You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

4387 lines
154KB

  1. /*
  2. * VC-1 and WMV3 decoder
  3. * Copyright (c) 2006-2007 Konstantin Shishkov
  4. * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file vc1.c
  24. * VC-1 and WMV3 decoder
  25. *
  26. */
  27. #include "dsputil.h"
  28. #include "avcodec.h"
  29. #include "mpegvideo.h"
  30. #include "vc1.h"
  31. #include "vc1data.h"
  32. #include "vc1acdata.h"
  33. #include "msmpeg4data.h"
  34. #include "unary.h"
  35. #include "simple_idct.h"
  36. #include "mathops.h"
  37. #include "vdpau_internal.h"
  38. #undef NDEBUG
  39. #include <assert.h>
  40. #define MB_INTRA_VLC_BITS 9
  41. #define DC_VLC_BITS 9
  42. #define AC_VLC_BITS 9
  43. static const uint16_t table_mb_intra[64][2];
  44. /**
  45. * Init VC-1 specific tables and VC1Context members
  46. * @param v The VC1Context to initialize
  47. * @return Status
  48. */
  49. static int vc1_init_common(VC1Context *v)
  50. {
  51. static int done = 0;
  52. int i = 0;
  53. v->hrd_rate = v->hrd_buffer = NULL;
  54. /* VLC tables */
  55. if(!done)
  56. {
  57. done = 1;
  58. init_vlc(&ff_vc1_bfraction_vlc, VC1_BFRACTION_VLC_BITS, 23,
  59. ff_vc1_bfraction_bits, 1, 1,
  60. ff_vc1_bfraction_codes, 1, 1, 1);
  61. init_vlc(&ff_vc1_norm2_vlc, VC1_NORM2_VLC_BITS, 4,
  62. ff_vc1_norm2_bits, 1, 1,
  63. ff_vc1_norm2_codes, 1, 1, 1);
  64. init_vlc(&ff_vc1_norm6_vlc, VC1_NORM6_VLC_BITS, 64,
  65. ff_vc1_norm6_bits, 1, 1,
  66. ff_vc1_norm6_codes, 2, 2, 1);
  67. init_vlc(&ff_vc1_imode_vlc, VC1_IMODE_VLC_BITS, 7,
  68. ff_vc1_imode_bits, 1, 1,
  69. ff_vc1_imode_codes, 1, 1, 1);
  70. for (i=0; i<3; i++)
  71. {
  72. init_vlc(&ff_vc1_ttmb_vlc[i], VC1_TTMB_VLC_BITS, 16,
  73. ff_vc1_ttmb_bits[i], 1, 1,
  74. ff_vc1_ttmb_codes[i], 2, 2, 1);
  75. init_vlc(&ff_vc1_ttblk_vlc[i], VC1_TTBLK_VLC_BITS, 8,
  76. ff_vc1_ttblk_bits[i], 1, 1,
  77. ff_vc1_ttblk_codes[i], 1, 1, 1);
  78. init_vlc(&ff_vc1_subblkpat_vlc[i], VC1_SUBBLKPAT_VLC_BITS, 15,
  79. ff_vc1_subblkpat_bits[i], 1, 1,
  80. ff_vc1_subblkpat_codes[i], 1, 1, 1);
  81. }
  82. for(i=0; i<4; i++)
  83. {
  84. init_vlc(&ff_vc1_4mv_block_pattern_vlc[i], VC1_4MV_BLOCK_PATTERN_VLC_BITS, 16,
  85. ff_vc1_4mv_block_pattern_bits[i], 1, 1,
  86. ff_vc1_4mv_block_pattern_codes[i], 1, 1, 1);
  87. init_vlc(&ff_vc1_cbpcy_p_vlc[i], VC1_CBPCY_P_VLC_BITS, 64,
  88. ff_vc1_cbpcy_p_bits[i], 1, 1,
  89. ff_vc1_cbpcy_p_codes[i], 2, 2, 1);
  90. init_vlc(&ff_vc1_mv_diff_vlc[i], VC1_MV_DIFF_VLC_BITS, 73,
  91. ff_vc1_mv_diff_bits[i], 1, 1,
  92. ff_vc1_mv_diff_codes[i], 2, 2, 1);
  93. }
  94. for(i=0; i<8; i++)
  95. init_vlc(&ff_vc1_ac_coeff_table[i], AC_VLC_BITS, vc1_ac_sizes[i],
  96. &vc1_ac_tables[i][0][1], 8, 4,
  97. &vc1_ac_tables[i][0][0], 8, 4, 1);
  98. init_vlc(&ff_msmp4_mb_i_vlc, MB_INTRA_VLC_BITS, 64,
  99. &ff_msmp4_mb_i_table[0][1], 4, 2,
  100. &ff_msmp4_mb_i_table[0][0], 4, 2, 1);
  101. }
  102. /* Other defaults */
  103. v->pq = -1;
  104. v->mvrange = 0; /* 7.1.1.18, p80 */
  105. return 0;
  106. }
  107. /***********************************************************************/
  108. /**
  109. * @defgroup bitplane VC9 Bitplane decoding
  110. * @see 8.7, p56
  111. * @{
  112. */
  113. /** @addtogroup bitplane
  114. * Imode types
  115. * @{
  116. */
  117. enum Imode {
  118. IMODE_RAW,
  119. IMODE_NORM2,
  120. IMODE_DIFF2,
  121. IMODE_NORM6,
  122. IMODE_DIFF6,
  123. IMODE_ROWSKIP,
  124. IMODE_COLSKIP
  125. };
  126. /** @} */ //imode defines
  127. /** Decode rows by checking if they are skipped
  128. * @param plane Buffer to store decoded bits
  129. * @param[in] width Width of this buffer
  130. * @param[in] height Height of this buffer
  131. * @param[in] stride of this buffer
  132. */
  133. static void decode_rowskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  134. int x, y;
  135. for (y=0; y<height; y++){
  136. if (!get_bits1(gb)) //rowskip
  137. memset(plane, 0, width);
  138. else
  139. for (x=0; x<width; x++)
  140. plane[x] = get_bits1(gb);
  141. plane += stride;
  142. }
  143. }
  144. /** Decode columns by checking if they are skipped
  145. * @param plane Buffer to store decoded bits
  146. * @param[in] width Width of this buffer
  147. * @param[in] height Height of this buffer
  148. * @param[in] stride of this buffer
  149. * @todo FIXME: Optimize
  150. */
  151. static void decode_colskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  152. int x, y;
  153. for (x=0; x<width; x++){
  154. if (!get_bits1(gb)) //colskip
  155. for (y=0; y<height; y++)
  156. plane[y*stride] = 0;
  157. else
  158. for (y=0; y<height; y++)
  159. plane[y*stride] = get_bits1(gb);
  160. plane ++;
  161. }
  162. }
  163. /** Decode a bitplane's bits
  164. * @param bp Bitplane where to store the decode bits
  165. * @param v VC-1 context for bit reading and logging
  166. * @return Status
  167. * @todo FIXME: Optimize
  168. */
  169. static int bitplane_decoding(uint8_t* data, int *raw_flag, VC1Context *v)
  170. {
  171. GetBitContext *gb = &v->s.gb;
  172. int imode, x, y, code, offset;
  173. uint8_t invert, *planep = data;
  174. int width, height, stride;
  175. width = v->s.mb_width;
  176. height = v->s.mb_height;
  177. stride = v->s.mb_stride;
  178. invert = get_bits1(gb);
  179. imode = get_vlc2(gb, ff_vc1_imode_vlc.table, VC1_IMODE_VLC_BITS, 1);
  180. *raw_flag = 0;
  181. switch (imode)
  182. {
  183. case IMODE_RAW:
  184. //Data is actually read in the MB layer (same for all tests == "raw")
  185. *raw_flag = 1; //invert ignored
  186. return invert;
  187. case IMODE_DIFF2:
  188. case IMODE_NORM2:
  189. if ((height * width) & 1)
  190. {
  191. *planep++ = get_bits1(gb);
  192. offset = 1;
  193. }
  194. else offset = 0;
  195. // decode bitplane as one long line
  196. for (y = offset; y < height * width; y += 2) {
  197. code = get_vlc2(gb, ff_vc1_norm2_vlc.table, VC1_NORM2_VLC_BITS, 1);
  198. *planep++ = code & 1;
  199. offset++;
  200. if(offset == width) {
  201. offset = 0;
  202. planep += stride - width;
  203. }
  204. *planep++ = code >> 1;
  205. offset++;
  206. if(offset == width) {
  207. offset = 0;
  208. planep += stride - width;
  209. }
  210. }
  211. break;
  212. case IMODE_DIFF6:
  213. case IMODE_NORM6:
  214. if(!(height % 3) && (width % 3)) { // use 2x3 decoding
  215. for(y = 0; y < height; y+= 3) {
  216. for(x = width & 1; x < width; x += 2) {
  217. code = get_vlc2(gb, ff_vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  218. if(code < 0){
  219. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  220. return -1;
  221. }
  222. planep[x + 0] = (code >> 0) & 1;
  223. planep[x + 1] = (code >> 1) & 1;
  224. planep[x + 0 + stride] = (code >> 2) & 1;
  225. planep[x + 1 + stride] = (code >> 3) & 1;
  226. planep[x + 0 + stride * 2] = (code >> 4) & 1;
  227. planep[x + 1 + stride * 2] = (code >> 5) & 1;
  228. }
  229. planep += stride * 3;
  230. }
  231. if(width & 1) decode_colskip(data, 1, height, stride, &v->s.gb);
  232. } else { // 3x2
  233. planep += (height & 1) * stride;
  234. for(y = height & 1; y < height; y += 2) {
  235. for(x = width % 3; x < width; x += 3) {
  236. code = get_vlc2(gb, ff_vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  237. if(code < 0){
  238. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  239. return -1;
  240. }
  241. planep[x + 0] = (code >> 0) & 1;
  242. planep[x + 1] = (code >> 1) & 1;
  243. planep[x + 2] = (code >> 2) & 1;
  244. planep[x + 0 + stride] = (code >> 3) & 1;
  245. planep[x + 1 + stride] = (code >> 4) & 1;
  246. planep[x + 2 + stride] = (code >> 5) & 1;
  247. }
  248. planep += stride * 2;
  249. }
  250. x = width % 3;
  251. if(x) decode_colskip(data , x, height , stride, &v->s.gb);
  252. if(height & 1) decode_rowskip(data+x, width - x, 1, stride, &v->s.gb);
  253. }
  254. break;
  255. case IMODE_ROWSKIP:
  256. decode_rowskip(data, width, height, stride, &v->s.gb);
  257. break;
  258. case IMODE_COLSKIP:
  259. decode_colskip(data, width, height, stride, &v->s.gb);
  260. break;
  261. default: break;
  262. }
  263. /* Applying diff operator */
  264. if (imode == IMODE_DIFF2 || imode == IMODE_DIFF6)
  265. {
  266. planep = data;
  267. planep[0] ^= invert;
  268. for (x=1; x<width; x++)
  269. planep[x] ^= planep[x-1];
  270. for (y=1; y<height; y++)
  271. {
  272. planep += stride;
  273. planep[0] ^= planep[-stride];
  274. for (x=1; x<width; x++)
  275. {
  276. if (planep[x-1] != planep[x-stride]) planep[x] ^= invert;
  277. else planep[x] ^= planep[x-1];
  278. }
  279. }
  280. }
  281. else if (invert)
  282. {
  283. planep = data;
  284. for (x=0; x<stride*height; x++) planep[x] = !planep[x]; //FIXME stride
  285. }
  286. return (imode<<1) + invert;
  287. }
  288. /** @} */ //Bitplane group
  289. #define FILTSIGN(a) ((a) >= 0 ? 1 : -1)
  290. /**
  291. * VC-1 in-loop deblocking filter for one line
  292. * @param src source block type
  293. * @param pq block quantizer
  294. * @return whether other 3 pairs should be filtered or not
  295. * @see 8.6
  296. */
  297. static int av_always_inline vc1_filter_line(uint8_t* src, int stride, int pq){
  298. uint8_t *cm = ff_cropTbl + MAX_NEG_CROP;
  299. int a0 = (2*(src[-2*stride] - src[ 1*stride]) - 5*(src[-1*stride] - src[ 0*stride]) + 4) >> 3;
  300. int a0_sign = a0 >> 31; /* Store sign */
  301. a0 = (a0 ^ a0_sign) - a0_sign; /* a0 = FFABS(a0); */
  302. if(a0 < pq){
  303. int a1 = FFABS((2*(src[-4*stride] - src[-1*stride]) - 5*(src[-3*stride] - src[-2*stride]) + 4) >> 3);
  304. int a2 = FFABS((2*(src[ 0*stride] - src[ 3*stride]) - 5*(src[ 1*stride] - src[ 2*stride]) + 4) >> 3);
  305. if(a1 < a0 || a2 < a0){
  306. int clip = src[-1*stride] - src[ 0*stride];
  307. int clip_sign = clip >> 31;
  308. clip = ((clip ^ clip_sign) - clip_sign)>>1;
  309. if(clip){
  310. int a3 = FFMIN(a1, a2);
  311. int d = 5 * (a3 - a0);
  312. int d_sign = (d >> 31);
  313. d = ((d ^ d_sign) - d_sign) >> 3;
  314. d_sign ^= a0_sign;
  315. if( d_sign ^ clip_sign )
  316. d = 0;
  317. else{
  318. d = FFMIN(d, clip);
  319. d = (d ^ d_sign) - d_sign; /* Restore sign */
  320. src[-1*stride] = cm[src[-1*stride] - d];
  321. src[ 0*stride] = cm[src[ 0*stride] + d];
  322. }
  323. return 1;
  324. }
  325. }
  326. }
  327. return 0;
  328. }
  329. /**
  330. * VC-1 in-loop deblocking filter
  331. * @param src source block type
  332. * @param len edge length to filter (4 or 8 pixels)
  333. * @param pq block quantizer
  334. * @see 8.6
  335. */
  336. static void vc1_loop_filter(uint8_t* src, int step, int stride, int len, int pq)
  337. {
  338. int i;
  339. int filt3;
  340. for(i = 0; i < len; i += 4){
  341. filt3 = vc1_filter_line(src + 2*step, stride, pq);
  342. if(filt3){
  343. vc1_filter_line(src + 0*step, stride, pq);
  344. vc1_filter_line(src + 1*step, stride, pq);
  345. vc1_filter_line(src + 3*step, stride, pq);
  346. }
  347. src += step * 4;
  348. }
  349. }
  350. static void vc1_loop_filter_iblk(MpegEncContext *s, int pq)
  351. {
  352. int i, j;
  353. if(!s->first_slice_line)
  354. vc1_loop_filter(s->dest[0], 1, s->linesize, 16, pq);
  355. vc1_loop_filter(s->dest[0] + 8*s->linesize, 1, s->linesize, 16, pq);
  356. for(i = !s->mb_x*8; i < 16; i += 8)
  357. vc1_loop_filter(s->dest[0] + i, s->linesize, 1, 16, pq);
  358. for(j = 0; j < 2; j++){
  359. if(!s->first_slice_line)
  360. vc1_loop_filter(s->dest[j+1], 1, s->uvlinesize, 8, pq);
  361. if(s->mb_x)
  362. vc1_loop_filter(s->dest[j+1], s->uvlinesize, 1, 8, pq);
  363. }
  364. }
  365. /***********************************************************************/
  366. /** VOP Dquant decoding
  367. * @param v VC-1 Context
  368. */
  369. static int vop_dquant_decoding(VC1Context *v)
  370. {
  371. GetBitContext *gb = &v->s.gb;
  372. int pqdiff;
  373. //variable size
  374. if (v->dquant == 2)
  375. {
  376. pqdiff = get_bits(gb, 3);
  377. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  378. else v->altpq = v->pq + pqdiff + 1;
  379. }
  380. else
  381. {
  382. v->dquantfrm = get_bits1(gb);
  383. if ( v->dquantfrm )
  384. {
  385. v->dqprofile = get_bits(gb, 2);
  386. switch (v->dqprofile)
  387. {
  388. case DQPROFILE_SINGLE_EDGE:
  389. case DQPROFILE_DOUBLE_EDGES:
  390. v->dqsbedge = get_bits(gb, 2);
  391. break;
  392. case DQPROFILE_ALL_MBS:
  393. v->dqbilevel = get_bits1(gb);
  394. if(!v->dqbilevel)
  395. v->halfpq = 0;
  396. default: break; //Forbidden ?
  397. }
  398. if (v->dqbilevel || v->dqprofile != DQPROFILE_ALL_MBS)
  399. {
  400. pqdiff = get_bits(gb, 3);
  401. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  402. else v->altpq = v->pq + pqdiff + 1;
  403. }
  404. }
  405. }
  406. return 0;
  407. }
  408. /** Put block onto picture
  409. */
  410. static void vc1_put_block(VC1Context *v, DCTELEM block[6][64])
  411. {
  412. uint8_t *Y;
  413. int ys, us, vs;
  414. DSPContext *dsp = &v->s.dsp;
  415. if(v->rangeredfrm) {
  416. int i, j, k;
  417. for(k = 0; k < 6; k++)
  418. for(j = 0; j < 8; j++)
  419. for(i = 0; i < 8; i++)
  420. block[k][i + j*8] = ((block[k][i + j*8] - 128) << 1) + 128;
  421. }
  422. ys = v->s.current_picture.linesize[0];
  423. us = v->s.current_picture.linesize[1];
  424. vs = v->s.current_picture.linesize[2];
  425. Y = v->s.dest[0];
  426. dsp->put_pixels_clamped(block[0], Y, ys);
  427. dsp->put_pixels_clamped(block[1], Y + 8, ys);
  428. Y += ys * 8;
  429. dsp->put_pixels_clamped(block[2], Y, ys);
  430. dsp->put_pixels_clamped(block[3], Y + 8, ys);
  431. if(!(v->s.flags & CODEC_FLAG_GRAY)) {
  432. dsp->put_pixels_clamped(block[4], v->s.dest[1], us);
  433. dsp->put_pixels_clamped(block[5], v->s.dest[2], vs);
  434. }
  435. }
  436. /** Do motion compensation over 1 macroblock
  437. * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
  438. */
  439. static void vc1_mc_1mv(VC1Context *v, int dir)
  440. {
  441. MpegEncContext *s = &v->s;
  442. DSPContext *dsp = &v->s.dsp;
  443. uint8_t *srcY, *srcU, *srcV;
  444. int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  445. if(!v->s.last_picture.data[0])return;
  446. mx = s->mv[dir][0][0];
  447. my = s->mv[dir][0][1];
  448. // store motion vectors for further use in B frames
  449. if(s->pict_type == FF_P_TYPE) {
  450. s->current_picture.motion_val[1][s->block_index[0]][0] = mx;
  451. s->current_picture.motion_val[1][s->block_index[0]][1] = my;
  452. }
  453. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  454. uvmy = (my + ((my & 3) == 3)) >> 1;
  455. if(v->fastuvmc) {
  456. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  457. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  458. }
  459. if(!dir) {
  460. srcY = s->last_picture.data[0];
  461. srcU = s->last_picture.data[1];
  462. srcV = s->last_picture.data[2];
  463. } else {
  464. srcY = s->next_picture.data[0];
  465. srcU = s->next_picture.data[1];
  466. srcV = s->next_picture.data[2];
  467. }
  468. src_x = s->mb_x * 16 + (mx >> 2);
  469. src_y = s->mb_y * 16 + (my >> 2);
  470. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  471. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  472. if(v->profile != PROFILE_ADVANCED){
  473. src_x = av_clip( src_x, -16, s->mb_width * 16);
  474. src_y = av_clip( src_y, -16, s->mb_height * 16);
  475. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  476. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  477. }else{
  478. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  479. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  480. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  481. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  482. }
  483. srcY += src_y * s->linesize + src_x;
  484. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  485. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  486. /* for grayscale we should not try to read from unknown area */
  487. if(s->flags & CODEC_FLAG_GRAY) {
  488. srcU = s->edge_emu_buffer + 18 * s->linesize;
  489. srcV = s->edge_emu_buffer + 18 * s->linesize;
  490. }
  491. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  492. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel*3
  493. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 16 - s->mspel*3){
  494. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  495. srcY -= s->mspel * (1 + s->linesize);
  496. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  497. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  498. srcY = s->edge_emu_buffer;
  499. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  500. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  501. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  502. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  503. srcU = uvbuf;
  504. srcV = uvbuf + 16;
  505. /* if we deal with range reduction we need to scale source blocks */
  506. if(v->rangeredfrm) {
  507. int i, j;
  508. uint8_t *src, *src2;
  509. src = srcY;
  510. for(j = 0; j < 17 + s->mspel*2; j++) {
  511. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  512. src += s->linesize;
  513. }
  514. src = srcU; src2 = srcV;
  515. for(j = 0; j < 9; j++) {
  516. for(i = 0; i < 9; i++) {
  517. src[i] = ((src[i] - 128) >> 1) + 128;
  518. src2[i] = ((src2[i] - 128) >> 1) + 128;
  519. }
  520. src += s->uvlinesize;
  521. src2 += s->uvlinesize;
  522. }
  523. }
  524. /* if we deal with intensity compensation we need to scale source blocks */
  525. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  526. int i, j;
  527. uint8_t *src, *src2;
  528. src = srcY;
  529. for(j = 0; j < 17 + s->mspel*2; j++) {
  530. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  531. src += s->linesize;
  532. }
  533. src = srcU; src2 = srcV;
  534. for(j = 0; j < 9; j++) {
  535. for(i = 0; i < 9; i++) {
  536. src[i] = v->lutuv[src[i]];
  537. src2[i] = v->lutuv[src2[i]];
  538. }
  539. src += s->uvlinesize;
  540. src2 += s->uvlinesize;
  541. }
  542. }
  543. srcY += s->mspel * (1 + s->linesize);
  544. }
  545. if(s->mspel) {
  546. dxy = ((my & 3) << 2) | (mx & 3);
  547. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd);
  548. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
  549. srcY += s->linesize * 8;
  550. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd);
  551. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
  552. } else { // hpel mc - always used for luma
  553. dxy = (my & 2) | ((mx & 2) >> 1);
  554. if(!v->rnd)
  555. dsp->put_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  556. else
  557. dsp->put_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  558. }
  559. if(s->flags & CODEC_FLAG_GRAY) return;
  560. /* Chroma MC always uses qpel bilinear */
  561. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  562. uvmx = (uvmx&3)<<1;
  563. uvmy = (uvmy&3)<<1;
  564. if(!v->rnd){
  565. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  566. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  567. }else{
  568. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  569. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  570. }
  571. }
  572. /** Do motion compensation for 4-MV macroblock - luminance block
  573. */
  574. static void vc1_mc_4mv_luma(VC1Context *v, int n)
  575. {
  576. MpegEncContext *s = &v->s;
  577. DSPContext *dsp = &v->s.dsp;
  578. uint8_t *srcY;
  579. int dxy, mx, my, src_x, src_y;
  580. int off;
  581. if(!v->s.last_picture.data[0])return;
  582. mx = s->mv[0][n][0];
  583. my = s->mv[0][n][1];
  584. srcY = s->last_picture.data[0];
  585. off = s->linesize * 4 * (n&2) + (n&1) * 8;
  586. src_x = s->mb_x * 16 + (n&1) * 8 + (mx >> 2);
  587. src_y = s->mb_y * 16 + (n&2) * 4 + (my >> 2);
  588. if(v->profile != PROFILE_ADVANCED){
  589. src_x = av_clip( src_x, -16, s->mb_width * 16);
  590. src_y = av_clip( src_y, -16, s->mb_height * 16);
  591. }else{
  592. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  593. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  594. }
  595. srcY += src_y * s->linesize + src_x;
  596. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  597. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 8 - s->mspel*2
  598. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 8 - s->mspel*2){
  599. srcY -= s->mspel * (1 + s->linesize);
  600. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 9+s->mspel*2, 9+s->mspel*2,
  601. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  602. srcY = s->edge_emu_buffer;
  603. /* if we deal with range reduction we need to scale source blocks */
  604. if(v->rangeredfrm) {
  605. int i, j;
  606. uint8_t *src;
  607. src = srcY;
  608. for(j = 0; j < 9 + s->mspel*2; j++) {
  609. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  610. src += s->linesize;
  611. }
  612. }
  613. /* if we deal with intensity compensation we need to scale source blocks */
  614. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  615. int i, j;
  616. uint8_t *src;
  617. src = srcY;
  618. for(j = 0; j < 9 + s->mspel*2; j++) {
  619. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  620. src += s->linesize;
  621. }
  622. }
  623. srcY += s->mspel * (1 + s->linesize);
  624. }
  625. if(s->mspel) {
  626. dxy = ((my & 3) << 2) | (mx & 3);
  627. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize, v->rnd);
  628. } else { // hpel mc - always used for luma
  629. dxy = (my & 2) | ((mx & 2) >> 1);
  630. if(!v->rnd)
  631. dsp->put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  632. else
  633. dsp->put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  634. }
  635. }
  636. static inline int median4(int a, int b, int c, int d)
  637. {
  638. if(a < b) {
  639. if(c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2;
  640. else return (FFMIN(b, c) + FFMAX(a, d)) / 2;
  641. } else {
  642. if(c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2;
  643. else return (FFMIN(a, c) + FFMAX(b, d)) / 2;
  644. }
  645. }
  646. /** Do motion compensation for 4-MV macroblock - both chroma blocks
  647. */
  648. static void vc1_mc_4mv_chroma(VC1Context *v)
  649. {
  650. MpegEncContext *s = &v->s;
  651. DSPContext *dsp = &v->s.dsp;
  652. uint8_t *srcU, *srcV;
  653. int uvdxy, uvmx, uvmy, uvsrc_x, uvsrc_y;
  654. int i, idx, tx = 0, ty = 0;
  655. int mvx[4], mvy[4], intra[4];
  656. static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
  657. if(!v->s.last_picture.data[0])return;
  658. if(s->flags & CODEC_FLAG_GRAY) return;
  659. for(i = 0; i < 4; i++) {
  660. mvx[i] = s->mv[0][i][0];
  661. mvy[i] = s->mv[0][i][1];
  662. intra[i] = v->mb_type[0][s->block_index[i]];
  663. }
  664. /* calculate chroma MV vector from four luma MVs */
  665. idx = (intra[3] << 3) | (intra[2] << 2) | (intra[1] << 1) | intra[0];
  666. if(!idx) { // all blocks are inter
  667. tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]);
  668. ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]);
  669. } else if(count[idx] == 1) { // 3 inter blocks
  670. switch(idx) {
  671. case 0x1:
  672. tx = mid_pred(mvx[1], mvx[2], mvx[3]);
  673. ty = mid_pred(mvy[1], mvy[2], mvy[3]);
  674. break;
  675. case 0x2:
  676. tx = mid_pred(mvx[0], mvx[2], mvx[3]);
  677. ty = mid_pred(mvy[0], mvy[2], mvy[3]);
  678. break;
  679. case 0x4:
  680. tx = mid_pred(mvx[0], mvx[1], mvx[3]);
  681. ty = mid_pred(mvy[0], mvy[1], mvy[3]);
  682. break;
  683. case 0x8:
  684. tx = mid_pred(mvx[0], mvx[1], mvx[2]);
  685. ty = mid_pred(mvy[0], mvy[1], mvy[2]);
  686. break;
  687. }
  688. } else if(count[idx] == 2) {
  689. int t1 = 0, t2 = 0;
  690. for(i=0; i<3;i++) if(!intra[i]) {t1 = i; break;}
  691. for(i= t1+1; i<4; i++)if(!intra[i]) {t2 = i; break;}
  692. tx = (mvx[t1] + mvx[t2]) / 2;
  693. ty = (mvy[t1] + mvy[t2]) / 2;
  694. } else {
  695. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  696. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  697. return; //no need to do MC for inter blocks
  698. }
  699. s->current_picture.motion_val[1][s->block_index[0]][0] = tx;
  700. s->current_picture.motion_val[1][s->block_index[0]][1] = ty;
  701. uvmx = (tx + ((tx&3) == 3)) >> 1;
  702. uvmy = (ty + ((ty&3) == 3)) >> 1;
  703. if(v->fastuvmc) {
  704. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  705. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  706. }
  707. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  708. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  709. if(v->profile != PROFILE_ADVANCED){
  710. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  711. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  712. }else{
  713. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  714. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  715. }
  716. srcU = s->last_picture.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
  717. srcV = s->last_picture.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
  718. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  719. || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9
  720. || (unsigned)uvsrc_y > (s->v_edge_pos >> 1) - 9){
  721. ff_emulated_edge_mc(s->edge_emu_buffer , srcU, s->uvlinesize, 8+1, 8+1,
  722. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  723. ff_emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize, 8+1, 8+1,
  724. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  725. srcU = s->edge_emu_buffer;
  726. srcV = s->edge_emu_buffer + 16;
  727. /* if we deal with range reduction we need to scale source blocks */
  728. if(v->rangeredfrm) {
  729. int i, j;
  730. uint8_t *src, *src2;
  731. src = srcU; src2 = srcV;
  732. for(j = 0; j < 9; j++) {
  733. for(i = 0; i < 9; i++) {
  734. src[i] = ((src[i] - 128) >> 1) + 128;
  735. src2[i] = ((src2[i] - 128) >> 1) + 128;
  736. }
  737. src += s->uvlinesize;
  738. src2 += s->uvlinesize;
  739. }
  740. }
  741. /* if we deal with intensity compensation we need to scale source blocks */
  742. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  743. int i, j;
  744. uint8_t *src, *src2;
  745. src = srcU; src2 = srcV;
  746. for(j = 0; j < 9; j++) {
  747. for(i = 0; i < 9; i++) {
  748. src[i] = v->lutuv[src[i]];
  749. src2[i] = v->lutuv[src2[i]];
  750. }
  751. src += s->uvlinesize;
  752. src2 += s->uvlinesize;
  753. }
  754. }
  755. }
  756. /* Chroma MC always uses qpel bilinear */
  757. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  758. uvmx = (uvmx&3)<<1;
  759. uvmy = (uvmy&3)<<1;
  760. if(!v->rnd){
  761. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  762. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  763. }else{
  764. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  765. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  766. }
  767. }
  768. static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb);
  769. /**
  770. * Decode Simple/Main Profiles sequence header
  771. * @see Figure 7-8, p16-17
  772. * @param avctx Codec context
  773. * @param gb GetBit context initialized from Codec context extra_data
  774. * @return Status
  775. */
  776. static int decode_sequence_header(AVCodecContext *avctx, GetBitContext *gb)
  777. {
  778. VC1Context *v = avctx->priv_data;
  779. av_log(avctx, AV_LOG_DEBUG, "Header: %0X\n", show_bits(gb, 32));
  780. v->profile = get_bits(gb, 2);
  781. if (v->profile == PROFILE_COMPLEX)
  782. {
  783. av_log(avctx, AV_LOG_ERROR, "WMV3 Complex Profile is not fully supported\n");
  784. }
  785. if (v->profile == PROFILE_ADVANCED)
  786. {
  787. v->zz_8x4 = ff_vc1_adv_progressive_8x4_zz;
  788. v->zz_4x8 = ff_vc1_adv_progressive_4x8_zz;
  789. return decode_sequence_header_adv(v, gb);
  790. }
  791. else
  792. {
  793. v->zz_8x4 = wmv2_scantableA;
  794. v->zz_4x8 = wmv2_scantableB;
  795. v->res_sm = get_bits(gb, 2); //reserved
  796. if (v->res_sm)
  797. {
  798. av_log(avctx, AV_LOG_ERROR,
  799. "Reserved RES_SM=%i is forbidden\n", v->res_sm);
  800. return -1;
  801. }
  802. }
  803. // (fps-2)/4 (->30)
  804. v->frmrtq_postproc = get_bits(gb, 3); //common
  805. // (bitrate-32kbps)/64kbps
  806. v->bitrtq_postproc = get_bits(gb, 5); //common
  807. v->s.loop_filter = get_bits1(gb); //common
  808. if(v->s.loop_filter == 1 && v->profile == PROFILE_SIMPLE)
  809. {
  810. av_log(avctx, AV_LOG_ERROR,
  811. "LOOPFILTER shell not be enabled in simple profile\n");
  812. }
  813. if(v->s.avctx->skip_loop_filter >= AVDISCARD_ALL)
  814. v->s.loop_filter = 0;
  815. v->res_x8 = get_bits1(gb); //reserved
  816. v->multires = get_bits1(gb);
  817. v->res_fasttx = get_bits1(gb);
  818. if (!v->res_fasttx)
  819. {
  820. v->s.dsp.vc1_inv_trans_8x8 = ff_simple_idct;
  821. v->s.dsp.vc1_inv_trans_8x4 = ff_simple_idct84_add;
  822. v->s.dsp.vc1_inv_trans_4x8 = ff_simple_idct48_add;
  823. v->s.dsp.vc1_inv_trans_4x4 = ff_simple_idct44_add;
  824. }
  825. v->fastuvmc = get_bits1(gb); //common
  826. if (!v->profile && !v->fastuvmc)
  827. {
  828. av_log(avctx, AV_LOG_ERROR,
  829. "FASTUVMC unavailable in Simple Profile\n");
  830. return -1;
  831. }
  832. v->extended_mv = get_bits1(gb); //common
  833. if (!v->profile && v->extended_mv)
  834. {
  835. av_log(avctx, AV_LOG_ERROR,
  836. "Extended MVs unavailable in Simple Profile\n");
  837. return -1;
  838. }
  839. v->dquant = get_bits(gb, 2); //common
  840. v->vstransform = get_bits1(gb); //common
  841. v->res_transtab = get_bits1(gb);
  842. if (v->res_transtab)
  843. {
  844. av_log(avctx, AV_LOG_ERROR,
  845. "1 for reserved RES_TRANSTAB is forbidden\n");
  846. return -1;
  847. }
  848. v->overlap = get_bits1(gb); //common
  849. v->s.resync_marker = get_bits1(gb);
  850. v->rangered = get_bits1(gb);
  851. if (v->rangered && v->profile == PROFILE_SIMPLE)
  852. {
  853. av_log(avctx, AV_LOG_INFO,
  854. "RANGERED should be set to 0 in simple profile\n");
  855. }
  856. v->s.max_b_frames = avctx->max_b_frames = get_bits(gb, 3); //common
  857. v->quantizer_mode = get_bits(gb, 2); //common
  858. v->finterpflag = get_bits1(gb); //common
  859. v->res_rtm_flag = get_bits1(gb); //reserved
  860. if (!v->res_rtm_flag)
  861. {
  862. // av_log(avctx, AV_LOG_ERROR,
  863. // "0 for reserved RES_RTM_FLAG is forbidden\n");
  864. av_log(avctx, AV_LOG_ERROR,
  865. "Old WMV3 version detected, only I-frames will be decoded\n");
  866. //return -1;
  867. }
  868. //TODO: figure out what they mean (always 0x402F)
  869. if(!v->res_fasttx) skip_bits(gb, 16);
  870. av_log(avctx, AV_LOG_DEBUG,
  871. "Profile %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  872. "LoopFilter=%i, MultiRes=%i, FastUVMC=%i, Extended MV=%i\n"
  873. "Rangered=%i, VSTransform=%i, Overlap=%i, SyncMarker=%i\n"
  874. "DQuant=%i, Quantizer mode=%i, Max B frames=%i\n",
  875. v->profile, v->frmrtq_postproc, v->bitrtq_postproc,
  876. v->s.loop_filter, v->multires, v->fastuvmc, v->extended_mv,
  877. v->rangered, v->vstransform, v->overlap, v->s.resync_marker,
  878. v->dquant, v->quantizer_mode, avctx->max_b_frames
  879. );
  880. return 0;
  881. }
  882. static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb)
  883. {
  884. v->res_rtm_flag = 1;
  885. v->level = get_bits(gb, 3);
  886. if(v->level >= 5)
  887. {
  888. av_log(v->s.avctx, AV_LOG_ERROR, "Reserved LEVEL %i\n",v->level);
  889. }
  890. v->chromaformat = get_bits(gb, 2);
  891. if (v->chromaformat != 1)
  892. {
  893. av_log(v->s.avctx, AV_LOG_ERROR,
  894. "Only 4:2:0 chroma format supported\n");
  895. return -1;
  896. }
  897. // (fps-2)/4 (->30)
  898. v->frmrtq_postproc = get_bits(gb, 3); //common
  899. // (bitrate-32kbps)/64kbps
  900. v->bitrtq_postproc = get_bits(gb, 5); //common
  901. v->postprocflag = get_bits1(gb); //common
  902. v->s.avctx->coded_width = (get_bits(gb, 12) + 1) << 1;
  903. v->s.avctx->coded_height = (get_bits(gb, 12) + 1) << 1;
  904. v->s.avctx->width = v->s.avctx->coded_width;
  905. v->s.avctx->height = v->s.avctx->coded_height;
  906. v->broadcast = get_bits1(gb);
  907. v->interlace = get_bits1(gb);
  908. v->tfcntrflag = get_bits1(gb);
  909. v->finterpflag = get_bits1(gb);
  910. skip_bits1(gb); // reserved
  911. v->s.h_edge_pos = v->s.avctx->coded_width;
  912. v->s.v_edge_pos = v->s.avctx->coded_height;
  913. av_log(v->s.avctx, AV_LOG_DEBUG,
  914. "Advanced Profile level %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  915. "LoopFilter=%i, ChromaFormat=%i, Pulldown=%i, Interlace: %i\n"
  916. "TFCTRflag=%i, FINTERPflag=%i\n",
  917. v->level, v->frmrtq_postproc, v->bitrtq_postproc,
  918. v->s.loop_filter, v->chromaformat, v->broadcast, v->interlace,
  919. v->tfcntrflag, v->finterpflag
  920. );
  921. v->psf = get_bits1(gb);
  922. if(v->psf) { //PsF, 6.1.13
  923. av_log(v->s.avctx, AV_LOG_ERROR, "Progressive Segmented Frame mode: not supported (yet)\n");
  924. return -1;
  925. }
  926. v->s.max_b_frames = v->s.avctx->max_b_frames = 7;
  927. if(get_bits1(gb)) { //Display Info - decoding is not affected by it
  928. int w, h, ar = 0;
  929. av_log(v->s.avctx, AV_LOG_DEBUG, "Display extended info:\n");
  930. v->s.avctx->coded_width = w = get_bits(gb, 14) + 1;
  931. v->s.avctx->coded_height = h = get_bits(gb, 14) + 1;
  932. av_log(v->s.avctx, AV_LOG_DEBUG, "Display dimensions: %ix%i\n", w, h);
  933. if(get_bits1(gb))
  934. ar = get_bits(gb, 4);
  935. if(ar && ar < 14){
  936. v->s.avctx->sample_aspect_ratio = ff_vc1_pixel_aspect[ar];
  937. }else if(ar == 15){
  938. w = get_bits(gb, 8);
  939. h = get_bits(gb, 8);
  940. v->s.avctx->sample_aspect_ratio = (AVRational){w, h};
  941. }
  942. av_log(v->s.avctx, AV_LOG_DEBUG, "Aspect: %i:%i\n", v->s.avctx->sample_aspect_ratio.num, v->s.avctx->sample_aspect_ratio.den);
  943. if(get_bits1(gb)){ //framerate stuff
  944. if(get_bits1(gb)) {
  945. v->s.avctx->time_base.num = 32;
  946. v->s.avctx->time_base.den = get_bits(gb, 16) + 1;
  947. } else {
  948. int nr, dr;
  949. nr = get_bits(gb, 8);
  950. dr = get_bits(gb, 4);
  951. if(nr && nr < 8 && dr && dr < 3){
  952. v->s.avctx->time_base.num = ff_vc1_fps_dr[dr - 1];
  953. v->s.avctx->time_base.den = ff_vc1_fps_nr[nr - 1] * 1000;
  954. }
  955. }
  956. }
  957. if(get_bits1(gb)){
  958. v->color_prim = get_bits(gb, 8);
  959. v->transfer_char = get_bits(gb, 8);
  960. v->matrix_coef = get_bits(gb, 8);
  961. }
  962. }
  963. v->hrd_param_flag = get_bits1(gb);
  964. if(v->hrd_param_flag) {
  965. int i;
  966. v->hrd_num_leaky_buckets = get_bits(gb, 5);
  967. skip_bits(gb, 4); //bitrate exponent
  968. skip_bits(gb, 4); //buffer size exponent
  969. for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
  970. skip_bits(gb, 16); //hrd_rate[n]
  971. skip_bits(gb, 16); //hrd_buffer[n]
  972. }
  973. }
  974. return 0;
  975. }
  976. static int decode_entry_point(AVCodecContext *avctx, GetBitContext *gb)
  977. {
  978. VC1Context *v = avctx->priv_data;
  979. int i, blink, clentry;
  980. av_log(avctx, AV_LOG_DEBUG, "Entry point: %08X\n", show_bits_long(gb, 32));
  981. blink = get_bits1(gb); // broken link
  982. clentry = get_bits1(gb); // closed entry
  983. v->panscanflag = get_bits1(gb);
  984. v->refdist_flag = get_bits1(gb);
  985. v->s.loop_filter = get_bits1(gb);
  986. v->fastuvmc = get_bits1(gb);
  987. v->extended_mv = get_bits1(gb);
  988. v->dquant = get_bits(gb, 2);
  989. v->vstransform = get_bits1(gb);
  990. v->overlap = get_bits1(gb);
  991. v->quantizer_mode = get_bits(gb, 2);
  992. if(v->hrd_param_flag){
  993. for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
  994. skip_bits(gb, 8); //hrd_full[n]
  995. }
  996. }
  997. if(get_bits1(gb)){
  998. avctx->coded_width = (get_bits(gb, 12)+1)<<1;
  999. avctx->coded_height = (get_bits(gb, 12)+1)<<1;
  1000. }
  1001. if(v->extended_mv)
  1002. v->extended_dmv = get_bits1(gb);
  1003. if((v->range_mapy_flag = get_bits1(gb))) {
  1004. av_log(avctx, AV_LOG_ERROR, "Luma scaling is not supported, expect wrong picture\n");
  1005. v->range_mapy = get_bits(gb, 3);
  1006. }
  1007. if((v->range_mapuv_flag = get_bits1(gb))) {
  1008. av_log(avctx, AV_LOG_ERROR, "Chroma scaling is not supported, expect wrong picture\n");
  1009. v->range_mapuv = get_bits(gb, 3);
  1010. }
  1011. av_log(avctx, AV_LOG_DEBUG, "Entry point info:\n"
  1012. "BrokenLink=%i, ClosedEntry=%i, PanscanFlag=%i\n"
  1013. "RefDist=%i, Postproc=%i, FastUVMC=%i, ExtMV=%i\n"
  1014. "DQuant=%i, VSTransform=%i, Overlap=%i, Qmode=%i\n",
  1015. blink, clentry, v->panscanflag, v->refdist_flag, v->s.loop_filter,
  1016. v->fastuvmc, v->extended_mv, v->dquant, v->vstransform, v->overlap, v->quantizer_mode);
  1017. return 0;
  1018. }
  1019. static int vc1_parse_frame_header(VC1Context *v, GetBitContext* gb)
  1020. {
  1021. int pqindex, lowquant, status;
  1022. if(v->finterpflag) v->interpfrm = get_bits1(gb);
  1023. skip_bits(gb, 2); //framecnt unused
  1024. v->rangeredfrm = 0;
  1025. if (v->rangered) v->rangeredfrm = get_bits1(gb);
  1026. v->s.pict_type = get_bits1(gb);
  1027. if (v->s.avctx->max_b_frames) {
  1028. if (!v->s.pict_type) {
  1029. if (get_bits1(gb)) v->s.pict_type = FF_I_TYPE;
  1030. else v->s.pict_type = FF_B_TYPE;
  1031. } else v->s.pict_type = FF_P_TYPE;
  1032. } else v->s.pict_type = v->s.pict_type ? FF_P_TYPE : FF_I_TYPE;
  1033. v->bi_type = 0;
  1034. if(v->s.pict_type == FF_B_TYPE) {
  1035. v->bfraction = get_vlc2(gb, ff_vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
  1036. v->bfraction = ff_vc1_bfraction_lut[v->bfraction];
  1037. if(v->bfraction == 0) {
  1038. v->s.pict_type = FF_BI_TYPE;
  1039. }
  1040. }
  1041. if(v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE)
  1042. skip_bits(gb, 7); // skip buffer fullness
  1043. /* calculate RND */
  1044. if(v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE)
  1045. v->rnd = 1;
  1046. if(v->s.pict_type == FF_P_TYPE)
  1047. v->rnd ^= 1;
  1048. /* Quantizer stuff */
  1049. pqindex = get_bits(gb, 5);
  1050. if(!pqindex) return -1;
  1051. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1052. v->pq = ff_vc1_pquant_table[0][pqindex];
  1053. else
  1054. v->pq = ff_vc1_pquant_table[1][pqindex];
  1055. v->pquantizer = 1;
  1056. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1057. v->pquantizer = pqindex < 9;
  1058. if (v->quantizer_mode == QUANT_NON_UNIFORM)
  1059. v->pquantizer = 0;
  1060. v->pqindex = pqindex;
  1061. if (pqindex < 9) v->halfpq = get_bits1(gb);
  1062. else v->halfpq = 0;
  1063. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  1064. v->pquantizer = get_bits1(gb);
  1065. v->dquantfrm = 0;
  1066. if (v->extended_mv == 1) v->mvrange = get_unary(gb, 0, 3);
  1067. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1068. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1069. v->range_x = 1 << (v->k_x - 1);
  1070. v->range_y = 1 << (v->k_y - 1);
  1071. if (v->profile == PROFILE_ADVANCED)
  1072. {
  1073. if (v->postprocflag) v->postproc = get_bits1(gb);
  1074. }
  1075. else
  1076. if (v->multires && v->s.pict_type != FF_B_TYPE) v->respic = get_bits(gb, 2);
  1077. if(v->res_x8 && (v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE)){
  1078. v->x8_type = get_bits1(gb);
  1079. }else v->x8_type = 0;
  1080. //av_log(v->s.avctx, AV_LOG_INFO, "%c Frame: QP=[%i]%i (+%i/2) %i\n",
  1081. // (v->s.pict_type == FF_P_TYPE) ? 'P' : ((v->s.pict_type == FF_I_TYPE) ? 'I' : 'B'), pqindex, v->pq, v->halfpq, v->rangeredfrm);
  1082. if(v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_P_TYPE) v->use_ic = 0;
  1083. switch(v->s.pict_type) {
  1084. case FF_P_TYPE:
  1085. if (v->pq < 5) v->tt_index = 0;
  1086. else if(v->pq < 13) v->tt_index = 1;
  1087. else v->tt_index = 2;
  1088. lowquant = (v->pq > 12) ? 0 : 1;
  1089. v->mv_mode = ff_vc1_mv_pmode_table[lowquant][get_unary(gb, 1, 4)];
  1090. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1091. {
  1092. int scale, shift, i;
  1093. v->mv_mode2 = ff_vc1_mv_pmode_table2[lowquant][get_unary(gb, 1, 3)];
  1094. v->lumscale = get_bits(gb, 6);
  1095. v->lumshift = get_bits(gb, 6);
  1096. v->use_ic = 1;
  1097. /* fill lookup tables for intensity compensation */
  1098. if(!v->lumscale) {
  1099. scale = -64;
  1100. shift = (255 - v->lumshift * 2) << 6;
  1101. if(v->lumshift > 31)
  1102. shift += 128 << 6;
  1103. } else {
  1104. scale = v->lumscale + 32;
  1105. if(v->lumshift > 31)
  1106. shift = (v->lumshift - 64) << 6;
  1107. else
  1108. shift = v->lumshift << 6;
  1109. }
  1110. for(i = 0; i < 256; i++) {
  1111. v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6);
  1112. v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1113. }
  1114. }
  1115. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1116. v->s.quarter_sample = 0;
  1117. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1118. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1119. v->s.quarter_sample = 0;
  1120. else
  1121. v->s.quarter_sample = 1;
  1122. } else
  1123. v->s.quarter_sample = 1;
  1124. v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
  1125. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1126. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1127. || v->mv_mode == MV_PMODE_MIXED_MV)
  1128. {
  1129. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1130. if (status < 0) return -1;
  1131. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1132. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1133. } else {
  1134. v->mv_type_is_raw = 0;
  1135. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1136. }
  1137. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1138. if (status < 0) return -1;
  1139. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1140. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1141. /* Hopefully this is correct for P frames */
  1142. v->s.mv_table_index = get_bits(gb, 2); //but using ff_vc1_ tables
  1143. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1144. if (v->dquant)
  1145. {
  1146. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1147. vop_dquant_decoding(v);
  1148. }
  1149. v->ttfrm = 0; //FIXME Is that so ?
  1150. if (v->vstransform)
  1151. {
  1152. v->ttmbf = get_bits1(gb);
  1153. if (v->ttmbf)
  1154. {
  1155. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1156. }
  1157. } else {
  1158. v->ttmbf = 1;
  1159. v->ttfrm = TT_8X8;
  1160. }
  1161. break;
  1162. case FF_B_TYPE:
  1163. if (v->pq < 5) v->tt_index = 0;
  1164. else if(v->pq < 13) v->tt_index = 1;
  1165. else v->tt_index = 2;
  1166. lowquant = (v->pq > 12) ? 0 : 1;
  1167. v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
  1168. v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
  1169. v->s.mspel = v->s.quarter_sample;
  1170. status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
  1171. if (status < 0) return -1;
  1172. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
  1173. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1174. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1175. if (status < 0) return -1;
  1176. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1177. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1178. v->s.mv_table_index = get_bits(gb, 2);
  1179. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1180. if (v->dquant)
  1181. {
  1182. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1183. vop_dquant_decoding(v);
  1184. }
  1185. v->ttfrm = 0;
  1186. if (v->vstransform)
  1187. {
  1188. v->ttmbf = get_bits1(gb);
  1189. if (v->ttmbf)
  1190. {
  1191. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1192. }
  1193. } else {
  1194. v->ttmbf = 1;
  1195. v->ttfrm = TT_8X8;
  1196. }
  1197. break;
  1198. }
  1199. if(!v->x8_type)
  1200. {
  1201. /* AC Syntax */
  1202. v->c_ac_table_index = decode012(gb);
  1203. if (v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE)
  1204. {
  1205. v->y_ac_table_index = decode012(gb);
  1206. }
  1207. /* DC Syntax */
  1208. v->s.dc_table_index = get_bits1(gb);
  1209. }
  1210. if(v->s.pict_type == FF_BI_TYPE) {
  1211. v->s.pict_type = FF_B_TYPE;
  1212. v->bi_type = 1;
  1213. }
  1214. return 0;
  1215. }
  1216. static int vc1_parse_frame_header_adv(VC1Context *v, GetBitContext* gb)
  1217. {
  1218. int pqindex, lowquant;
  1219. int status;
  1220. v->p_frame_skipped = 0;
  1221. if(v->interlace){
  1222. v->fcm = decode012(gb);
  1223. if(v->fcm) return -1; // interlaced frames/fields are not implemented
  1224. }
  1225. switch(get_unary(gb, 0, 4)) {
  1226. case 0:
  1227. v->s.pict_type = FF_P_TYPE;
  1228. break;
  1229. case 1:
  1230. v->s.pict_type = FF_B_TYPE;
  1231. break;
  1232. case 2:
  1233. v->s.pict_type = FF_I_TYPE;
  1234. break;
  1235. case 3:
  1236. v->s.pict_type = FF_BI_TYPE;
  1237. break;
  1238. case 4:
  1239. v->s.pict_type = FF_P_TYPE; // skipped pic
  1240. v->p_frame_skipped = 1;
  1241. return 0;
  1242. }
  1243. if(v->tfcntrflag)
  1244. skip_bits(gb, 8);
  1245. if(v->broadcast) {
  1246. if(!v->interlace || v->psf) {
  1247. v->rptfrm = get_bits(gb, 2);
  1248. } else {
  1249. v->tff = get_bits1(gb);
  1250. v->rptfrm = get_bits1(gb);
  1251. }
  1252. }
  1253. if(v->panscanflag) {
  1254. //...
  1255. }
  1256. v->rnd = get_bits1(gb);
  1257. if(v->interlace)
  1258. v->uvsamp = get_bits1(gb);
  1259. if(v->finterpflag) v->interpfrm = get_bits1(gb);
  1260. if(v->s.pict_type == FF_B_TYPE) {
  1261. v->bfraction = get_vlc2(gb, ff_vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
  1262. v->bfraction = ff_vc1_bfraction_lut[v->bfraction];
  1263. if(v->bfraction == 0) {
  1264. v->s.pict_type = FF_BI_TYPE; /* XXX: should not happen here */
  1265. }
  1266. }
  1267. pqindex = get_bits(gb, 5);
  1268. if(!pqindex) return -1;
  1269. v->pqindex = pqindex;
  1270. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1271. v->pq = ff_vc1_pquant_table[0][pqindex];
  1272. else
  1273. v->pq = ff_vc1_pquant_table[1][pqindex];
  1274. v->pquantizer = 1;
  1275. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1276. v->pquantizer = pqindex < 9;
  1277. if (v->quantizer_mode == QUANT_NON_UNIFORM)
  1278. v->pquantizer = 0;
  1279. v->pqindex = pqindex;
  1280. if (pqindex < 9) v->halfpq = get_bits1(gb);
  1281. else v->halfpq = 0;
  1282. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  1283. v->pquantizer = get_bits1(gb);
  1284. if(v->postprocflag)
  1285. v->postproc = get_bits1(gb);
  1286. if(v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_P_TYPE) v->use_ic = 0;
  1287. switch(v->s.pict_type) {
  1288. case FF_I_TYPE:
  1289. case FF_BI_TYPE:
  1290. status = bitplane_decoding(v->acpred_plane, &v->acpred_is_raw, v);
  1291. if (status < 0) return -1;
  1292. av_log(v->s.avctx, AV_LOG_DEBUG, "ACPRED plane encoding: "
  1293. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1294. v->condover = CONDOVER_NONE;
  1295. if(v->overlap && v->pq <= 8) {
  1296. v->condover = decode012(gb);
  1297. if(v->condover == CONDOVER_SELECT) {
  1298. status = bitplane_decoding(v->over_flags_plane, &v->overflg_is_raw, v);
  1299. if (status < 0) return -1;
  1300. av_log(v->s.avctx, AV_LOG_DEBUG, "CONDOVER plane encoding: "
  1301. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1302. }
  1303. }
  1304. break;
  1305. case FF_P_TYPE:
  1306. if (v->extended_mv) v->mvrange = get_unary(gb, 0, 3);
  1307. else v->mvrange = 0;
  1308. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1309. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1310. v->range_x = 1 << (v->k_x - 1);
  1311. v->range_y = 1 << (v->k_y - 1);
  1312. if (v->pq < 5) v->tt_index = 0;
  1313. else if(v->pq < 13) v->tt_index = 1;
  1314. else v->tt_index = 2;
  1315. lowquant = (v->pq > 12) ? 0 : 1;
  1316. v->mv_mode = ff_vc1_mv_pmode_table[lowquant][get_unary(gb, 1, 4)];
  1317. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1318. {
  1319. int scale, shift, i;
  1320. v->mv_mode2 = ff_vc1_mv_pmode_table2[lowquant][get_unary(gb, 1, 3)];
  1321. v->lumscale = get_bits(gb, 6);
  1322. v->lumshift = get_bits(gb, 6);
  1323. /* fill lookup tables for intensity compensation */
  1324. if(!v->lumscale) {
  1325. scale = -64;
  1326. shift = (255 - v->lumshift * 2) << 6;
  1327. if(v->lumshift > 31)
  1328. shift += 128 << 6;
  1329. } else {
  1330. scale = v->lumscale + 32;
  1331. if(v->lumshift > 31)
  1332. shift = (v->lumshift - 64) << 6;
  1333. else
  1334. shift = v->lumshift << 6;
  1335. }
  1336. for(i = 0; i < 256; i++) {
  1337. v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6);
  1338. v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1339. }
  1340. v->use_ic = 1;
  1341. }
  1342. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1343. v->s.quarter_sample = 0;
  1344. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1345. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1346. v->s.quarter_sample = 0;
  1347. else
  1348. v->s.quarter_sample = 1;
  1349. } else
  1350. v->s.quarter_sample = 1;
  1351. v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
  1352. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1353. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1354. || v->mv_mode == MV_PMODE_MIXED_MV)
  1355. {
  1356. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1357. if (status < 0) return -1;
  1358. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1359. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1360. } else {
  1361. v->mv_type_is_raw = 0;
  1362. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1363. }
  1364. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1365. if (status < 0) return -1;
  1366. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1367. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1368. /* Hopefully this is correct for P frames */
  1369. v->s.mv_table_index = get_bits(gb, 2); //but using ff_vc1_ tables
  1370. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1371. if (v->dquant)
  1372. {
  1373. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1374. vop_dquant_decoding(v);
  1375. }
  1376. v->ttfrm = 0; //FIXME Is that so ?
  1377. if (v->vstransform)
  1378. {
  1379. v->ttmbf = get_bits1(gb);
  1380. if (v->ttmbf)
  1381. {
  1382. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1383. }
  1384. } else {
  1385. v->ttmbf = 1;
  1386. v->ttfrm = TT_8X8;
  1387. }
  1388. break;
  1389. case FF_B_TYPE:
  1390. if (v->extended_mv) v->mvrange = get_unary(gb, 0, 3);
  1391. else v->mvrange = 0;
  1392. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1393. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1394. v->range_x = 1 << (v->k_x - 1);
  1395. v->range_y = 1 << (v->k_y - 1);
  1396. if (v->pq < 5) v->tt_index = 0;
  1397. else if(v->pq < 13) v->tt_index = 1;
  1398. else v->tt_index = 2;
  1399. lowquant = (v->pq > 12) ? 0 : 1;
  1400. v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
  1401. v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
  1402. v->s.mspel = v->s.quarter_sample;
  1403. status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
  1404. if (status < 0) return -1;
  1405. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
  1406. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1407. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1408. if (status < 0) return -1;
  1409. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1410. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1411. v->s.mv_table_index = get_bits(gb, 2);
  1412. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1413. if (v->dquant)
  1414. {
  1415. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1416. vop_dquant_decoding(v);
  1417. }
  1418. v->ttfrm = 0;
  1419. if (v->vstransform)
  1420. {
  1421. v->ttmbf = get_bits1(gb);
  1422. if (v->ttmbf)
  1423. {
  1424. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1425. }
  1426. } else {
  1427. v->ttmbf = 1;
  1428. v->ttfrm = TT_8X8;
  1429. }
  1430. break;
  1431. }
  1432. /* AC Syntax */
  1433. v->c_ac_table_index = decode012(gb);
  1434. if (v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE)
  1435. {
  1436. v->y_ac_table_index = decode012(gb);
  1437. }
  1438. /* DC Syntax */
  1439. v->s.dc_table_index = get_bits1(gb);
  1440. if ((v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE) && v->dquant) {
  1441. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1442. vop_dquant_decoding(v);
  1443. }
  1444. v->bi_type = 0;
  1445. if(v->s.pict_type == FF_BI_TYPE) {
  1446. v->s.pict_type = FF_B_TYPE;
  1447. v->bi_type = 1;
  1448. }
  1449. return 0;
  1450. }
  1451. /***********************************************************************/
  1452. /**
  1453. * @defgroup block VC-1 Block-level functions
  1454. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  1455. * @{
  1456. */
  1457. /**
  1458. * @def GET_MQUANT
  1459. * @brief Get macroblock-level quantizer scale
  1460. */
  1461. #define GET_MQUANT() \
  1462. if (v->dquantfrm) \
  1463. { \
  1464. int edges = 0; \
  1465. if (v->dqprofile == DQPROFILE_ALL_MBS) \
  1466. { \
  1467. if (v->dqbilevel) \
  1468. { \
  1469. mquant = (get_bits1(gb)) ? v->altpq : v->pq; \
  1470. } \
  1471. else \
  1472. { \
  1473. mqdiff = get_bits(gb, 3); \
  1474. if (mqdiff != 7) mquant = v->pq + mqdiff; \
  1475. else mquant = get_bits(gb, 5); \
  1476. } \
  1477. } \
  1478. if(v->dqprofile == DQPROFILE_SINGLE_EDGE) \
  1479. edges = 1 << v->dqsbedge; \
  1480. else if(v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
  1481. edges = (3 << v->dqsbedge) % 15; \
  1482. else if(v->dqprofile == DQPROFILE_FOUR_EDGES) \
  1483. edges = 15; \
  1484. if((edges&1) && !s->mb_x) \
  1485. mquant = v->altpq; \
  1486. if((edges&2) && s->first_slice_line) \
  1487. mquant = v->altpq; \
  1488. if((edges&4) && s->mb_x == (s->mb_width - 1)) \
  1489. mquant = v->altpq; \
  1490. if((edges&8) && s->mb_y == (s->mb_height - 1)) \
  1491. mquant = v->altpq; \
  1492. }
  1493. /**
  1494. * @def GET_MVDATA(_dmv_x, _dmv_y)
  1495. * @brief Get MV differentials
  1496. * @see MVDATA decoding from 8.3.5.2, p(1)20
  1497. * @param _dmv_x Horizontal differential for decoded MV
  1498. * @param _dmv_y Vertical differential for decoded MV
  1499. */
  1500. #define GET_MVDATA(_dmv_x, _dmv_y) \
  1501. index = 1 + get_vlc2(gb, ff_vc1_mv_diff_vlc[s->mv_table_index].table,\
  1502. VC1_MV_DIFF_VLC_BITS, 2); \
  1503. if (index > 36) \
  1504. { \
  1505. mb_has_coeffs = 1; \
  1506. index -= 37; \
  1507. } \
  1508. else mb_has_coeffs = 0; \
  1509. s->mb_intra = 0; \
  1510. if (!index) { _dmv_x = _dmv_y = 0; } \
  1511. else if (index == 35) \
  1512. { \
  1513. _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
  1514. _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
  1515. } \
  1516. else if (index == 36) \
  1517. { \
  1518. _dmv_x = 0; \
  1519. _dmv_y = 0; \
  1520. s->mb_intra = 1; \
  1521. } \
  1522. else \
  1523. { \
  1524. index1 = index%6; \
  1525. if (!s->quarter_sample && index1 == 5) val = 1; \
  1526. else val = 0; \
  1527. if(size_table[index1] - val > 0) \
  1528. val = get_bits(gb, size_table[index1] - val); \
  1529. else val = 0; \
  1530. sign = 0 - (val&1); \
  1531. _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1532. \
  1533. index1 = index/6; \
  1534. if (!s->quarter_sample && index1 == 5) val = 1; \
  1535. else val = 0; \
  1536. if(size_table[index1] - val > 0) \
  1537. val = get_bits(gb, size_table[index1] - val); \
  1538. else val = 0; \
  1539. sign = 0 - (val&1); \
  1540. _dmv_y = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1541. }
  1542. /** Predict and set motion vector
  1543. */
  1544. static inline void vc1_pred_mv(MpegEncContext *s, int n, int dmv_x, int dmv_y, int mv1, int r_x, int r_y, uint8_t* is_intra)
  1545. {
  1546. int xy, wrap, off = 0;
  1547. int16_t *A, *B, *C;
  1548. int px, py;
  1549. int sum;
  1550. /* scale MV difference to be quad-pel */
  1551. dmv_x <<= 1 - s->quarter_sample;
  1552. dmv_y <<= 1 - s->quarter_sample;
  1553. wrap = s->b8_stride;
  1554. xy = s->block_index[n];
  1555. if(s->mb_intra){
  1556. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = 0;
  1557. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = 0;
  1558. s->current_picture.motion_val[1][xy][0] = 0;
  1559. s->current_picture.motion_val[1][xy][1] = 0;
  1560. if(mv1) { /* duplicate motion data for 1-MV block */
  1561. s->current_picture.motion_val[0][xy + 1][0] = 0;
  1562. s->current_picture.motion_val[0][xy + 1][1] = 0;
  1563. s->current_picture.motion_val[0][xy + wrap][0] = 0;
  1564. s->current_picture.motion_val[0][xy + wrap][1] = 0;
  1565. s->current_picture.motion_val[0][xy + wrap + 1][0] = 0;
  1566. s->current_picture.motion_val[0][xy + wrap + 1][1] = 0;
  1567. s->current_picture.motion_val[1][xy + 1][0] = 0;
  1568. s->current_picture.motion_val[1][xy + 1][1] = 0;
  1569. s->current_picture.motion_val[1][xy + wrap][0] = 0;
  1570. s->current_picture.motion_val[1][xy + wrap][1] = 0;
  1571. s->current_picture.motion_val[1][xy + wrap + 1][0] = 0;
  1572. s->current_picture.motion_val[1][xy + wrap + 1][1] = 0;
  1573. }
  1574. return;
  1575. }
  1576. C = s->current_picture.motion_val[0][xy - 1];
  1577. A = s->current_picture.motion_val[0][xy - wrap];
  1578. if(mv1)
  1579. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
  1580. else {
  1581. //in 4-MV mode different blocks have different B predictor position
  1582. switch(n){
  1583. case 0:
  1584. off = (s->mb_x > 0) ? -1 : 1;
  1585. break;
  1586. case 1:
  1587. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
  1588. break;
  1589. case 2:
  1590. off = 1;
  1591. break;
  1592. case 3:
  1593. off = -1;
  1594. }
  1595. }
  1596. B = s->current_picture.motion_val[0][xy - wrap + off];
  1597. if(!s->first_slice_line || (n==2 || n==3)) { // predictor A is not out of bounds
  1598. if(s->mb_width == 1) {
  1599. px = A[0];
  1600. py = A[1];
  1601. } else {
  1602. px = mid_pred(A[0], B[0], C[0]);
  1603. py = mid_pred(A[1], B[1], C[1]);
  1604. }
  1605. } else if(s->mb_x || (n==1 || n==3)) { // predictor C is not out of bounds
  1606. px = C[0];
  1607. py = C[1];
  1608. } else {
  1609. px = py = 0;
  1610. }
  1611. /* Pullback MV as specified in 8.3.5.3.4 */
  1612. {
  1613. int qx, qy, X, Y;
  1614. qx = (s->mb_x << 6) + ((n==1 || n==3) ? 32 : 0);
  1615. qy = (s->mb_y << 6) + ((n==2 || n==3) ? 32 : 0);
  1616. X = (s->mb_width << 6) - 4;
  1617. Y = (s->mb_height << 6) - 4;
  1618. if(mv1) {
  1619. if(qx + px < -60) px = -60 - qx;
  1620. if(qy + py < -60) py = -60 - qy;
  1621. } else {
  1622. if(qx + px < -28) px = -28 - qx;
  1623. if(qy + py < -28) py = -28 - qy;
  1624. }
  1625. if(qx + px > X) px = X - qx;
  1626. if(qy + py > Y) py = Y - qy;
  1627. }
  1628. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1629. if((!s->first_slice_line || (n==2 || n==3)) && (s->mb_x || (n==1 || n==3))) {
  1630. if(is_intra[xy - wrap])
  1631. sum = FFABS(px) + FFABS(py);
  1632. else
  1633. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1634. if(sum > 32) {
  1635. if(get_bits1(&s->gb)) {
  1636. px = A[0];
  1637. py = A[1];
  1638. } else {
  1639. px = C[0];
  1640. py = C[1];
  1641. }
  1642. } else {
  1643. if(is_intra[xy - 1])
  1644. sum = FFABS(px) + FFABS(py);
  1645. else
  1646. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1647. if(sum > 32) {
  1648. if(get_bits1(&s->gb)) {
  1649. px = A[0];
  1650. py = A[1];
  1651. } else {
  1652. px = C[0];
  1653. py = C[1];
  1654. }
  1655. }
  1656. }
  1657. }
  1658. /* store MV using signed modulus of MV range defined in 4.11 */
  1659. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
  1660. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
  1661. if(mv1) { /* duplicate motion data for 1-MV block */
  1662. s->current_picture.motion_val[0][xy + 1][0] = s->current_picture.motion_val[0][xy][0];
  1663. s->current_picture.motion_val[0][xy + 1][1] = s->current_picture.motion_val[0][xy][1];
  1664. s->current_picture.motion_val[0][xy + wrap][0] = s->current_picture.motion_val[0][xy][0];
  1665. s->current_picture.motion_val[0][xy + wrap][1] = s->current_picture.motion_val[0][xy][1];
  1666. s->current_picture.motion_val[0][xy + wrap + 1][0] = s->current_picture.motion_val[0][xy][0];
  1667. s->current_picture.motion_val[0][xy + wrap + 1][1] = s->current_picture.motion_val[0][xy][1];
  1668. }
  1669. }
  1670. /** Motion compensation for direct or interpolated blocks in B-frames
  1671. */
  1672. static void vc1_interp_mc(VC1Context *v)
  1673. {
  1674. MpegEncContext *s = &v->s;
  1675. DSPContext *dsp = &v->s.dsp;
  1676. uint8_t *srcY, *srcU, *srcV;
  1677. int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  1678. if(!v->s.next_picture.data[0])return;
  1679. mx = s->mv[1][0][0];
  1680. my = s->mv[1][0][1];
  1681. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  1682. uvmy = (my + ((my & 3) == 3)) >> 1;
  1683. if(v->fastuvmc) {
  1684. uvmx = uvmx + ((uvmx<0)?-(uvmx&1):(uvmx&1));
  1685. uvmy = uvmy + ((uvmy<0)?-(uvmy&1):(uvmy&1));
  1686. }
  1687. srcY = s->next_picture.data[0];
  1688. srcU = s->next_picture.data[1];
  1689. srcV = s->next_picture.data[2];
  1690. src_x = s->mb_x * 16 + (mx >> 2);
  1691. src_y = s->mb_y * 16 + (my >> 2);
  1692. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  1693. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  1694. if(v->profile != PROFILE_ADVANCED){
  1695. src_x = av_clip( src_x, -16, s->mb_width * 16);
  1696. src_y = av_clip( src_y, -16, s->mb_height * 16);
  1697. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  1698. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  1699. }else{
  1700. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  1701. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  1702. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  1703. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  1704. }
  1705. srcY += src_y * s->linesize + src_x;
  1706. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  1707. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  1708. /* for grayscale we should not try to read from unknown area */
  1709. if(s->flags & CODEC_FLAG_GRAY) {
  1710. srcU = s->edge_emu_buffer + 18 * s->linesize;
  1711. srcV = s->edge_emu_buffer + 18 * s->linesize;
  1712. }
  1713. if(v->rangeredfrm
  1714. || (unsigned)src_x > s->h_edge_pos - (mx&3) - 16
  1715. || (unsigned)src_y > s->v_edge_pos - (my&3) - 16){
  1716. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  1717. srcY -= s->mspel * (1 + s->linesize);
  1718. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  1719. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  1720. srcY = s->edge_emu_buffer;
  1721. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  1722. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1723. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  1724. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1725. srcU = uvbuf;
  1726. srcV = uvbuf + 16;
  1727. /* if we deal with range reduction we need to scale source blocks */
  1728. if(v->rangeredfrm) {
  1729. int i, j;
  1730. uint8_t *src, *src2;
  1731. src = srcY;
  1732. for(j = 0; j < 17 + s->mspel*2; j++) {
  1733. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  1734. src += s->linesize;
  1735. }
  1736. src = srcU; src2 = srcV;
  1737. for(j = 0; j < 9; j++) {
  1738. for(i = 0; i < 9; i++) {
  1739. src[i] = ((src[i] - 128) >> 1) + 128;
  1740. src2[i] = ((src2[i] - 128) >> 1) + 128;
  1741. }
  1742. src += s->uvlinesize;
  1743. src2 += s->uvlinesize;
  1744. }
  1745. }
  1746. srcY += s->mspel * (1 + s->linesize);
  1747. }
  1748. mx >>= 1;
  1749. my >>= 1;
  1750. dxy = ((my & 1) << 1) | (mx & 1);
  1751. dsp->avg_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  1752. if(s->flags & CODEC_FLAG_GRAY) return;
  1753. /* Chroma MC always uses qpel blilinear */
  1754. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  1755. uvmx = (uvmx&3)<<1;
  1756. uvmy = (uvmy&3)<<1;
  1757. dsp->avg_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  1758. dsp->avg_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  1759. }
  1760. static av_always_inline int scale_mv(int value, int bfrac, int inv, int qs)
  1761. {
  1762. int n = bfrac;
  1763. #if B_FRACTION_DEN==256
  1764. if(inv)
  1765. n -= 256;
  1766. if(!qs)
  1767. return 2 * ((value * n + 255) >> 9);
  1768. return (value * n + 128) >> 8;
  1769. #else
  1770. if(inv)
  1771. n -= B_FRACTION_DEN;
  1772. if(!qs)
  1773. return 2 * ((value * n + B_FRACTION_DEN - 1) / (2 * B_FRACTION_DEN));
  1774. return (value * n + B_FRACTION_DEN/2) / B_FRACTION_DEN;
  1775. #endif
  1776. }
  1777. /** Reconstruct motion vector for B-frame and do motion compensation
  1778. */
  1779. static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mode)
  1780. {
  1781. if(v->use_ic) {
  1782. v->mv_mode2 = v->mv_mode;
  1783. v->mv_mode = MV_PMODE_INTENSITY_COMP;
  1784. }
  1785. if(direct) {
  1786. vc1_mc_1mv(v, 0);
  1787. vc1_interp_mc(v);
  1788. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1789. return;
  1790. }
  1791. if(mode == BMV_TYPE_INTERPOLATED) {
  1792. vc1_mc_1mv(v, 0);
  1793. vc1_interp_mc(v);
  1794. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1795. return;
  1796. }
  1797. if(v->use_ic && (mode == BMV_TYPE_BACKWARD)) v->mv_mode = v->mv_mode2;
  1798. vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD));
  1799. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1800. }
  1801. static inline void vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mvtype)
  1802. {
  1803. MpegEncContext *s = &v->s;
  1804. int xy, wrap, off = 0;
  1805. int16_t *A, *B, *C;
  1806. int px, py;
  1807. int sum;
  1808. int r_x, r_y;
  1809. const uint8_t *is_intra = v->mb_type[0];
  1810. r_x = v->range_x;
  1811. r_y = v->range_y;
  1812. /* scale MV difference to be quad-pel */
  1813. dmv_x[0] <<= 1 - s->quarter_sample;
  1814. dmv_y[0] <<= 1 - s->quarter_sample;
  1815. dmv_x[1] <<= 1 - s->quarter_sample;
  1816. dmv_y[1] <<= 1 - s->quarter_sample;
  1817. wrap = s->b8_stride;
  1818. xy = s->block_index[0];
  1819. if(s->mb_intra) {
  1820. s->current_picture.motion_val[0][xy][0] =
  1821. s->current_picture.motion_val[0][xy][1] =
  1822. s->current_picture.motion_val[1][xy][0] =
  1823. s->current_picture.motion_val[1][xy][1] = 0;
  1824. return;
  1825. }
  1826. s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 0, s->quarter_sample);
  1827. s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 0, s->quarter_sample);
  1828. s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 1, s->quarter_sample);
  1829. s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 1, s->quarter_sample);
  1830. /* Pullback predicted motion vectors as specified in 8.4.5.4 */
  1831. s->mv[0][0][0] = av_clip(s->mv[0][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  1832. s->mv[0][0][1] = av_clip(s->mv[0][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  1833. s->mv[1][0][0] = av_clip(s->mv[1][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  1834. s->mv[1][0][1] = av_clip(s->mv[1][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  1835. if(direct) {
  1836. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  1837. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  1838. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  1839. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  1840. return;
  1841. }
  1842. if((mvtype == BMV_TYPE_FORWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  1843. C = s->current_picture.motion_val[0][xy - 2];
  1844. A = s->current_picture.motion_val[0][xy - wrap*2];
  1845. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  1846. B = s->current_picture.motion_val[0][xy - wrap*2 + off];
  1847. if(!s->mb_x) C[0] = C[1] = 0;
  1848. if(!s->first_slice_line) { // predictor A is not out of bounds
  1849. if(s->mb_width == 1) {
  1850. px = A[0];
  1851. py = A[1];
  1852. } else {
  1853. px = mid_pred(A[0], B[0], C[0]);
  1854. py = mid_pred(A[1], B[1], C[1]);
  1855. }
  1856. } else if(s->mb_x) { // predictor C is not out of bounds
  1857. px = C[0];
  1858. py = C[1];
  1859. } else {
  1860. px = py = 0;
  1861. }
  1862. /* Pullback MV as specified in 8.3.5.3.4 */
  1863. {
  1864. int qx, qy, X, Y;
  1865. if(v->profile < PROFILE_ADVANCED) {
  1866. qx = (s->mb_x << 5);
  1867. qy = (s->mb_y << 5);
  1868. X = (s->mb_width << 5) - 4;
  1869. Y = (s->mb_height << 5) - 4;
  1870. if(qx + px < -28) px = -28 - qx;
  1871. if(qy + py < -28) py = -28 - qy;
  1872. if(qx + px > X) px = X - qx;
  1873. if(qy + py > Y) py = Y - qy;
  1874. } else {
  1875. qx = (s->mb_x << 6);
  1876. qy = (s->mb_y << 6);
  1877. X = (s->mb_width << 6) - 4;
  1878. Y = (s->mb_height << 6) - 4;
  1879. if(qx + px < -60) px = -60 - qx;
  1880. if(qy + py < -60) py = -60 - qy;
  1881. if(qx + px > X) px = X - qx;
  1882. if(qy + py > Y) py = Y - qy;
  1883. }
  1884. }
  1885. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1886. if(0 && !s->first_slice_line && s->mb_x) {
  1887. if(is_intra[xy - wrap])
  1888. sum = FFABS(px) + FFABS(py);
  1889. else
  1890. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1891. if(sum > 32) {
  1892. if(get_bits1(&s->gb)) {
  1893. px = A[0];
  1894. py = A[1];
  1895. } else {
  1896. px = C[0];
  1897. py = C[1];
  1898. }
  1899. } else {
  1900. if(is_intra[xy - 2])
  1901. sum = FFABS(px) + FFABS(py);
  1902. else
  1903. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1904. if(sum > 32) {
  1905. if(get_bits1(&s->gb)) {
  1906. px = A[0];
  1907. py = A[1];
  1908. } else {
  1909. px = C[0];
  1910. py = C[1];
  1911. }
  1912. }
  1913. }
  1914. }
  1915. /* store MV using signed modulus of MV range defined in 4.11 */
  1916. s->mv[0][0][0] = ((px + dmv_x[0] + r_x) & ((r_x << 1) - 1)) - r_x;
  1917. s->mv[0][0][1] = ((py + dmv_y[0] + r_y) & ((r_y << 1) - 1)) - r_y;
  1918. }
  1919. if((mvtype == BMV_TYPE_BACKWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  1920. C = s->current_picture.motion_val[1][xy - 2];
  1921. A = s->current_picture.motion_val[1][xy - wrap*2];
  1922. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  1923. B = s->current_picture.motion_val[1][xy - wrap*2 + off];
  1924. if(!s->mb_x) C[0] = C[1] = 0;
  1925. if(!s->first_slice_line) { // predictor A is not out of bounds
  1926. if(s->mb_width == 1) {
  1927. px = A[0];
  1928. py = A[1];
  1929. } else {
  1930. px = mid_pred(A[0], B[0], C[0]);
  1931. py = mid_pred(A[1], B[1], C[1]);
  1932. }
  1933. } else if(s->mb_x) { // predictor C is not out of bounds
  1934. px = C[0];
  1935. py = C[1];
  1936. } else {
  1937. px = py = 0;
  1938. }
  1939. /* Pullback MV as specified in 8.3.5.3.4 */
  1940. {
  1941. int qx, qy, X, Y;
  1942. if(v->profile < PROFILE_ADVANCED) {
  1943. qx = (s->mb_x << 5);
  1944. qy = (s->mb_y << 5);
  1945. X = (s->mb_width << 5) - 4;
  1946. Y = (s->mb_height << 5) - 4;
  1947. if(qx + px < -28) px = -28 - qx;
  1948. if(qy + py < -28) py = -28 - qy;
  1949. if(qx + px > X) px = X - qx;
  1950. if(qy + py > Y) py = Y - qy;
  1951. } else {
  1952. qx = (s->mb_x << 6);
  1953. qy = (s->mb_y << 6);
  1954. X = (s->mb_width << 6) - 4;
  1955. Y = (s->mb_height << 6) - 4;
  1956. if(qx + px < -60) px = -60 - qx;
  1957. if(qy + py < -60) py = -60 - qy;
  1958. if(qx + px > X) px = X - qx;
  1959. if(qy + py > Y) py = Y - qy;
  1960. }
  1961. }
  1962. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1963. if(0 && !s->first_slice_line && s->mb_x) {
  1964. if(is_intra[xy - wrap])
  1965. sum = FFABS(px) + FFABS(py);
  1966. else
  1967. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1968. if(sum > 32) {
  1969. if(get_bits1(&s->gb)) {
  1970. px = A[0];
  1971. py = A[1];
  1972. } else {
  1973. px = C[0];
  1974. py = C[1];
  1975. }
  1976. } else {
  1977. if(is_intra[xy - 2])
  1978. sum = FFABS(px) + FFABS(py);
  1979. else
  1980. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1981. if(sum > 32) {
  1982. if(get_bits1(&s->gb)) {
  1983. px = A[0];
  1984. py = A[1];
  1985. } else {
  1986. px = C[0];
  1987. py = C[1];
  1988. }
  1989. }
  1990. }
  1991. }
  1992. /* store MV using signed modulus of MV range defined in 4.11 */
  1993. s->mv[1][0][0] = ((px + dmv_x[1] + r_x) & ((r_x << 1) - 1)) - r_x;
  1994. s->mv[1][0][1] = ((py + dmv_y[1] + r_y) & ((r_y << 1) - 1)) - r_y;
  1995. }
  1996. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  1997. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  1998. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  1999. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  2000. }
  2001. /** Get predicted DC value for I-frames only
  2002. * prediction dir: left=0, top=1
  2003. * @param s MpegEncContext
  2004. * @param[in] n block index in the current MB
  2005. * @param dc_val_ptr Pointer to DC predictor
  2006. * @param dir_ptr Prediction direction for use in AC prediction
  2007. */
  2008. static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  2009. int16_t **dc_val_ptr, int *dir_ptr)
  2010. {
  2011. int a, b, c, wrap, pred, scale;
  2012. int16_t *dc_val;
  2013. static const uint16_t dcpred[32] = {
  2014. -1, 1024, 512, 341, 256, 205, 171, 146, 128,
  2015. 114, 102, 93, 85, 79, 73, 68, 64,
  2016. 60, 57, 54, 51, 49, 47, 45, 43,
  2017. 41, 39, 38, 37, 35, 34, 33
  2018. };
  2019. /* find prediction - wmv3_dc_scale always used here in fact */
  2020. if (n < 4) scale = s->y_dc_scale;
  2021. else scale = s->c_dc_scale;
  2022. wrap = s->block_wrap[n];
  2023. dc_val= s->dc_val[0] + s->block_index[n];
  2024. /* B A
  2025. * C X
  2026. */
  2027. c = dc_val[ - 1];
  2028. b = dc_val[ - 1 - wrap];
  2029. a = dc_val[ - wrap];
  2030. if (pq < 9 || !overlap)
  2031. {
  2032. /* Set outer values */
  2033. if (s->first_slice_line && (n!=2 && n!=3)) b=a=dcpred[scale];
  2034. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=dcpred[scale];
  2035. }
  2036. else
  2037. {
  2038. /* Set outer values */
  2039. if (s->first_slice_line && (n!=2 && n!=3)) b=a=0;
  2040. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=0;
  2041. }
  2042. if (abs(a - b) <= abs(b - c)) {
  2043. pred = c;
  2044. *dir_ptr = 1;//left
  2045. } else {
  2046. pred = a;
  2047. *dir_ptr = 0;//top
  2048. }
  2049. /* update predictor */
  2050. *dc_val_ptr = &dc_val[0];
  2051. return pred;
  2052. }
  2053. /** Get predicted DC value
  2054. * prediction dir: left=0, top=1
  2055. * @param s MpegEncContext
  2056. * @param[in] n block index in the current MB
  2057. * @param dc_val_ptr Pointer to DC predictor
  2058. * @param dir_ptr Prediction direction for use in AC prediction
  2059. */
  2060. static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  2061. int a_avail, int c_avail,
  2062. int16_t **dc_val_ptr, int *dir_ptr)
  2063. {
  2064. int a, b, c, wrap, pred, scale;
  2065. int16_t *dc_val;
  2066. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2067. int q1, q2 = 0;
  2068. /* find prediction - wmv3_dc_scale always used here in fact */
  2069. if (n < 4) scale = s->y_dc_scale;
  2070. else scale = s->c_dc_scale;
  2071. wrap = s->block_wrap[n];
  2072. dc_val= s->dc_val[0] + s->block_index[n];
  2073. /* B A
  2074. * C X
  2075. */
  2076. c = dc_val[ - 1];
  2077. b = dc_val[ - 1 - wrap];
  2078. a = dc_val[ - wrap];
  2079. /* scale predictors if needed */
  2080. q1 = s->current_picture.qscale_table[mb_pos];
  2081. if(c_avail && (n!= 1 && n!=3)) {
  2082. q2 = s->current_picture.qscale_table[mb_pos - 1];
  2083. if(q2 && q2 != q1)
  2084. c = (c * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2085. }
  2086. if(a_avail && (n!= 2 && n!=3)) {
  2087. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2088. if(q2 && q2 != q1)
  2089. a = (a * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2090. }
  2091. if(a_avail && c_avail && (n!=3)) {
  2092. int off = mb_pos;
  2093. if(n != 1) off--;
  2094. if(n != 2) off -= s->mb_stride;
  2095. q2 = s->current_picture.qscale_table[off];
  2096. if(q2 && q2 != q1)
  2097. b = (b * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2098. }
  2099. if(a_avail && c_avail) {
  2100. if(abs(a - b) <= abs(b - c)) {
  2101. pred = c;
  2102. *dir_ptr = 1;//left
  2103. } else {
  2104. pred = a;
  2105. *dir_ptr = 0;//top
  2106. }
  2107. } else if(a_avail) {
  2108. pred = a;
  2109. *dir_ptr = 0;//top
  2110. } else if(c_avail) {
  2111. pred = c;
  2112. *dir_ptr = 1;//left
  2113. } else {
  2114. pred = 0;
  2115. *dir_ptr = 1;//left
  2116. }
  2117. /* update predictor */
  2118. *dc_val_ptr = &dc_val[0];
  2119. return pred;
  2120. }
  2121. /**
  2122. * @defgroup std_mb VC1 Macroblock-level functions in Simple/Main Profiles
  2123. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  2124. * @{
  2125. */
  2126. static inline int vc1_coded_block_pred(MpegEncContext * s, int n, uint8_t **coded_block_ptr)
  2127. {
  2128. int xy, wrap, pred, a, b, c;
  2129. xy = s->block_index[n];
  2130. wrap = s->b8_stride;
  2131. /* B C
  2132. * A X
  2133. */
  2134. a = s->coded_block[xy - 1 ];
  2135. b = s->coded_block[xy - 1 - wrap];
  2136. c = s->coded_block[xy - wrap];
  2137. if (b == c) {
  2138. pred = a;
  2139. } else {
  2140. pred = c;
  2141. }
  2142. /* store value */
  2143. *coded_block_ptr = &s->coded_block[xy];
  2144. return pred;
  2145. }
  2146. /**
  2147. * Decode one AC coefficient
  2148. * @param v The VC1 context
  2149. * @param last Last coefficient
  2150. * @param skip How much zero coefficients to skip
  2151. * @param value Decoded AC coefficient value
  2152. * @see 8.1.3.4
  2153. */
  2154. static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip, int *value, int codingset)
  2155. {
  2156. GetBitContext *gb = &v->s.gb;
  2157. int index, escape, run = 0, level = 0, lst = 0;
  2158. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2159. if (index != vc1_ac_sizes[codingset] - 1) {
  2160. run = vc1_index_decode_table[codingset][index][0];
  2161. level = vc1_index_decode_table[codingset][index][1];
  2162. lst = index >= vc1_last_decode_table[codingset];
  2163. if(get_bits1(gb))
  2164. level = -level;
  2165. } else {
  2166. escape = decode210(gb);
  2167. if (escape != 2) {
  2168. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2169. run = vc1_index_decode_table[codingset][index][0];
  2170. level = vc1_index_decode_table[codingset][index][1];
  2171. lst = index >= vc1_last_decode_table[codingset];
  2172. if(escape == 0) {
  2173. if(lst)
  2174. level += vc1_last_delta_level_table[codingset][run];
  2175. else
  2176. level += vc1_delta_level_table[codingset][run];
  2177. } else {
  2178. if(lst)
  2179. run += vc1_last_delta_run_table[codingset][level] + 1;
  2180. else
  2181. run += vc1_delta_run_table[codingset][level] + 1;
  2182. }
  2183. if(get_bits1(gb))
  2184. level = -level;
  2185. } else {
  2186. int sign;
  2187. lst = get_bits1(gb);
  2188. if(v->s.esc3_level_length == 0) {
  2189. if(v->pq < 8 || v->dquantfrm) { // table 59
  2190. v->s.esc3_level_length = get_bits(gb, 3);
  2191. if(!v->s.esc3_level_length)
  2192. v->s.esc3_level_length = get_bits(gb, 2) + 8;
  2193. } else { //table 60
  2194. v->s.esc3_level_length = get_unary(gb, 1, 6) + 2;
  2195. }
  2196. v->s.esc3_run_length = 3 + get_bits(gb, 2);
  2197. }
  2198. run = get_bits(gb, v->s.esc3_run_length);
  2199. sign = get_bits1(gb);
  2200. level = get_bits(gb, v->s.esc3_level_length);
  2201. if(sign)
  2202. level = -level;
  2203. }
  2204. }
  2205. *last = lst;
  2206. *skip = run;
  2207. *value = level;
  2208. }
  2209. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2210. * @param v VC1Context
  2211. * @param block block to decode
  2212. * @param coded are AC coeffs present or not
  2213. * @param codingset set of VLC to decode data
  2214. */
  2215. static int vc1_decode_i_block(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset)
  2216. {
  2217. GetBitContext *gb = &v->s.gb;
  2218. MpegEncContext *s = &v->s;
  2219. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2220. int run_diff, i;
  2221. int16_t *dc_val;
  2222. int16_t *ac_val, *ac_val2;
  2223. int dcdiff;
  2224. /* Get DC differential */
  2225. if (n < 4) {
  2226. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2227. } else {
  2228. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2229. }
  2230. if (dcdiff < 0){
  2231. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2232. return -1;
  2233. }
  2234. if (dcdiff)
  2235. {
  2236. if (dcdiff == 119 /* ESC index value */)
  2237. {
  2238. /* TODO: Optimize */
  2239. if (v->pq == 1) dcdiff = get_bits(gb, 10);
  2240. else if (v->pq == 2) dcdiff = get_bits(gb, 9);
  2241. else dcdiff = get_bits(gb, 8);
  2242. }
  2243. else
  2244. {
  2245. if (v->pq == 1)
  2246. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2247. else if (v->pq == 2)
  2248. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  2249. }
  2250. if (get_bits1(gb))
  2251. dcdiff = -dcdiff;
  2252. }
  2253. /* Prediction */
  2254. dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
  2255. *dc_val = dcdiff;
  2256. /* Store the quantized DC coeff, used for prediction */
  2257. if (n < 4) {
  2258. block[0] = dcdiff * s->y_dc_scale;
  2259. } else {
  2260. block[0] = dcdiff * s->c_dc_scale;
  2261. }
  2262. /* Skip ? */
  2263. run_diff = 0;
  2264. i = 0;
  2265. if (!coded) {
  2266. goto not_coded;
  2267. }
  2268. //AC Decoding
  2269. i = 1;
  2270. {
  2271. int last = 0, skip, value;
  2272. const int8_t *zz_table;
  2273. int scale;
  2274. int k;
  2275. scale = v->pq * 2 + v->halfpq;
  2276. if(v->s.ac_pred) {
  2277. if(!dc_pred_dir)
  2278. zz_table = wmv1_scantable[2];
  2279. else
  2280. zz_table = wmv1_scantable[3];
  2281. } else
  2282. zz_table = wmv1_scantable[1];
  2283. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2284. ac_val2 = ac_val;
  2285. if(dc_pred_dir) //left
  2286. ac_val -= 16;
  2287. else //top
  2288. ac_val -= 16 * s->block_wrap[n];
  2289. while (!last) {
  2290. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2291. i += skip;
  2292. if(i > 63)
  2293. break;
  2294. block[zz_table[i++]] = value;
  2295. }
  2296. /* apply AC prediction if needed */
  2297. if(s->ac_pred) {
  2298. if(dc_pred_dir) { //left
  2299. for(k = 1; k < 8; k++)
  2300. block[k << 3] += ac_val[k];
  2301. } else { //top
  2302. for(k = 1; k < 8; k++)
  2303. block[k] += ac_val[k + 8];
  2304. }
  2305. }
  2306. /* save AC coeffs for further prediction */
  2307. for(k = 1; k < 8; k++) {
  2308. ac_val2[k] = block[k << 3];
  2309. ac_val2[k + 8] = block[k];
  2310. }
  2311. /* scale AC coeffs */
  2312. for(k = 1; k < 64; k++)
  2313. if(block[k]) {
  2314. block[k] *= scale;
  2315. if(!v->pquantizer)
  2316. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2317. }
  2318. if(s->ac_pred) i = 63;
  2319. }
  2320. not_coded:
  2321. if(!coded) {
  2322. int k, scale;
  2323. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2324. ac_val2 = ac_val;
  2325. scale = v->pq * 2 + v->halfpq;
  2326. memset(ac_val2, 0, 16 * 2);
  2327. if(dc_pred_dir) {//left
  2328. ac_val -= 16;
  2329. if(s->ac_pred)
  2330. memcpy(ac_val2, ac_val, 8 * 2);
  2331. } else {//top
  2332. ac_val -= 16 * s->block_wrap[n];
  2333. if(s->ac_pred)
  2334. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2335. }
  2336. /* apply AC prediction if needed */
  2337. if(s->ac_pred) {
  2338. if(dc_pred_dir) { //left
  2339. for(k = 1; k < 8; k++) {
  2340. block[k << 3] = ac_val[k] * scale;
  2341. if(!v->pquantizer && block[k << 3])
  2342. block[k << 3] += (block[k << 3] < 0) ? -v->pq : v->pq;
  2343. }
  2344. } else { //top
  2345. for(k = 1; k < 8; k++) {
  2346. block[k] = ac_val[k + 8] * scale;
  2347. if(!v->pquantizer && block[k])
  2348. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2349. }
  2350. }
  2351. i = 63;
  2352. }
  2353. }
  2354. s->block_last_index[n] = i;
  2355. return 0;
  2356. }
  2357. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2358. * @param v VC1Context
  2359. * @param block block to decode
  2360. * @param coded are AC coeffs present or not
  2361. * @param codingset set of VLC to decode data
  2362. */
  2363. static int vc1_decode_i_block_adv(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset, int mquant)
  2364. {
  2365. GetBitContext *gb = &v->s.gb;
  2366. MpegEncContext *s = &v->s;
  2367. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2368. int run_diff, i;
  2369. int16_t *dc_val;
  2370. int16_t *ac_val, *ac_val2;
  2371. int dcdiff;
  2372. int a_avail = v->a_avail, c_avail = v->c_avail;
  2373. int use_pred = s->ac_pred;
  2374. int scale;
  2375. int q1, q2 = 0;
  2376. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2377. /* Get DC differential */
  2378. if (n < 4) {
  2379. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2380. } else {
  2381. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2382. }
  2383. if (dcdiff < 0){
  2384. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2385. return -1;
  2386. }
  2387. if (dcdiff)
  2388. {
  2389. if (dcdiff == 119 /* ESC index value */)
  2390. {
  2391. /* TODO: Optimize */
  2392. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2393. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2394. else dcdiff = get_bits(gb, 8);
  2395. }
  2396. else
  2397. {
  2398. if (mquant == 1)
  2399. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2400. else if (mquant == 2)
  2401. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  2402. }
  2403. if (get_bits1(gb))
  2404. dcdiff = -dcdiff;
  2405. }
  2406. /* Prediction */
  2407. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
  2408. *dc_val = dcdiff;
  2409. /* Store the quantized DC coeff, used for prediction */
  2410. if (n < 4) {
  2411. block[0] = dcdiff * s->y_dc_scale;
  2412. } else {
  2413. block[0] = dcdiff * s->c_dc_scale;
  2414. }
  2415. /* Skip ? */
  2416. run_diff = 0;
  2417. i = 0;
  2418. //AC Decoding
  2419. i = 1;
  2420. /* check if AC is needed at all */
  2421. if(!a_avail && !c_avail) use_pred = 0;
  2422. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2423. ac_val2 = ac_val;
  2424. scale = mquant * 2 + ((mquant == v->pq) ? v->halfpq : 0);
  2425. if(dc_pred_dir) //left
  2426. ac_val -= 16;
  2427. else //top
  2428. ac_val -= 16 * s->block_wrap[n];
  2429. q1 = s->current_picture.qscale_table[mb_pos];
  2430. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  2431. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2432. if(dc_pred_dir && n==1) q2 = q1;
  2433. if(!dc_pred_dir && n==2) q2 = q1;
  2434. if(n==3) q2 = q1;
  2435. if(coded) {
  2436. int last = 0, skip, value;
  2437. const int8_t *zz_table;
  2438. int k;
  2439. if(v->s.ac_pred) {
  2440. if(!dc_pred_dir)
  2441. zz_table = wmv1_scantable[2];
  2442. else
  2443. zz_table = wmv1_scantable[3];
  2444. } else
  2445. zz_table = wmv1_scantable[1];
  2446. while (!last) {
  2447. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2448. i += skip;
  2449. if(i > 63)
  2450. break;
  2451. block[zz_table[i++]] = value;
  2452. }
  2453. /* apply AC prediction if needed */
  2454. if(use_pred) {
  2455. /* scale predictors if needed*/
  2456. if(q2 && q1!=q2) {
  2457. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2458. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2459. if(dc_pred_dir) { //left
  2460. for(k = 1; k < 8; k++)
  2461. block[k << 3] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2462. } else { //top
  2463. for(k = 1; k < 8; k++)
  2464. block[k] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2465. }
  2466. } else {
  2467. if(dc_pred_dir) { //left
  2468. for(k = 1; k < 8; k++)
  2469. block[k << 3] += ac_val[k];
  2470. } else { //top
  2471. for(k = 1; k < 8; k++)
  2472. block[k] += ac_val[k + 8];
  2473. }
  2474. }
  2475. }
  2476. /* save AC coeffs for further prediction */
  2477. for(k = 1; k < 8; k++) {
  2478. ac_val2[k] = block[k << 3];
  2479. ac_val2[k + 8] = block[k];
  2480. }
  2481. /* scale AC coeffs */
  2482. for(k = 1; k < 64; k++)
  2483. if(block[k]) {
  2484. block[k] *= scale;
  2485. if(!v->pquantizer)
  2486. block[k] += (block[k] < 0) ? -mquant : mquant;
  2487. }
  2488. if(use_pred) i = 63;
  2489. } else { // no AC coeffs
  2490. int k;
  2491. memset(ac_val2, 0, 16 * 2);
  2492. if(dc_pred_dir) {//left
  2493. if(use_pred) {
  2494. memcpy(ac_val2, ac_val, 8 * 2);
  2495. if(q2 && q1!=q2) {
  2496. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2497. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2498. for(k = 1; k < 8; k++)
  2499. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2500. }
  2501. }
  2502. } else {//top
  2503. if(use_pred) {
  2504. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2505. if(q2 && q1!=q2) {
  2506. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2507. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2508. for(k = 1; k < 8; k++)
  2509. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2510. }
  2511. }
  2512. }
  2513. /* apply AC prediction if needed */
  2514. if(use_pred) {
  2515. if(dc_pred_dir) { //left
  2516. for(k = 1; k < 8; k++) {
  2517. block[k << 3] = ac_val2[k] * scale;
  2518. if(!v->pquantizer && block[k << 3])
  2519. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2520. }
  2521. } else { //top
  2522. for(k = 1; k < 8; k++) {
  2523. block[k] = ac_val2[k + 8] * scale;
  2524. if(!v->pquantizer && block[k])
  2525. block[k] += (block[k] < 0) ? -mquant : mquant;
  2526. }
  2527. }
  2528. i = 63;
  2529. }
  2530. }
  2531. s->block_last_index[n] = i;
  2532. return 0;
  2533. }
  2534. /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
  2535. * @param v VC1Context
  2536. * @param block block to decode
  2537. * @param coded are AC coeffs present or not
  2538. * @param mquant block quantizer
  2539. * @param codingset set of VLC to decode data
  2540. */
  2541. static int vc1_decode_intra_block(VC1Context *v, DCTELEM block[64], int n, int coded, int mquant, int codingset)
  2542. {
  2543. GetBitContext *gb = &v->s.gb;
  2544. MpegEncContext *s = &v->s;
  2545. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2546. int run_diff, i;
  2547. int16_t *dc_val;
  2548. int16_t *ac_val, *ac_val2;
  2549. int dcdiff;
  2550. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2551. int a_avail = v->a_avail, c_avail = v->c_avail;
  2552. int use_pred = s->ac_pred;
  2553. int scale;
  2554. int q1, q2 = 0;
  2555. /* XXX: Guard against dumb values of mquant */
  2556. mquant = (mquant < 1) ? 0 : ( (mquant>31) ? 31 : mquant );
  2557. /* Set DC scale - y and c use the same */
  2558. s->y_dc_scale = s->y_dc_scale_table[mquant];
  2559. s->c_dc_scale = s->c_dc_scale_table[mquant];
  2560. /* Get DC differential */
  2561. if (n < 4) {
  2562. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2563. } else {
  2564. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2565. }
  2566. if (dcdiff < 0){
  2567. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2568. return -1;
  2569. }
  2570. if (dcdiff)
  2571. {
  2572. if (dcdiff == 119 /* ESC index value */)
  2573. {
  2574. /* TODO: Optimize */
  2575. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2576. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2577. else dcdiff = get_bits(gb, 8);
  2578. }
  2579. else
  2580. {
  2581. if (mquant == 1)
  2582. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2583. else if (mquant == 2)
  2584. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  2585. }
  2586. if (get_bits1(gb))
  2587. dcdiff = -dcdiff;
  2588. }
  2589. /* Prediction */
  2590. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
  2591. *dc_val = dcdiff;
  2592. /* Store the quantized DC coeff, used for prediction */
  2593. if (n < 4) {
  2594. block[0] = dcdiff * s->y_dc_scale;
  2595. } else {
  2596. block[0] = dcdiff * s->c_dc_scale;
  2597. }
  2598. /* Skip ? */
  2599. run_diff = 0;
  2600. i = 0;
  2601. //AC Decoding
  2602. i = 1;
  2603. /* check if AC is needed at all and adjust direction if needed */
  2604. if(!a_avail) dc_pred_dir = 1;
  2605. if(!c_avail) dc_pred_dir = 0;
  2606. if(!a_avail && !c_avail) use_pred = 0;
  2607. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2608. ac_val2 = ac_val;
  2609. scale = mquant * 2 + v->halfpq;
  2610. if(dc_pred_dir) //left
  2611. ac_val -= 16;
  2612. else //top
  2613. ac_val -= 16 * s->block_wrap[n];
  2614. q1 = s->current_picture.qscale_table[mb_pos];
  2615. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  2616. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2617. if(dc_pred_dir && n==1) q2 = q1;
  2618. if(!dc_pred_dir && n==2) q2 = q1;
  2619. if(n==3) q2 = q1;
  2620. if(coded) {
  2621. int last = 0, skip, value;
  2622. const int8_t *zz_table;
  2623. int k;
  2624. zz_table = wmv1_scantable[0];
  2625. while (!last) {
  2626. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2627. i += skip;
  2628. if(i > 63)
  2629. break;
  2630. block[zz_table[i++]] = value;
  2631. }
  2632. /* apply AC prediction if needed */
  2633. if(use_pred) {
  2634. /* scale predictors if needed*/
  2635. if(q2 && q1!=q2) {
  2636. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2637. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2638. if(dc_pred_dir) { //left
  2639. for(k = 1; k < 8; k++)
  2640. block[k << 3] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2641. } else { //top
  2642. for(k = 1; k < 8; k++)
  2643. block[k] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2644. }
  2645. } else {
  2646. if(dc_pred_dir) { //left
  2647. for(k = 1; k < 8; k++)
  2648. block[k << 3] += ac_val[k];
  2649. } else { //top
  2650. for(k = 1; k < 8; k++)
  2651. block[k] += ac_val[k + 8];
  2652. }
  2653. }
  2654. }
  2655. /* save AC coeffs for further prediction */
  2656. for(k = 1; k < 8; k++) {
  2657. ac_val2[k] = block[k << 3];
  2658. ac_val2[k + 8] = block[k];
  2659. }
  2660. /* scale AC coeffs */
  2661. for(k = 1; k < 64; k++)
  2662. if(block[k]) {
  2663. block[k] *= scale;
  2664. if(!v->pquantizer)
  2665. block[k] += (block[k] < 0) ? -mquant : mquant;
  2666. }
  2667. if(use_pred) i = 63;
  2668. } else { // no AC coeffs
  2669. int k;
  2670. memset(ac_val2, 0, 16 * 2);
  2671. if(dc_pred_dir) {//left
  2672. if(use_pred) {
  2673. memcpy(ac_val2, ac_val, 8 * 2);
  2674. if(q2 && q1!=q2) {
  2675. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2676. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2677. for(k = 1; k < 8; k++)
  2678. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2679. }
  2680. }
  2681. } else {//top
  2682. if(use_pred) {
  2683. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2684. if(q2 && q1!=q2) {
  2685. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2686. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2687. for(k = 1; k < 8; k++)
  2688. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2689. }
  2690. }
  2691. }
  2692. /* apply AC prediction if needed */
  2693. if(use_pred) {
  2694. if(dc_pred_dir) { //left
  2695. for(k = 1; k < 8; k++) {
  2696. block[k << 3] = ac_val2[k] * scale;
  2697. if(!v->pquantizer && block[k << 3])
  2698. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2699. }
  2700. } else { //top
  2701. for(k = 1; k < 8; k++) {
  2702. block[k] = ac_val2[k + 8] * scale;
  2703. if(!v->pquantizer && block[k])
  2704. block[k] += (block[k] < 0) ? -mquant : mquant;
  2705. }
  2706. }
  2707. i = 63;
  2708. }
  2709. }
  2710. s->block_last_index[n] = i;
  2711. return 0;
  2712. }
  2713. /** Decode P block
  2714. */
  2715. static int vc1_decode_p_block(VC1Context *v, DCTELEM block[64], int n, int mquant, int ttmb, int first_block,
  2716. uint8_t *dst, int linesize, int skip_block, int apply_filter, int cbp_top, int cbp_left)
  2717. {
  2718. MpegEncContext *s = &v->s;
  2719. GetBitContext *gb = &s->gb;
  2720. int i, j;
  2721. int subblkpat = 0;
  2722. int scale, off, idx, last, skip, value;
  2723. int ttblk = ttmb & 7;
  2724. int pat = 0;
  2725. if(ttmb == -1) {
  2726. ttblk = ff_vc1_ttblk_to_tt[v->tt_index][get_vlc2(gb, ff_vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
  2727. }
  2728. if(ttblk == TT_4X4) {
  2729. subblkpat = ~(get_vlc2(gb, ff_vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
  2730. }
  2731. if((ttblk != TT_8X8 && ttblk != TT_4X4) && (v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))) {
  2732. subblkpat = decode012(gb);
  2733. if(subblkpat) subblkpat ^= 3; //swap decoded pattern bits
  2734. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) ttblk = TT_8X4;
  2735. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) ttblk = TT_4X8;
  2736. }
  2737. scale = 2 * mquant + ((v->pq == mquant) ? v->halfpq : 0);
  2738. // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
  2739. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
  2740. subblkpat = 2 - (ttblk == TT_8X4_TOP);
  2741. ttblk = TT_8X4;
  2742. }
  2743. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
  2744. subblkpat = 2 - (ttblk == TT_4X8_LEFT);
  2745. ttblk = TT_4X8;
  2746. }
  2747. switch(ttblk) {
  2748. case TT_8X8:
  2749. pat = 0xF;
  2750. i = 0;
  2751. last = 0;
  2752. while (!last) {
  2753. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2754. i += skip;
  2755. if(i > 63)
  2756. break;
  2757. idx = wmv1_scantable[0][i++];
  2758. block[idx] = value * scale;
  2759. if(!v->pquantizer)
  2760. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  2761. }
  2762. if(!skip_block){
  2763. s->dsp.vc1_inv_trans_8x8(block);
  2764. s->dsp.add_pixels_clamped(block, dst, linesize);
  2765. if(apply_filter && cbp_top & 0xC)
  2766. vc1_loop_filter(dst, 1, linesize, 8, mquant);
  2767. if(apply_filter && cbp_left & 0xA)
  2768. vc1_loop_filter(dst, linesize, 1, 8, mquant);
  2769. }
  2770. break;
  2771. case TT_4X4:
  2772. pat = ~subblkpat & 0xF;
  2773. for(j = 0; j < 4; j++) {
  2774. last = subblkpat & (1 << (3 - j));
  2775. i = 0;
  2776. off = (j & 1) * 4 + (j & 2) * 16;
  2777. while (!last) {
  2778. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2779. i += skip;
  2780. if(i > 15)
  2781. break;
  2782. idx = ff_vc1_simple_progressive_4x4_zz[i++];
  2783. block[idx + off] = value * scale;
  2784. if(!v->pquantizer)
  2785. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2786. }
  2787. if(!(subblkpat & (1 << (3 - j))) && !skip_block){
  2788. s->dsp.vc1_inv_trans_4x4(dst + (j&1)*4 + (j&2)*2*linesize, linesize, block + off);
  2789. if(apply_filter && (j&2 ? pat & (1<<(j-2)) : (cbp_top & (1 << (j + 2)))))
  2790. vc1_loop_filter(dst + (j&1)*4 + (j&2)*2*linesize, 1, linesize, 4, mquant);
  2791. if(apply_filter && (j&1 ? pat & (1<<(j-1)) : (cbp_left & (1 << (j + 1)))))
  2792. vc1_loop_filter(dst + (j&1)*4 + (j&2)*2*linesize, linesize, 1, 4, mquant);
  2793. }
  2794. }
  2795. break;
  2796. case TT_8X4:
  2797. pat = ~((subblkpat & 2)*6 + (subblkpat & 1)*3) & 0xF;
  2798. for(j = 0; j < 2; j++) {
  2799. last = subblkpat & (1 << (1 - j));
  2800. i = 0;
  2801. off = j * 32;
  2802. while (!last) {
  2803. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2804. i += skip;
  2805. if(i > 31)
  2806. break;
  2807. idx = v->zz_8x4[i++]+off;
  2808. block[idx] = value * scale;
  2809. if(!v->pquantizer)
  2810. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  2811. }
  2812. if(!(subblkpat & (1 << (1 - j))) && !skip_block){
  2813. s->dsp.vc1_inv_trans_8x4(dst + j*4*linesize, linesize, block + off);
  2814. if(apply_filter && j ? pat & 0x3 : (cbp_top & 0xC))
  2815. vc1_loop_filter(dst + j*4*linesize, 1, linesize, 8, mquant);
  2816. if(apply_filter && cbp_left & (2 << j))
  2817. vc1_loop_filter(dst + j*4*linesize, linesize, 1, 4, mquant);
  2818. }
  2819. }
  2820. break;
  2821. case TT_4X8:
  2822. pat = ~(subblkpat*5) & 0xF;
  2823. for(j = 0; j < 2; j++) {
  2824. last = subblkpat & (1 << (1 - j));
  2825. i = 0;
  2826. off = j * 4;
  2827. while (!last) {
  2828. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2829. i += skip;
  2830. if(i > 31)
  2831. break;
  2832. idx = v->zz_4x8[i++]+off;
  2833. block[idx] = value * scale;
  2834. if(!v->pquantizer)
  2835. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  2836. }
  2837. if(!(subblkpat & (1 << (1 - j))) && !skip_block){
  2838. s->dsp.vc1_inv_trans_4x8(dst + j*4, linesize, block + off);
  2839. if(apply_filter && cbp_top & (2 << j))
  2840. vc1_loop_filter(dst + j*4, 1, linesize, 4, mquant);
  2841. if(apply_filter && j ? pat & 0x5 : (cbp_left & 0xA))
  2842. vc1_loop_filter(dst + j*4, linesize, 1, 8, mquant);
  2843. }
  2844. }
  2845. break;
  2846. }
  2847. return pat;
  2848. }
  2849. /** Decode one P-frame MB (in Simple/Main profile)
  2850. */
  2851. static int vc1_decode_p_mb(VC1Context *v)
  2852. {
  2853. MpegEncContext *s = &v->s;
  2854. GetBitContext *gb = &s->gb;
  2855. int i, j;
  2856. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2857. int cbp; /* cbp decoding stuff */
  2858. int mqdiff, mquant; /* MB quantization */
  2859. int ttmb = v->ttfrm; /* MB Transform type */
  2860. static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
  2861. offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  2862. int mb_has_coeffs = 1; /* last_flag */
  2863. int dmv_x, dmv_y; /* Differential MV components */
  2864. int index, index1; /* LUT indexes */
  2865. int val, sign; /* temp values */
  2866. int first_block = 1;
  2867. int dst_idx, off;
  2868. int skipped, fourmv;
  2869. int block_cbp = 0, pat;
  2870. int apply_loop_filter;
  2871. mquant = v->pq; /* Loosy initialization */
  2872. if (v->mv_type_is_raw)
  2873. fourmv = get_bits1(gb);
  2874. else
  2875. fourmv = v->mv_type_mb_plane[mb_pos];
  2876. if (v->skip_is_raw)
  2877. skipped = get_bits1(gb);
  2878. else
  2879. skipped = v->s.mbskip_table[mb_pos];
  2880. s->dsp.clear_blocks(s->block[0]);
  2881. apply_loop_filter = s->loop_filter && !(s->avctx->skip_loop_filter >= AVDISCARD_NONKEY);
  2882. if (!fourmv) /* 1MV mode */
  2883. {
  2884. if (!skipped)
  2885. {
  2886. GET_MVDATA(dmv_x, dmv_y);
  2887. if (s->mb_intra) {
  2888. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  2889. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  2890. }
  2891. s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
  2892. vc1_pred_mv(s, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0]);
  2893. /* FIXME Set DC val for inter block ? */
  2894. if (s->mb_intra && !mb_has_coeffs)
  2895. {
  2896. GET_MQUANT();
  2897. s->ac_pred = get_bits1(gb);
  2898. cbp = 0;
  2899. }
  2900. else if (mb_has_coeffs)
  2901. {
  2902. if (s->mb_intra) s->ac_pred = get_bits1(gb);
  2903. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2904. GET_MQUANT();
  2905. }
  2906. else
  2907. {
  2908. mquant = v->pq;
  2909. cbp = 0;
  2910. }
  2911. s->current_picture.qscale_table[mb_pos] = mquant;
  2912. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  2913. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table,
  2914. VC1_TTMB_VLC_BITS, 2);
  2915. if(!s->mb_intra) vc1_mc_1mv(v, 0);
  2916. dst_idx = 0;
  2917. for (i=0; i<6; i++)
  2918. {
  2919. s->dc_val[0][s->block_index[i]] = 0;
  2920. dst_idx += i >> 2;
  2921. val = ((cbp >> (5 - i)) & 1);
  2922. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2923. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  2924. if(s->mb_intra) {
  2925. /* check if prediction blocks A and C are available */
  2926. v->a_avail = v->c_avail = 0;
  2927. if(i == 2 || i == 3 || !s->first_slice_line)
  2928. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2929. if(i == 1 || i == 3 || s->mb_x)
  2930. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2931. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  2932. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  2933. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  2934. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  2935. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2936. if(v->pq >= 9 && v->overlap) {
  2937. if(v->c_avail)
  2938. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2939. if(v->a_avail)
  2940. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2941. }
  2942. if(apply_loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
  2943. int left_cbp, top_cbp;
  2944. if(i & 4){
  2945. left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
  2946. top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
  2947. }else{
  2948. left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
  2949. top_cbp = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
  2950. }
  2951. if(left_cbp & 0xC)
  2952. vc1_loop_filter(s->dest[dst_idx] + off, 1, i & 4 ? s->uvlinesize : s->linesize, 8, mquant);
  2953. if(top_cbp & 0xA)
  2954. vc1_loop_filter(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, 1, 8, mquant);
  2955. }
  2956. block_cbp |= 0xF << (i << 2);
  2957. } else if(val) {
  2958. int left_cbp = 0, top_cbp = 0, filter = 0;
  2959. if(apply_loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
  2960. filter = 1;
  2961. if(i & 4){
  2962. left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
  2963. top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
  2964. }else{
  2965. left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
  2966. top_cbp = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
  2967. }
  2968. if(left_cbp & 0xC)
  2969. vc1_loop_filter(s->dest[dst_idx] + off, 1, i & 4 ? s->uvlinesize : s->linesize, 8, mquant);
  2970. if(top_cbp & 0xA)
  2971. vc1_loop_filter(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, 1, 8, mquant);
  2972. }
  2973. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), filter, left_cbp, top_cbp);
  2974. block_cbp |= pat << (i << 2);
  2975. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2976. first_block = 0;
  2977. }
  2978. }
  2979. }
  2980. else //Skipped
  2981. {
  2982. s->mb_intra = 0;
  2983. for(i = 0; i < 6; i++) {
  2984. v->mb_type[0][s->block_index[i]] = 0;
  2985. s->dc_val[0][s->block_index[i]] = 0;
  2986. }
  2987. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  2988. s->current_picture.qscale_table[mb_pos] = 0;
  2989. vc1_pred_mv(s, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0]);
  2990. vc1_mc_1mv(v, 0);
  2991. return 0;
  2992. }
  2993. } //1MV mode
  2994. else //4MV mode
  2995. {
  2996. if (!skipped /* unskipped MB */)
  2997. {
  2998. int intra_count = 0, coded_inter = 0;
  2999. int is_intra[6], is_coded[6];
  3000. /* Get CBPCY */
  3001. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3002. for (i=0; i<6; i++)
  3003. {
  3004. val = ((cbp >> (5 - i)) & 1);
  3005. s->dc_val[0][s->block_index[i]] = 0;
  3006. s->mb_intra = 0;
  3007. if(i < 4) {
  3008. dmv_x = dmv_y = 0;
  3009. s->mb_intra = 0;
  3010. mb_has_coeffs = 0;
  3011. if(val) {
  3012. GET_MVDATA(dmv_x, dmv_y);
  3013. }
  3014. vc1_pred_mv(s, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0]);
  3015. if(!s->mb_intra) vc1_mc_4mv_luma(v, i);
  3016. intra_count += s->mb_intra;
  3017. is_intra[i] = s->mb_intra;
  3018. is_coded[i] = mb_has_coeffs;
  3019. }
  3020. if(i&4){
  3021. is_intra[i] = (intra_count >= 3);
  3022. is_coded[i] = val;
  3023. }
  3024. if(i == 4) vc1_mc_4mv_chroma(v);
  3025. v->mb_type[0][s->block_index[i]] = is_intra[i];
  3026. if(!coded_inter) coded_inter = !is_intra[i] & is_coded[i];
  3027. }
  3028. // if there are no coded blocks then don't do anything more
  3029. if(!intra_count && !coded_inter) return 0;
  3030. dst_idx = 0;
  3031. GET_MQUANT();
  3032. s->current_picture.qscale_table[mb_pos] = mquant;
  3033. /* test if block is intra and has pred */
  3034. {
  3035. int intrapred = 0;
  3036. for(i=0; i<6; i++)
  3037. if(is_intra[i]) {
  3038. if(((!s->first_slice_line || (i==2 || i==3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
  3039. || ((s->mb_x || (i==1 || i==3)) && v->mb_type[0][s->block_index[i] - 1])) {
  3040. intrapred = 1;
  3041. break;
  3042. }
  3043. }
  3044. if(intrapred)s->ac_pred = get_bits1(gb);
  3045. else s->ac_pred = 0;
  3046. }
  3047. if (!v->ttmbf && coded_inter)
  3048. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3049. for (i=0; i<6; i++)
  3050. {
  3051. dst_idx += i >> 2;
  3052. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3053. s->mb_intra = is_intra[i];
  3054. if (is_intra[i]) {
  3055. /* check if prediction blocks A and C are available */
  3056. v->a_avail = v->c_avail = 0;
  3057. if(i == 2 || i == 3 || !s->first_slice_line)
  3058. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3059. if(i == 1 || i == 3 || s->mb_x)
  3060. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3061. vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant, (i&4)?v->codingset2:v->codingset);
  3062. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  3063. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  3064. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  3065. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  3066. if(v->pq >= 9 && v->overlap) {
  3067. if(v->c_avail)
  3068. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3069. if(v->a_avail)
  3070. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3071. }
  3072. if(v->s.loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
  3073. int left_cbp, top_cbp;
  3074. if(i & 4){
  3075. left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
  3076. top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
  3077. }else{
  3078. left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
  3079. top_cbp = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
  3080. }
  3081. if(left_cbp & 0xC)
  3082. vc1_loop_filter(s->dest[dst_idx] + off, 1, i & 4 ? s->uvlinesize : s->linesize, 8, mquant);
  3083. if(top_cbp & 0xA)
  3084. vc1_loop_filter(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, 1, 8, mquant);
  3085. }
  3086. block_cbp |= 0xF << (i << 2);
  3087. } else if(is_coded[i]) {
  3088. int left_cbp = 0, top_cbp = 0, filter = 0;
  3089. if(v->s.loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
  3090. filter = 1;
  3091. if(i & 4){
  3092. left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
  3093. top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
  3094. }else{
  3095. left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
  3096. top_cbp = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
  3097. }
  3098. if(left_cbp & 0xC)
  3099. vc1_loop_filter(s->dest[dst_idx] + off, 1, i & 4 ? s->uvlinesize : s->linesize, 8, mquant);
  3100. if(top_cbp & 0xA)
  3101. vc1_loop_filter(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, 1, 8, mquant);
  3102. }
  3103. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), filter, left_cbp, top_cbp);
  3104. block_cbp |= pat << (i << 2);
  3105. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  3106. first_block = 0;
  3107. }
  3108. }
  3109. return 0;
  3110. }
  3111. else //Skipped MB
  3112. {
  3113. s->mb_intra = 0;
  3114. s->current_picture.qscale_table[mb_pos] = 0;
  3115. for (i=0; i<6; i++) {
  3116. v->mb_type[0][s->block_index[i]] = 0;
  3117. s->dc_val[0][s->block_index[i]] = 0;
  3118. }
  3119. for (i=0; i<4; i++)
  3120. {
  3121. vc1_pred_mv(s, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0]);
  3122. vc1_mc_4mv_luma(v, i);
  3123. }
  3124. vc1_mc_4mv_chroma(v);
  3125. s->current_picture.qscale_table[mb_pos] = 0;
  3126. return 0;
  3127. }
  3128. }
  3129. v->cbp[s->mb_x] = block_cbp;
  3130. /* Should never happen */
  3131. return -1;
  3132. }
  3133. /** Decode one B-frame MB (in Main profile)
  3134. */
  3135. static void vc1_decode_b_mb(VC1Context *v)
  3136. {
  3137. MpegEncContext *s = &v->s;
  3138. GetBitContext *gb = &s->gb;
  3139. int i, j;
  3140. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3141. int cbp = 0; /* cbp decoding stuff */
  3142. int mqdiff, mquant; /* MB quantization */
  3143. int ttmb = v->ttfrm; /* MB Transform type */
  3144. static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
  3145. offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  3146. int mb_has_coeffs = 0; /* last_flag */
  3147. int index, index1; /* LUT indexes */
  3148. int val, sign; /* temp values */
  3149. int first_block = 1;
  3150. int dst_idx, off;
  3151. int skipped, direct;
  3152. int dmv_x[2], dmv_y[2];
  3153. int bmvtype = BMV_TYPE_BACKWARD;
  3154. mquant = v->pq; /* Loosy initialization */
  3155. s->mb_intra = 0;
  3156. if (v->dmb_is_raw)
  3157. direct = get_bits1(gb);
  3158. else
  3159. direct = v->direct_mb_plane[mb_pos];
  3160. if (v->skip_is_raw)
  3161. skipped = get_bits1(gb);
  3162. else
  3163. skipped = v->s.mbskip_table[mb_pos];
  3164. s->dsp.clear_blocks(s->block[0]);
  3165. dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
  3166. for(i = 0; i < 6; i++) {
  3167. v->mb_type[0][s->block_index[i]] = 0;
  3168. s->dc_val[0][s->block_index[i]] = 0;
  3169. }
  3170. s->current_picture.qscale_table[mb_pos] = 0;
  3171. if (!direct) {
  3172. if (!skipped) {
  3173. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3174. dmv_x[1] = dmv_x[0];
  3175. dmv_y[1] = dmv_y[0];
  3176. }
  3177. if(skipped || !s->mb_intra) {
  3178. bmvtype = decode012(gb);
  3179. switch(bmvtype) {
  3180. case 0:
  3181. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
  3182. break;
  3183. case 1:
  3184. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
  3185. break;
  3186. case 2:
  3187. bmvtype = BMV_TYPE_INTERPOLATED;
  3188. dmv_x[0] = dmv_y[0] = 0;
  3189. }
  3190. }
  3191. }
  3192. for(i = 0; i < 6; i++)
  3193. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3194. if (skipped) {
  3195. if(direct) bmvtype = BMV_TYPE_INTERPOLATED;
  3196. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3197. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3198. return;
  3199. }
  3200. if (direct) {
  3201. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3202. GET_MQUANT();
  3203. s->mb_intra = 0;
  3204. mb_has_coeffs = 0;
  3205. s->current_picture.qscale_table[mb_pos] = mquant;
  3206. if(!v->ttmbf)
  3207. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3208. dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0;
  3209. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3210. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3211. } else {
  3212. if(!mb_has_coeffs && !s->mb_intra) {
  3213. /* no coded blocks - effectively skipped */
  3214. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3215. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3216. return;
  3217. }
  3218. if(s->mb_intra && !mb_has_coeffs) {
  3219. GET_MQUANT();
  3220. s->current_picture.qscale_table[mb_pos] = mquant;
  3221. s->ac_pred = get_bits1(gb);
  3222. cbp = 0;
  3223. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3224. } else {
  3225. if(bmvtype == BMV_TYPE_INTERPOLATED) {
  3226. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3227. if(!mb_has_coeffs) {
  3228. /* interpolated skipped block */
  3229. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3230. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3231. return;
  3232. }
  3233. }
  3234. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3235. if(!s->mb_intra) {
  3236. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3237. }
  3238. if(s->mb_intra)
  3239. s->ac_pred = get_bits1(gb);
  3240. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3241. GET_MQUANT();
  3242. s->current_picture.qscale_table[mb_pos] = mquant;
  3243. if(!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  3244. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3245. }
  3246. }
  3247. dst_idx = 0;
  3248. for (i=0; i<6; i++)
  3249. {
  3250. s->dc_val[0][s->block_index[i]] = 0;
  3251. dst_idx += i >> 2;
  3252. val = ((cbp >> (5 - i)) & 1);
  3253. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3254. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3255. if(s->mb_intra) {
  3256. /* check if prediction blocks A and C are available */
  3257. v->a_avail = v->c_avail = 0;
  3258. if(i == 2 || i == 3 || !s->first_slice_line)
  3259. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3260. if(i == 1 || i == 3 || s->mb_x)
  3261. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3262. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  3263. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  3264. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  3265. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  3266. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3267. } else if(val) {
  3268. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), 0, 0, 0);
  3269. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  3270. first_block = 0;
  3271. }
  3272. }
  3273. }
  3274. /** Decode blocks of I-frame
  3275. */
  3276. static void vc1_decode_i_blocks(VC1Context *v)
  3277. {
  3278. int k, j;
  3279. MpegEncContext *s = &v->s;
  3280. int cbp, val;
  3281. uint8_t *coded_val;
  3282. int mb_pos;
  3283. /* select codingmode used for VLC tables selection */
  3284. switch(v->y_ac_table_index){
  3285. case 0:
  3286. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3287. break;
  3288. case 1:
  3289. v->codingset = CS_HIGH_MOT_INTRA;
  3290. break;
  3291. case 2:
  3292. v->codingset = CS_MID_RATE_INTRA;
  3293. break;
  3294. }
  3295. switch(v->c_ac_table_index){
  3296. case 0:
  3297. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3298. break;
  3299. case 1:
  3300. v->codingset2 = CS_HIGH_MOT_INTER;
  3301. break;
  3302. case 2:
  3303. v->codingset2 = CS_MID_RATE_INTER;
  3304. break;
  3305. }
  3306. /* Set DC scale - y and c use the same */
  3307. s->y_dc_scale = s->y_dc_scale_table[v->pq];
  3308. s->c_dc_scale = s->c_dc_scale_table[v->pq];
  3309. //do frame decode
  3310. s->mb_x = s->mb_y = 0;
  3311. s->mb_intra = 1;
  3312. s->first_slice_line = 1;
  3313. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3314. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3315. ff_init_block_index(s);
  3316. ff_update_block_index(s);
  3317. s->dsp.clear_blocks(s->block[0]);
  3318. mb_pos = s->mb_x + s->mb_y * s->mb_width;
  3319. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  3320. s->current_picture.qscale_table[mb_pos] = v->pq;
  3321. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3322. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3323. // do actual MB decoding and displaying
  3324. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  3325. v->s.ac_pred = get_bits1(&v->s.gb);
  3326. for(k = 0; k < 6; k++) {
  3327. val = ((cbp >> (5 - k)) & 1);
  3328. if (k < 4) {
  3329. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  3330. val = val ^ pred;
  3331. *coded_val = val;
  3332. }
  3333. cbp |= val << (5 - k);
  3334. vc1_decode_i_block(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2);
  3335. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  3336. if(v->pq >= 9 && v->overlap) {
  3337. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  3338. }
  3339. }
  3340. vc1_put_block(v, s->block);
  3341. if(v->pq >= 9 && v->overlap) {
  3342. if(s->mb_x) {
  3343. s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
  3344. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3345. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3346. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  3347. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  3348. }
  3349. }
  3350. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  3351. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3352. if(!s->first_slice_line) {
  3353. s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
  3354. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  3355. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3356. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  3357. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  3358. }
  3359. }
  3360. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3361. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3362. }
  3363. if(v->s.loop_filter) vc1_loop_filter_iblk(s, s->current_picture.qscale_table[mb_pos]);
  3364. if(get_bits_count(&s->gb) > v->bits) {
  3365. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  3366. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  3367. return;
  3368. }
  3369. }
  3370. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3371. s->first_slice_line = 0;
  3372. }
  3373. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3374. }
  3375. /** Decode blocks of I-frame for advanced profile
  3376. */
  3377. static void vc1_decode_i_blocks_adv(VC1Context *v)
  3378. {
  3379. int k, j;
  3380. MpegEncContext *s = &v->s;
  3381. int cbp, val;
  3382. uint8_t *coded_val;
  3383. int mb_pos;
  3384. int mquant = v->pq;
  3385. int mqdiff;
  3386. int overlap;
  3387. GetBitContext *gb = &s->gb;
  3388. /* select codingmode used for VLC tables selection */
  3389. switch(v->y_ac_table_index){
  3390. case 0:
  3391. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3392. break;
  3393. case 1:
  3394. v->codingset = CS_HIGH_MOT_INTRA;
  3395. break;
  3396. case 2:
  3397. v->codingset = CS_MID_RATE_INTRA;
  3398. break;
  3399. }
  3400. switch(v->c_ac_table_index){
  3401. case 0:
  3402. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3403. break;
  3404. case 1:
  3405. v->codingset2 = CS_HIGH_MOT_INTER;
  3406. break;
  3407. case 2:
  3408. v->codingset2 = CS_MID_RATE_INTER;
  3409. break;
  3410. }
  3411. //do frame decode
  3412. s->mb_x = s->mb_y = 0;
  3413. s->mb_intra = 1;
  3414. s->first_slice_line = 1;
  3415. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3416. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3417. ff_init_block_index(s);
  3418. ff_update_block_index(s);
  3419. s->dsp.clear_blocks(s->block[0]);
  3420. mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3421. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  3422. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3423. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3424. // do actual MB decoding and displaying
  3425. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  3426. if(v->acpred_is_raw)
  3427. v->s.ac_pred = get_bits1(&v->s.gb);
  3428. else
  3429. v->s.ac_pred = v->acpred_plane[mb_pos];
  3430. if(v->condover == CONDOVER_SELECT) {
  3431. if(v->overflg_is_raw)
  3432. overlap = get_bits1(&v->s.gb);
  3433. else
  3434. overlap = v->over_flags_plane[mb_pos];
  3435. } else
  3436. overlap = (v->condover == CONDOVER_ALL);
  3437. GET_MQUANT();
  3438. s->current_picture.qscale_table[mb_pos] = mquant;
  3439. /* Set DC scale - y and c use the same */
  3440. s->y_dc_scale = s->y_dc_scale_table[mquant];
  3441. s->c_dc_scale = s->c_dc_scale_table[mquant];
  3442. for(k = 0; k < 6; k++) {
  3443. val = ((cbp >> (5 - k)) & 1);
  3444. if (k < 4) {
  3445. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  3446. val = val ^ pred;
  3447. *coded_val = val;
  3448. }
  3449. cbp |= val << (5 - k);
  3450. v->a_avail = !s->first_slice_line || (k==2 || k==3);
  3451. v->c_avail = !!s->mb_x || (k==1 || k==3);
  3452. vc1_decode_i_block_adv(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2, mquant);
  3453. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  3454. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  3455. }
  3456. vc1_put_block(v, s->block);
  3457. if(overlap) {
  3458. if(s->mb_x) {
  3459. s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
  3460. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3461. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3462. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  3463. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  3464. }
  3465. }
  3466. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  3467. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3468. if(!s->first_slice_line) {
  3469. s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
  3470. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  3471. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3472. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  3473. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  3474. }
  3475. }
  3476. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3477. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3478. }
  3479. if(v->s.loop_filter) vc1_loop_filter_iblk(s, s->current_picture.qscale_table[mb_pos]);
  3480. if(get_bits_count(&s->gb) > v->bits) {
  3481. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  3482. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  3483. return;
  3484. }
  3485. }
  3486. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3487. s->first_slice_line = 0;
  3488. }
  3489. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3490. }
  3491. static void vc1_decode_p_blocks(VC1Context *v)
  3492. {
  3493. MpegEncContext *s = &v->s;
  3494. /* select codingmode used for VLC tables selection */
  3495. switch(v->c_ac_table_index){
  3496. case 0:
  3497. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3498. break;
  3499. case 1:
  3500. v->codingset = CS_HIGH_MOT_INTRA;
  3501. break;
  3502. case 2:
  3503. v->codingset = CS_MID_RATE_INTRA;
  3504. break;
  3505. }
  3506. switch(v->c_ac_table_index){
  3507. case 0:
  3508. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3509. break;
  3510. case 1:
  3511. v->codingset2 = CS_HIGH_MOT_INTER;
  3512. break;
  3513. case 2:
  3514. v->codingset2 = CS_MID_RATE_INTER;
  3515. break;
  3516. }
  3517. s->first_slice_line = 1;
  3518. memset(v->cbp_base, 0, sizeof(v->cbp_base[0])*2*s->mb_stride);
  3519. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3520. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3521. ff_init_block_index(s);
  3522. ff_update_block_index(s);
  3523. s->dsp.clear_blocks(s->block[0]);
  3524. vc1_decode_p_mb(v);
  3525. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  3526. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  3527. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  3528. return;
  3529. }
  3530. }
  3531. memmove(v->cbp_base, v->cbp, sizeof(v->cbp_base[0])*s->mb_stride);
  3532. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3533. s->first_slice_line = 0;
  3534. }
  3535. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3536. }
  3537. static void vc1_decode_b_blocks(VC1Context *v)
  3538. {
  3539. MpegEncContext *s = &v->s;
  3540. /* select codingmode used for VLC tables selection */
  3541. switch(v->c_ac_table_index){
  3542. case 0:
  3543. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3544. break;
  3545. case 1:
  3546. v->codingset = CS_HIGH_MOT_INTRA;
  3547. break;
  3548. case 2:
  3549. v->codingset = CS_MID_RATE_INTRA;
  3550. break;
  3551. }
  3552. switch(v->c_ac_table_index){
  3553. case 0:
  3554. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3555. break;
  3556. case 1:
  3557. v->codingset2 = CS_HIGH_MOT_INTER;
  3558. break;
  3559. case 2:
  3560. v->codingset2 = CS_MID_RATE_INTER;
  3561. break;
  3562. }
  3563. s->first_slice_line = 1;
  3564. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3565. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3566. ff_init_block_index(s);
  3567. ff_update_block_index(s);
  3568. s->dsp.clear_blocks(s->block[0]);
  3569. vc1_decode_b_mb(v);
  3570. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  3571. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  3572. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  3573. return;
  3574. }
  3575. if(v->s.loop_filter) vc1_loop_filter_iblk(s, s->current_picture.qscale_table[s->mb_x + s->mb_y *s->mb_stride]);
  3576. }
  3577. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3578. s->first_slice_line = 0;
  3579. }
  3580. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3581. }
  3582. static void vc1_decode_skip_blocks(VC1Context *v)
  3583. {
  3584. MpegEncContext *s = &v->s;
  3585. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3586. s->first_slice_line = 1;
  3587. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3588. s->mb_x = 0;
  3589. ff_init_block_index(s);
  3590. ff_update_block_index(s);
  3591. memcpy(s->dest[0], s->last_picture.data[0] + s->mb_y * 16 * s->linesize, s->linesize * 16);
  3592. memcpy(s->dest[1], s->last_picture.data[1] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  3593. memcpy(s->dest[2], s->last_picture.data[2] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  3594. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3595. s->first_slice_line = 0;
  3596. }
  3597. s->pict_type = FF_P_TYPE;
  3598. }
  3599. static void vc1_decode_blocks(VC1Context *v)
  3600. {
  3601. v->s.esc3_level_length = 0;
  3602. if(v->x8_type){
  3603. ff_intrax8_decode_picture(&v->x8, 2*v->pq+v->halfpq, v->pq*(!v->pquantizer) );
  3604. }else{
  3605. switch(v->s.pict_type) {
  3606. case FF_I_TYPE:
  3607. if(v->profile == PROFILE_ADVANCED)
  3608. vc1_decode_i_blocks_adv(v);
  3609. else
  3610. vc1_decode_i_blocks(v);
  3611. break;
  3612. case FF_P_TYPE:
  3613. if(v->p_frame_skipped)
  3614. vc1_decode_skip_blocks(v);
  3615. else
  3616. vc1_decode_p_blocks(v);
  3617. break;
  3618. case FF_B_TYPE:
  3619. if(v->bi_type){
  3620. if(v->profile == PROFILE_ADVANCED)
  3621. vc1_decode_i_blocks_adv(v);
  3622. else
  3623. vc1_decode_i_blocks(v);
  3624. }else
  3625. vc1_decode_b_blocks(v);
  3626. break;
  3627. }
  3628. }
  3629. }
  3630. /** Find VC-1 marker in buffer
  3631. * @return position where next marker starts or end of buffer if no marker found
  3632. */
  3633. static av_always_inline const uint8_t* find_next_marker(const uint8_t *src, const uint8_t *end)
  3634. {
  3635. uint32_t mrk = 0xFFFFFFFF;
  3636. if(end-src < 4) return end;
  3637. while(src < end){
  3638. mrk = (mrk << 8) | *src++;
  3639. if(IS_MARKER(mrk))
  3640. return src-4;
  3641. }
  3642. return end;
  3643. }
  3644. static av_always_inline int vc1_unescape_buffer(const uint8_t *src, int size, uint8_t *dst)
  3645. {
  3646. int dsize = 0, i;
  3647. if(size < 4){
  3648. for(dsize = 0; dsize < size; dsize++) *dst++ = *src++;
  3649. return size;
  3650. }
  3651. for(i = 0; i < size; i++, src++) {
  3652. if(src[0] == 3 && i >= 2 && !src[-1] && !src[-2] && i < size-1 && src[1] < 4) {
  3653. dst[dsize++] = src[1];
  3654. src++;
  3655. i++;
  3656. } else
  3657. dst[dsize++] = *src;
  3658. }
  3659. return dsize;
  3660. }
  3661. /** Initialize a VC1/WMV3 decoder
  3662. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  3663. * @todo TODO: Decypher remaining bits in extra_data
  3664. */
  3665. static av_cold int vc1_decode_init(AVCodecContext *avctx)
  3666. {
  3667. VC1Context *v = avctx->priv_data;
  3668. MpegEncContext *s = &v->s;
  3669. GetBitContext gb;
  3670. if (!avctx->extradata_size || !avctx->extradata) return -1;
  3671. if (!(avctx->flags & CODEC_FLAG_GRAY))
  3672. avctx->pix_fmt = PIX_FMT_YUV420P;
  3673. else
  3674. avctx->pix_fmt = PIX_FMT_GRAY8;
  3675. v->s.avctx = avctx;
  3676. avctx->flags |= CODEC_FLAG_EMU_EDGE;
  3677. v->s.flags |= CODEC_FLAG_EMU_EDGE;
  3678. if(avctx->idct_algo==FF_IDCT_AUTO){
  3679. avctx->idct_algo=FF_IDCT_WMV2;
  3680. }
  3681. if(ff_h263_decode_init(avctx) < 0)
  3682. return -1;
  3683. if (vc1_init_common(v) < 0) return -1;
  3684. avctx->coded_width = avctx->width;
  3685. avctx->coded_height = avctx->height;
  3686. if (avctx->codec_id == CODEC_ID_WMV3)
  3687. {
  3688. int count = 0;
  3689. // looks like WMV3 has a sequence header stored in the extradata
  3690. // advanced sequence header may be before the first frame
  3691. // the last byte of the extradata is a version number, 1 for the
  3692. // samples we can decode
  3693. init_get_bits(&gb, avctx->extradata, avctx->extradata_size*8);
  3694. if (decode_sequence_header(avctx, &gb) < 0)
  3695. return -1;
  3696. count = avctx->extradata_size*8 - get_bits_count(&gb);
  3697. if (count>0)
  3698. {
  3699. av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n",
  3700. count, get_bits(&gb, count));
  3701. }
  3702. else if (count < 0)
  3703. {
  3704. av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count);
  3705. }
  3706. } else { // VC1/WVC1
  3707. const uint8_t *start = avctx->extradata;
  3708. uint8_t *end = avctx->extradata + avctx->extradata_size;
  3709. const uint8_t *next;
  3710. int size, buf2_size;
  3711. uint8_t *buf2 = NULL;
  3712. int seq_initialized = 0, ep_initialized = 0;
  3713. if(avctx->extradata_size < 16) {
  3714. av_log(avctx, AV_LOG_ERROR, "Extradata size too small: %i\n", avctx->extradata_size);
  3715. return -1;
  3716. }
  3717. buf2 = av_mallocz(avctx->extradata_size + FF_INPUT_BUFFER_PADDING_SIZE);
  3718. if(start[0]) start++; // in WVC1 extradata first byte is its size
  3719. next = start;
  3720. for(; next < end; start = next){
  3721. next = find_next_marker(start + 4, end);
  3722. size = next - start - 4;
  3723. if(size <= 0) continue;
  3724. buf2_size = vc1_unescape_buffer(start + 4, size, buf2);
  3725. init_get_bits(&gb, buf2, buf2_size * 8);
  3726. switch(AV_RB32(start)){
  3727. case VC1_CODE_SEQHDR:
  3728. if(decode_sequence_header(avctx, &gb) < 0){
  3729. av_free(buf2);
  3730. return -1;
  3731. }
  3732. seq_initialized = 1;
  3733. break;
  3734. case VC1_CODE_ENTRYPOINT:
  3735. if(decode_entry_point(avctx, &gb) < 0){
  3736. av_free(buf2);
  3737. return -1;
  3738. }
  3739. ep_initialized = 1;
  3740. break;
  3741. }
  3742. }
  3743. av_free(buf2);
  3744. if(!seq_initialized || !ep_initialized){
  3745. av_log(avctx, AV_LOG_ERROR, "Incomplete extradata\n");
  3746. return -1;
  3747. }
  3748. }
  3749. avctx->has_b_frames= !!(avctx->max_b_frames);
  3750. s->low_delay = !avctx->has_b_frames;
  3751. s->mb_width = (avctx->coded_width+15)>>4;
  3752. s->mb_height = (avctx->coded_height+15)>>4;
  3753. /* Allocate mb bitplanes */
  3754. v->mv_type_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3755. v->direct_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3756. v->acpred_plane = av_malloc(s->mb_stride * s->mb_height);
  3757. v->over_flags_plane = av_malloc(s->mb_stride * s->mb_height);
  3758. v->cbp_base = av_malloc(sizeof(v->cbp_base[0]) * 2 * s->mb_stride);
  3759. v->cbp = v->cbp_base + s->mb_stride;
  3760. /* allocate block type info in that way so it could be used with s->block_index[] */
  3761. v->mb_type_base = av_malloc(s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
  3762. v->mb_type[0] = v->mb_type_base + s->b8_stride + 1;
  3763. v->mb_type[1] = v->mb_type_base + s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride + 1;
  3764. v->mb_type[2] = v->mb_type[1] + s->mb_stride * (s->mb_height + 1);
  3765. /* Init coded blocks info */
  3766. if (v->profile == PROFILE_ADVANCED)
  3767. {
  3768. // if (alloc_bitplane(&v->over_flags_plane, s->mb_width, s->mb_height) < 0)
  3769. // return -1;
  3770. // if (alloc_bitplane(&v->ac_pred_plane, s->mb_width, s->mb_height) < 0)
  3771. // return -1;
  3772. }
  3773. ff_intrax8_common_init(&v->x8,s);
  3774. return 0;
  3775. }
  3776. /** Decode a VC1/WMV3 frame
  3777. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  3778. */
  3779. static int vc1_decode_frame(AVCodecContext *avctx,
  3780. void *data, int *data_size,
  3781. const uint8_t *buf, int buf_size)
  3782. {
  3783. VC1Context *v = avctx->priv_data;
  3784. MpegEncContext *s = &v->s;
  3785. AVFrame *pict = data;
  3786. uint8_t *buf2 = NULL;
  3787. const uint8_t *buf_vdpau = buf;
  3788. /* no supplementary picture */
  3789. if (buf_size == 0) {
  3790. /* special case for last picture */
  3791. if (s->low_delay==0 && s->next_picture_ptr) {
  3792. *pict= *(AVFrame*)s->next_picture_ptr;
  3793. s->next_picture_ptr= NULL;
  3794. *data_size = sizeof(AVFrame);
  3795. }
  3796. return 0;
  3797. }
  3798. /* We need to set current_picture_ptr before reading the header,
  3799. * otherwise we cannot store anything in there. */
  3800. if(s->current_picture_ptr==NULL || s->current_picture_ptr->data[0]){
  3801. int i= ff_find_unused_picture(s, 0);
  3802. s->current_picture_ptr= &s->picture[i];
  3803. }
  3804. if (s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU){
  3805. if (v->profile < PROFILE_ADVANCED)
  3806. avctx->pix_fmt = PIX_FMT_VDPAU_WMV3;
  3807. else
  3808. avctx->pix_fmt = PIX_FMT_VDPAU_VC1;
  3809. }
  3810. //for advanced profile we may need to parse and unescape data
  3811. if (avctx->codec_id == CODEC_ID_VC1) {
  3812. int buf_size2 = 0;
  3813. buf2 = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  3814. if(IS_MARKER(AV_RB32(buf))){ /* frame starts with marker and needs to be parsed */
  3815. const uint8_t *start, *end, *next;
  3816. int size;
  3817. next = buf;
  3818. for(start = buf, end = buf + buf_size; next < end; start = next){
  3819. next = find_next_marker(start + 4, end);
  3820. size = next - start - 4;
  3821. if(size <= 0) continue;
  3822. switch(AV_RB32(start)){
  3823. case VC1_CODE_FRAME:
  3824. if (s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
  3825. buf_vdpau = start;
  3826. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  3827. break;
  3828. case VC1_CODE_ENTRYPOINT: /* it should be before frame data */
  3829. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  3830. init_get_bits(&s->gb, buf2, buf_size2*8);
  3831. decode_entry_point(avctx, &s->gb);
  3832. break;
  3833. case VC1_CODE_SLICE:
  3834. av_log(avctx, AV_LOG_ERROR, "Sliced decoding is not implemented (yet)\n");
  3835. av_free(buf2);
  3836. return -1;
  3837. }
  3838. }
  3839. }else if(v->interlace && ((buf[0] & 0xC0) == 0xC0)){ /* WVC1 interlaced stores both fields divided by marker */
  3840. const uint8_t *divider;
  3841. divider = find_next_marker(buf, buf + buf_size);
  3842. if((divider == (buf + buf_size)) || AV_RB32(divider) != VC1_CODE_FIELD){
  3843. av_log(avctx, AV_LOG_ERROR, "Error in WVC1 interlaced frame\n");
  3844. av_free(buf2);
  3845. return -1;
  3846. }
  3847. buf_size2 = vc1_unescape_buffer(buf, divider - buf, buf2);
  3848. // TODO
  3849. av_free(buf2);return -1;
  3850. }else{
  3851. buf_size2 = vc1_unescape_buffer(buf, buf_size, buf2);
  3852. }
  3853. init_get_bits(&s->gb, buf2, buf_size2*8);
  3854. } else
  3855. init_get_bits(&s->gb, buf, buf_size*8);
  3856. // do parse frame header
  3857. if(v->profile < PROFILE_ADVANCED) {
  3858. if(vc1_parse_frame_header(v, &s->gb) == -1) {
  3859. av_free(buf2);
  3860. return -1;
  3861. }
  3862. } else {
  3863. if(vc1_parse_frame_header_adv(v, &s->gb) == -1) {
  3864. av_free(buf2);
  3865. return -1;
  3866. }
  3867. }
  3868. if(s->pict_type != FF_I_TYPE && !v->res_rtm_flag){
  3869. av_free(buf2);
  3870. return -1;
  3871. }
  3872. // for hurry_up==5
  3873. s->current_picture.pict_type= s->pict_type;
  3874. s->current_picture.key_frame= s->pict_type == FF_I_TYPE;
  3875. /* skip B-frames if we don't have reference frames */
  3876. if(s->last_picture_ptr==NULL && (s->pict_type==FF_B_TYPE || s->dropable)){
  3877. av_free(buf2);
  3878. return -1;//buf_size;
  3879. }
  3880. /* skip b frames if we are in a hurry */
  3881. if(avctx->hurry_up && s->pict_type==FF_B_TYPE) return -1;//buf_size;
  3882. if( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type==FF_B_TYPE)
  3883. || (avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type!=FF_I_TYPE)
  3884. || avctx->skip_frame >= AVDISCARD_ALL) {
  3885. av_free(buf2);
  3886. return buf_size;
  3887. }
  3888. /* skip everything if we are in a hurry>=5 */
  3889. if(avctx->hurry_up>=5) {
  3890. av_free(buf2);
  3891. return -1;//buf_size;
  3892. }
  3893. if(s->next_p_frame_damaged){
  3894. if(s->pict_type==FF_B_TYPE)
  3895. return buf_size;
  3896. else
  3897. s->next_p_frame_damaged=0;
  3898. }
  3899. if(MPV_frame_start(s, avctx) < 0) {
  3900. av_free(buf2);
  3901. return -1;
  3902. }
  3903. s->me.qpel_put= s->dsp.put_qpel_pixels_tab;
  3904. s->me.qpel_avg= s->dsp.avg_qpel_pixels_tab;
  3905. if ((CONFIG_VC1_VDPAU_DECODER || CONFIG_WMV3_VDPAU_DECODER)
  3906. &&s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
  3907. ff_vdpau_vc1_decode_picture(s, buf_vdpau, (buf + buf_size) - buf_vdpau);
  3908. else {
  3909. ff_er_frame_start(s);
  3910. v->bits = buf_size * 8;
  3911. vc1_decode_blocks(v);
  3912. //av_log(s->avctx, AV_LOG_INFO, "Consumed %i/%i bits\n", get_bits_count(&s->gb), buf_size*8);
  3913. // if(get_bits_count(&s->gb) > buf_size * 8)
  3914. // return -1;
  3915. ff_er_frame_end(s);
  3916. }
  3917. MPV_frame_end(s);
  3918. assert(s->current_picture.pict_type == s->current_picture_ptr->pict_type);
  3919. assert(s->current_picture.pict_type == s->pict_type);
  3920. if (s->pict_type == FF_B_TYPE || s->low_delay) {
  3921. *pict= *(AVFrame*)s->current_picture_ptr;
  3922. } else if (s->last_picture_ptr != NULL) {
  3923. *pict= *(AVFrame*)s->last_picture_ptr;
  3924. }
  3925. if(s->last_picture_ptr || s->low_delay){
  3926. *data_size = sizeof(AVFrame);
  3927. ff_print_debug_info(s, pict);
  3928. }
  3929. /* Return the Picture timestamp as the frame number */
  3930. /* we subtract 1 because it is added on utils.c */
  3931. avctx->frame_number = s->picture_number - 1;
  3932. av_free(buf2);
  3933. return buf_size;
  3934. }
  3935. /** Close a VC1/WMV3 decoder
  3936. * @warning Initial try at using MpegEncContext stuff
  3937. */
  3938. static av_cold int vc1_decode_end(AVCodecContext *avctx)
  3939. {
  3940. VC1Context *v = avctx->priv_data;
  3941. av_freep(&v->hrd_rate);
  3942. av_freep(&v->hrd_buffer);
  3943. MPV_common_end(&v->s);
  3944. av_freep(&v->mv_type_mb_plane);
  3945. av_freep(&v->direct_mb_plane);
  3946. av_freep(&v->acpred_plane);
  3947. av_freep(&v->over_flags_plane);
  3948. av_freep(&v->mb_type_base);
  3949. av_freep(&v->cbp_base);
  3950. ff_intrax8_common_end(&v->x8);
  3951. return 0;
  3952. }
  3953. AVCodec vc1_decoder = {
  3954. "vc1",
  3955. CODEC_TYPE_VIDEO,
  3956. CODEC_ID_VC1,
  3957. sizeof(VC1Context),
  3958. vc1_decode_init,
  3959. NULL,
  3960. vc1_decode_end,
  3961. vc1_decode_frame,
  3962. CODEC_CAP_DELAY,
  3963. NULL,
  3964. .long_name = NULL_IF_CONFIG_SMALL("SMPTE VC-1"),
  3965. };
  3966. AVCodec wmv3_decoder = {
  3967. "wmv3",
  3968. CODEC_TYPE_VIDEO,
  3969. CODEC_ID_WMV3,
  3970. sizeof(VC1Context),
  3971. vc1_decode_init,
  3972. NULL,
  3973. vc1_decode_end,
  3974. vc1_decode_frame,
  3975. CODEC_CAP_DELAY,
  3976. NULL,
  3977. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Video 9"),
  3978. };
  3979. #if CONFIG_WMV3_VDPAU_DECODER
  3980. AVCodec wmv3_vdpau_decoder = {
  3981. "wmv3_vdpau",
  3982. CODEC_TYPE_VIDEO,
  3983. CODEC_ID_WMV3,
  3984. sizeof(VC1Context),
  3985. vc1_decode_init,
  3986. NULL,
  3987. vc1_decode_end,
  3988. vc1_decode_frame,
  3989. CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_HWACCEL_VDPAU,
  3990. NULL,
  3991. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Video 9 VDPAU"),
  3992. };
  3993. #endif
  3994. #if CONFIG_VC1_VDPAU_DECODER
  3995. AVCodec vc1_vdpau_decoder = {
  3996. "vc1_vdpau",
  3997. CODEC_TYPE_VIDEO,
  3998. CODEC_ID_VC1,
  3999. sizeof(VC1Context),
  4000. vc1_decode_init,
  4001. NULL,
  4002. vc1_decode_end,
  4003. vc1_decode_frame,
  4004. CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_HWACCEL_VDPAU,
  4005. NULL,
  4006. .long_name = NULL_IF_CONFIG_SMALL("SMPTE VC-1 VDPAU"),
  4007. };
  4008. #endif