You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

387 lines
12KB

  1. /*
  2. * AC-3 DSP functions
  3. * Copyright (c) 2011 Justin Ruggles
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include "avcodec.h"
  22. #include "ac3.h"
  23. #include "ac3dsp.h"
  24. #include "mathops.h"
  25. static void ac3_exponent_min_c(uint8_t *exp, int num_reuse_blocks, int nb_coefs)
  26. {
  27. int blk, i;
  28. if (!num_reuse_blocks)
  29. return;
  30. for (i = 0; i < nb_coefs; i++) {
  31. uint8_t min_exp = *exp;
  32. uint8_t *exp1 = exp + 256;
  33. for (blk = 0; blk < num_reuse_blocks; blk++) {
  34. uint8_t next_exp = *exp1;
  35. if (next_exp < min_exp)
  36. min_exp = next_exp;
  37. exp1 += 256;
  38. }
  39. *exp++ = min_exp;
  40. }
  41. }
  42. static int ac3_max_msb_abs_int16_c(const int16_t *src, int len)
  43. {
  44. int i, v = 0;
  45. for (i = 0; i < len; i++)
  46. v |= abs(src[i]);
  47. return v;
  48. }
  49. static void ac3_lshift_int16_c(int16_t *src, unsigned int len,
  50. unsigned int shift)
  51. {
  52. uint32_t *src32 = (uint32_t *)src;
  53. const uint32_t mask = ~(((1 << shift) - 1) << 16);
  54. int i;
  55. len >>= 1;
  56. for (i = 0; i < len; i += 8) {
  57. src32[i ] = (src32[i ] << shift) & mask;
  58. src32[i+1] = (src32[i+1] << shift) & mask;
  59. src32[i+2] = (src32[i+2] << shift) & mask;
  60. src32[i+3] = (src32[i+3] << shift) & mask;
  61. src32[i+4] = (src32[i+4] << shift) & mask;
  62. src32[i+5] = (src32[i+5] << shift) & mask;
  63. src32[i+6] = (src32[i+6] << shift) & mask;
  64. src32[i+7] = (src32[i+7] << shift) & mask;
  65. }
  66. }
  67. static void ac3_rshift_int32_c(int32_t *src, unsigned int len,
  68. unsigned int shift)
  69. {
  70. do {
  71. *src++ >>= shift;
  72. *src++ >>= shift;
  73. *src++ >>= shift;
  74. *src++ >>= shift;
  75. *src++ >>= shift;
  76. *src++ >>= shift;
  77. *src++ >>= shift;
  78. *src++ >>= shift;
  79. len -= 8;
  80. } while (len > 0);
  81. }
  82. static void float_to_fixed24_c(int32_t *dst, const float *src, unsigned int len)
  83. {
  84. const float scale = 1 << 24;
  85. do {
  86. *dst++ = lrintf(*src++ * scale);
  87. *dst++ = lrintf(*src++ * scale);
  88. *dst++ = lrintf(*src++ * scale);
  89. *dst++ = lrintf(*src++ * scale);
  90. *dst++ = lrintf(*src++ * scale);
  91. *dst++ = lrintf(*src++ * scale);
  92. *dst++ = lrintf(*src++ * scale);
  93. *dst++ = lrintf(*src++ * scale);
  94. len -= 8;
  95. } while (len > 0);
  96. }
  97. static void ac3_bit_alloc_calc_bap_c(int16_t *mask, int16_t *psd,
  98. int start, int end,
  99. int snr_offset, int floor,
  100. const uint8_t *bap_tab, uint8_t *bap)
  101. {
  102. int bin, band, band_end;
  103. /* special case, if snr offset is -960, set all bap's to zero */
  104. if (snr_offset == -960) {
  105. memset(bap, 0, AC3_MAX_COEFS);
  106. return;
  107. }
  108. bin = start;
  109. band = ff_ac3_bin_to_band_tab[start];
  110. do {
  111. int m = (FFMAX(mask[band] - snr_offset - floor, 0) & 0x1FE0) + floor;
  112. band_end = ff_ac3_band_start_tab[++band];
  113. band_end = FFMIN(band_end, end);
  114. for (; bin < band_end; bin++) {
  115. int address = av_clip_uintp2((psd[bin] - m) >> 5, 6);
  116. bap[bin] = bap_tab[address];
  117. }
  118. } while (end > band_end);
  119. }
  120. static void ac3_update_bap_counts_c(uint16_t mant_cnt[16], uint8_t *bap,
  121. int len)
  122. {
  123. while (len-- > 0)
  124. mant_cnt[bap[len]]++;
  125. }
  126. DECLARE_ALIGNED(16, const uint16_t, ff_ac3_bap_bits)[16] = {
  127. 0, 0, 0, 3, 0, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16
  128. };
  129. static int ac3_compute_mantissa_size_c(uint16_t mant_cnt[6][16])
  130. {
  131. int blk, bap;
  132. int bits = 0;
  133. for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
  134. // bap=1 : 3 mantissas in 5 bits
  135. bits += (mant_cnt[blk][1] / 3) * 5;
  136. // bap=2 : 3 mantissas in 7 bits
  137. // bap=4 : 2 mantissas in 7 bits
  138. bits += ((mant_cnt[blk][2] / 3) + (mant_cnt[blk][4] >> 1)) * 7;
  139. // bap=3 : 1 mantissa in 3 bits
  140. bits += mant_cnt[blk][3] * 3;
  141. // bap=5 to 15 : get bits per mantissa from table
  142. for (bap = 5; bap < 16; bap++)
  143. bits += mant_cnt[blk][bap] * ff_ac3_bap_bits[bap];
  144. }
  145. return bits;
  146. }
  147. static void ac3_extract_exponents_c(uint8_t *exp, int32_t *coef, int nb_coefs)
  148. {
  149. int i;
  150. for (i = 0; i < nb_coefs; i++) {
  151. int v = abs(coef[i]);
  152. exp[i] = v ? 23 - av_log2(v) : 24;
  153. }
  154. }
  155. static void ac3_sum_square_butterfly_int32_c(int64_t sum[4],
  156. const int32_t *coef0,
  157. const int32_t *coef1,
  158. int len)
  159. {
  160. int i;
  161. sum[0] = sum[1] = sum[2] = sum[3] = 0;
  162. for (i = 0; i < len; i++) {
  163. int lt = coef0[i];
  164. int rt = coef1[i];
  165. int md = lt + rt;
  166. int sd = lt - rt;
  167. MAC64(sum[0], lt, lt);
  168. MAC64(sum[1], rt, rt);
  169. MAC64(sum[2], md, md);
  170. MAC64(sum[3], sd, sd);
  171. }
  172. }
  173. static void ac3_sum_square_butterfly_float_c(float sum[4],
  174. const float *coef0,
  175. const float *coef1,
  176. int len)
  177. {
  178. int i;
  179. sum[0] = sum[1] = sum[2] = sum[3] = 0;
  180. for (i = 0; i < len; i++) {
  181. float lt = coef0[i];
  182. float rt = coef1[i];
  183. float md = lt + rt;
  184. float sd = lt - rt;
  185. sum[0] += lt * lt;
  186. sum[1] += rt * rt;
  187. sum[2] += md * md;
  188. sum[3] += sd * sd;
  189. }
  190. }
  191. static void ac3_downmix_5_to_2_symmetric_c(float **samples, float **matrix,
  192. int len)
  193. {
  194. int i;
  195. float v0, v1;
  196. float front_mix = matrix[0][0];
  197. float center_mix = matrix[0][1];
  198. float surround_mix = matrix[0][3];
  199. for (i = 0; i < len; i++) {
  200. v0 = samples[0][i] * front_mix +
  201. samples[1][i] * center_mix +
  202. samples[3][i] * surround_mix;
  203. v1 = samples[1][i] * center_mix +
  204. samples[2][i] * front_mix +
  205. samples[4][i] * surround_mix;
  206. samples[0][i] = v0;
  207. samples[1][i] = v1;
  208. }
  209. }
  210. static void ac3_downmix_5_to_1_symmetric_c(float **samples, float **matrix,
  211. int len)
  212. {
  213. int i;
  214. float front_mix = matrix[0][0];
  215. float center_mix = matrix[0][1];
  216. float surround_mix = matrix[0][3];
  217. for (i = 0; i < len; i++) {
  218. samples[0][i] = samples[0][i] * front_mix +
  219. samples[1][i] * center_mix +
  220. samples[2][i] * front_mix +
  221. samples[3][i] * surround_mix +
  222. samples[4][i] * surround_mix;
  223. }
  224. }
  225. static void ac3_downmix_c(float **samples, float **matrix,
  226. int out_ch, int in_ch, int len)
  227. {
  228. int i, j;
  229. float v0, v1;
  230. if (out_ch == 2) {
  231. for (i = 0; i < len; i++) {
  232. v0 = v1 = 0.0f;
  233. for (j = 0; j < in_ch; j++) {
  234. v0 += samples[j][i] * matrix[0][j];
  235. v1 += samples[j][i] * matrix[1][j];
  236. }
  237. samples[0][i] = v0;
  238. samples[1][i] = v1;
  239. }
  240. } else if (out_ch == 1) {
  241. for (i = 0; i < len; i++) {
  242. v0 = 0.0f;
  243. for (j = 0; j < in_ch; j++)
  244. v0 += samples[j][i] * matrix[0][j];
  245. samples[0][i] = v0;
  246. }
  247. }
  248. }
  249. static void ac3_downmix_c_fixed(int32_t **samples, int16_t **matrix,
  250. int out_ch, int in_ch, int len)
  251. {
  252. int i, j;
  253. int64_t v0, v1;
  254. if (out_ch == 2) {
  255. for (i = 0; i < len; i++) {
  256. v0 = v1 = 0;
  257. for (j = 0; j < in_ch; j++) {
  258. v0 += (int64_t)samples[j][i] * matrix[0][j];
  259. v1 += (int64_t)samples[j][i] * matrix[1][j];
  260. }
  261. samples[0][i] = (v0+2048)>>12;
  262. samples[1][i] = (v1+2048)>>12;
  263. }
  264. } else if (out_ch == 1) {
  265. for (i = 0; i < len; i++) {
  266. v0 = 0;
  267. for (j = 0; j < in_ch; j++)
  268. v0 += (int64_t)samples[j][i] * matrix[0][j];
  269. samples[0][i] = (v0+2048)>>12;
  270. }
  271. }
  272. }
  273. void ff_ac3dsp_downmix_fixed(AC3DSPContext *c, int32_t **samples, int16_t **matrix,
  274. int out_ch, int in_ch, int len)
  275. {
  276. if (c->downmix_fixed)
  277. c->downmix_fixed(samples, matrix, len);
  278. else
  279. ac3_downmix_c_fixed(samples, matrix, out_ch, in_ch, len);
  280. }
  281. static void apply_window_int16_c(int16_t *output, const int16_t *input,
  282. const int16_t *window, unsigned int len)
  283. {
  284. int i;
  285. int len2 = len >> 1;
  286. for (i = 0; i < len2; i++) {
  287. int16_t w = window[i];
  288. output[i] = (MUL16(input[i], w) + (1 << 14)) >> 15;
  289. output[len-i-1] = (MUL16(input[len-i-1], w) + (1 << 14)) >> 15;
  290. }
  291. }
  292. void ff_ac3dsp_downmix(AC3DSPContext *c, float **samples, float **matrix,
  293. int out_ch, int in_ch, int len)
  294. {
  295. if (c->in_channels != in_ch || c->out_channels != out_ch) {
  296. int **matrix_cmp = (int **)matrix;
  297. c->in_channels = in_ch;
  298. c->out_channels = out_ch;
  299. c->downmix = NULL;
  300. if (in_ch == 5 && out_ch == 2 &&
  301. !(matrix_cmp[1][0] | matrix_cmp[0][2] |
  302. matrix_cmp[1][3] | matrix_cmp[0][4] |
  303. (matrix_cmp[0][1] ^ matrix_cmp[1][1]) |
  304. (matrix_cmp[0][0] ^ matrix_cmp[1][2]))) {
  305. c->downmix = ac3_downmix_5_to_2_symmetric_c;
  306. } else if (in_ch == 5 && out_ch == 1 &&
  307. matrix_cmp[0][0] == matrix_cmp[0][2] &&
  308. matrix_cmp[0][3] == matrix_cmp[0][4]) {
  309. c->downmix = ac3_downmix_5_to_1_symmetric_c;
  310. }
  311. if (ARCH_X86)
  312. ff_ac3dsp_set_downmix_x86(c);
  313. }
  314. if (c->downmix)
  315. c->downmix(samples, matrix, len);
  316. else
  317. ac3_downmix_c(samples, matrix, out_ch, in_ch, len);
  318. }
  319. av_cold void ff_ac3dsp_init(AC3DSPContext *c, int bit_exact)
  320. {
  321. c->ac3_exponent_min = ac3_exponent_min_c;
  322. c->ac3_max_msb_abs_int16 = ac3_max_msb_abs_int16_c;
  323. c->ac3_lshift_int16 = ac3_lshift_int16_c;
  324. c->ac3_rshift_int32 = ac3_rshift_int32_c;
  325. c->float_to_fixed24 = float_to_fixed24_c;
  326. c->bit_alloc_calc_bap = ac3_bit_alloc_calc_bap_c;
  327. c->update_bap_counts = ac3_update_bap_counts_c;
  328. c->compute_mantissa_size = ac3_compute_mantissa_size_c;
  329. c->extract_exponents = ac3_extract_exponents_c;
  330. c->sum_square_butterfly_int32 = ac3_sum_square_butterfly_int32_c;
  331. c->sum_square_butterfly_float = ac3_sum_square_butterfly_float_c;
  332. c->in_channels = 0;
  333. c->out_channels = 0;
  334. c->downmix = NULL;
  335. c->downmix_fixed = NULL;
  336. c->apply_window_int16 = apply_window_int16_c;
  337. if (ARCH_ARM)
  338. ff_ac3dsp_init_arm(c, bit_exact);
  339. if (ARCH_X86)
  340. ff_ac3dsp_init_x86(c, bit_exact);
  341. if (ARCH_MIPS)
  342. ff_ac3dsp_init_mips(c, bit_exact);
  343. }