2-q1)
  1498. %ifidn %1, mmx
  1499. mova m4, flim_I
  1500. pxor m3, m3
  1501. psubusb m0, m4
  1502. psubusb m1, m4
  1503. psubusb m7, m4
  1504. psubusb m6, m4
  1505. pcmpeqb m0, m3 ; abs(p3-p2) <= I
  1506. pcmpeqb m1, m3 ; abs(p2-p1) <= I
  1507. pcmpeqb m7, m3 ; abs(q3-q2) <= I
  1508. pcmpeqb m6, m3 ; abs(q2-q1) <= I
  1509. pand m0, m1
  1510. pand m7, m6
  1511. pand m0, m7
  1512. %else ; mmxext/sse2
  1513. pmaxub m0, m1
  1514. pmaxub m6, m7
  1515. pmaxub m0, m6
  1516. %endif
  1517. ; normal_limit and high_edge_variance for p1-p0, q1-q0
  1518. SWAP 7, 3 ; now m7 is zero
  1519. %ifidn %2, v
  1520. movrow m3, [dst_reg +mstride_reg] ; p0
  1521. %if mmsize == 16 && %4 == 8
  1522. movhps m3, [dst8_reg+mstride_reg]
  1523. %endif
  1524. %elifdef m12
  1525. SWAP 3, 12
  1526. %else
  1527. mova m3, p0backup
  1528. %endif
  1529. mova m1, m2
  1530. SWAP 1, 2
  1531. mova m6, m3
  1532. SWAP 3, 6
  1533. psubusb m1, m3 ; p1-p0
  1534. psubusb m6, m2 ; p0-p1
  1535. por m1, m6 ; abs(p1-p0)
  1536. %ifidn %1, mmx
  1537. mova m6, m1
  1538. psubusb m1, m4
  1539. psubusb m6, hev_thr
  1540. pcmpeqb m1, m7 ; abs(p1-p0) <= I
  1541. pcmpeqb m6, m7 ; abs(p1-p0) <= hev_thresh
  1542. pand m0, m1
  1543. mova mask_res, m6
  1544. %else ; mmxext/sse2
  1545. pmaxub m0, m1 ; max_I
  1546. SWAP 1, 4 ; max_hev_thresh
  1547. %endif
  1548. SWAP 6, 4 ; now m6 is I
  1549. %ifidn %2, v
  1550. movrow m4, [dst_reg] ; q0
  1551. %if mmsize == 16 && %4 == 8
  1552. movhps m4, [dst8_reg]
  1553. %endif
  1554. %elifdef m8
  1555. SWAP 4, 8
  1556. %else
  1557. mova m4, q0backup
  1558. %endif
  1559. mova m1, m4
  1560. SWAP 1, 4
  1561. mova m7, m5
  1562. SWAP 7, 5
  1563. psubusb m1, m5 ; q0-q1
  1564. psubusb m7, m4 ; q1-q0
  1565. por m1, m7 ; abs(q1-q0)
  1566. %ifidn %1, mmx
  1567. mova m7, m1
  1568. psubusb m1, m6
  1569. psubusb m7, hev_thr
  1570. pxor m6, m6
  1571. pcmpeqb m1, m6 ; abs(q1-q0) <= I
  1572. pcmpeqb m7, m6 ; abs(q1-q0) <= hev_thresh
  1573. mova m6, mask_res
  1574. pand m0, m1 ; abs([pq][321]-[pq][210]) <= I
  1575. pand m6, m7
  1576. %else ; mmxext/sse2
  1577. pxor m7, m7
  1578. pmaxub m0, m1
  1579. pmaxub m6, m1
  1580. psubusb m0, flim_I
  1581. psubusb m6, hev_thr
  1582. pcmpeqb m0, m7 ; max(abs(..)) <= I
  1583. pcmpeqb m6, m7 ; !(max(abs..) > thresh)
  1584. %endif
  1585. %ifdef m12
  1586. SWAP 6, 12
  1587. %else
  1588. mova mask_res, m6 ; !(abs(p1-p0) > hev_t || abs(q1-q0) > hev_t)
  1589. %endif
  1590. ; simple_limit
  1591. mova m1, m3
  1592. SWAP 1, 3
  1593. mova m6, m4 ; keep copies of p0/q0 around for later use
  1594. SWAP 6, 4
  1595. psubusb m1, m4 ; p0-q0
  1596. psubusb m6, m3 ; q0-p0
  1597. por m1, m6 ; abs(q0-p0)
  1598. paddusb m1, m1 ; m1=2*abs(q0-p0)
  1599. mova m7, m2
  1600. SWAP 7, 2
  1601. mova m6, m5
  1602. SWAP 6, 5
  1603. psubusb m7, m5 ; p1-q1
  1604. psubusb m6, m2 ; q1-p1
  1605. por m7, m6 ; abs(q1-p1)
  1606. pxor m6, m6
  1607. pand m7, [pb_FE]
  1608. psrlq m7, 1 ; abs(q1-p1)/2
  1609. paddusb m7, m1 ; abs(q0-p0)*2+abs(q1-p1)/2
  1610. psubusb m7, flim_E
  1611. pcmpeqb m7, m6 ; abs(q0-p0)*2+abs(q1-p1)/2 <= E
  1612. pand m0, m7 ; normal_limit result
  1613. ; filter_common; at this point, m2-m5=p1-q1 and m0 is filter_mask
  1614. %ifdef m8 ; x86-64 && sse2
  1615. mova m8, [pb_80]
  1616. %define pb_80_var m8
  1617. %else ; x86-32 or mmx/mmxext
  1618. %define pb_80_var [pb_80]
  1619. %endif
  1620. mova m1, m4
  1621. mova m7, m3
  1622. pxor m1, pb_80_var
  1623. pxor m7, pb_80_var
  1624. psubsb m1, m7 ; (signed) q0-p0
  1625. mova m6, m2
  1626. mova m7, m5
  1627. pxor m6, pb_80_var
  1628. pxor m7, pb_80_var
  1629. psubsb m6, m7 ; (signed) p1-q1
  1630. mova m7, mask_res
  1631. pandn m7, m6
  1632. paddsb m7, m1
  1633. paddsb m7, m1
  1634. paddsb m7, m1 ; 3*(q0-p0)+is4tap?(p1-q1)
  1635. pand m7, m0
  1636. mova m1, [pb_F8]
  1637. mova m6, m7
  1638. paddsb m7, [pb_3]
  1639. paddsb m6, [pb_4]
  1640. pand m7, m1
  1641. pand m6, m1
  1642. pxor m1, m1
  1643. pxor m0, m0
  1644. pcmpgtb m1, m7
  1645. psubb m0, m7
  1646. psrlq m7, 3 ; +f2
  1647. psrlq m0, 3 ; -f2
  1648. pand m0, m1
  1649. pandn m1, m7
  1650. psubusb m3, m0
  1651. paddusb m3, m1 ; p0+f2
  1652. pxor m1, m1
  1653. pxor m0, m0
  1654. pcmpgtb m0, m6
  1655. psubb m1, m6
  1656. psrlq m6, 3 ; +f1
  1657. psrlq m1, 3 ; -f1
  1658. pand m1, m0
  1659. pandn m0, m6
  1660. psubusb m4, m0
  1661. paddusb m4, m1 ; q0-f1
  1662. %ifdef m12
  1663. SWAP 6, 12
  1664. %else
  1665. mova m6, mask_res
  1666. %endif
  1667. %ifidn %1, mmx
  1668. mova m7, [pb_1]
  1669. %else ; mmxext/sse2
  1670. pxor m7, m7
  1671. %endif
  1672. pand m0, m6
  1673. pand m1, m6
  1674. %ifidn %1, mmx
  1675. paddusb m0, m7
  1676. pand m1, [pb_FE]
  1677. pandn m7, m0
  1678. psrlq m1, 1
  1679. psrlq m7, 1
  1680. SWAP 0, 7
  1681. %else ; mmxext/sse2
  1682. psubusb m1, [pb_1]
  1683. pavgb m0, m7 ; a
  1684. pavgb m1, m7 ; -a
  1685. %endif
  1686. psubusb m5, m0
  1687. psubusb m2, m1
  1688. paddusb m5, m1 ; q1-a
  1689. paddusb m2, m0 ; p1+a
  1690. ; store
  1691. %ifidn %2, v
  1692. movrow [dst_reg +mstride_reg*2], m2
  1693. movrow [dst_reg +mstride_reg ], m3
  1694. movrow [dst_reg], m4
  1695. movrow [dst_reg + stride_reg ], m5
  1696. %if mmsize == 16 && %4 == 8
  1697. movhps [dst8_reg+mstride_reg*2], m2
  1698. movhps [dst8_reg+mstride_reg ], m3
  1699. movhps [dst8_reg], m4
  1700. movhps [dst8_reg+ stride_reg ], m5
  1701. %endif
  1702. %else ; h
  1703. add dst_reg, 2
  1704. add dst2_reg, 2
  1705. ; 4x8/16 transpose
  1706. TRANSPOSE4x4B 2, 3, 4, 5, 6
  1707. %if mmsize == 8 ; mmx/mmxext (h)
  1708. WRITE_4x2D 2, 3, 4, 5, dst_reg, dst2_reg, mstride_reg, stride_reg
  1709. %else ; sse2 (h)
  1710. lea dst8_reg, [dst8_reg+mstride_reg+2]
  1711. WRITE_4x4D 2, 3, 4, 5, dst_reg, dst2_reg, dst8_reg, mstride_reg, stride_reg, %4
  1712. %endif
  1713. %endif
  1714. %if mmsize == 8
  1715. %if %4 == 8 ; chroma
  1716. %ifidn %2, h
  1717. sub dst_reg, 2
  1718. %endif
  1719. cmp dst_reg, dst8_reg
  1720. mov dst_reg, dst8_reg
  1721. jnz .next8px
  1722. %else
  1723. %ifidn %2, h
  1724. lea dst_reg, [dst_reg + stride_reg*8-2]
  1725. %else ; v
  1726. add dst_reg, 8
  1727. %endif
  1728. dec cnt_reg
  1729. jg .next8px
  1730. %endif
  1731. %endif
  1732. %ifndef m8 ; sse2 on x86-32 or mmx/mmxext
  1733. mov rsp, stack_reg ; restore stack pointer
  1734. %endif
  1735. RET
  1736. %endmacro
  1737. INIT_MMX
  1738. INNER_LOOPFILTER mmx, v, 6, 16, 0
  1739. INNER_LOOPFILTER mmx, h, 6, 16, 0
  1740. INNER_LOOPFILTER mmxext, v, 6, 16, 0
  1741. INNER_LOOPFILTER mmxext, h, 6, 16, 0
  1742. INNER_LOOPFILTER mmx, v, 6, 8, 0
  1743. INNER_LOOPFILTER mmx, h, 6, 8, 0
  1744. INNER_LOOPFILTER mmxext, v, 6, 8, 0
  1745. INNER_LOOPFILTER mmxext, h, 6, 8, 0
  1746. INIT_XMM
  1747. INNER_LOOPFILTER sse2, v, 5, 16, 13
  1748. %ifdef m8
  1749. INNER_LOOPFILTER sse2, h, 5, 16, 13
  1750. %else
  1751. INNER_LOOPFILTER sse2, h, 6, 16, 13
  1752. %endif
  1753. INNER_LOOPFILTER sse2, v, 6, 8, 13
  1754. INNER_LOOPFILTER sse2, h, 6, 8, 13
  1755. INNER_LOOPFILTER ssse3, v, 5, 16, 13
  1756. %ifdef m8
  1757. INNER_LOOPFILTER ssse3, h, 5, 16, 13
  1758. %else
  1759. INNER_LOOPFILTER ssse3, h, 6, 16, 13
  1760. %endif
  1761. INNER_LOOPFILTER ssse3, v, 6, 8, 13
  1762. INNER_LOOPFILTER ssse3, h, 6, 8, 13
  1763. ;-----------------------------------------------------------------------------
  1764. ; void vp8_h/v_loop_filter<size>_mbedge_<opt>(uint8_t *dst, [uint8_t *v,] int stride,
  1765. ; int flimE, int flimI, int hev_thr);
  1766. ;-----------------------------------------------------------------------------
  1767. ; write 4 or 8 words in the mmx/xmm registers as 8 lines
  1768. ; 1 and 2 are the registers to write, this can be the same (for SSE2)
  1769. ; 3 is a general-purpose register that we will clobber
  1770. ; 4 is a pointer to the destination's 4th line
  1771. ; 5 is -stride and +stride
  1772. %macro WRITE_8W 6
  1773. movd %3, %1
  1774. %if mmsize == 8
  1775. punpckhdq %1, %1
  1776. %else
  1777. psrldq %1, 4
  1778. %endif
  1779. mov [%4+%5*4], %3w
  1780. shr %3, 16
  1781. add %4, %6
  1782. mov [%4+%5*4], %3w
  1783. movd %3, %1
  1784. %if mmsize == 16
  1785. psrldq %1, 4
  1786. %endif
  1787. add %4, %5
  1788. mov [%4+%5*2], %3w
  1789. shr %3, 16
  1790. mov [%4+%5 ], %3w
  1791. movd %3, %2
  1792. %if mmsize == 8
  1793. punpckhdq %2, %2
  1794. %else
  1795. psrldq %2, 4
  1796. %endif
  1797. mov [%4 ], %3w
  1798. shr %3, 16
  1799. mov [%4+%6 ], %3w
  1800. movd %3, %2
  1801. add %4, %6
  1802. mov [%4+%6 ], %3w
  1803. shr %3, 16
  1804. mov [%4+%6*2], %3w
  1805. %if mmsize == 8
  1806. add %4, %5
  1807. %endif
  1808. %endmacro
  1809. %macro MBEDGE_LOOPFILTER 5
  1810. %if %4 == 8 ; chroma
  1811. cglobal vp8_%2_loop_filter8uv_mbedge_%1, 6, %3, %5
  1812. %define dst8_reg r1
  1813. %define mstride_reg r2
  1814. %define E_reg r3
  1815. %define I_reg r4
  1816. %define hev_thr_reg r5
  1817. %else ; luma
  1818. cglobal vp8_%2_loop_filter16y_mbedge_%1, 5, %3, %5
  1819. %define mstride_reg r1
  1820. %define E_reg r2
  1821. %define I_reg r3
  1822. %define hev_thr_reg r4
  1823. %ifdef m8 ; x86-64, sse2
  1824. %define dst8_reg r4
  1825. %elif mmsize == 16 ; x86-32, sse2
  1826. %define dst8_reg r5
  1827. %else ; x86-32, mmx/mmxext
  1828. %define cnt_reg r5
  1829. %endif
  1830. %endif
  1831. %define dst_reg r0
  1832. %define stride_reg E_reg
  1833. %define dst2_reg I_reg
  1834. %ifndef m8
  1835. %define stack_reg hev_thr_reg
  1836. %endif
  1837. %ifidn %1, ssse3
  1838. pxor m7, m7
  1839. %endif
  1840. %ifndef m8 ; mmx/mmxext or sse2 on x86-32
  1841. ; splat function arguments
  1842. SPLATB_REG m0, E_reg, %1, m7 ; E
  1843. SPLATB_REG m1, I_reg, %1, m7 ; I
  1844. SPLATB_REG m2, hev_thr_reg, %1, m7 ; hev_thresh
  1845. ; align stack
  1846. mov stack_reg, rsp ; backup stack pointer
  1847. and rsp, ~(mmsize-1) ; align stack
  1848. sub rsp, mmsize * 8 ; stack layout: [0]=E, [1]=I, [2]=hev_thr
  1849. ; [3]=hev() result
  1850. ; [4]=filter tmp result
  1851. ; [5]/[6] = p2/q2 backup
  1852. ; [7]=lim_res sign result
  1853. %define flim_E [rsp]
  1854. %define flim_I [rsp+mmsize]
  1855. %define hev_thr [rsp+mmsize*2]
  1856. %define mask_res [rsp+mmsize*3]
  1857. %define lim_res [rsp+mmsize*4]
  1858. %define p0backup [rsp+mmsize*3]
  1859. %define q0backup [rsp+mmsize*4]
  1860. %define p2backup [rsp+mmsize*5]
  1861. %define q2backup [rsp+mmsize*6]
  1862. %define lim_sign [rsp+mmsize*7]
  1863. mova flim_E, m0
  1864. mova flim_I, m1
  1865. mova hev_thr, m2
  1866. %else ; sse2 on x86-64
  1867. %define flim_E m9
  1868. %define flim_I m10
  1869. %define hev_thr m11
  1870. %define mask_res m12
  1871. %define lim_res m8
  1872. %define p0backup m12
  1873. %define q0backup m8
  1874. %define p2backup m13
  1875. %define q2backup m14
  1876. %define lim_sign m15
  1877. ; splat function arguments
  1878. SPLATB_REG flim_E, E_reg, %1, m7 ; E
  1879. SPLATB_REG flim_I, I_reg, %1, m7 ; I
  1880. SPLATB_REG hev_thr, hev_thr_reg, %1, m7 ; hev_thresh
  1881. %endif
  1882. %if mmsize == 8 && %4 == 16 ; mmx/mmxext
  1883. mov cnt_reg, 2
  1884. %endif
  1885. mov stride_reg, mstride_reg
  1886. neg mstride_reg
  1887. %ifidn %2, h
  1888. lea dst_reg, [dst_reg + stride_reg*4-4]
  1889. %if %4 == 8
  1890. lea dst8_reg, [dst8_reg+ stride_reg*4-4]
  1891. %endif
  1892. %endif
  1893. %if mmsize == 8
  1894. .next8px
  1895. %endif
  1896. ; read
  1897. lea dst2_reg, [dst_reg + stride_reg]
  1898. %ifidn %2, v
  1899. %if %4 == 8 && mmsize == 16
  1900. %define movrow movh
  1901. %else
  1902. %define movrow mova
  1903. %endif
  1904. movrow m0, [dst_reg +mstride_reg*4] ; p3
  1905. movrow m1, [dst2_reg+mstride_reg*4] ; p2
  1906. movrow m2, [dst_reg +mstride_reg*2] ; p1
  1907. movrow m5, [dst2_reg] ; q1
  1908. movrow m6, [dst2_reg+ stride_reg] ; q2
  1909. movrow m7, [dst2_reg+ stride_reg*2] ; q3
  1910. %if mmsize == 16 && %4 == 8
  1911. movhps m0, [dst8_reg+mstride_reg*4]
  1912. movhps m2, [dst8_reg+mstride_reg*2]
  1913. add dst8_reg, stride_reg
  1914. movhps m1, [dst8_reg+mstride_reg*4]
  1915. movhps m5, [dst8_reg]
  1916. movhps m6, [dst8_reg+ stride_reg]
  1917. movhps m7, [dst8_reg+ stride_reg*2]
  1918. add dst8_reg, mstride_reg
  1919. %endif
  1920. %elif mmsize == 8 ; mmx/mmxext (h)
  1921. ; read 8 rows of 8px each
  1922. movu m0, [dst_reg +mstride_reg*4]
  1923. movu m1, [dst2_reg+mstride_reg*4]
  1924. movu m2, [dst_reg +mstride_reg*2]
  1925. movu m3, [dst_reg +mstride_reg]
  1926. movu m4, [dst_reg]
  1927. movu m5, [dst2_reg]
  1928. movu m6, [dst2_reg+ stride_reg]
  1929. ; 8x8 transpose
  1930. TRANSPOSE4x4B 0, 1, 2, 3, 7
  1931. mova q0backup, m1
  1932. movu m7, [dst2_reg+ stride_reg*2]
  1933. TRANSPOSE4x4B 4, 5, 6, 7, 1
  1934. SBUTTERFLY dq, 0, 4, 1 ; p3/p2
  1935. SBUTTERFLY dq, 2, 6, 1 ; q0/q1
  1936. SBUTTERFLY dq, 3, 7, 1 ; q2/q3
  1937. mova m1, q0backup
  1938. mova q0backup, m2 ; store q0
  1939. SBUTTERFLY dq, 1, 5, 2 ; p1/p0
  1940. mova p0backup, m5 ; store p0
  1941. SWAP 1, 4
  1942. SWAP 2, 4
  1943. SWAP 6, 3
  1944. SWAP 5, 3
  1945. %else ; sse2 (h)
  1946. %if %4 == 16
  1947. lea dst8_reg, [dst_reg + stride_reg*8]
  1948. %endif
  1949. ; read 16 rows of 8px each, interleave
  1950. movh m0, [dst_reg +mstride_reg*4]
  1951. movh m1, [dst8_reg+mstride_reg*4]
  1952. movh m2, [dst_reg +mstride_reg*2]
  1953. movh m5, [dst8_reg+mstride_reg*2]
  1954. movh m3, [dst_reg +mstride_reg]
  1955. movh m6, [dst8_reg+mstride_reg]
  1956. movh m4, [dst_reg]
  1957. movh m7, [dst8_reg]
  1958. punpcklbw m0, m1 ; A/I
  1959. punpcklbw m2, m5 ; C/K
  1960. punpcklbw m3, m6 ; D/L
  1961. punpcklbw m4, m7 ; E/M
  1962. add dst8_reg, stride_reg
  1963. movh m1, [dst2_reg+mstride_reg*4]
  1964. movh m6, [dst8_reg+mstride_reg*4]
  1965. movh m5, [dst2_reg]
  1966. movh m7, [dst8_reg]
  1967. punpcklbw m1, m6 ; B/J
  1968. punpcklbw m5, m7 ; F/N
  1969. movh m6, [dst2_reg+ stride_reg]
  1970. movh m7, [dst8_reg+ stride_reg]
  1971. punpcklbw m6, m7 ; G/O
  1972. ; 8x16 transpose
  1973. TRANSPOSE4x4B 0, 1, 2, 3, 7
  1974. %ifdef m8
  1975. SWAP 1, 8
  1976. %else
  1977. mova q0backup, m1
  1978. %endif
  1979. movh m7, [dst2_reg+ stride_reg*2]
  1980. movh m1, [dst8_reg+ stride_reg*2]
  1981. punpcklbw m7, m1 ; H/P
  1982. TRANSPOSE4x4B 4, 5, 6, 7, 1
  1983. SBUTTERFLY dq, 0, 4, 1 ; p3/p2
  1984. SBUTTERFLY dq, 2, 6, 1 ; q0/q1
  1985. SBUTTERFLY dq, 3, 7, 1 ; q2/q3
  1986. %ifdef m8
  1987. SWAP 1, 8
  1988. SWAP 2, 8
  1989. %else
  1990. mova m1, q0backup
  1991. mova q0backup, m2 ; store q0
  1992. %endif
  1993. SBUTTERFLY dq, 1, 5, 2 ; p1/p0
  1994. %ifdef m12
  1995. SWAP 5, 12
  1996. %else
  1997. mova p0backup, m5 ; store p0
  1998. %endif
  1999. SWAP 1, 4
  2000. SWAP 2, 4
  2001. SWAP 6, 3
  2002. SWAP 5, 3
  2003. %endif
  2004. ; normal_limit for p3-p2, p2-p1, q3-q2 and q2-q1
  2005. mova m4, m1
  2006. SWAP 4, 1
  2007. psubusb m4, m0 ; p2-p3
  2008. psubusb m0, m1 ; p3-p2
  2009. por m0, m4 ; abs(p3-p2)
  2010. mova m4, m2
  2011. SWAP 4, 2
  2012. psubusb m4, m1 ; p1-p2
  2013. mova p2backup, m1
  2014. psubusb m1, m2 ; p2-p1
  2015. por m1, m4 ; abs(p2-p1)
  2016. mova m4, m6
  2017. SWAP 4, 6
  2018. psubusb m4, m7 ; q2-q3
  2019. psubusb m7, m6 ; q3-q2
  2020. por m7, m4 ; abs(q3-q2)
  2021. mova m4, m5
  2022. SWAP 4, 5
  2023. psubusb m4, m6 ; q1-q2
  2024. mova q2backup, m6
  2025. psubusb m6, m5 ; q2-q1
  2026. por m6, m4 ; abs(q2-q1)
  2027. %ifidn %1, mmx
  2028. mova m4, flim_I
  2029. pxor m3, m3
  2030. psubusb m0, m4
  2031. psubusb m1, m4
  2032. psubusb m7, m4
  2033. psubusb m6, m4
  2034. pcmpeqb m0, m3 ; abs(p3-p2) <= I
  2035. pcmpeqb m1, m3 ; abs(p2-p1) <= I
  2036. pcmpeqb m7, m3 ; abs(q3-q2) <= I
  2037. pcmpeqb m6, m3 ; abs(q2-q1) <= I
  2038. pand m0, m1
  2039. pand m7, m6
  2040. pand m0, m7
  2041. %else ; mmxext/sse2
  2042. pmaxub m0, m1
  2043. pmaxub m6, m7
  2044. pmaxub m0, m6
  2045. %endif
  2046. ; normal_limit and high_edge_variance for p1-p0, q1-q0
  2047. SWAP 7, 3 ; now m7 is zero
  2048. %ifidn %2, v
  2049. movrow m3, [dst_reg +mstride_reg] ; p0
  2050. %if mmsize == 16 && %4 == 8
  2051. movhps m3, [dst8_reg+mstride_reg]
  2052. %endif
  2053. %elifdef m12
  2054. SWAP 3, 12
  2055. %else
  2056. mova m3, p0backup
  2057. %endif
  2058. mova m1, m2
  2059. SWAP 1, 2
  2060. mova m6, m3
  2061. SWAP 3, 6
  2062. psubusb m1, m3 ; p1-p0
  2063. psubusb m6, m2 ; p0-p1
  2064. por m1, m6 ; abs(p1-p0)
  2065. %ifidn %1, mmx
  2066. mova m6, m1
  2067. psubusb m1, m4
  2068. psubusb m6, hev_thr
  2069. pcmpeqb m1, m7 ; abs(p1-p0) <= I
  2070. pcmpeqb m6, m7 ; abs(p1-p0) <= hev_thresh
  2071. pand m0, m1
  2072. mova mask_res, m6
  2073. %else ; mmxext/sse2
  2074. pmaxub m0, m1 ; max_I
  2075. SWAP 1, 4 ; max_hev_thresh
  2076. %endif
  2077. SWAP 6, 4 ; now m6 is I
  2078. %ifidn %2, v
  2079. movrow m4, [dst_reg] ; q0
  2080. %if mmsize == 16 && %4 == 8
  2081. movhps m4, [dst8_reg]
  2082. %endif
  2083. %elifdef m8
  2084. SWAP 4, 8
  2085. %else
  2086. mova m4, q0backup
  2087. %endif
  2088. mova m1, m4
  2089. SWAP 1, 4
  2090. mova m7, m5
  2091. SWAP 7, 5
  2092. psubusb m1, m5 ; q0-q1
  2093. psubusb m7, m4 ; q1-q0
  2094. por m1, m7 ; abs(q1-q0)
  2095. %ifidn %1, mmx
  2096. mova m7, m1
  2097. psubusb m1, m6
  2098. psubusb m7, hev_thr
  2099. pxor m6, m6
  2100. pcmpeqb m1, m6 ; abs(q1-q0) <= I
  2101. pcmpeqb m7, m6 ; abs(q1-q0) <= hev_thresh
  2102. mova m6, mask_res
  2103. pand m0, m1 ; abs([pq][321]-[pq][210]) <= I
  2104. pand m6, m7
  2105. %else ; mmxext/sse2
  2106. pxor m7, m7
  2107. pmaxub m0, m1
  2108. pmaxub m6, m1
  2109. psubusb m0, flim_I
  2110. psubusb m6, hev_thr
  2111. pcmpeqb m0, m7 ; max(abs(..)) <= I
  2112. pcmpeqb m6, m7 ; !(max(abs..) > thresh)
  2113. %endif
  2114. %ifdef m12
  2115. SWAP 6, 12
  2116. %else
  2117. mova mask_res, m6 ; !(abs(p1-p0) > hev_t || abs(q1-q0) > hev_t)
  2118. %endif
  2119. ; simple_limit
  2120. mova m1, m3
  2121. SWAP 1, 3
  2122. mova m6, m4 ; keep copies of p0/q0 around for later use
  2123. SWAP 6, 4
  2124. psubusb m1, m4 ; p0-q0
  2125. psubusb m6, m3 ; q0-p0
  2126. por m1, m6 ; abs(q0-p0)
  2127. paddusb m1, m1 ; m1=2*abs(q0-p0)
  2128. mova m7, m2
  2129. SWAP 7, 2
  2130. mova m6, m5
  2131. SWAP 6, 5
  2132. psubusb m7, m5 ; p1-q1
  2133. psubusb m6, m2 ; q1-p1
  2134. por m7, m6 ; abs(q1-p1)
  2135. pxor m6, m6
  2136. pand m7, [pb_FE]
  2137. psrlq m7, 1 ; abs(q1-p1)/2
  2138. paddusb m7, m1 ; abs(q0-p0)*2+abs(q1-p1)/2
  2139. psubusb m7, flim_E
  2140. pcmpeqb m7, m6 ; abs(q0-p0)*2+abs(q1-p1)/2 <= E
  2141. pand m0, m7 ; normal_limit result
  2142. ; filter_common; at this point, m2-m5=p1-q1 and m0 is filter_mask
  2143. %ifdef m8 ; x86-64 && sse2
  2144. mova m8, [pb_80]
  2145. %define pb_80_var m8
  2146. %else ; x86-32 or mmx/mmxext
  2147. %define pb_80_var [pb_80]
  2148. %endif
  2149. mova m1, m4
  2150. mova m7, m3
  2151. pxor m1, pb_80_var
  2152. pxor m7, pb_80_var
  2153. psubsb m1, m7 ; (signed) q0-p0
  2154. mova m6, m2
  2155. mova m7, m5
  2156. pxor m6, pb_80_var
  2157. pxor m7, pb_80_var
  2158. psubsb m6, m7 ; (signed) p1-q1
  2159. mova m7, mask_res
  2160. paddsb m6, m1
  2161. paddsb m6, m1
  2162. paddsb m6, m1
  2163. pand m6, m0
  2164. %ifdef m8
  2165. mova lim_res, m6 ; 3*(qp-p0)+(p1-q1) masked for filter_mbedge
  2166. pand lim_res, m7
  2167. %else
  2168. mova m0, m6
  2169. pand m0, m7
  2170. mova lim_res, m0
  2171. %endif
  2172. pandn m7, m6 ; 3*(q0-p0)+(p1-q1) masked for filter_common
  2173. mova m1, [pb_F8]
  2174. mova m6, m7
  2175. paddsb m7, [pb_3]
  2176. paddsb m6, [pb_4]
  2177. pand m7, m1
  2178. pand m6, m1
  2179. pxor m1, m1
  2180. pxor m0, m0
  2181. pcmpgtb m1, m7
  2182. psubb m0, m7
  2183. psrlq m7, 3 ; +f2
  2184. psrlq m0, 3 ; -f2
  2185. pand m0, m1
  2186. pandn m1, m7
  2187. psubusb m3, m0
  2188. paddusb m3, m1 ; p0+f2
  2189. pxor m1, m1
  2190. pxor m0, m0
  2191. pcmpgtb m0, m6
  2192. psubb m1, m6
  2193. psrlq m6, 3 ; +f1
  2194. psrlq m1, 3 ; -f1
  2195. pand m1, m0
  2196. pandn m0, m6
  2197. psubusb m4, m0
  2198. paddusb m4, m1 ; q0-f1
  2199. ; filter_mbedge (m2-m5 = p1-q1; lim_res carries w)
  2200. mova m7, [pw_63]
  2201. %ifdef m8
  2202. SWAP 1, 8
  2203. %else
  2204. mova m1, lim_res
  2205. %endif
  2206. pxor m0, m0
  2207. mova m6, m1
  2208. pcmpgtb m0, m1 ; which are negative
  2209. punpcklbw m6, m0 ; signed byte->word
  2210. punpckhbw m1, m0
  2211. mova lim_sign, m0
  2212. mova mask_res, m6 ; backup for later in filter
  2213. mova lim_res, m1
  2214. pmullw m6, [pw_27]
  2215. pmullw m1, [pw_27]
  2216. paddw m6, m7
  2217. paddw m1, m7
  2218. psraw m6, 7
  2219. psraw m1, 7
  2220. packsswb m6, m1 ; a0
  2221. pxor m1, m1
  2222. psubb m1, m6
  2223. pand m1, m0 ; -a0
  2224. pandn m0, m6 ; +a0
  2225. psubusb m3, m1
  2226. paddusb m4, m1
  2227. paddusb m3, m0 ; p0+a0
  2228. psubusb m4, m0 ; q0-a0
  2229. mova m6, mask_res
  2230. mova m1, lim_res
  2231. mova m0, lim_sign
  2232. pmullw m6, [pw_18]
  2233. pmullw m1, [pw_18]
  2234. paddw m6, m7
  2235. paddw m1, m7
  2236. psraw m6, 7
  2237. psraw m1, 7
  2238. packsswb m6, m1 ; a1
  2239. pxor m1, m1
  2240. psubb m1, m6
  2241. pand m1, m0 ; -a1
  2242. pandn m0, m6 ; +a1
  2243. psubusb m2, m1
  2244. paddusb m5, m1
  2245. paddusb m2, m0 ; p1+a1
  2246. psubusb m5, m0 ; q1-a1
  2247. %ifdef m8
  2248. SWAP 6, 12
  2249. SWAP 1, 8
  2250. %else
  2251. mova m6, mask_res
  2252. mova m1, lim_res
  2253. %endif
  2254. pmullw m6, [pw_9]
  2255. pmullw m1, [pw_9]
  2256. paddw m6, m7
  2257. paddw m1, m7
  2258. %ifdef m15
  2259. SWAP 7, 15
  2260. %else
  2261. mova m7, lim_sign
  2262. %endif
  2263. psraw m6, 7
  2264. psraw m1, 7
  2265. packsswb m6, m1 ; a1
  2266. pxor m0, m0
  2267. psubb m0, m6
  2268. pand m0, m7 ; -a1
  2269. pandn m7, m6 ; +a1
  2270. %ifdef m8
  2271. SWAP 1, 13
  2272. SWAP 6, 14
  2273. %else
  2274. mova m1, p2backup
  2275. mova m6, q2backup
  2276. %endif
  2277. psubusb m1, m0
  2278. paddusb m6, m0
  2279. paddusb m1, m7 ; p1+a1
  2280. psubusb m6, m7 ; q1-a1
  2281. ; store
  2282. %ifidn %2, v
  2283. movrow [dst2_reg+mstride_reg*4], m1
  2284. movrow [dst_reg +mstride_reg*2], m2
  2285. movrow [dst_reg +mstride_reg ], m3
  2286. movrow [dst_reg], m4
  2287. movrow [dst2_reg], m5
  2288. movrow [dst2_reg+ stride_reg ], m6
  2289. %if mmsize == 16 && %4 == 8
  2290. add dst8_reg, mstride_reg
  2291. movhps [dst8_reg+mstride_reg*2], m1
  2292. movhps [dst8_reg+mstride_reg ], m2
  2293. movhps [dst8_reg], m3
  2294. add dst8_reg, stride_reg
  2295. movhps [dst8_reg], m4
  2296. movhps [dst8_reg+ stride_reg ], m5
  2297. movhps [dst8_reg+ stride_reg*2], m6
  2298. %endif
  2299. %else ; h
  2300. inc dst_reg
  2301. inc dst2_reg
  2302. ; 4x8/16 transpose
  2303. TRANSPOSE4x4B 1, 2, 3, 4, 0
  2304. SBUTTERFLY bw, 5, 6, 0
  2305. %if mmsize == 8 ; mmx/mmxext (h)
  2306. WRITE_4x2D 1, 2, 3, 4, dst_reg, dst2_reg, mstride_reg, stride_reg
  2307. add dst_reg, 4
  2308. WRITE_8W m5, m6, dst2_reg, dst_reg, mstride_reg, stride_reg
  2309. %else ; sse2 (h)
  2310. lea dst8_reg, [dst8_reg+mstride_reg+1]
  2311. WRITE_4x4D 1, 2, 3, 4, dst_reg, dst2_reg, dst8_reg, mstride_reg, stride_reg, %4
  2312. add dst_reg, 4
  2313. add dst8_reg, 4
  2314. WRITE_8W m5, m5, dst2_reg, dst_reg, mstride_reg, stride_reg
  2315. WRITE_8W m6, m6, dst2_reg, dst8_reg, mstride_reg, stride_reg
  2316. %endif
  2317. %endif
  2318. %if mmsize == 8
  2319. %if %4 == 8 ; chroma
  2320. %ifidn %2, h
  2321. sub dst_reg, 5
  2322. %endif
  2323. cmp dst_reg, dst8_reg
  2324. mov dst_reg, dst8_reg
  2325. jnz .next8px
  2326. %else
  2327. %ifidn %2, h
  2328. lea dst_reg, [dst_reg + stride_reg*8-5]
  2329. %else ; v
  2330. add dst_reg, 8
  2331. %endif
  2332. dec cnt_reg
  2333. jg .next8px
  2334. %endif
  2335. %endif
  2336. %ifndef m8 ; sse2 on x86-32 or mmx/mmxext
  2337. mov rsp, stack_reg ; restore stack pointer
  2338. %endif
  2339. RET
  2340. %endmacro
  2341. INIT_MMX
  2342. MBEDGE_LOOPFILTER mmx, v, 6, 16, 0
  2343. MBEDGE_LOOPFILTER mmx, h, 6, 16, 0
  2344. MBEDGE_LOOPFILTER mmxext, v, 6, 16, 0
  2345. MBEDGE_LOOPFILTER mmxext, h, 6, 16, 0
  2346. MBEDGE_LOOPFILTER mmx, v, 6, 8, 0
  2347. MBEDGE_LOOPFILTER mmx, h, 6, 8, 0
  2348. MBEDGE_LOOPFILTER mmxext, v, 6, 8, 0
  2349. MBEDGE_LOOPFILTER mmxext, h, 6, 8, 0
  2350. INIT_XMM
  2351. MBEDGE_LOOPFILTER sse2, v, 5, 16, 16
  2352. %ifdef m8
  2353. MBEDGE_LOOPFILTER sse2, h, 5, 16, 16
  2354. %else
  2355. MBEDGE_LOOPFILTER sse2, h, 6, 16, 16
  2356. %endif
  2357. MBEDGE_LOOPFILTER sse2, v, 6, 8, 16
  2358. MBEDGE_LOOPFILTER sse2, h, 6, 8, 16
  2359. MBEDGE_LOOPFILTER ssse3, v, 5, 16, 16
  2360. %ifdef m8
  2361. MBEDGE_LOOPFILTER ssse3, h, 5, 16, 16
  2362. %else
  2363. MBEDGE_LOOPFILTER ssse3, h, 6, 16, 16
  2364. %endif
  2365. MBEDGE_LOOPFILTER ssse3, v, 6, 8, 16
  2366. MBEDGE_LOOPFILTER ssse3, h, 6, 8, 16