You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2989 lines
116KB

  1. /*
  2. * VC-1 and WMV3 decoder
  3. * Copyright (c) 2011 Mashiat Sarker Shakkhar
  4. * Copyright (c) 2006-2007 Konstantin Shishkov
  5. * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
  6. *
  7. * This file is part of FFmpeg.
  8. *
  9. * FFmpeg is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * FFmpeg is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with FFmpeg; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. /**
  24. * @file
  25. * VC-1 and WMV3 block decoding routines
  26. */
  27. #include "avcodec.h"
  28. #include "mpegutils.h"
  29. #include "mpegvideo.h"
  30. #include "msmpeg4data.h"
  31. #include "unary.h"
  32. #include "vc1.h"
  33. #include "vc1_pred.h"
  34. #include "vc1acdata.h"
  35. #include "vc1data.h"
  36. #define MB_INTRA_VLC_BITS 9
  37. #define DC_VLC_BITS 9
  38. // offset tables for interlaced picture MVDATA decoding
  39. static const uint8_t offset_table[2][9] = {
  40. { 0, 1, 2, 4, 8, 16, 32, 64, 128 },
  41. { 0, 1, 3, 7, 15, 31, 63, 127, 255 },
  42. };
  43. /***********************************************************************/
  44. /**
  45. * @name VC-1 Bitplane decoding
  46. * @see 8.7, p56
  47. * @{
  48. */
  49. static inline void init_block_index(VC1Context *v)
  50. {
  51. MpegEncContext *s = &v->s;
  52. ff_init_block_index(s);
  53. if (v->field_mode && !(v->second_field ^ v->tff)) {
  54. s->dest[0] += s->current_picture_ptr->f->linesize[0];
  55. s->dest[1] += s->current_picture_ptr->f->linesize[1];
  56. s->dest[2] += s->current_picture_ptr->f->linesize[2];
  57. }
  58. }
  59. /** @} */ //Bitplane group
  60. static void vc1_put_blocks_clamped(VC1Context *v, int put_signed)
  61. {
  62. MpegEncContext *s = &v->s;
  63. uint8_t *dest;
  64. int block_count = CONFIG_GRAY && (s->avctx->flags & AV_CODEC_FLAG_GRAY) ? 4 : 6;
  65. int fieldtx = 0;
  66. int i;
  67. /* The put pixels loop is one MB row and one MB column behind the decoding
  68. * loop because we can only put pixels when overlap filtering is done. For
  69. * interlaced frame pictures, however, the put pixels loop is only one
  70. * column behind the decoding loop as interlaced frame pictures only need
  71. * horizontal overlap filtering. */
  72. if (!s->first_slice_line && v->fcm != ILACE_FRAME) {
  73. if (s->mb_x) {
  74. for (i = 0; i < block_count; i++) {
  75. if (i > 3 ? v->mb_type[0][s->block_index[i] - s->block_wrap[i] - 1] :
  76. v->mb_type[0][s->block_index[i] - 2 * s->block_wrap[i] - 2]) {
  77. dest = s->dest[0] + ((i & 2) - 4) * 4 * s->linesize + ((i & 1) - 2) * 8;
  78. if (put_signed)
  79. s->idsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][i],
  80. i > 3 ? s->dest[i - 3] - 8 * s->uvlinesize - 8 : dest,
  81. i > 3 ? s->uvlinesize : s->linesize);
  82. else
  83. s->idsp.put_pixels_clamped(v->block[v->topleft_blk_idx][i],
  84. i > 3 ? s->dest[i - 3] - 8 * s->uvlinesize - 8 : dest,
  85. i > 3 ? s->uvlinesize : s->linesize);
  86. }
  87. }
  88. }
  89. if (s->mb_x == v->end_mb_x - 1) {
  90. for (i = 0; i < block_count; i++) {
  91. if (i > 3 ? v->mb_type[0][s->block_index[i] - s->block_wrap[i]] :
  92. v->mb_type[0][s->block_index[i] - 2 * s->block_wrap[i]]) {
  93. dest = s->dest[0] + ((i & 2) - 4) * 4 * s->linesize + (i & 1) * 8;
  94. if (put_signed)
  95. s->idsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][i],
  96. i > 3 ? s->dest[i - 3] - 8 * s->uvlinesize : dest,
  97. i > 3 ? s->uvlinesize : s->linesize);
  98. else
  99. s->idsp.put_pixels_clamped(v->block[v->top_blk_idx][i],
  100. i > 3 ? s->dest[i - 3] - 8 * s->uvlinesize : dest,
  101. i > 3 ? s->uvlinesize : s->linesize);
  102. }
  103. }
  104. }
  105. }
  106. if (s->mb_y == s->end_mb_y - 1 || v->fcm == ILACE_FRAME) {
  107. if (s->mb_x) {
  108. if (v->fcm == ILACE_FRAME)
  109. fieldtx = v->fieldtx_plane[s->mb_y * s->mb_stride + s->mb_x - 1];
  110. for (i = 0; i < block_count; i++) {
  111. if (i > 3 ? v->mb_type[0][s->block_index[i] - 1] :
  112. v->mb_type[0][s->block_index[i] - 2]) {
  113. if (fieldtx)
  114. dest = s->dest[0] + ((i & 2) >> 1) * s->linesize + ((i & 1) - 2) * 8;
  115. else
  116. dest = s->dest[0] + (i & 2) * 4 * s->linesize + ((i & 1) - 2) * 8;
  117. if (put_signed)
  118. s->idsp.put_signed_pixels_clamped(v->block[v->left_blk_idx][i],
  119. i > 3 ? s->dest[i - 3] - 8 : dest,
  120. i > 3 ? s->uvlinesize : s->linesize << fieldtx);
  121. else
  122. s->idsp.put_pixels_clamped(v->block[v->left_blk_idx][i],
  123. i > 3 ? s->dest[i - 3] - 8 : dest,
  124. i > 3 ? s->uvlinesize : s->linesize << fieldtx);
  125. }
  126. }
  127. }
  128. if (s->mb_x == v->end_mb_x - 1) {
  129. if (v->fcm == ILACE_FRAME)
  130. fieldtx = v->fieldtx_plane[s->mb_y * s->mb_stride + s->mb_x];
  131. for (i = 0; i < block_count; i++) {
  132. if (v->mb_type[0][s->block_index[i]]) {
  133. if (fieldtx)
  134. dest = s->dest[0] + ((i & 2) >> 1) * s->linesize + (i & 1) * 8;
  135. else
  136. dest = s->dest[0] + (i & 2) * 4 * s->linesize + (i & 1) * 8;
  137. if (put_signed)
  138. s->idsp.put_signed_pixels_clamped(v->block[v->cur_blk_idx][i],
  139. i > 3 ? s->dest[i - 3] : dest,
  140. i > 3 ? s->uvlinesize : s->linesize << fieldtx);
  141. else
  142. s->idsp.put_pixels_clamped(v->block[v->cur_blk_idx][i],
  143. i > 3 ? s->dest[i - 3] : dest,
  144. i > 3 ? s->uvlinesize : s->linesize << fieldtx);
  145. }
  146. }
  147. }
  148. }
  149. }
  150. #define inc_blk_idx(idx) do { \
  151. idx++; \
  152. if (idx >= v->n_allocated_blks) \
  153. idx = 0; \
  154. } while (0)
  155. /***********************************************************************/
  156. /**
  157. * @name VC-1 Block-level functions
  158. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  159. * @{
  160. */
  161. /**
  162. * @def GET_MQUANT
  163. * @brief Get macroblock-level quantizer scale
  164. */
  165. #define GET_MQUANT() \
  166. if (v->dquantfrm) { \
  167. int edges = 0; \
  168. if (v->dqprofile == DQPROFILE_ALL_MBS) { \
  169. if (v->dqbilevel) { \
  170. mquant = (get_bits1(gb)) ? -v->altpq : v->pq; \
  171. } else { \
  172. mqdiff = get_bits(gb, 3); \
  173. if (mqdiff != 7) \
  174. mquant = -v->pq - mqdiff; \
  175. else \
  176. mquant = -get_bits(gb, 5); \
  177. } \
  178. } \
  179. if (v->dqprofile == DQPROFILE_SINGLE_EDGE) \
  180. edges = 1 << v->dqsbedge; \
  181. else if (v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
  182. edges = (3 << v->dqsbedge) % 15; \
  183. else if (v->dqprofile == DQPROFILE_FOUR_EDGES) \
  184. edges = 15; \
  185. if ((edges&1) && !s->mb_x) \
  186. mquant = -v->altpq; \
  187. if ((edges&2) && !s->mb_y) \
  188. mquant = -v->altpq; \
  189. if ((edges&4) && s->mb_x == (s->mb_width - 1)) \
  190. mquant = -v->altpq; \
  191. if ((edges&8) && \
  192. s->mb_y == ((s->mb_height >> v->field_mode) - 1)) \
  193. mquant = -v->altpq; \
  194. if (!mquant || mquant > 31) { \
  195. av_log(v->s.avctx, AV_LOG_ERROR, \
  196. "Overriding invalid mquant %d\n", mquant); \
  197. mquant = 1; \
  198. } \
  199. }
  200. /**
  201. * @def GET_MVDATA(_dmv_x, _dmv_y)
  202. * @brief Get MV differentials
  203. * @see MVDATA decoding from 8.3.5.2, p(1)20
  204. * @param _dmv_x Horizontal differential for decoded MV
  205. * @param _dmv_y Vertical differential for decoded MV
  206. */
  207. #define GET_MVDATA(_dmv_x, _dmv_y) \
  208. index = 1 + get_vlc2(gb, ff_vc1_mv_diff_vlc[s->mv_table_index].table, \
  209. VC1_MV_DIFF_VLC_BITS, 2); \
  210. if (index > 36) { \
  211. mb_has_coeffs = 1; \
  212. index -= 37; \
  213. } else \
  214. mb_has_coeffs = 0; \
  215. s->mb_intra = 0; \
  216. if (!index) { \
  217. _dmv_x = _dmv_y = 0; \
  218. } else if (index == 35) { \
  219. _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
  220. _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
  221. } else if (index == 36) { \
  222. _dmv_x = 0; \
  223. _dmv_y = 0; \
  224. s->mb_intra = 1; \
  225. } else { \
  226. index1 = index % 6; \
  227. _dmv_x = offset_table[1][index1]; \
  228. val = size_table[index1] - (!s->quarter_sample && index1 == 5); \
  229. if (val > 0) { \
  230. val = get_bits(gb, val); \
  231. sign = 0 - (val & 1); \
  232. _dmv_x = (sign ^ ((val >> 1) + _dmv_x)) - sign; \
  233. } \
  234. \
  235. index1 = index / 6; \
  236. _dmv_y = offset_table[1][index1]; \
  237. val = size_table[index1] - (!s->quarter_sample && index1 == 5); \
  238. if (val > 0) { \
  239. val = get_bits(gb, val); \
  240. sign = 0 - (val & 1); \
  241. _dmv_y = (sign ^ ((val >> 1) + _dmv_y)) - sign; \
  242. } \
  243. }
  244. static av_always_inline void get_mvdata_interlaced(VC1Context *v, int *dmv_x,
  245. int *dmv_y, int *pred_flag)
  246. {
  247. int index, index1;
  248. int extend_x, extend_y;
  249. GetBitContext *gb = &v->s.gb;
  250. int bits, esc;
  251. int val, sign;
  252. if (v->numref) {
  253. bits = VC1_2REF_MVDATA_VLC_BITS;
  254. esc = 125;
  255. } else {
  256. bits = VC1_1REF_MVDATA_VLC_BITS;
  257. esc = 71;
  258. }
  259. extend_x = v->dmvrange & 1;
  260. extend_y = (v->dmvrange >> 1) & 1;
  261. index = get_vlc2(gb, v->imv_vlc->table, bits, 3);
  262. if (index == esc) {
  263. *dmv_x = get_bits(gb, v->k_x);
  264. *dmv_y = get_bits(gb, v->k_y);
  265. if (v->numref) {
  266. if (pred_flag)
  267. *pred_flag = *dmv_y & 1;
  268. *dmv_y = (*dmv_y + (*dmv_y & 1)) >> 1;
  269. }
  270. }
  271. else {
  272. av_assert0(index < esc);
  273. index1 = (index + 1) % 9;
  274. if (index1 != 0) {
  275. val = get_bits(gb, index1 + extend_x);
  276. sign = 0 - (val & 1);
  277. *dmv_x = (sign ^ ((val >> 1) + offset_table[extend_x][index1])) - sign;
  278. } else
  279. *dmv_x = 0;
  280. index1 = (index + 1) / 9;
  281. if (index1 > v->numref) {
  282. val = get_bits(gb, (index1 >> v->numref) + extend_y);
  283. sign = 0 - (val & 1);
  284. *dmv_y = (sign ^ ((val >> 1) + offset_table[extend_y][index1 >> v->numref])) - sign;
  285. } else
  286. *dmv_y = 0;
  287. if (v->numref && pred_flag)
  288. *pred_flag = index1 & 1;
  289. }
  290. }
  291. /** Reconstruct motion vector for B-frame and do motion compensation
  292. */
  293. static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2],
  294. int direct, int mode)
  295. {
  296. if (direct) {
  297. ff_vc1_mc_1mv(v, 0);
  298. ff_vc1_interp_mc(v);
  299. return;
  300. }
  301. if (mode == BMV_TYPE_INTERPOLATED) {
  302. ff_vc1_mc_1mv(v, 0);
  303. ff_vc1_interp_mc(v);
  304. return;
  305. }
  306. ff_vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD));
  307. }
  308. /** Get predicted DC value for I-frames only
  309. * prediction dir: left=0, top=1
  310. * @param s MpegEncContext
  311. * @param overlap flag indicating that overlap filtering is used
  312. * @param pq integer part of picture quantizer
  313. * @param[in] n block index in the current MB
  314. * @param dc_val_ptr Pointer to DC predictor
  315. * @param dir_ptr Prediction direction for use in AC prediction
  316. */
  317. static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  318. int16_t **dc_val_ptr, int *dir_ptr)
  319. {
  320. int a, b, c, wrap, pred, scale;
  321. int16_t *dc_val;
  322. static const uint16_t dcpred[32] = {
  323. -1, 1024, 512, 341, 256, 205, 171, 146, 128,
  324. 114, 102, 93, 85, 79, 73, 68, 64,
  325. 60, 57, 54, 51, 49, 47, 45, 43,
  326. 41, 39, 38, 37, 35, 34, 33
  327. };
  328. /* find prediction - wmv3_dc_scale always used here in fact */
  329. if (n < 4) scale = s->y_dc_scale;
  330. else scale = s->c_dc_scale;
  331. wrap = s->block_wrap[n];
  332. dc_val = s->dc_val[0] + s->block_index[n];
  333. /* B A
  334. * C X
  335. */
  336. c = dc_val[ - 1];
  337. b = dc_val[ - 1 - wrap];
  338. a = dc_val[ - wrap];
  339. if (pq < 9 || !overlap) {
  340. /* Set outer values */
  341. if (s->first_slice_line && (n != 2 && n != 3))
  342. b = a = dcpred[scale];
  343. if (s->mb_x == 0 && (n != 1 && n != 3))
  344. b = c = dcpred[scale];
  345. } else {
  346. /* Set outer values */
  347. if (s->first_slice_line && (n != 2 && n != 3))
  348. b = a = 0;
  349. if (s->mb_x == 0 && (n != 1 && n != 3))
  350. b = c = 0;
  351. }
  352. if (abs(a - b) <= abs(b - c)) {
  353. pred = c;
  354. *dir_ptr = 1; // left
  355. } else {
  356. pred = a;
  357. *dir_ptr = 0; // top
  358. }
  359. /* update predictor */
  360. *dc_val_ptr = &dc_val[0];
  361. return pred;
  362. }
  363. /** Get predicted DC value
  364. * prediction dir: left=0, top=1
  365. * @param s MpegEncContext
  366. * @param overlap flag indicating that overlap filtering is used
  367. * @param pq integer part of picture quantizer
  368. * @param[in] n block index in the current MB
  369. * @param a_avail flag indicating top block availability
  370. * @param c_avail flag indicating left block availability
  371. * @param dc_val_ptr Pointer to DC predictor
  372. * @param dir_ptr Prediction direction for use in AC prediction
  373. */
  374. static inline int ff_vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  375. int a_avail, int c_avail,
  376. int16_t **dc_val_ptr, int *dir_ptr)
  377. {
  378. int a, b, c, wrap, pred;
  379. int16_t *dc_val;
  380. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  381. int q1, q2 = 0;
  382. int dqscale_index;
  383. /* scale predictors if needed */
  384. q1 = FFABS(s->current_picture.qscale_table[mb_pos]);
  385. dqscale_index = s->y_dc_scale_table[q1] - 1;
  386. if (dqscale_index < 0)
  387. return 0;
  388. wrap = s->block_wrap[n];
  389. dc_val = s->dc_val[0] + s->block_index[n];
  390. /* B A
  391. * C X
  392. */
  393. c = dc_val[ - 1];
  394. b = dc_val[ - 1 - wrap];
  395. a = dc_val[ - wrap];
  396. if (c_avail && (n != 1 && n != 3)) {
  397. q2 = FFABS(s->current_picture.qscale_table[mb_pos - 1]);
  398. if (q2 && q2 != q1)
  399. c = (c * s->y_dc_scale_table[q2] * ff_vc1_dqscale[dqscale_index] + 0x20000) >> 18;
  400. }
  401. if (a_avail && (n != 2 && n != 3)) {
  402. q2 = FFABS(s->current_picture.qscale_table[mb_pos - s->mb_stride]);
  403. if (q2 && q2 != q1)
  404. a = (a * s->y_dc_scale_table[q2] * ff_vc1_dqscale[dqscale_index] + 0x20000) >> 18;
  405. }
  406. if (a_avail && c_avail && (n != 3)) {
  407. int off = mb_pos;
  408. if (n != 1)
  409. off--;
  410. if (n != 2)
  411. off -= s->mb_stride;
  412. q2 = FFABS(s->current_picture.qscale_table[off]);
  413. if (q2 && q2 != q1)
  414. b = (b * s->y_dc_scale_table[q2] * ff_vc1_dqscale[dqscale_index] + 0x20000) >> 18;
  415. }
  416. if (c_avail && (!a_avail || abs(a - b) <= abs(b - c))) {
  417. pred = c;
  418. *dir_ptr = 1; // left
  419. } else if (a_avail) {
  420. pred = a;
  421. *dir_ptr = 0; // top
  422. } else {
  423. pred = 0;
  424. *dir_ptr = 1; // left
  425. }
  426. /* update predictor */
  427. *dc_val_ptr = &dc_val[0];
  428. return pred;
  429. }
  430. /** @} */ // Block group
  431. /**
  432. * @name VC1 Macroblock-level functions in Simple/Main Profiles
  433. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  434. * @{
  435. */
  436. static inline int vc1_coded_block_pred(MpegEncContext * s, int n,
  437. uint8_t **coded_block_ptr)
  438. {
  439. int xy, wrap, pred, a, b, c;
  440. xy = s->block_index[n];
  441. wrap = s->b8_stride;
  442. /* B C
  443. * A X
  444. */
  445. a = s->coded_block[xy - 1 ];
  446. b = s->coded_block[xy - 1 - wrap];
  447. c = s->coded_block[xy - wrap];
  448. if (b == c) {
  449. pred = a;
  450. } else {
  451. pred = c;
  452. }
  453. /* store value */
  454. *coded_block_ptr = &s->coded_block[xy];
  455. return pred;
  456. }
  457. /**
  458. * Decode one AC coefficient
  459. * @param v The VC1 context
  460. * @param last Last coefficient
  461. * @param skip How much zero coefficients to skip
  462. * @param value Decoded AC coefficient value
  463. * @param codingset set of VLC to decode data
  464. * @see 8.1.3.4
  465. */
  466. static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip,
  467. int *value, int codingset)
  468. {
  469. GetBitContext *gb = &v->s.gb;
  470. int index, run, level, lst, sign;
  471. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  472. if (index != ff_vc1_ac_sizes[codingset] - 1) {
  473. run = vc1_index_decode_table[codingset][index][0];
  474. level = vc1_index_decode_table[codingset][index][1];
  475. lst = index >= vc1_last_decode_table[codingset] || get_bits_left(gb) < 0;
  476. sign = get_bits1(gb);
  477. } else {
  478. int escape = decode210(gb);
  479. if (escape != 2) {
  480. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  481. run = vc1_index_decode_table[codingset][index][0];
  482. level = vc1_index_decode_table[codingset][index][1];
  483. lst = index >= vc1_last_decode_table[codingset];
  484. if (escape == 0) {
  485. if (lst)
  486. level += vc1_last_delta_level_table[codingset][run];
  487. else
  488. level += vc1_delta_level_table[codingset][run];
  489. } else {
  490. if (lst)
  491. run += vc1_last_delta_run_table[codingset][level] + 1;
  492. else
  493. run += vc1_delta_run_table[codingset][level] + 1;
  494. }
  495. sign = get_bits1(gb);
  496. } else {
  497. lst = get_bits1(gb);
  498. if (v->s.esc3_level_length == 0) {
  499. if (v->pq < 8 || v->dquantfrm) { // table 59
  500. v->s.esc3_level_length = get_bits(gb, 3);
  501. if (!v->s.esc3_level_length)
  502. v->s.esc3_level_length = get_bits(gb, 2) + 8;
  503. } else { // table 60
  504. v->s.esc3_level_length = get_unary(gb, 1, 6) + 2;
  505. }
  506. v->s.esc3_run_length = 3 + get_bits(gb, 2);
  507. }
  508. run = get_bits(gb, v->s.esc3_run_length);
  509. sign = get_bits1(gb);
  510. level = get_bits(gb, v->s.esc3_level_length);
  511. }
  512. }
  513. *last = lst;
  514. *skip = run;
  515. *value = (level ^ -sign) + sign;
  516. }
  517. /** Decode intra block in intra frames - should be faster than decode_intra_block
  518. * @param v VC1Context
  519. * @param block block to decode
  520. * @param[in] n subblock index
  521. * @param coded are AC coeffs present or not
  522. * @param codingset set of VLC to decode data
  523. */
  524. static int vc1_decode_i_block(VC1Context *v, int16_t block[64], int n,
  525. int coded, int codingset)
  526. {
  527. GetBitContext *gb = &v->s.gb;
  528. MpegEncContext *s = &v->s;
  529. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  530. int i;
  531. int16_t *dc_val;
  532. int16_t *ac_val, *ac_val2;
  533. int dcdiff, scale;
  534. /* Get DC differential */
  535. if (n < 4) {
  536. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  537. } else {
  538. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  539. }
  540. if (dcdiff < 0) {
  541. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  542. return -1;
  543. }
  544. if (dcdiff) {
  545. const int m = (v->pq == 1 || v->pq == 2) ? 3 - v->pq : 0;
  546. if (dcdiff == 119 /* ESC index value */) {
  547. dcdiff = get_bits(gb, 8 + m);
  548. } else {
  549. if (m)
  550. dcdiff = (dcdiff << m) + get_bits(gb, m) - ((1 << m) - 1);
  551. }
  552. if (get_bits1(gb))
  553. dcdiff = -dcdiff;
  554. }
  555. /* Prediction */
  556. dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
  557. *dc_val = dcdiff;
  558. /* Store the quantized DC coeff, used for prediction */
  559. if (n < 4)
  560. scale = s->y_dc_scale;
  561. else
  562. scale = s->c_dc_scale;
  563. block[0] = dcdiff * scale;
  564. ac_val = s->ac_val[0][s->block_index[n]];
  565. ac_val2 = ac_val;
  566. if (dc_pred_dir) // left
  567. ac_val -= 16;
  568. else // top
  569. ac_val -= 16 * s->block_wrap[n];
  570. scale = v->pq * 2 + v->halfpq;
  571. //AC Decoding
  572. i = !!coded;
  573. if (coded) {
  574. int last = 0, skip, value;
  575. const uint8_t *zz_table;
  576. int k;
  577. if (v->s.ac_pred) {
  578. if (!dc_pred_dir)
  579. zz_table = v->zz_8x8[2];
  580. else
  581. zz_table = v->zz_8x8[3];
  582. } else
  583. zz_table = v->zz_8x8[1];
  584. while (!last) {
  585. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  586. i += skip;
  587. if (i > 63)
  588. break;
  589. block[zz_table[i++]] = value;
  590. }
  591. /* apply AC prediction if needed */
  592. if (s->ac_pred) {
  593. int sh;
  594. if (dc_pred_dir) { // left
  595. sh = v->left_blk_sh;
  596. } else { // top
  597. sh = v->top_blk_sh;
  598. ac_val += 8;
  599. }
  600. for (k = 1; k < 8; k++)
  601. block[k << sh] += ac_val[k];
  602. }
  603. /* save AC coeffs for further prediction */
  604. for (k = 1; k < 8; k++) {
  605. ac_val2[k] = block[k << v->left_blk_sh];
  606. ac_val2[k + 8] = block[k << v->top_blk_sh];
  607. }
  608. /* scale AC coeffs */
  609. for (k = 1; k < 64; k++)
  610. if (block[k]) {
  611. block[k] *= scale;
  612. if (!v->pquantizer)
  613. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  614. }
  615. } else {
  616. int k;
  617. memset(ac_val2, 0, 16 * 2);
  618. /* apply AC prediction if needed */
  619. if (s->ac_pred) {
  620. int sh;
  621. if (dc_pred_dir) { //left
  622. sh = v->left_blk_sh;
  623. } else { // top
  624. sh = v->top_blk_sh;
  625. ac_val += 8;
  626. ac_val2 += 8;
  627. }
  628. memcpy(ac_val2, ac_val, 8 * 2);
  629. for (k = 1; k < 8; k++) {
  630. block[k << sh] = ac_val[k] * scale;
  631. if (!v->pquantizer && block[k << sh])
  632. block[k << sh] += (block[k << sh] < 0) ? -v->pq : v->pq;
  633. }
  634. }
  635. }
  636. if (s->ac_pred) i = 63;
  637. s->block_last_index[n] = i;
  638. return 0;
  639. }
  640. /** Decode intra block in intra frames - should be faster than decode_intra_block
  641. * @param v VC1Context
  642. * @param block block to decode
  643. * @param[in] n subblock number
  644. * @param coded are AC coeffs present or not
  645. * @param codingset set of VLC to decode data
  646. * @param mquant quantizer value for this macroblock
  647. */
  648. static int vc1_decode_i_block_adv(VC1Context *v, int16_t block[64], int n,
  649. int coded, int codingset, int mquant)
  650. {
  651. GetBitContext *gb = &v->s.gb;
  652. MpegEncContext *s = &v->s;
  653. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  654. int i;
  655. int16_t *dc_val = NULL;
  656. int16_t *ac_val, *ac_val2;
  657. int dcdiff;
  658. int a_avail = v->a_avail, c_avail = v->c_avail;
  659. int use_pred = s->ac_pred;
  660. int scale;
  661. int q1, q2 = 0;
  662. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  663. int quant = FFABS(mquant);
  664. /* Get DC differential */
  665. if (n < 4) {
  666. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  667. } else {
  668. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  669. }
  670. if (dcdiff < 0) {
  671. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  672. return -1;
  673. }
  674. if (dcdiff) {
  675. const int m = (quant == 1 || quant == 2) ? 3 - quant : 0;
  676. if (dcdiff == 119 /* ESC index value */) {
  677. dcdiff = get_bits(gb, 8 + m);
  678. } else {
  679. if (m)
  680. dcdiff = (dcdiff << m) + get_bits(gb, m) - ((1 << m) - 1);
  681. }
  682. if (get_bits1(gb))
  683. dcdiff = -dcdiff;
  684. }
  685. /* Prediction */
  686. dcdiff += ff_vc1_pred_dc(&v->s, v->overlap, quant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
  687. *dc_val = dcdiff;
  688. /* Store the quantized DC coeff, used for prediction */
  689. if (n < 4)
  690. scale = s->y_dc_scale;
  691. else
  692. scale = s->c_dc_scale;
  693. block[0] = dcdiff * scale;
  694. /* check if AC is needed at all */
  695. if (!a_avail && !c_avail)
  696. use_pred = 0;
  697. scale = quant * 2 + ((mquant < 0) ? 0 : v->halfpq);
  698. ac_val = s->ac_val[0][s->block_index[n]];
  699. ac_val2 = ac_val;
  700. if (dc_pred_dir) // left
  701. ac_val -= 16;
  702. else // top
  703. ac_val -= 16 * s->block_wrap[n];
  704. q1 = s->current_picture.qscale_table[mb_pos];
  705. if (n == 3)
  706. q2 = q1;
  707. else if (dc_pred_dir) {
  708. if (n == 1)
  709. q2 = q1;
  710. else if (c_avail && mb_pos)
  711. q2 = s->current_picture.qscale_table[mb_pos - 1];
  712. } else {
  713. if (n == 2)
  714. q2 = q1;
  715. else if (a_avail && mb_pos >= s->mb_stride)
  716. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  717. }
  718. //AC Decoding
  719. i = 1;
  720. if (coded) {
  721. int last = 0, skip, value;
  722. const uint8_t *zz_table;
  723. int k;
  724. if (v->s.ac_pred) {
  725. if (!use_pred && v->fcm == ILACE_FRAME) {
  726. zz_table = v->zzi_8x8;
  727. } else {
  728. if (!dc_pred_dir) // top
  729. zz_table = v->zz_8x8[2];
  730. else // left
  731. zz_table = v->zz_8x8[3];
  732. }
  733. } else {
  734. if (v->fcm != ILACE_FRAME)
  735. zz_table = v->zz_8x8[1];
  736. else
  737. zz_table = v->zzi_8x8;
  738. }
  739. while (!last) {
  740. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  741. i += skip;
  742. if (i > 63)
  743. break;
  744. block[zz_table[i++]] = value;
  745. }
  746. /* apply AC prediction if needed */
  747. if (use_pred) {
  748. int sh;
  749. if (dc_pred_dir) { // left
  750. sh = v->left_blk_sh;
  751. } else { // top
  752. sh = v->top_blk_sh;
  753. ac_val += 8;
  754. }
  755. /* scale predictors if needed*/
  756. q1 = FFABS(q1) * 2 + ((q1 < 0) ? 0 : v->halfpq) - 1;
  757. if (q1 < 1)
  758. return AVERROR_INVALIDDATA;
  759. if (q2)
  760. q2 = FFABS(q2) * 2 + ((q2 < 0) ? 0 : v->halfpq) - 1;
  761. if (q2 && q1 != q2) {
  762. for (k = 1; k < 8; k++)
  763. block[k << sh] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  764. } else {
  765. for (k = 1; k < 8; k++)
  766. block[k << sh] += ac_val[k];
  767. }
  768. }
  769. /* save AC coeffs for further prediction */
  770. for (k = 1; k < 8; k++) {
  771. ac_val2[k ] = block[k << v->left_blk_sh];
  772. ac_val2[k + 8] = block[k << v->top_blk_sh];
  773. }
  774. /* scale AC coeffs */
  775. for (k = 1; k < 64; k++)
  776. if (block[k]) {
  777. block[k] *= scale;
  778. if (!v->pquantizer)
  779. block[k] += (block[k] < 0) ? -quant : quant;
  780. }
  781. } else { // no AC coeffs
  782. int k;
  783. memset(ac_val2, 0, 16 * 2);
  784. /* apply AC prediction if needed */
  785. if (use_pred) {
  786. int sh;
  787. if (dc_pred_dir) { // left
  788. sh = v->left_blk_sh;
  789. } else { // top
  790. sh = v->top_blk_sh;
  791. ac_val += 8;
  792. ac_val2 += 8;
  793. }
  794. memcpy(ac_val2, ac_val, 8 * 2);
  795. q1 = FFABS(q1) * 2 + ((q1 < 0) ? 0 : v->halfpq) - 1;
  796. if (q1 < 1)
  797. return AVERROR_INVALIDDATA;
  798. if (q2)
  799. q2 = FFABS(q2) * 2 + ((q2 < 0) ? 0 : v->halfpq) - 1;
  800. if (q2 && q1 != q2) {
  801. for (k = 1; k < 8; k++)
  802. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  803. }
  804. for (k = 1; k < 8; k++) {
  805. block[k << sh] = ac_val2[k] * scale;
  806. if (!v->pquantizer && block[k << sh])
  807. block[k << sh] += (block[k << sh] < 0) ? -quant : quant;
  808. }
  809. }
  810. }
  811. if (use_pred) i = 63;
  812. s->block_last_index[n] = i;
  813. return 0;
  814. }
  815. /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
  816. * @param v VC1Context
  817. * @param block block to decode
  818. * @param[in] n subblock index
  819. * @param coded are AC coeffs present or not
  820. * @param mquant block quantizer
  821. * @param codingset set of VLC to decode data
  822. */
  823. static int vc1_decode_intra_block(VC1Context *v, int16_t block[64], int n,
  824. int coded, int mquant, int codingset)
  825. {
  826. GetBitContext *gb = &v->s.gb;
  827. MpegEncContext *s = &v->s;
  828. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  829. int i;
  830. int16_t *dc_val = NULL;
  831. int16_t *ac_val, *ac_val2;
  832. int dcdiff;
  833. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  834. int a_avail = v->a_avail, c_avail = v->c_avail;
  835. int use_pred = s->ac_pred;
  836. int scale;
  837. int q1, q2 = 0;
  838. int quant = FFABS(mquant);
  839. s->bdsp.clear_block(block);
  840. /* XXX: Guard against dumb values of mquant */
  841. quant = av_clip_uintp2(quant, 5);
  842. /* Set DC scale - y and c use the same */
  843. s->y_dc_scale = s->y_dc_scale_table[quant];
  844. s->c_dc_scale = s->c_dc_scale_table[quant];
  845. /* Get DC differential */
  846. if (n < 4) {
  847. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  848. } else {
  849. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  850. }
  851. if (dcdiff < 0) {
  852. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  853. return -1;
  854. }
  855. if (dcdiff) {
  856. const int m = (quant == 1 || quant == 2) ? 3 - quant : 0;
  857. if (dcdiff == 119 /* ESC index value */) {
  858. dcdiff = get_bits(gb, 8 + m);
  859. } else {
  860. if (m)
  861. dcdiff = (dcdiff << m) + get_bits(gb, m) - ((1 << m) - 1);
  862. }
  863. if (get_bits1(gb))
  864. dcdiff = -dcdiff;
  865. }
  866. /* Prediction */
  867. dcdiff += ff_vc1_pred_dc(&v->s, v->overlap, quant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
  868. *dc_val = dcdiff;
  869. /* Store the quantized DC coeff, used for prediction */
  870. if (n < 4) {
  871. block[0] = dcdiff * s->y_dc_scale;
  872. } else {
  873. block[0] = dcdiff * s->c_dc_scale;
  874. }
  875. //AC Decoding
  876. i = 1;
  877. /* check if AC is needed at all and adjust direction if needed */
  878. if (!a_avail) dc_pred_dir = 1;
  879. if (!c_avail) dc_pred_dir = 0;
  880. if (!a_avail && !c_avail) use_pred = 0;
  881. ac_val = s->ac_val[0][s->block_index[n]];
  882. ac_val2 = ac_val;
  883. scale = quant * 2 + ((mquant < 0) ? 0 : v->halfpq);
  884. if (dc_pred_dir) //left
  885. ac_val -= 16;
  886. else //top
  887. ac_val -= 16 * s->block_wrap[n];
  888. q1 = s->current_picture.qscale_table[mb_pos];
  889. if (dc_pred_dir && c_avail && mb_pos)
  890. q2 = s->current_picture.qscale_table[mb_pos - 1];
  891. if (!dc_pred_dir && a_avail && mb_pos >= s->mb_stride)
  892. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  893. if (dc_pred_dir && n == 1)
  894. q2 = q1;
  895. if (!dc_pred_dir && n == 2)
  896. q2 = q1;
  897. if (n == 3) q2 = q1;
  898. if (coded) {
  899. int last = 0, skip, value;
  900. int k;
  901. while (!last) {
  902. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  903. i += skip;
  904. if (i > 63)
  905. break;
  906. if (v->fcm == PROGRESSIVE)
  907. block[v->zz_8x8[0][i++]] = value;
  908. else {
  909. if (use_pred && (v->fcm == ILACE_FRAME)) {
  910. if (!dc_pred_dir) // top
  911. block[v->zz_8x8[2][i++]] = value;
  912. else // left
  913. block[v->zz_8x8[3][i++]] = value;
  914. } else {
  915. block[v->zzi_8x8[i++]] = value;
  916. }
  917. }
  918. }
  919. /* apply AC prediction if needed */
  920. if (use_pred) {
  921. /* scale predictors if needed*/
  922. q1 = FFABS(q1) * 2 + ((q1 < 0) ? 0 : v->halfpq) - 1;
  923. if (q1 < 1)
  924. return AVERROR_INVALIDDATA;
  925. if (q2)
  926. q2 = FFABS(q2) * 2 + ((q2 < 0) ? 0 : v->halfpq) - 1;
  927. if (q2 && q1 != q2) {
  928. if (dc_pred_dir) { // left
  929. for (k = 1; k < 8; k++)
  930. block[k << v->left_blk_sh] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  931. } else { //top
  932. for (k = 1; k < 8; k++)
  933. block[k << v->top_blk_sh] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  934. }
  935. } else {
  936. if (dc_pred_dir) { // left
  937. for (k = 1; k < 8; k++)
  938. block[k << v->left_blk_sh] += ac_val[k];
  939. } else { // top
  940. for (k = 1; k < 8; k++)
  941. block[k << v->top_blk_sh] += ac_val[k + 8];
  942. }
  943. }
  944. }
  945. /* save AC coeffs for further prediction */
  946. for (k = 1; k < 8; k++) {
  947. ac_val2[k ] = block[k << v->left_blk_sh];
  948. ac_val2[k + 8] = block[k << v->top_blk_sh];
  949. }
  950. /* scale AC coeffs */
  951. for (k = 1; k < 64; k++)
  952. if (block[k]) {
  953. block[k] *= scale;
  954. if (!v->pquantizer)
  955. block[k] += (block[k] < 0) ? -quant : quant;
  956. }
  957. if (use_pred) i = 63;
  958. } else { // no AC coeffs
  959. int k;
  960. memset(ac_val2, 0, 16 * 2);
  961. if (dc_pred_dir) { // left
  962. if (use_pred) {
  963. memcpy(ac_val2, ac_val, 8 * 2);
  964. q1 = FFABS(q1) * 2 + ((q1 < 0) ? 0 : v->halfpq) - 1;
  965. if (q1 < 1)
  966. return AVERROR_INVALIDDATA;
  967. if (q2)
  968. q2 = FFABS(q2) * 2 + ((q2 < 0) ? 0 : v->halfpq) - 1;
  969. if (q2 && q1 != q2) {
  970. for (k = 1; k < 8; k++)
  971. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  972. }
  973. }
  974. } else { // top
  975. if (use_pred) {
  976. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  977. q1 = FFABS(q1) * 2 + ((q1 < 0) ? 0 : v->halfpq) - 1;
  978. if (q1 < 1)
  979. return AVERROR_INVALIDDATA;
  980. if (q2)
  981. q2 = FFABS(q2) * 2 + ((q2 < 0) ? 0 : v->halfpq) - 1;
  982. if (q2 && q1 != q2) {
  983. for (k = 1; k < 8; k++)
  984. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  985. }
  986. }
  987. }
  988. /* apply AC prediction if needed */
  989. if (use_pred) {
  990. if (dc_pred_dir) { // left
  991. for (k = 1; k < 8; k++) {
  992. block[k << v->left_blk_sh] = ac_val2[k] * scale;
  993. if (!v->pquantizer && block[k << v->left_blk_sh])
  994. block[k << v->left_blk_sh] += (block[k << v->left_blk_sh] < 0) ? -quant : quant;
  995. }
  996. } else { // top
  997. for (k = 1; k < 8; k++) {
  998. block[k << v->top_blk_sh] = ac_val2[k + 8] * scale;
  999. if (!v->pquantizer && block[k << v->top_blk_sh])
  1000. block[k << v->top_blk_sh] += (block[k << v->top_blk_sh] < 0) ? -quant : quant;
  1001. }
  1002. }
  1003. i = 63;
  1004. }
  1005. }
  1006. s->block_last_index[n] = i;
  1007. return 0;
  1008. }
  1009. /** Decode P block
  1010. */
  1011. static int vc1_decode_p_block(VC1Context *v, int16_t block[64], int n,
  1012. int mquant, int ttmb, int first_block,
  1013. uint8_t *dst, int linesize, int skip_block,
  1014. int *ttmb_out)
  1015. {
  1016. MpegEncContext *s = &v->s;
  1017. GetBitContext *gb = &s->gb;
  1018. int i, j;
  1019. int subblkpat = 0;
  1020. int scale, off, idx, last, skip, value;
  1021. int ttblk = ttmb & 7;
  1022. int pat = 0;
  1023. int quant = FFABS(mquant);
  1024. s->bdsp.clear_block(block);
  1025. if (ttmb == -1) {
  1026. ttblk = ff_vc1_ttblk_to_tt[v->tt_index][get_vlc2(gb, ff_vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
  1027. }
  1028. if (ttblk == TT_4X4) {
  1029. subblkpat = ~(get_vlc2(gb, ff_vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
  1030. }
  1031. if ((ttblk != TT_8X8 && ttblk != TT_4X4)
  1032. && ((v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))
  1033. || (!v->res_rtm_flag && !first_block))) {
  1034. subblkpat = decode012(gb);
  1035. if (subblkpat)
  1036. subblkpat ^= 3; // swap decoded pattern bits
  1037. if (ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM)
  1038. ttblk = TT_8X4;
  1039. if (ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT)
  1040. ttblk = TT_4X8;
  1041. }
  1042. scale = quant * 2 + ((mquant < 0) ? 0 : v->halfpq);
  1043. // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
  1044. if (ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
  1045. subblkpat = 2 - (ttblk == TT_8X4_TOP);
  1046. ttblk = TT_8X4;
  1047. }
  1048. if (ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
  1049. subblkpat = 2 - (ttblk == TT_4X8_LEFT);
  1050. ttblk = TT_4X8;
  1051. }
  1052. switch (ttblk) {
  1053. case TT_8X8:
  1054. pat = 0xF;
  1055. i = 0;
  1056. last = 0;
  1057. while (!last) {
  1058. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  1059. i += skip;
  1060. if (i > 63)
  1061. break;
  1062. if (!v->fcm)
  1063. idx = v->zz_8x8[0][i++];
  1064. else
  1065. idx = v->zzi_8x8[i++];
  1066. block[idx] = value * scale;
  1067. if (!v->pquantizer)
  1068. block[idx] += (block[idx] < 0) ? -quant : quant;
  1069. }
  1070. if (!skip_block) {
  1071. if (i == 1)
  1072. v->vc1dsp.vc1_inv_trans_8x8_dc(dst, linesize, block);
  1073. else {
  1074. v->vc1dsp.vc1_inv_trans_8x8(block);
  1075. s->idsp.add_pixels_clamped(block, dst, linesize);
  1076. }
  1077. }
  1078. break;
  1079. case TT_4X4:
  1080. pat = ~subblkpat & 0xF;
  1081. for (j = 0; j < 4; j++) {
  1082. last = subblkpat & (1 << (3 - j));
  1083. i = 0;
  1084. off = (j & 1) * 4 + (j & 2) * 16;
  1085. while (!last) {
  1086. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  1087. i += skip;
  1088. if (i > 15)
  1089. break;
  1090. if (!v->fcm)
  1091. idx = ff_vc1_simple_progressive_4x4_zz[i++];
  1092. else
  1093. idx = ff_vc1_adv_interlaced_4x4_zz[i++];
  1094. block[idx + off] = value * scale;
  1095. if (!v->pquantizer)
  1096. block[idx + off] += (block[idx + off] < 0) ? -quant : quant;
  1097. }
  1098. if (!(subblkpat & (1 << (3 - j))) && !skip_block) {
  1099. if (i == 1)
  1100. v->vc1dsp.vc1_inv_trans_4x4_dc(dst + (j & 1) * 4 + (j & 2) * 2 * linesize, linesize, block + off);
  1101. else
  1102. v->vc1dsp.vc1_inv_trans_4x4(dst + (j & 1) * 4 + (j & 2) * 2 * linesize, linesize, block + off);
  1103. }
  1104. }
  1105. break;
  1106. case TT_8X4:
  1107. pat = ~((subblkpat & 2) * 6 + (subblkpat & 1) * 3) & 0xF;
  1108. for (j = 0; j < 2; j++) {
  1109. last = subblkpat & (1 << (1 - j));
  1110. i = 0;
  1111. off = j * 32;
  1112. while (!last) {
  1113. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  1114. i += skip;
  1115. if (i > 31)
  1116. break;
  1117. if (!v->fcm)
  1118. idx = v->zz_8x4[i++] + off;
  1119. else
  1120. idx = ff_vc1_adv_interlaced_8x4_zz[i++] + off;
  1121. block[idx] = value * scale;
  1122. if (!v->pquantizer)
  1123. block[idx] += (block[idx] < 0) ? -quant : quant;
  1124. }
  1125. if (!(subblkpat & (1 << (1 - j))) && !skip_block) {
  1126. if (i == 1)
  1127. v->vc1dsp.vc1_inv_trans_8x4_dc(dst + j * 4 * linesize, linesize, block + off);
  1128. else
  1129. v->vc1dsp.vc1_inv_trans_8x4(dst + j * 4 * linesize, linesize, block + off);
  1130. }
  1131. }
  1132. break;
  1133. case TT_4X8:
  1134. pat = ~(subblkpat * 5) & 0xF;
  1135. for (j = 0; j < 2; j++) {
  1136. last = subblkpat & (1 << (1 - j));
  1137. i = 0;
  1138. off = j * 4;
  1139. while (!last) {
  1140. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  1141. i += skip;
  1142. if (i > 31)
  1143. break;
  1144. if (!v->fcm)
  1145. idx = v->zz_4x8[i++] + off;
  1146. else
  1147. idx = ff_vc1_adv_interlaced_4x8_zz[i++] + off;
  1148. block[idx] = value * scale;
  1149. if (!v->pquantizer)
  1150. block[idx] += (block[idx] < 0) ? -quant : quant;
  1151. }
  1152. if (!(subblkpat & (1 << (1 - j))) && !skip_block) {
  1153. if (i == 1)
  1154. v->vc1dsp.vc1_inv_trans_4x8_dc(dst + j * 4, linesize, block + off);
  1155. else
  1156. v->vc1dsp.vc1_inv_trans_4x8(dst + j*4, linesize, block + off);
  1157. }
  1158. }
  1159. break;
  1160. }
  1161. if (ttmb_out)
  1162. *ttmb_out |= ttblk << (n * 4);
  1163. return pat;
  1164. }
  1165. /** @} */ // Macroblock group
  1166. static const uint8_t size_table[6] = { 0, 2, 3, 4, 5, 8 };
  1167. /** Decode one P-frame MB
  1168. */
  1169. static int vc1_decode_p_mb(VC1Context *v)
  1170. {
  1171. MpegEncContext *s = &v->s;
  1172. GetBitContext *gb = &s->gb;
  1173. int i, j;
  1174. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1175. int cbp; /* cbp decoding stuff */
  1176. int mqdiff, mquant; /* MB quantization */
  1177. int ttmb = v->ttfrm; /* MB Transform type */
  1178. int mb_has_coeffs = 1; /* last_flag */
  1179. int dmv_x, dmv_y; /* Differential MV components */
  1180. int index, index1; /* LUT indexes */
  1181. int val, sign; /* temp values */
  1182. int first_block = 1;
  1183. int dst_idx, off;
  1184. int skipped, fourmv;
  1185. int block_cbp = 0, pat, block_tt = 0, block_intra = 0;
  1186. mquant = v->pq; /* lossy initialization */
  1187. if (v->mv_type_is_raw)
  1188. fourmv = get_bits1(gb);
  1189. else
  1190. fourmv = v->mv_type_mb_plane[mb_pos];
  1191. if (v->skip_is_raw)
  1192. skipped = get_bits1(gb);
  1193. else
  1194. skipped = v->s.mbskip_table[mb_pos];
  1195. if (!fourmv) { /* 1MV mode */
  1196. if (!skipped) {
  1197. GET_MVDATA(dmv_x, dmv_y);
  1198. if (s->mb_intra) {
  1199. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  1200. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  1201. }
  1202. s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
  1203. ff_vc1_pred_mv(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], 0, 0);
  1204. /* FIXME Set DC val for inter block ? */
  1205. if (s->mb_intra && !mb_has_coeffs) {
  1206. GET_MQUANT();
  1207. s->ac_pred = get_bits1(gb);
  1208. cbp = 0;
  1209. } else if (mb_has_coeffs) {
  1210. if (s->mb_intra)
  1211. s->ac_pred = get_bits1(gb);
  1212. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  1213. GET_MQUANT();
  1214. } else {
  1215. mquant = v->pq;
  1216. cbp = 0;
  1217. }
  1218. s->current_picture.qscale_table[mb_pos] = mquant;
  1219. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  1220. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table,
  1221. VC1_TTMB_VLC_BITS, 2);
  1222. if (!s->mb_intra) ff_vc1_mc_1mv(v, 0);
  1223. dst_idx = 0;
  1224. for (i = 0; i < 6; i++) {
  1225. s->dc_val[0][s->block_index[i]] = 0;
  1226. dst_idx += i >> 2;
  1227. val = ((cbp >> (5 - i)) & 1);
  1228. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  1229. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  1230. if (s->mb_intra) {
  1231. /* check if prediction blocks A and C are available */
  1232. v->a_avail = v->c_avail = 0;
  1233. if (i == 2 || i == 3 || !s->first_slice_line)
  1234. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  1235. if (i == 1 || i == 3 || s->mb_x)
  1236. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  1237. vc1_decode_intra_block(v, v->block[v->cur_blk_idx][i], i, val, mquant,
  1238. (i & 4) ? v->codingset2 : v->codingset);
  1239. if (CONFIG_GRAY && (i > 3) && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
  1240. continue;
  1241. v->vc1dsp.vc1_inv_trans_8x8(v->block[v->cur_blk_idx][i]);
  1242. if (v->rangeredfrm)
  1243. for (j = 0; j < 64; j++)
  1244. v->block[v->cur_blk_idx][i][j] <<= 1;
  1245. block_cbp |= 0xF << (i << 2);
  1246. block_intra |= 1 << i;
  1247. } else if (val) {
  1248. pat = vc1_decode_p_block(v, v->block[v->cur_blk_idx][i], i, mquant, ttmb, first_block,
  1249. s->dest[dst_idx] + off, (i & 4) ? s->uvlinesize : s->linesize,
  1250. CONFIG_GRAY && (i & 4) && (s->avctx->flags & AV_CODEC_FLAG_GRAY), &block_tt);
  1251. block_cbp |= pat << (i << 2);
  1252. if (!v->ttmbf && ttmb < 8)
  1253. ttmb = -1;
  1254. first_block = 0;
  1255. }
  1256. }
  1257. } else { // skipped
  1258. s->mb_intra = 0;
  1259. for (i = 0; i < 6; i++) {
  1260. v->mb_type[0][s->block_index[i]] = 0;
  1261. s->dc_val[0][s->block_index[i]] = 0;
  1262. }
  1263. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  1264. s->current_picture.qscale_table[mb_pos] = 0;
  1265. ff_vc1_pred_mv(v, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0], 0, 0);
  1266. ff_vc1_mc_1mv(v, 0);
  1267. }
  1268. } else { // 4MV mode
  1269. if (!skipped /* unskipped MB */) {
  1270. int intra_count = 0, coded_inter = 0;
  1271. int is_intra[6], is_coded[6];
  1272. /* Get CBPCY */
  1273. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  1274. for (i = 0; i < 6; i++) {
  1275. val = ((cbp >> (5 - i)) & 1);
  1276. s->dc_val[0][s->block_index[i]] = 0;
  1277. s->mb_intra = 0;
  1278. if (i < 4) {
  1279. dmv_x = dmv_y = 0;
  1280. s->mb_intra = 0;
  1281. mb_has_coeffs = 0;
  1282. if (val) {
  1283. GET_MVDATA(dmv_x, dmv_y);
  1284. }
  1285. ff_vc1_pred_mv(v, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0], 0, 0);
  1286. if (!s->mb_intra)
  1287. ff_vc1_mc_4mv_luma(v, i, 0, 0);
  1288. intra_count += s->mb_intra;
  1289. is_intra[i] = s->mb_intra;
  1290. is_coded[i] = mb_has_coeffs;
  1291. }
  1292. if (i & 4) {
  1293. is_intra[i] = (intra_count >= 3);
  1294. is_coded[i] = val;
  1295. }
  1296. if (i == 4)
  1297. ff_vc1_mc_4mv_chroma(v, 0);
  1298. v->mb_type[0][s->block_index[i]] = is_intra[i];
  1299. if (!coded_inter)
  1300. coded_inter = !is_intra[i] & is_coded[i];
  1301. }
  1302. // if there are no coded blocks then don't do anything more
  1303. dst_idx = 0;
  1304. if (!intra_count && !coded_inter)
  1305. goto end;
  1306. GET_MQUANT();
  1307. s->current_picture.qscale_table[mb_pos] = mquant;
  1308. /* test if block is intra and has pred */
  1309. {
  1310. int intrapred = 0;
  1311. for (i = 0; i < 6; i++)
  1312. if (is_intra[i]) {
  1313. if (((!s->first_slice_line || (i == 2 || i == 3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
  1314. || ((s->mb_x || (i == 1 || i == 3)) && v->mb_type[0][s->block_index[i] - 1])) {
  1315. intrapred = 1;
  1316. break;
  1317. }
  1318. }
  1319. if (intrapred)
  1320. s->ac_pred = get_bits1(gb);
  1321. else
  1322. s->ac_pred = 0;
  1323. }
  1324. if (!v->ttmbf && coded_inter)
  1325. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  1326. for (i = 0; i < 6; i++) {
  1327. dst_idx += i >> 2;
  1328. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  1329. s->mb_intra = is_intra[i];
  1330. if (is_intra[i]) {
  1331. /* check if prediction blocks A and C are available */
  1332. v->a_avail = v->c_avail = 0;
  1333. if (i == 2 || i == 3 || !s->first_slice_line)
  1334. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  1335. if (i == 1 || i == 3 || s->mb_x)
  1336. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  1337. vc1_decode_intra_block(v, v->block[v->cur_blk_idx][i], i, is_coded[i], mquant,
  1338. (i & 4) ? v->codingset2 : v->codingset);
  1339. if (CONFIG_GRAY && (i > 3) && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
  1340. continue;
  1341. v->vc1dsp.vc1_inv_trans_8x8(v->block[v->cur_blk_idx][i]);
  1342. if (v->rangeredfrm)
  1343. for (j = 0; j < 64; j++)
  1344. v->block[v->cur_blk_idx][i][j] <<= 1;
  1345. block_cbp |= 0xF << (i << 2);
  1346. block_intra |= 1 << i;
  1347. } else if (is_coded[i]) {
  1348. pat = vc1_decode_p_block(v, v->block[v->cur_blk_idx][i], i, mquant, ttmb,
  1349. first_block, s->dest[dst_idx] + off,
  1350. (i & 4) ? s->uvlinesize : s->linesize,
  1351. CONFIG_GRAY && (i & 4) && (s->avctx->flags & AV_CODEC_FLAG_GRAY),
  1352. &block_tt);
  1353. block_cbp |= pat << (i << 2);
  1354. if (!v->ttmbf && ttmb < 8)
  1355. ttmb = -1;
  1356. first_block = 0;
  1357. }
  1358. }
  1359. } else { // skipped MB
  1360. s->mb_intra = 0;
  1361. s->current_picture.qscale_table[mb_pos] = 0;
  1362. for (i = 0; i < 6; i++) {
  1363. v->mb_type[0][s->block_index[i]] = 0;
  1364. s->dc_val[0][s->block_index[i]] = 0;
  1365. }
  1366. for (i = 0; i < 4; i++) {
  1367. ff_vc1_pred_mv(v, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0], 0, 0);
  1368. ff_vc1_mc_4mv_luma(v, i, 0, 0);
  1369. }
  1370. ff_vc1_mc_4mv_chroma(v, 0);
  1371. s->current_picture.qscale_table[mb_pos] = 0;
  1372. }
  1373. }
  1374. end:
  1375. if (v->overlap && v->pq >= 9)
  1376. ff_vc1_p_overlap_filter(v);
  1377. vc1_put_blocks_clamped(v, 1);
  1378. v->cbp[s->mb_x] = block_cbp;
  1379. v->ttblk[s->mb_x] = block_tt;
  1380. v->is_intra[s->mb_x] = block_intra;
  1381. return 0;
  1382. }
  1383. /* Decode one macroblock in an interlaced frame p picture */
  1384. static int vc1_decode_p_mb_intfr(VC1Context *v)
  1385. {
  1386. MpegEncContext *s = &v->s;
  1387. GetBitContext *gb = &s->gb;
  1388. int i;
  1389. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1390. int cbp = 0; /* cbp decoding stuff */
  1391. int mqdiff, mquant; /* MB quantization */
  1392. int ttmb = v->ttfrm; /* MB Transform type */
  1393. int mb_has_coeffs = 1; /* last_flag */
  1394. int dmv_x, dmv_y; /* Differential MV components */
  1395. int val; /* temp value */
  1396. int first_block = 1;
  1397. int dst_idx, off;
  1398. int skipped, fourmv = 0, twomv = 0;
  1399. int block_cbp = 0, pat, block_tt = 0;
  1400. int idx_mbmode = 0, mvbp;
  1401. int fieldtx;
  1402. mquant = v->pq; /* Lossy initialization */
  1403. if (v->skip_is_raw)
  1404. skipped = get_bits1(gb);
  1405. else
  1406. skipped = v->s.mbskip_table[mb_pos];
  1407. if (!skipped) {
  1408. if (v->fourmvswitch)
  1409. idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_INTFR_4MV_MBMODE_VLC_BITS, 2); // try getting this done
  1410. else
  1411. idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_INTFR_NON4MV_MBMODE_VLC_BITS, 2); // in a single line
  1412. switch (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0]) {
  1413. /* store the motion vector type in a flag (useful later) */
  1414. case MV_PMODE_INTFR_4MV:
  1415. fourmv = 1;
  1416. v->blk_mv_type[s->block_index[0]] = 0;
  1417. v->blk_mv_type[s->block_index[1]] = 0;
  1418. v->blk_mv_type[s->block_index[2]] = 0;
  1419. v->blk_mv_type[s->block_index[3]] = 0;
  1420. break;
  1421. case MV_PMODE_INTFR_4MV_FIELD:
  1422. fourmv = 1;
  1423. v->blk_mv_type[s->block_index[0]] = 1;
  1424. v->blk_mv_type[s->block_index[1]] = 1;
  1425. v->blk_mv_type[s->block_index[2]] = 1;
  1426. v->blk_mv_type[s->block_index[3]] = 1;
  1427. break;
  1428. case MV_PMODE_INTFR_2MV_FIELD:
  1429. twomv = 1;
  1430. v->blk_mv_type[s->block_index[0]] = 1;
  1431. v->blk_mv_type[s->block_index[1]] = 1;
  1432. v->blk_mv_type[s->block_index[2]] = 1;
  1433. v->blk_mv_type[s->block_index[3]] = 1;
  1434. break;
  1435. case MV_PMODE_INTFR_1MV:
  1436. v->blk_mv_type[s->block_index[0]] = 0;
  1437. v->blk_mv_type[s->block_index[1]] = 0;
  1438. v->blk_mv_type[s->block_index[2]] = 0;
  1439. v->blk_mv_type[s->block_index[3]] = 0;
  1440. break;
  1441. }
  1442. if (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_INTRA) { // intra MB
  1443. for (i = 0; i < 4; i++) {
  1444. s->current_picture.motion_val[1][s->block_index[i]][0] = 0;
  1445. s->current_picture.motion_val[1][s->block_index[i]][1] = 0;
  1446. }
  1447. v->is_intra[s->mb_x] = 0x3f; // Set the bitfield to all 1.
  1448. s->mb_intra = 1;
  1449. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  1450. fieldtx = v->fieldtx_plane[mb_pos] = get_bits1(gb);
  1451. mb_has_coeffs = get_bits1(gb);
  1452. if (mb_has_coeffs)
  1453. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  1454. v->s.ac_pred = v->acpred_plane[mb_pos] = get_bits1(gb);
  1455. GET_MQUANT();
  1456. s->current_picture.qscale_table[mb_pos] = mquant;
  1457. /* Set DC scale - y and c use the same (not sure if necessary here) */
  1458. s->y_dc_scale = s->y_dc_scale_table[FFABS(mquant)];
  1459. s->c_dc_scale = s->c_dc_scale_table[FFABS(mquant)];
  1460. dst_idx = 0;
  1461. for (i = 0; i < 6; i++) {
  1462. v->a_avail = v->c_avail = 0;
  1463. v->mb_type[0][s->block_index[i]] = 1;
  1464. s->dc_val[0][s->block_index[i]] = 0;
  1465. dst_idx += i >> 2;
  1466. val = ((cbp >> (5 - i)) & 1);
  1467. if (i == 2 || i == 3 || !s->first_slice_line)
  1468. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  1469. if (i == 1 || i == 3 || s->mb_x)
  1470. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  1471. vc1_decode_intra_block(v, v->block[v->cur_blk_idx][i], i, val, mquant,
  1472. (i & 4) ? v->codingset2 : v->codingset);
  1473. if (CONFIG_GRAY && (i > 3) && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
  1474. continue;
  1475. v->vc1dsp.vc1_inv_trans_8x8(v->block[v->cur_blk_idx][i]);
  1476. if (i < 4)
  1477. off = (fieldtx) ? ((i & 1) * 8) + ((i & 2) >> 1) * s->linesize : (i & 1) * 8 + 4 * (i & 2) * s->linesize;
  1478. else
  1479. off = 0;
  1480. block_cbp |= 0xf << (i << 2);
  1481. }
  1482. } else { // inter MB
  1483. mb_has_coeffs = ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][3];
  1484. if (mb_has_coeffs)
  1485. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  1486. if (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_2MV_FIELD) {
  1487. v->twomvbp = get_vlc2(gb, v->twomvbp_vlc->table, VC1_2MV_BLOCK_PATTERN_VLC_BITS, 1);
  1488. } else {
  1489. if ((ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_4MV)
  1490. || (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_4MV_FIELD)) {
  1491. v->fourmvbp = get_vlc2(gb, v->fourmvbp_vlc->table, VC1_4MV_BLOCK_PATTERN_VLC_BITS, 1);
  1492. }
  1493. }
  1494. s->mb_intra = v->is_intra[s->mb_x] = 0;
  1495. for (i = 0; i < 6; i++)
  1496. v->mb_type[0][s->block_index[i]] = 0;
  1497. fieldtx = v->fieldtx_plane[mb_pos] = ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][1];
  1498. /* for all motion vector read MVDATA and motion compensate each block */
  1499. dst_idx = 0;
  1500. if (fourmv) {
  1501. mvbp = v->fourmvbp;
  1502. for (i = 0; i < 4; i++) {
  1503. dmv_x = dmv_y = 0;
  1504. if (mvbp & (8 >> i))
  1505. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  1506. ff_vc1_pred_mv_intfr(v, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0], 0);
  1507. ff_vc1_mc_4mv_luma(v, i, 0, 0);
  1508. }
  1509. ff_vc1_mc_4mv_chroma4(v, 0, 0, 0);
  1510. } else if (twomv) {
  1511. mvbp = v->twomvbp;
  1512. dmv_x = dmv_y = 0;
  1513. if (mvbp & 2) {
  1514. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  1515. }
  1516. ff_vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 2, v->range_x, v->range_y, v->mb_type[0], 0);
  1517. ff_vc1_mc_4mv_luma(v, 0, 0, 0);
  1518. ff_vc1_mc_4mv_luma(v, 1, 0, 0);
  1519. dmv_x = dmv_y = 0;
  1520. if (mvbp & 1) {
  1521. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  1522. }
  1523. ff_vc1_pred_mv_intfr(v, 2, dmv_x, dmv_y, 2, v->range_x, v->range_y, v->mb_type[0], 0);
  1524. ff_vc1_mc_4mv_luma(v, 2, 0, 0);
  1525. ff_vc1_mc_4mv_luma(v, 3, 0, 0);
  1526. ff_vc1_mc_4mv_chroma4(v, 0, 0, 0);
  1527. } else {
  1528. mvbp = ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][2];
  1529. dmv_x = dmv_y = 0;
  1530. if (mvbp) {
  1531. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  1532. }
  1533. ff_vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], 0);
  1534. ff_vc1_mc_1mv(v, 0);
  1535. }
  1536. if (cbp)
  1537. GET_MQUANT(); // p. 227
  1538. s->current_picture.qscale_table[mb_pos] = mquant;
  1539. if (!v->ttmbf && cbp)
  1540. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  1541. for (i = 0; i < 6; i++) {
  1542. s->dc_val[0][s->block_index[i]] = 0;
  1543. dst_idx += i >> 2;
  1544. val = ((cbp >> (5 - i)) & 1);
  1545. if (!fieldtx)
  1546. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  1547. else
  1548. off = (i & 4) ? 0 : ((i & 1) * 8 + ((i > 1) * s->linesize));
  1549. if (val) {
  1550. pat = vc1_decode_p_block(v, v->block[v->cur_blk_idx][i], i, mquant, ttmb,
  1551. first_block, s->dest[dst_idx] + off,
  1552. (i & 4) ? s->uvlinesize : (s->linesize << fieldtx),
  1553. CONFIG_GRAY && (i & 4) && (s->avctx->flags & AV_CODEC_FLAG_GRAY), &block_tt);
  1554. block_cbp |= pat << (i << 2);
  1555. if (!v->ttmbf && ttmb < 8)
  1556. ttmb = -1;
  1557. first_block = 0;
  1558. }
  1559. }
  1560. }
  1561. } else { // skipped
  1562. s->mb_intra = v->is_intra[s->mb_x] = 0;
  1563. for (i = 0; i < 6; i++) {
  1564. v->mb_type[0][s->block_index[i]] = 0;
  1565. s->dc_val[0][s->block_index[i]] = 0;
  1566. }
  1567. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  1568. s->current_picture.qscale_table[mb_pos] = 0;
  1569. v->blk_mv_type[s->block_index[0]] = 0;
  1570. v->blk_mv_type[s->block_index[1]] = 0;
  1571. v->blk_mv_type[s->block_index[2]] = 0;
  1572. v->blk_mv_type[s->block_index[3]] = 0;
  1573. ff_vc1_pred_mv_intfr(v, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0], 0);
  1574. ff_vc1_mc_1mv(v, 0);
  1575. v->fieldtx_plane[mb_pos] = 0;
  1576. }
  1577. if (v->overlap && v->pq >= 9)
  1578. ff_vc1_p_overlap_filter(v);
  1579. vc1_put_blocks_clamped(v, 1);
  1580. v->cbp[s->mb_x] = block_cbp;
  1581. v->ttblk[s->mb_x] = block_tt;
  1582. return 0;
  1583. }
  1584. static int vc1_decode_p_mb_intfi(VC1Context *v)
  1585. {
  1586. MpegEncContext *s = &v->s;
  1587. GetBitContext *gb = &s->gb;
  1588. int i;
  1589. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1590. int cbp = 0; /* cbp decoding stuff */
  1591. int mqdiff, mquant; /* MB quantization */
  1592. int ttmb = v->ttfrm; /* MB Transform type */
  1593. int mb_has_coeffs = 1; /* last_flag */
  1594. int dmv_x, dmv_y; /* Differential MV components */
  1595. int val; /* temp values */
  1596. int first_block = 1;
  1597. int dst_idx, off;
  1598. int pred_flag = 0;
  1599. int block_cbp = 0, pat, block_tt = 0;
  1600. int idx_mbmode = 0;
  1601. mquant = v->pq; /* Lossy initialization */
  1602. idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_IF_MBMODE_VLC_BITS, 2);
  1603. if (idx_mbmode <= 1) { // intra MB
  1604. v->is_intra[s->mb_x] = 0x3f; // Set the bitfield to all 1.
  1605. s->mb_intra = 1;
  1606. s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][0] = 0;
  1607. s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][1] = 0;
  1608. s->current_picture.mb_type[mb_pos + v->mb_off] = MB_TYPE_INTRA;
  1609. GET_MQUANT();
  1610. s->current_picture.qscale_table[mb_pos] = mquant;
  1611. /* Set DC scale - y and c use the same (not sure if necessary here) */
  1612. s->y_dc_scale = s->y_dc_scale_table[FFABS(mquant)];
  1613. s->c_dc_scale = s->c_dc_scale_table[FFABS(mquant)];
  1614. v->s.ac_pred = v->acpred_plane[mb_pos] = get_bits1(gb);
  1615. mb_has_coeffs = idx_mbmode & 1;
  1616. if (mb_has_coeffs)
  1617. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_ICBPCY_VLC_BITS, 2);
  1618. dst_idx = 0;
  1619. for (i = 0; i < 6; i++) {
  1620. v->a_avail = v->c_avail = 0;
  1621. v->mb_type[0][s->block_index[i]] = 1;
  1622. s->dc_val[0][s->block_index[i]] = 0;
  1623. dst_idx += i >> 2;
  1624. val = ((cbp >> (5 - i)) & 1);
  1625. if (i == 2 || i == 3 || !s->first_slice_line)
  1626. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  1627. if (i == 1 || i == 3 || s->mb_x)
  1628. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  1629. vc1_decode_intra_block(v, v->block[v->cur_blk_idx][i], i, val, mquant,
  1630. (i & 4) ? v->codingset2 : v->codingset);
  1631. if (CONFIG_GRAY && (i > 3) && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
  1632. continue;
  1633. v->vc1dsp.vc1_inv_trans_8x8(v->block[v->cur_blk_idx][i]);
  1634. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  1635. block_cbp |= 0xf << (i << 2);
  1636. }
  1637. } else {
  1638. s->mb_intra = v->is_intra[s->mb_x] = 0;
  1639. s->current_picture.mb_type[mb_pos + v->mb_off] = MB_TYPE_16x16;
  1640. for (i = 0; i < 6; i++)
  1641. v->mb_type[0][s->block_index[i]] = 0;
  1642. if (idx_mbmode <= 5) { // 1-MV
  1643. dmv_x = dmv_y = pred_flag = 0;
  1644. if (idx_mbmode & 1) {
  1645. get_mvdata_interlaced(v, &dmv_x, &dmv_y, &pred_flag);
  1646. }
  1647. ff_vc1_pred_mv(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], pred_flag, 0);
  1648. ff_vc1_mc_1mv(v, 0);
  1649. mb_has_coeffs = !(idx_mbmode & 2);
  1650. } else { // 4-MV
  1651. v->fourmvbp = get_vlc2(gb, v->fourmvbp_vlc->table, VC1_4MV_BLOCK_PATTERN_VLC_BITS, 1);
  1652. for (i = 0; i < 4; i++) {
  1653. dmv_x = dmv_y = pred_flag = 0;
  1654. if (v->fourmvbp & (8 >> i))
  1655. get_mvdata_interlaced(v, &dmv_x, &dmv_y, &pred_flag);
  1656. ff_vc1_pred_mv(v, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0], pred_flag, 0);
  1657. ff_vc1_mc_4mv_luma(v, i, 0, 0);
  1658. }
  1659. ff_vc1_mc_4mv_chroma(v, 0);
  1660. mb_has_coeffs = idx_mbmode & 1;
  1661. }
  1662. if (mb_has_coeffs)
  1663. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  1664. if (cbp) {
  1665. GET_MQUANT();
  1666. }
  1667. s->current_picture.qscale_table[mb_pos] = mquant;
  1668. if (!v->ttmbf && cbp) {
  1669. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  1670. }
  1671. dst_idx = 0;
  1672. for (i = 0; i < 6; i++) {
  1673. s->dc_val[0][s->block_index[i]] = 0;
  1674. dst_idx += i >> 2;
  1675. val = ((cbp >> (5 - i)) & 1);
  1676. off = (i & 4) ? 0 : (i & 1) * 8 + (i & 2) * 4 * s->linesize;
  1677. if (val) {
  1678. pat = vc1_decode_p_block(v, v->block[v->cur_blk_idx][i], i, mquant, ttmb,
  1679. first_block, s->dest[dst_idx] + off,
  1680. (i & 4) ? s->uvlinesize : s->linesize,
  1681. CONFIG_GRAY && (i & 4) && (s->avctx->flags & AV_CODEC_FLAG_GRAY),
  1682. &block_tt);
  1683. block_cbp |= pat << (i << 2);
  1684. if (!v->ttmbf && ttmb < 8)
  1685. ttmb = -1;
  1686. first_block = 0;
  1687. }
  1688. }
  1689. }
  1690. if (v->overlap && v->pq >= 9)
  1691. ff_vc1_p_overlap_filter(v);
  1692. vc1_put_blocks_clamped(v, 1);
  1693. v->cbp[s->mb_x] = block_cbp;
  1694. v->ttblk[s->mb_x] = block_tt;
  1695. return 0;
  1696. }
  1697. /** Decode one B-frame MB (in Main profile)
  1698. */
  1699. static void vc1_decode_b_mb(VC1Context *v)
  1700. {
  1701. MpegEncContext *s = &v->s;
  1702. GetBitContext *gb = &s->gb;
  1703. int i, j;
  1704. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1705. int cbp = 0; /* cbp decoding stuff */
  1706. int mqdiff, mquant; /* MB quantization */
  1707. int ttmb = v->ttfrm; /* MB Transform type */
  1708. int mb_has_coeffs = 0; /* last_flag */
  1709. int index, index1; /* LUT indexes */
  1710. int val, sign; /* temp values */
  1711. int first_block = 1;
  1712. int dst_idx, off;
  1713. int skipped, direct;
  1714. int dmv_x[2], dmv_y[2];
  1715. int bmvtype = BMV_TYPE_BACKWARD;
  1716. mquant = v->pq; /* lossy initialization */
  1717. s->mb_intra = 0;
  1718. if (v->dmb_is_raw)
  1719. direct = get_bits1(gb);
  1720. else
  1721. direct = v->direct_mb_plane[mb_pos];
  1722. if (v->skip_is_raw)
  1723. skipped = get_bits1(gb);
  1724. else
  1725. skipped = v->s.mbskip_table[mb_pos];
  1726. dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
  1727. for (i = 0; i < 6; i++) {
  1728. v->mb_type[0][s->block_index[i]] = 0;
  1729. s->dc_val[0][s->block_index[i]] = 0;
  1730. }
  1731. s->current_picture.qscale_table[mb_pos] = 0;
  1732. if (!direct) {
  1733. if (!skipped) {
  1734. GET_MVDATA(dmv_x[0], dmv_y[0]);
  1735. dmv_x[1] = dmv_x[0];
  1736. dmv_y[1] = dmv_y[0];
  1737. }
  1738. if (skipped || !s->mb_intra) {
  1739. bmvtype = decode012(gb);
  1740. switch (bmvtype) {
  1741. case 0:
  1742. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
  1743. break;
  1744. case 1:
  1745. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
  1746. break;
  1747. case 2:
  1748. bmvtype = BMV_TYPE_INTERPOLATED;
  1749. dmv_x[0] = dmv_y[0] = 0;
  1750. }
  1751. }
  1752. }
  1753. for (i = 0; i < 6; i++)
  1754. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  1755. if (skipped) {
  1756. if (direct)
  1757. bmvtype = BMV_TYPE_INTERPOLATED;
  1758. ff_vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  1759. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  1760. return;
  1761. }
  1762. if (direct) {
  1763. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  1764. GET_MQUANT();
  1765. s->mb_intra = 0;
  1766. s->current_picture.qscale_table[mb_pos] = mquant;
  1767. if (!v->ttmbf)
  1768. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  1769. dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0;
  1770. ff_vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  1771. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  1772. } else {
  1773. if (!mb_has_coeffs && !s->mb_intra) {
  1774. /* no coded blocks - effectively skipped */
  1775. ff_vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  1776. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  1777. return;
  1778. }
  1779. if (s->mb_intra && !mb_has_coeffs) {
  1780. GET_MQUANT();
  1781. s->current_picture.qscale_table[mb_pos] = mquant;
  1782. s->ac_pred = get_bits1(gb);
  1783. cbp = 0;
  1784. ff_vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  1785. } else {
  1786. if (bmvtype == BMV_TYPE_INTERPOLATED) {
  1787. GET_MVDATA(dmv_x[0], dmv_y[0]);
  1788. if (!mb_has_coeffs) {
  1789. /* interpolated skipped block */
  1790. ff_vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  1791. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  1792. return;
  1793. }
  1794. }
  1795. ff_vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  1796. if (!s->mb_intra) {
  1797. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  1798. }
  1799. if (s->mb_intra)
  1800. s->ac_pred = get_bits1(gb);
  1801. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  1802. GET_MQUANT();
  1803. s->current_picture.qscale_table[mb_pos] = mquant;
  1804. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  1805. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  1806. }
  1807. }
  1808. dst_idx = 0;
  1809. for (i = 0; i < 6; i++) {
  1810. s->dc_val[0][s->block_index[i]] = 0;
  1811. dst_idx += i >> 2;
  1812. val = ((cbp >> (5 - i)) & 1);
  1813. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  1814. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  1815. if (s->mb_intra) {
  1816. /* check if prediction blocks A and C are available */
  1817. v->a_avail = v->c_avail = 0;
  1818. if (i == 2 || i == 3 || !s->first_slice_line)
  1819. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  1820. if (i == 1 || i == 3 || s->mb_x)
  1821. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  1822. vc1_decode_intra_block(v, s->block[i], i, val, mquant,
  1823. (i & 4) ? v->codingset2 : v->codingset);
  1824. if (CONFIG_GRAY && (i > 3) && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
  1825. continue;
  1826. v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
  1827. if (v->rangeredfrm)
  1828. for (j = 0; j < 64; j++)
  1829. s->block[i][j] <<= 1;
  1830. s->idsp.put_signed_pixels_clamped(s->block[i],
  1831. s->dest[dst_idx] + off,
  1832. i & 4 ? s->uvlinesize
  1833. : s->linesize);
  1834. } else if (val) {
  1835. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
  1836. first_block, s->dest[dst_idx] + off,
  1837. (i & 4) ? s->uvlinesize : s->linesize,
  1838. CONFIG_GRAY && (i & 4) && (s->avctx->flags & AV_CODEC_FLAG_GRAY), NULL);
  1839. if (!v->ttmbf && ttmb < 8)
  1840. ttmb = -1;
  1841. first_block = 0;
  1842. }
  1843. }
  1844. }
  1845. /** Decode one B-frame MB (in interlaced field B picture)
  1846. */
  1847. static void vc1_decode_b_mb_intfi(VC1Context *v)
  1848. {
  1849. MpegEncContext *s = &v->s;
  1850. GetBitContext *gb = &s->gb;
  1851. int i, j;
  1852. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1853. int cbp = 0; /* cbp decoding stuff */
  1854. int mqdiff, mquant; /* MB quantization */
  1855. int ttmb = v->ttfrm; /* MB Transform type */
  1856. int mb_has_coeffs = 0; /* last_flag */
  1857. int val; /* temp value */
  1858. int first_block = 1;
  1859. int dst_idx, off;
  1860. int fwd;
  1861. int dmv_x[2], dmv_y[2], pred_flag[2];
  1862. int bmvtype = BMV_TYPE_BACKWARD;
  1863. int block_cbp = 0, pat, block_tt = 0;
  1864. int idx_mbmode;
  1865. mquant = v->pq; /* Lossy initialization */
  1866. s->mb_intra = 0;
  1867. idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_IF_MBMODE_VLC_BITS, 2);
  1868. if (idx_mbmode <= 1) { // intra MB
  1869. v->is_intra[s->mb_x] = 0x3f; // Set the bitfield to all 1.
  1870. s->mb_intra = 1;
  1871. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  1872. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  1873. s->current_picture.mb_type[mb_pos + v->mb_off] = MB_TYPE_INTRA;
  1874. GET_MQUANT();
  1875. s->current_picture.qscale_table[mb_pos] = mquant;
  1876. /* Set DC scale - y and c use the same (not sure if necessary here) */
  1877. s->y_dc_scale = s->y_dc_scale_table[FFABS(mquant)];
  1878. s->c_dc_scale = s->c_dc_scale_table[FFABS(mquant)];
  1879. v->s.ac_pred = v->acpred_plane[mb_pos] = get_bits1(gb);
  1880. mb_has_coeffs = idx_mbmode & 1;
  1881. if (mb_has_coeffs)
  1882. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_ICBPCY_VLC_BITS, 2);
  1883. dst_idx = 0;
  1884. for (i = 0; i < 6; i++) {
  1885. v->a_avail = v->c_avail = 0;
  1886. v->mb_type[0][s->block_index[i]] = 1;
  1887. s->dc_val[0][s->block_index[i]] = 0;
  1888. dst_idx += i >> 2;
  1889. val = ((cbp >> (5 - i)) & 1);
  1890. if (i == 2 || i == 3 || !s->first_slice_line)
  1891. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  1892. if (i == 1 || i == 3 || s->mb_x)
  1893. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  1894. vc1_decode_intra_block(v, s->block[i], i, val, mquant,
  1895. (i & 4) ? v->codingset2 : v->codingset);
  1896. if (CONFIG_GRAY && (i > 3) && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
  1897. continue;
  1898. v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
  1899. if (v->rangeredfrm)
  1900. for (j = 0; j < 64; j++)
  1901. s->block[i][j] <<= 1;
  1902. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  1903. s->idsp.put_signed_pixels_clamped(s->block[i],
  1904. s->dest[dst_idx] + off,
  1905. (i & 4) ? s->uvlinesize
  1906. : s->linesize);
  1907. }
  1908. } else {
  1909. s->mb_intra = v->is_intra[s->mb_x] = 0;
  1910. s->current_picture.mb_type[mb_pos + v->mb_off] = MB_TYPE_16x16;
  1911. for (i = 0; i < 6; i++)
  1912. v->mb_type[0][s->block_index[i]] = 0;
  1913. if (v->fmb_is_raw)
  1914. fwd = v->forward_mb_plane[mb_pos] = get_bits1(gb);
  1915. else
  1916. fwd = v->forward_mb_plane[mb_pos];
  1917. if (idx_mbmode <= 5) { // 1-MV
  1918. int interpmvp = 0;
  1919. dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
  1920. pred_flag[0] = pred_flag[1] = 0;
  1921. if (fwd)
  1922. bmvtype = BMV_TYPE_FORWARD;
  1923. else {
  1924. bmvtype = decode012(gb);
  1925. switch (bmvtype) {
  1926. case 0:
  1927. bmvtype = BMV_TYPE_BACKWARD;
  1928. break;
  1929. case 1:
  1930. bmvtype = BMV_TYPE_DIRECT;
  1931. break;
  1932. case 2:
  1933. bmvtype = BMV_TYPE_INTERPOLATED;
  1934. interpmvp = get_bits1(gb);
  1935. }
  1936. }
  1937. v->bmvtype = bmvtype;
  1938. if (bmvtype != BMV_TYPE_DIRECT && idx_mbmode & 1) {
  1939. get_mvdata_interlaced(v, &dmv_x[bmvtype == BMV_TYPE_BACKWARD], &dmv_y[bmvtype == BMV_TYPE_BACKWARD], &pred_flag[bmvtype == BMV_TYPE_BACKWARD]);
  1940. }
  1941. if (interpmvp) {
  1942. get_mvdata_interlaced(v, &dmv_x[1], &dmv_y[1], &pred_flag[1]);
  1943. }
  1944. if (bmvtype == BMV_TYPE_DIRECT) {
  1945. dmv_x[0] = dmv_y[0] = pred_flag[0] = 0;
  1946. dmv_x[1] = dmv_y[1] = pred_flag[0] = 0;
  1947. if (!s->next_picture_ptr->field_picture) {
  1948. av_log(s->avctx, AV_LOG_ERROR, "Mixed field/frame direct mode not supported\n");
  1949. return;
  1950. }
  1951. }
  1952. ff_vc1_pred_b_mv_intfi(v, 0, dmv_x, dmv_y, 1, pred_flag);
  1953. vc1_b_mc(v, dmv_x, dmv_y, (bmvtype == BMV_TYPE_DIRECT), bmvtype);
  1954. mb_has_coeffs = !(idx_mbmode & 2);
  1955. } else { // 4-MV
  1956. if (fwd)
  1957. bmvtype = BMV_TYPE_FORWARD;
  1958. v->bmvtype = bmvtype;
  1959. v->fourmvbp = get_vlc2(gb, v->fourmvbp_vlc->table, VC1_4MV_BLOCK_PATTERN_VLC_BITS, 1);
  1960. for (i = 0; i < 4; i++) {
  1961. dmv_x[0] = dmv_y[0] = pred_flag[0] = 0;
  1962. dmv_x[1] = dmv_y[1] = pred_flag[1] = 0;
  1963. if (v->fourmvbp & (8 >> i)) {
  1964. get_mvdata_interlaced(v, &dmv_x[bmvtype == BMV_TYPE_BACKWARD],
  1965. &dmv_y[bmvtype == BMV_TYPE_BACKWARD],
  1966. &pred_flag[bmvtype == BMV_TYPE_BACKWARD]);
  1967. }
  1968. ff_vc1_pred_b_mv_intfi(v, i, dmv_x, dmv_y, 0, pred_flag);
  1969. ff_vc1_mc_4mv_luma(v, i, bmvtype == BMV_TYPE_BACKWARD, 0);
  1970. }
  1971. ff_vc1_mc_4mv_chroma(v, bmvtype == BMV_TYPE_BACKWARD);
  1972. mb_has_coeffs = idx_mbmode & 1;
  1973. }
  1974. if (mb_has_coeffs)
  1975. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  1976. if (cbp) {
  1977. GET_MQUANT();
  1978. }
  1979. s->current_picture.qscale_table[mb_pos] = mquant;
  1980. if (!v->ttmbf && cbp) {
  1981. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  1982. }
  1983. dst_idx = 0;
  1984. for (i = 0; i < 6; i++) {
  1985. s->dc_val[0][s->block_index[i]] = 0;
  1986. dst_idx += i >> 2;
  1987. val = ((cbp >> (5 - i)) & 1);
  1988. off = (i & 4) ? 0 : (i & 1) * 8 + (i & 2) * 4 * s->linesize;
  1989. if (val) {
  1990. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
  1991. first_block, s->dest[dst_idx] + off,
  1992. (i & 4) ? s->uvlinesize : s->linesize,
  1993. CONFIG_GRAY && (i & 4) && (s->avctx->flags & AV_CODEC_FLAG_GRAY), &block_tt);
  1994. block_cbp |= pat << (i << 2);
  1995. if (!v->ttmbf && ttmb < 8)
  1996. ttmb = -1;
  1997. first_block = 0;
  1998. }
  1999. }
  2000. }
  2001. v->cbp[s->mb_x] = block_cbp;
  2002. v->ttblk[s->mb_x] = block_tt;
  2003. }
  2004. /** Decode one B-frame MB (in interlaced frame B picture)
  2005. */
  2006. static int vc1_decode_b_mb_intfr(VC1Context *v)
  2007. {
  2008. MpegEncContext *s = &v->s;
  2009. GetBitContext *gb = &s->gb;
  2010. int i, j;
  2011. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2012. int cbp = 0; /* cbp decoding stuff */
  2013. int mqdiff, mquant; /* MB quantization */
  2014. int ttmb = v->ttfrm; /* MB Transform type */
  2015. int mvsw = 0; /* motion vector switch */
  2016. int mb_has_coeffs = 1; /* last_flag */
  2017. int dmv_x, dmv_y; /* Differential MV components */
  2018. int val; /* temp value */
  2019. int first_block = 1;
  2020. int dst_idx, off;
  2021. int skipped, direct, twomv = 0;
  2022. int block_cbp = 0, pat, block_tt = 0;
  2023. int idx_mbmode = 0, mvbp;
  2024. int stride_y, fieldtx;
  2025. int bmvtype = BMV_TYPE_BACKWARD;
  2026. int dir, dir2;
  2027. mquant = v->pq; /* Lossy initialization */
  2028. s->mb_intra = 0;
  2029. if (v->skip_is_raw)
  2030. skipped = get_bits1(gb);
  2031. else
  2032. skipped = v->s.mbskip_table[mb_pos];
  2033. if (!skipped) {
  2034. idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_INTFR_NON4MV_MBMODE_VLC_BITS, 2);
  2035. if (ff_vc1_mbmode_intfrp[0][idx_mbmode][0] == MV_PMODE_INTFR_2MV_FIELD) {
  2036. twomv = 1;
  2037. v->blk_mv_type[s->block_index[0]] = 1;
  2038. v->blk_mv_type[s->block_index[1]] = 1;
  2039. v->blk_mv_type[s->block_index[2]] = 1;
  2040. v->blk_mv_type[s->block_index[3]] = 1;
  2041. } else {
  2042. v->blk_mv_type[s->block_index[0]] = 0;
  2043. v->blk_mv_type[s->block_index[1]] = 0;
  2044. v->blk_mv_type[s->block_index[2]] = 0;
  2045. v->blk_mv_type[s->block_index[3]] = 0;
  2046. }
  2047. }
  2048. if (ff_vc1_mbmode_intfrp[0][idx_mbmode][0] == MV_PMODE_INTFR_INTRA) { // intra MB
  2049. for (i = 0; i < 4; i++) {
  2050. s->mv[0][i][0] = s->current_picture.motion_val[0][s->block_index[i]][0] = 0;
  2051. s->mv[0][i][1] = s->current_picture.motion_val[0][s->block_index[i]][1] = 0;
  2052. s->mv[1][i][0] = s->current_picture.motion_val[1][s->block_index[i]][0] = 0;
  2053. s->mv[1][i][1] = s->current_picture.motion_val[1][s->block_index[i]][1] = 0;
  2054. }
  2055. v->is_intra[s->mb_x] = 0x3f; // Set the bitfield to all 1.
  2056. s->mb_intra = 1;
  2057. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  2058. fieldtx = v->fieldtx_plane[mb_pos] = get_bits1(gb);
  2059. mb_has_coeffs = get_bits1(gb);
  2060. if (mb_has_coeffs)
  2061. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2062. v->s.ac_pred = v->acpred_plane[mb_pos] = get_bits1(gb);
  2063. GET_MQUANT();
  2064. s->current_picture.qscale_table[mb_pos] = mquant;
  2065. /* Set DC scale - y and c use the same (not sure if necessary here) */
  2066. s->y_dc_scale = s->y_dc_scale_table[FFABS(mquant)];
  2067. s->c_dc_scale = s->c_dc_scale_table[FFABS(mquant)];
  2068. dst_idx = 0;
  2069. for (i = 0; i < 6; i++) {
  2070. v->a_avail = v->c_avail = 0;
  2071. v->mb_type[0][s->block_index[i]] = 1;
  2072. s->dc_val[0][s->block_index[i]] = 0;
  2073. dst_idx += i >> 2;
  2074. val = ((cbp >> (5 - i)) & 1);
  2075. if (i == 2 || i == 3 || !s->first_slice_line)
  2076. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2077. if (i == 1 || i == 3 || s->mb_x)
  2078. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2079. vc1_decode_intra_block(v, s->block[i], i, val, mquant,
  2080. (i & 4) ? v->codingset2 : v->codingset);
  2081. if (CONFIG_GRAY && i > 3 && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
  2082. continue;
  2083. v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
  2084. if (i < 4) {
  2085. stride_y = s->linesize << fieldtx;
  2086. off = (fieldtx) ? ((i & 1) * 8) + ((i & 2) >> 1) * s->linesize : (i & 1) * 8 + 4 * (i & 2) * s->linesize;
  2087. } else {
  2088. stride_y = s->uvlinesize;
  2089. off = 0;
  2090. }
  2091. s->idsp.put_signed_pixels_clamped(s->block[i],
  2092. s->dest[dst_idx] + off,
  2093. stride_y);
  2094. }
  2095. } else {
  2096. s->mb_intra = v->is_intra[s->mb_x] = 0;
  2097. if (v->dmb_is_raw)
  2098. direct = get_bits1(gb);
  2099. else
  2100. direct = v->direct_mb_plane[mb_pos];
  2101. if (direct) {
  2102. if (s->next_picture_ptr->field_picture)
  2103. av_log(s->avctx, AV_LOG_WARNING, "Mixed frame/field direct mode not supported\n");
  2104. s->mv[0][0][0] = s->current_picture.motion_val[0][s->block_index[0]][0] = scale_mv(s->next_picture.motion_val[1][s->block_index[0]][0], v->bfraction, 0, s->quarter_sample);
  2105. s->mv[0][0][1] = s->current_picture.motion_val[0][s->block_index[0]][1] = scale_mv(s->next_picture.motion_val[1][s->block_index[0]][1], v->bfraction, 0, s->quarter_sample);
  2106. s->mv[1][0][0] = s->current_picture.motion_val[1][s->block_index[0]][0] = scale_mv(s->next_picture.motion_val[1][s->block_index[0]][0], v->bfraction, 1, s->quarter_sample);
  2107. s->mv[1][0][1] = s->current_picture.motion_val[1][s->block_index[0]][1] = scale_mv(s->next_picture.motion_val[1][s->block_index[0]][1], v->bfraction, 1, s->quarter_sample);
  2108. if (twomv) {
  2109. s->mv[0][2][0] = s->current_picture.motion_val[0][s->block_index[2]][0] = scale_mv(s->next_picture.motion_val[1][s->block_index[2]][0], v->bfraction, 0, s->quarter_sample);
  2110. s->mv[0][2][1] = s->current_picture.motion_val[0][s->block_index[2]][1] = scale_mv(s->next_picture.motion_val[1][s->block_index[2]][1], v->bfraction, 0, s->quarter_sample);
  2111. s->mv[1][2][0] = s->current_picture.motion_val[1][s->block_index[2]][0] = scale_mv(s->next_picture.motion_val[1][s->block_index[2]][0], v->bfraction, 1, s->quarter_sample);
  2112. s->mv[1][2][1] = s->current_picture.motion_val[1][s->block_index[2]][1] = scale_mv(s->next_picture.motion_val[1][s->block_index[2]][1], v->bfraction, 1, s->quarter_sample);
  2113. for (i = 1; i < 4; i += 2) {
  2114. s->mv[0][i][0] = s->current_picture.motion_val[0][s->block_index[i]][0] = s->mv[0][i-1][0];
  2115. s->mv[0][i][1] = s->current_picture.motion_val[0][s->block_index[i]][1] = s->mv[0][i-1][1];
  2116. s->mv[1][i][0] = s->current_picture.motion_val[1][s->block_index[i]][0] = s->mv[1][i-1][0];
  2117. s->mv[1][i][1] = s->current_picture.motion_val[1][s->block_index[i]][1] = s->mv[1][i-1][1];
  2118. }
  2119. } else {
  2120. for (i = 1; i < 4; i++) {
  2121. s->mv[0][i][0] = s->current_picture.motion_val[0][s->block_index[i]][0] = s->mv[0][0][0];
  2122. s->mv[0][i][1] = s->current_picture.motion_val[0][s->block_index[i]][1] = s->mv[0][0][1];
  2123. s->mv[1][i][0] = s->current_picture.motion_val[1][s->block_index[i]][0] = s->mv[1][0][0];
  2124. s->mv[1][i][1] = s->current_picture.motion_val[1][s->block_index[i]][1] = s->mv[1][0][1];
  2125. }
  2126. }
  2127. }
  2128. if (!direct) {
  2129. if (skipped || !s->mb_intra) {
  2130. bmvtype = decode012(gb);
  2131. switch (bmvtype) {
  2132. case 0:
  2133. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
  2134. break;
  2135. case 1:
  2136. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
  2137. break;
  2138. case 2:
  2139. bmvtype = BMV_TYPE_INTERPOLATED;
  2140. }
  2141. }
  2142. if (twomv && bmvtype != BMV_TYPE_INTERPOLATED)
  2143. mvsw = get_bits1(gb);
  2144. }
  2145. if (!skipped) { // inter MB
  2146. mb_has_coeffs = ff_vc1_mbmode_intfrp[0][idx_mbmode][3];
  2147. if (mb_has_coeffs)
  2148. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2149. if (!direct) {
  2150. if (bmvtype == BMV_TYPE_INTERPOLATED && twomv) {
  2151. v->fourmvbp = get_vlc2(gb, v->fourmvbp_vlc->table, VC1_4MV_BLOCK_PATTERN_VLC_BITS, 1);
  2152. } else if (bmvtype == BMV_TYPE_INTERPOLATED || twomv) {
  2153. v->twomvbp = get_vlc2(gb, v->twomvbp_vlc->table, VC1_2MV_BLOCK_PATTERN_VLC_BITS, 1);
  2154. }
  2155. }
  2156. for (i = 0; i < 6; i++)
  2157. v->mb_type[0][s->block_index[i]] = 0;
  2158. fieldtx = v->fieldtx_plane[mb_pos] = ff_vc1_mbmode_intfrp[0][idx_mbmode][1];
  2159. /* for all motion vector read MVDATA and motion compensate each block */
  2160. dst_idx = 0;
  2161. if (direct) {
  2162. if (twomv) {
  2163. for (i = 0; i < 4; i++) {
  2164. ff_vc1_mc_4mv_luma(v, i, 0, 0);
  2165. ff_vc1_mc_4mv_luma(v, i, 1, 1);
  2166. }
  2167. ff_vc1_mc_4mv_chroma4(v, 0, 0, 0);
  2168. ff_vc1_mc_4mv_chroma4(v, 1, 1, 1);
  2169. } else {
  2170. ff_vc1_mc_1mv(v, 0);
  2171. ff_vc1_interp_mc(v);
  2172. }
  2173. } else if (twomv && bmvtype == BMV_TYPE_INTERPOLATED) {
  2174. mvbp = v->fourmvbp;
  2175. for (i = 0; i < 4; i++) {
  2176. dir = i==1 || i==3;
  2177. dmv_x = dmv_y = 0;
  2178. val = ((mvbp >> (3 - i)) & 1);
  2179. if (val)
  2180. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  2181. j = i > 1 ? 2 : 0;
  2182. ff_vc1_pred_mv_intfr(v, j, dmv_x, dmv_y, 2, v->range_x, v->range_y, v->mb_type[0], dir);
  2183. ff_vc1_mc_4mv_luma(v, j, dir, dir);
  2184. ff_vc1_mc_4mv_luma(v, j+1, dir, dir);
  2185. }
  2186. ff_vc1_mc_4mv_chroma4(v, 0, 0, 0);
  2187. ff_vc1_mc_4mv_chroma4(v, 1, 1, 1);
  2188. } else if (bmvtype == BMV_TYPE_INTERPOLATED) {
  2189. mvbp = v->twomvbp;
  2190. dmv_x = dmv_y = 0;
  2191. if (mvbp & 2)
  2192. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  2193. ff_vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], 0);
  2194. ff_vc1_mc_1mv(v, 0);
  2195. dmv_x = dmv_y = 0;
  2196. if (mvbp & 1)
  2197. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  2198. ff_vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], 1);
  2199. ff_vc1_interp_mc(v);
  2200. } else if (twomv) {
  2201. dir = bmvtype == BMV_TYPE_BACKWARD;
  2202. dir2 = dir;
  2203. if (mvsw)
  2204. dir2 = !dir;
  2205. mvbp = v->twomvbp;
  2206. dmv_x = dmv_y = 0;
  2207. if (mvbp & 2)
  2208. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  2209. ff_vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 2, v->range_x, v->range_y, v->mb_type[0], dir);
  2210. dmv_x = dmv_y = 0;
  2211. if (mvbp & 1)
  2212. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  2213. ff_vc1_pred_mv_intfr(v, 2, dmv_x, dmv_y, 2, v->range_x, v->range_y, v->mb_type[0], dir2);
  2214. if (mvsw) {
  2215. for (i = 0; i < 2; i++) {
  2216. s->mv[dir][i+2][0] = s->mv[dir][i][0] = s->current_picture.motion_val[dir][s->block_index[i+2]][0] = s->current_picture.motion_val[dir][s->block_index[i]][0];
  2217. s->mv[dir][i+2][1] = s->mv[dir][i][1] = s->current_picture.motion_val[dir][s->block_index[i+2]][1] = s->current_picture.motion_val[dir][s->block_index[i]][1];
  2218. s->mv[dir2][i+2][0] = s->mv[dir2][i][0] = s->current_picture.motion_val[dir2][s->block_index[i]][0] = s->current_picture.motion_val[dir2][s->block_index[i+2]][0];
  2219. s->mv[dir2][i+2][1] = s->mv[dir2][i][1] = s->current_picture.motion_val[dir2][s->block_index[i]][1] = s->current_picture.motion_val[dir2][s->block_index[i+2]][1];
  2220. }
  2221. } else {
  2222. ff_vc1_pred_mv_intfr(v, 0, 0, 0, 2, v->range_x, v->range_y, v->mb_type[0], !dir);
  2223. ff_vc1_pred_mv_intfr(v, 2, 0, 0, 2, v->range_x, v->range_y, v->mb_type[0], !dir);
  2224. }
  2225. ff_vc1_mc_4mv_luma(v, 0, dir, 0);
  2226. ff_vc1_mc_4mv_luma(v, 1, dir, 0);
  2227. ff_vc1_mc_4mv_luma(v, 2, dir2, 0);
  2228. ff_vc1_mc_4mv_luma(v, 3, dir2, 0);
  2229. ff_vc1_mc_4mv_chroma4(v, dir, dir2, 0);
  2230. } else {
  2231. dir = bmvtype == BMV_TYPE_BACKWARD;
  2232. mvbp = ff_vc1_mbmode_intfrp[0][idx_mbmode][2];
  2233. dmv_x = dmv_y = 0;
  2234. if (mvbp)
  2235. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  2236. ff_vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], dir);
  2237. v->blk_mv_type[s->block_index[0]] = 1;
  2238. v->blk_mv_type[s->block_index[1]] = 1;
  2239. v->blk_mv_type[s->block_index[2]] = 1;
  2240. v->blk_mv_type[s->block_index[3]] = 1;
  2241. ff_vc1_pred_mv_intfr(v, 0, 0, 0, 2, v->range_x, v->range_y, 0, !dir);
  2242. for (i = 0; i < 2; i++) {
  2243. s->mv[!dir][i+2][0] = s->mv[!dir][i][0] = s->current_picture.motion_val[!dir][s->block_index[i+2]][0] = s->current_picture.motion_val[!dir][s->block_index[i]][0];
  2244. s->mv[!dir][i+2][1] = s->mv[!dir][i][1] = s->current_picture.motion_val[!dir][s->block_index[i+2]][1] = s->current_picture.motion_val[!dir][s->block_index[i]][1];
  2245. }
  2246. ff_vc1_mc_1mv(v, dir);
  2247. }
  2248. if (cbp)
  2249. GET_MQUANT(); // p. 227
  2250. s->current_picture.qscale_table[mb_pos] = mquant;
  2251. if (!v->ttmbf && cbp)
  2252. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  2253. for (i = 0; i < 6; i++) {
  2254. s->dc_val[0][s->block_index[i]] = 0;
  2255. dst_idx += i >> 2;
  2256. val = ((cbp >> (5 - i)) & 1);
  2257. if (!fieldtx)
  2258. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2259. else
  2260. off = (i & 4) ? 0 : ((i & 1) * 8 + ((i > 1) * s->linesize));
  2261. if (val) {
  2262. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
  2263. first_block, s->dest[dst_idx] + off,
  2264. (i & 4) ? s->uvlinesize : (s->linesize << fieldtx),
  2265. CONFIG_GRAY && (i & 4) && (s->avctx->flags & AV_CODEC_FLAG_GRAY), &block_tt);
  2266. block_cbp |= pat << (i << 2);
  2267. if (!v->ttmbf && ttmb < 8)
  2268. ttmb = -1;
  2269. first_block = 0;
  2270. }
  2271. }
  2272. } else { // skipped
  2273. dir = 0;
  2274. for (i = 0; i < 6; i++) {
  2275. v->mb_type[0][s->block_index[i]] = 0;
  2276. s->dc_val[0][s->block_index[i]] = 0;
  2277. }
  2278. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  2279. s->current_picture.qscale_table[mb_pos] = 0;
  2280. v->blk_mv_type[s->block_index[0]] = 0;
  2281. v->blk_mv_type[s->block_index[1]] = 0;
  2282. v->blk_mv_type[s->block_index[2]] = 0;
  2283. v->blk_mv_type[s->block_index[3]] = 0;
  2284. if (!direct) {
  2285. if (bmvtype == BMV_TYPE_INTERPOLATED) {
  2286. ff_vc1_pred_mv_intfr(v, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0], 0);
  2287. ff_vc1_pred_mv_intfr(v, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0], 1);
  2288. } else {
  2289. dir = bmvtype == BMV_TYPE_BACKWARD;
  2290. ff_vc1_pred_mv_intfr(v, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0], dir);
  2291. if (mvsw) {
  2292. int dir2 = dir;
  2293. if (mvsw)
  2294. dir2 = !dir;
  2295. for (i = 0; i < 2; i++) {
  2296. s->mv[dir][i+2][0] = s->mv[dir][i][0] = s->current_picture.motion_val[dir][s->block_index[i+2]][0] = s->current_picture.motion_val[dir][s->block_index[i]][0];
  2297. s->mv[dir][i+2][1] = s->mv[dir][i][1] = s->current_picture.motion_val[dir][s->block_index[i+2]][1] = s->current_picture.motion_val[dir][s->block_index[i]][1];
  2298. s->mv[dir2][i+2][0] = s->mv[dir2][i][0] = s->current_picture.motion_val[dir2][s->block_index[i]][0] = s->current_picture.motion_val[dir2][s->block_index[i+2]][0];
  2299. s->mv[dir2][i+2][1] = s->mv[dir2][i][1] = s->current_picture.motion_val[dir2][s->block_index[i]][1] = s->current_picture.motion_val[dir2][s->block_index[i+2]][1];
  2300. }
  2301. } else {
  2302. v->blk_mv_type[s->block_index[0]] = 1;
  2303. v->blk_mv_type[s->block_index[1]] = 1;
  2304. v->blk_mv_type[s->block_index[2]] = 1;
  2305. v->blk_mv_type[s->block_index[3]] = 1;
  2306. ff_vc1_pred_mv_intfr(v, 0, 0, 0, 2, v->range_x, v->range_y, 0, !dir);
  2307. for (i = 0; i < 2; i++) {
  2308. s->mv[!dir][i+2][0] = s->mv[!dir][i][0] = s->current_picture.motion_val[!dir][s->block_index[i+2]][0] = s->current_picture.motion_val[!dir][s->block_index[i]][0];
  2309. s->mv[!dir][i+2][1] = s->mv[!dir][i][1] = s->current_picture.motion_val[!dir][s->block_index[i+2]][1] = s->current_picture.motion_val[!dir][s->block_index[i]][1];
  2310. }
  2311. }
  2312. }
  2313. }
  2314. ff_vc1_mc_1mv(v, dir);
  2315. if (direct || bmvtype == BMV_TYPE_INTERPOLATED) {
  2316. ff_vc1_interp_mc(v);
  2317. }
  2318. v->fieldtx_plane[mb_pos] = 0;
  2319. }
  2320. }
  2321. v->cbp[s->mb_x] = block_cbp;
  2322. v->ttblk[s->mb_x] = block_tt;
  2323. return 0;
  2324. }
  2325. /** Decode blocks of I-frame
  2326. */
  2327. static void vc1_decode_i_blocks(VC1Context *v)
  2328. {
  2329. int k, j;
  2330. MpegEncContext *s = &v->s;
  2331. int cbp, val;
  2332. uint8_t *coded_val;
  2333. int mb_pos;
  2334. /* select coding mode used for VLC tables selection */
  2335. switch (v->y_ac_table_index) {
  2336. case 0:
  2337. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2338. break;
  2339. case 1:
  2340. v->codingset = CS_HIGH_MOT_INTRA;
  2341. break;
  2342. case 2:
  2343. v->codingset = CS_MID_RATE_INTRA;
  2344. break;
  2345. }
  2346. switch (v->c_ac_table_index) {
  2347. case 0:
  2348. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2349. break;
  2350. case 1:
  2351. v->codingset2 = CS_HIGH_MOT_INTER;
  2352. break;
  2353. case 2:
  2354. v->codingset2 = CS_MID_RATE_INTER;
  2355. break;
  2356. }
  2357. /* Set DC scale - y and c use the same */
  2358. s->y_dc_scale = s->y_dc_scale_table[v->pq];
  2359. s->c_dc_scale = s->c_dc_scale_table[v->pq];
  2360. //do frame decode
  2361. s->mb_x = s->mb_y = 0;
  2362. s->mb_intra = 1;
  2363. s->first_slice_line = 1;
  2364. for (s->mb_y = s->start_mb_y; s->mb_y < s->end_mb_y; s->mb_y++) {
  2365. s->mb_x = 0;
  2366. init_block_index(v);
  2367. for (; s->mb_x < v->end_mb_x; s->mb_x++) {
  2368. int16_t (*block)[64] = v->block[v->cur_blk_idx];
  2369. ff_update_block_index(s);
  2370. s->bdsp.clear_blocks(block[0]);
  2371. mb_pos = s->mb_x + s->mb_y * s->mb_width;
  2372. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  2373. s->current_picture.qscale_table[mb_pos] = v->pq;
  2374. for (int i = 0; i < 4; i++) {
  2375. s->current_picture.motion_val[1][s->block_index[i]][0] = 0;
  2376. s->current_picture.motion_val[1][s->block_index[i]][1] = 0;
  2377. }
  2378. // do actual MB decoding and displaying
  2379. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  2380. v->s.ac_pred = get_bits1(&v->s.gb);
  2381. for (k = 0; k < 6; k++) {
  2382. v->mb_type[0][s->block_index[k]] = 1;
  2383. val = ((cbp >> (5 - k)) & 1);
  2384. if (k < 4) {
  2385. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  2386. val = val ^ pred;
  2387. *coded_val = val;
  2388. }
  2389. cbp |= val << (5 - k);
  2390. vc1_decode_i_block(v, block[k], k, val, (k < 4) ? v->codingset : v->codingset2);
  2391. if (CONFIG_GRAY && k > 3 && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
  2392. continue;
  2393. v->vc1dsp.vc1_inv_trans_8x8(block[k]);
  2394. }
  2395. if (v->overlap && v->pq >= 9) {
  2396. ff_vc1_i_overlap_filter(v);
  2397. if (v->rangeredfrm)
  2398. for (k = 0; k < 6; k++)
  2399. for (j = 0; j < 64; j++)
  2400. block[k][j] <<= 1;
  2401. vc1_put_blocks_clamped(v, 1);
  2402. } else {
  2403. if (v->rangeredfrm)
  2404. for (k = 0; k < 6; k++)
  2405. for (j = 0; j < 64; j++)
  2406. block[k][j] = (block[k][j] - 64) << 1;
  2407. vc1_put_blocks_clamped(v, 0);
  2408. }
  2409. if (v->s.loop_filter)
  2410. ff_vc1_i_loop_filter(v);
  2411. if (get_bits_count(&s->gb) > v->bits) {
  2412. ff_er_add_slice(&s->er, 0, 0, s->mb_x, s->mb_y, ER_MB_ERROR);
  2413. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n",
  2414. get_bits_count(&s->gb), v->bits);
  2415. return;
  2416. }
  2417. v->topleft_blk_idx = (v->topleft_blk_idx + 1) % (v->end_mb_x + 2);
  2418. v->top_blk_idx = (v->top_blk_idx + 1) % (v->end_mb_x + 2);
  2419. v->left_blk_idx = (v->left_blk_idx + 1) % (v->end_mb_x + 2);
  2420. v->cur_blk_idx = (v->cur_blk_idx + 1) % (v->end_mb_x + 2);
  2421. }
  2422. if (!v->s.loop_filter)
  2423. ff_mpeg_draw_horiz_band(s, s->mb_y * 16, 16);
  2424. else if (s->mb_y)
  2425. ff_mpeg_draw_horiz_band(s, (s->mb_y - 1) * 16, 16);
  2426. s->first_slice_line = 0;
  2427. }
  2428. if (v->s.loop_filter)
  2429. ff_mpeg_draw_horiz_band(s, (s->end_mb_y - 1) * 16, 16);
  2430. /* This is intentionally mb_height and not end_mb_y - unlike in advanced
  2431. * profile, these only differ are when decoding MSS2 rectangles. */
  2432. ff_er_add_slice(&s->er, 0, 0, s->mb_width - 1, s->mb_height - 1, ER_MB_END);
  2433. }
  2434. /** Decode blocks of I-frame for advanced profile
  2435. */
  2436. static void vc1_decode_i_blocks_adv(VC1Context *v)
  2437. {
  2438. int k;
  2439. MpegEncContext *s = &v->s;
  2440. int cbp, val;
  2441. uint8_t *coded_val;
  2442. int mb_pos;
  2443. int mquant;
  2444. int mqdiff;
  2445. GetBitContext *gb = &s->gb;
  2446. /* select coding mode used for VLC tables selection */
  2447. switch (v->y_ac_table_index) {
  2448. case 0:
  2449. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2450. break;
  2451. case 1:
  2452. v->codingset = CS_HIGH_MOT_INTRA;
  2453. break;
  2454. case 2:
  2455. v->codingset = CS_MID_RATE_INTRA;
  2456. break;
  2457. }
  2458. switch (v->c_ac_table_index) {
  2459. case 0:
  2460. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2461. break;
  2462. case 1:
  2463. v->codingset2 = CS_HIGH_MOT_INTER;
  2464. break;
  2465. case 2:
  2466. v->codingset2 = CS_MID_RATE_INTER;
  2467. break;
  2468. }
  2469. // do frame decode
  2470. s->mb_x = s->mb_y = 0;
  2471. s->mb_intra = 1;
  2472. s->first_slice_line = 1;
  2473. s->mb_y = s->start_mb_y;
  2474. if (s->start_mb_y) {
  2475. s->mb_x = 0;
  2476. init_block_index(v);
  2477. memset(&s->coded_block[s->block_index[0] - s->b8_stride], 0,
  2478. (1 + s->b8_stride) * sizeof(*s->coded_block));
  2479. }
  2480. for (; s->mb_y < s->end_mb_y; s->mb_y++) {
  2481. s->mb_x = 0;
  2482. init_block_index(v);
  2483. for (;s->mb_x < s->mb_width; s->mb_x++) {
  2484. int16_t (*block)[64] = v->block[v->cur_blk_idx];
  2485. mquant = v->pq;
  2486. ff_update_block_index(s);
  2487. s->bdsp.clear_blocks(block[0]);
  2488. mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2489. s->current_picture.mb_type[mb_pos + v->mb_off] = MB_TYPE_INTRA;
  2490. for (int i = 0; i < 4; i++) {
  2491. s->current_picture.motion_val[1][s->block_index[i] + v->blocks_off][0] = 0;
  2492. s->current_picture.motion_val[1][s->block_index[i] + v->blocks_off][1] = 0;
  2493. }
  2494. // do actual MB decoding and displaying
  2495. if (v->fieldtx_is_raw)
  2496. v->fieldtx_plane[mb_pos] = get_bits1(&v->s.gb);
  2497. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  2498. if (v->acpred_is_raw)
  2499. v->s.ac_pred = get_bits1(&v->s.gb);
  2500. else
  2501. v->s.ac_pred = v->acpred_plane[mb_pos];
  2502. if (v->condover == CONDOVER_SELECT && v->overflg_is_raw)
  2503. v->over_flags_plane[mb_pos] = get_bits1(&v->s.gb);
  2504. GET_MQUANT();
  2505. s->current_picture.qscale_table[mb_pos] = mquant;
  2506. /* Set DC scale - y and c use the same */
  2507. s->y_dc_scale = s->y_dc_scale_table[FFABS(mquant)];
  2508. s->c_dc_scale = s->c_dc_scale_table[FFABS(mquant)];
  2509. for (k = 0; k < 6; k++) {
  2510. v->mb_type[0][s->block_index[k]] = 1;
  2511. val = ((cbp >> (5 - k)) & 1);
  2512. if (k < 4) {
  2513. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  2514. val = val ^ pred;
  2515. *coded_val = val;
  2516. }
  2517. cbp |= val << (5 - k);
  2518. v->a_avail = !s->first_slice_line || (k == 2 || k == 3);
  2519. v->c_avail = !!s->mb_x || (k == 1 || k == 3);
  2520. vc1_decode_i_block_adv(v, block[k], k, val,
  2521. (k < 4) ? v->codingset : v->codingset2, mquant);
  2522. if (CONFIG_GRAY && k > 3 && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
  2523. continue;
  2524. v->vc1dsp.vc1_inv_trans_8x8(block[k]);
  2525. }
  2526. if (v->overlap && v->condover != CONDOVER_NONE)
  2527. ff_vc1_i_overlap_filter(v);
  2528. vc1_put_blocks_clamped(v, 1);
  2529. if (v->s.loop_filter)
  2530. ff_vc1_i_loop_filter(v);
  2531. if (get_bits_count(&s->gb) > v->bits) {
  2532. // TODO: may need modification to handle slice coding
  2533. ff_er_add_slice(&s->er, 0, s->start_mb_y, s->mb_x, s->mb_y, ER_MB_ERROR);
  2534. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n",
  2535. get_bits_count(&s->gb), v->bits);
  2536. return;
  2537. }
  2538. inc_blk_idx(v->topleft_blk_idx);
  2539. inc_blk_idx(v->top_blk_idx);
  2540. inc_blk_idx(v->left_blk_idx);
  2541. inc_blk_idx(v->cur_blk_idx);
  2542. }
  2543. if (!v->s.loop_filter)
  2544. ff_mpeg_draw_horiz_band(s, s->mb_y * 16, 16);
  2545. else if (s->mb_y)
  2546. ff_mpeg_draw_horiz_band(s, (s->mb_y-1) * 16, 16);
  2547. s->first_slice_line = 0;
  2548. }
  2549. if (v->s.loop_filter)
  2550. ff_mpeg_draw_horiz_band(s, (s->end_mb_y - 1) * 16, 16);
  2551. ff_er_add_slice(&s->er, 0, s->start_mb_y << v->field_mode, s->mb_width - 1,
  2552. (s->end_mb_y << v->field_mode) - 1, ER_MB_END);
  2553. }
  2554. static void vc1_decode_p_blocks(VC1Context *v)
  2555. {
  2556. MpegEncContext *s = &v->s;
  2557. int apply_loop_filter;
  2558. /* select coding mode used for VLC tables selection */
  2559. switch (v->c_ac_table_index) {
  2560. case 0:
  2561. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2562. break;
  2563. case 1:
  2564. v->codingset = CS_HIGH_MOT_INTRA;
  2565. break;
  2566. case 2:
  2567. v->codingset = CS_MID_RATE_INTRA;
  2568. break;
  2569. }
  2570. switch (v->c_ac_table_index) {
  2571. case 0:
  2572. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2573. break;
  2574. case 1:
  2575. v->codingset2 = CS_HIGH_MOT_INTER;
  2576. break;
  2577. case 2:
  2578. v->codingset2 = CS_MID_RATE_INTER;
  2579. break;
  2580. }
  2581. apply_loop_filter = s->loop_filter && !(s->avctx->skip_loop_filter >= AVDISCARD_NONKEY);
  2582. s->first_slice_line = 1;
  2583. memset(v->cbp_base, 0, sizeof(v->cbp_base[0]) * 3 * s->mb_stride);
  2584. for (s->mb_y = s->start_mb_y; s->mb_y < s->end_mb_y; s->mb_y++) {
  2585. s->mb_x = 0;
  2586. init_block_index(v);
  2587. for (; s->mb_x < s->mb_width; s->mb_x++) {
  2588. ff_update_block_index(s);
  2589. if (v->fcm == ILACE_FIELD) {
  2590. vc1_decode_p_mb_intfi(v);
  2591. if (apply_loop_filter)
  2592. ff_vc1_p_loop_filter(v);
  2593. } else if (v->fcm == ILACE_FRAME) {
  2594. vc1_decode_p_mb_intfr(v);
  2595. if (apply_loop_filter)
  2596. ff_vc1_p_intfr_loop_filter(v);
  2597. } else {
  2598. vc1_decode_p_mb(v);
  2599. if (apply_loop_filter)
  2600. ff_vc1_p_loop_filter(v);
  2601. }
  2602. if (get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  2603. // TODO: may need modification to handle slice coding
  2604. ff_er_add_slice(&s->er, 0, s->start_mb_y, s->mb_x, s->mb_y, ER_MB_ERROR);
  2605. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n",
  2606. get_bits_count(&s->gb), v->bits, s->mb_x, s->mb_y);
  2607. return;
  2608. }
  2609. inc_blk_idx(v->topleft_blk_idx);
  2610. inc_blk_idx(v->top_blk_idx);
  2611. inc_blk_idx(v->left_blk_idx);
  2612. inc_blk_idx(v->cur_blk_idx);
  2613. }
  2614. memmove(v->cbp_base,
  2615. v->cbp - s->mb_stride,
  2616. sizeof(v->cbp_base[0]) * 2 * s->mb_stride);
  2617. memmove(v->ttblk_base,
  2618. v->ttblk - s->mb_stride,
  2619. sizeof(v->ttblk_base[0]) * 2 * s->mb_stride);
  2620. memmove(v->is_intra_base,
  2621. v->is_intra - s->mb_stride,
  2622. sizeof(v->is_intra_base[0]) * 2 * s->mb_stride);
  2623. memmove(v->luma_mv_base,
  2624. v->luma_mv - s->mb_stride,
  2625. sizeof(v->luma_mv_base[0]) * 2 * s->mb_stride);
  2626. if (s->mb_y != s->start_mb_y)
  2627. ff_mpeg_draw_horiz_band(s, (s->mb_y - 1) * 16, 16);
  2628. s->first_slice_line = 0;
  2629. }
  2630. if (s->end_mb_y >= s->start_mb_y)
  2631. ff_mpeg_draw_horiz_band(s, (s->end_mb_y - 1) * 16, 16);
  2632. ff_er_add_slice(&s->er, 0, s->start_mb_y << v->field_mode, s->mb_width - 1,
  2633. (s->end_mb_y << v->field_mode) - 1, ER_MB_END);
  2634. }
  2635. static void vc1_decode_b_blocks(VC1Context *v)
  2636. {
  2637. MpegEncContext *s = &v->s;
  2638. /* select coding mode used for VLC tables selection */
  2639. switch (v->c_ac_table_index) {
  2640. case 0:
  2641. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2642. break;
  2643. case 1:
  2644. v->codingset = CS_HIGH_MOT_INTRA;
  2645. break;
  2646. case 2:
  2647. v->codingset = CS_MID_RATE_INTRA;
  2648. break;
  2649. }
  2650. switch (v->c_ac_table_index) {
  2651. case 0:
  2652. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2653. break;
  2654. case 1:
  2655. v->codingset2 = CS_HIGH_MOT_INTER;
  2656. break;
  2657. case 2:
  2658. v->codingset2 = CS_MID_RATE_INTER;
  2659. break;
  2660. }
  2661. s->first_slice_line = 1;
  2662. for (s->mb_y = s->start_mb_y; s->mb_y < s->end_mb_y; s->mb_y++) {
  2663. s->mb_x = 0;
  2664. init_block_index(v);
  2665. for (; s->mb_x < s->mb_width; s->mb_x++) {
  2666. ff_update_block_index(s);
  2667. if (v->fcm == ILACE_FIELD) {
  2668. vc1_decode_b_mb_intfi(v);
  2669. if (v->s.loop_filter)
  2670. ff_vc1_b_intfi_loop_filter(v);
  2671. } else if (v->fcm == ILACE_FRAME) {
  2672. vc1_decode_b_mb_intfr(v);
  2673. if (v->s.loop_filter)
  2674. ff_vc1_p_intfr_loop_filter(v);
  2675. } else {
  2676. vc1_decode_b_mb(v);
  2677. if (v->s.loop_filter)
  2678. ff_vc1_i_loop_filter(v);
  2679. }
  2680. if (get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  2681. // TODO: may need modification to handle slice coding
  2682. ff_er_add_slice(&s->er, 0, s->start_mb_y, s->mb_x, s->mb_y, ER_MB_ERROR);
  2683. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n",
  2684. get_bits_count(&s->gb), v->bits, s->mb_x, s->mb_y);
  2685. return;
  2686. }
  2687. }
  2688. memmove(v->cbp_base,
  2689. v->cbp - s->mb_stride,
  2690. sizeof(v->cbp_base[0]) * 2 * s->mb_stride);
  2691. memmove(v->ttblk_base,
  2692. v->ttblk - s->mb_stride,
  2693. sizeof(v->ttblk_base[0]) * 2 * s->mb_stride);
  2694. memmove(v->is_intra_base,
  2695. v->is_intra - s->mb_stride,
  2696. sizeof(v->is_intra_base[0]) * 2 * s->mb_stride);
  2697. if (!v->s.loop_filter)
  2698. ff_mpeg_draw_horiz_band(s, s->mb_y * 16, 16);
  2699. else if (s->mb_y)
  2700. ff_mpeg_draw_horiz_band(s, (s->mb_y - 1) * 16, 16);
  2701. s->first_slice_line = 0;
  2702. }
  2703. if (v->s.loop_filter)
  2704. ff_mpeg_draw_horiz_band(s, (s->end_mb_y - 1) * 16, 16);
  2705. ff_er_add_slice(&s->er, 0, s->start_mb_y << v->field_mode, s->mb_width - 1,
  2706. (s->end_mb_y << v->field_mode) - 1, ER_MB_END);
  2707. }
  2708. static void vc1_decode_skip_blocks(VC1Context *v)
  2709. {
  2710. MpegEncContext *s = &v->s;
  2711. if (!v->s.last_picture.f->data[0])
  2712. return;
  2713. ff_er_add_slice(&s->er, 0, s->start_mb_y, s->mb_width - 1, s->end_mb_y - 1, ER_MB_END);
  2714. s->first_slice_line = 1;
  2715. for (s->mb_y = s->start_mb_y; s->mb_y < s->end_mb_y; s->mb_y++) {
  2716. s->mb_x = 0;
  2717. init_block_index(v);
  2718. ff_update_block_index(s);
  2719. memcpy(s->dest[0], s->last_picture.f->data[0] + s->mb_y * 16 * s->linesize, s->linesize * 16);
  2720. memcpy(s->dest[1], s->last_picture.f->data[1] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  2721. memcpy(s->dest[2], s->last_picture.f->data[2] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  2722. ff_mpeg_draw_horiz_band(s, s->mb_y * 16, 16);
  2723. s->first_slice_line = 0;
  2724. }
  2725. s->pict_type = AV_PICTURE_TYPE_P;
  2726. }
  2727. void ff_vc1_decode_blocks(VC1Context *v)
  2728. {
  2729. v->s.esc3_level_length = 0;
  2730. if (v->x8_type) {
  2731. ff_intrax8_decode_picture(&v->x8, &v->s.current_picture,
  2732. &v->s.gb, &v->s.mb_x, &v->s.mb_y,
  2733. 2 * v->pq + v->halfpq, v->pq * !v->pquantizer,
  2734. v->s.loop_filter, v->s.low_delay);
  2735. ff_er_add_slice(&v->s.er, 0, 0,
  2736. (v->s.mb_x >> 1) - 1, (v->s.mb_y >> 1) - 1,
  2737. ER_MB_END);
  2738. } else {
  2739. v->cur_blk_idx = 0;
  2740. v->left_blk_idx = -1;
  2741. v->topleft_blk_idx = 1;
  2742. v->top_blk_idx = 2;
  2743. switch (v->s.pict_type) {
  2744. case AV_PICTURE_TYPE_I:
  2745. if (v->profile == PROFILE_ADVANCED)
  2746. vc1_decode_i_blocks_adv(v);
  2747. else
  2748. vc1_decode_i_blocks(v);
  2749. break;
  2750. case AV_PICTURE_TYPE_P:
  2751. if (v->p_frame_skipped)
  2752. vc1_decode_skip_blocks(v);
  2753. else
  2754. vc1_decode_p_blocks(v);
  2755. break;
  2756. case AV_PICTURE_TYPE_B:
  2757. if (v->bi_type) {
  2758. if (v->profile == PROFILE_ADVANCED)
  2759. vc1_decode_i_blocks_adv(v);
  2760. else
  2761. vc1_decode_i_blocks(v);
  2762. } else
  2763. vc1_decode_b_blocks(v);
  2764. break;
  2765. }
  2766. }
  2767. }