You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1461 lines
50KB

  1. /*
  2. * RV30/40 decoder common data
  3. * Copyright (c) 2007 Mike Melanson, Konstantin Shishkov
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file rv34.c
  23. * RV30/40 decoder common data
  24. */
  25. #include "avcodec.h"
  26. #include "dsputil.h"
  27. #include "mpegvideo.h"
  28. #include "golomb.h"
  29. #include "mathops.h"
  30. #include "rectangle.h"
  31. #include "rv34vlc.h"
  32. #include "rv34data.h"
  33. #include "rv34.h"
  34. //#define DEBUG
  35. /** translation of RV30/40 macroblock types to lavc ones */
  36. static const int rv34_mb_type_to_lavc[12] = {
  37. MB_TYPE_INTRA,
  38. MB_TYPE_INTRA16x16 | MB_TYPE_SEPARATE_DC,
  39. MB_TYPE_16x16 | MB_TYPE_L0,
  40. MB_TYPE_8x8 | MB_TYPE_L0,
  41. MB_TYPE_16x16 | MB_TYPE_L0,
  42. MB_TYPE_16x16 | MB_TYPE_L1,
  43. MB_TYPE_SKIP,
  44. MB_TYPE_DIRECT2 | MB_TYPE_16x16,
  45. MB_TYPE_16x8 | MB_TYPE_L0,
  46. MB_TYPE_8x16 | MB_TYPE_L0,
  47. MB_TYPE_16x16 | MB_TYPE_L0L1,
  48. MB_TYPE_16x16 | MB_TYPE_L0 | MB_TYPE_SEPARATE_DC
  49. };
  50. static RV34VLC intra_vlcs[NUM_INTRA_TABLES], inter_vlcs[NUM_INTER_TABLES];
  51. /**
  52. * @defgroup vlc RV30/40 VLC generating functions
  53. * @{
  54. */
  55. /**
  56. * Generate VLC from codeword lengths.
  57. * @param bits codeword lengths (zeroes are accepted)
  58. * @param size length of input data
  59. * @param insyms symbols for input codes (NULL for default ones)
  60. */
  61. static void rv34_gen_vlc(const uint8_t *bits, int size, VLC *vlc, const uint8_t *insyms)
  62. {
  63. int i;
  64. int counts[17] = {0}, codes[17];
  65. uint16_t cw[size], syms[size];
  66. uint8_t bits2[size];
  67. int maxbits = 0, realsize = 0;
  68. for(i = 0; i < size; i++){
  69. if(bits[i]){
  70. bits2[realsize] = bits[i];
  71. syms[realsize] = insyms ? insyms[i] : i;
  72. realsize++;
  73. maxbits = FFMAX(maxbits, bits[i]);
  74. counts[bits[i]]++;
  75. }
  76. }
  77. codes[0] = 0;
  78. for(i = 0; i < 16; i++)
  79. codes[i+1] = (codes[i] + counts[i]) << 1;
  80. for(i = 0; i < realsize; i++)
  81. cw[i] = codes[bits2[i]]++;
  82. init_vlc_sparse(vlc, FFMIN(maxbits, 9), realsize,
  83. bits2, 1, 1,
  84. cw, 2, 2,
  85. syms, 2, 2, INIT_VLC_USE_STATIC);
  86. }
  87. /**
  88. * Initialize all tables.
  89. */
  90. static av_cold void rv34_init_tables()
  91. {
  92. int i, j, k;
  93. for(i = 0; i < NUM_INTRA_TABLES; i++){
  94. for(j = 0; j < 2; j++){
  95. rv34_gen_vlc(rv34_table_intra_cbppat [i][j], CBPPAT_VLC_SIZE, &intra_vlcs[i].cbppattern[j], NULL);
  96. rv34_gen_vlc(rv34_table_intra_secondpat[i][j], OTHERBLK_VLC_SIZE, &intra_vlcs[i].second_pattern[j], NULL);
  97. rv34_gen_vlc(rv34_table_intra_thirdpat [i][j], OTHERBLK_VLC_SIZE, &intra_vlcs[i].third_pattern[j], NULL);
  98. for(k = 0; k < 4; k++)
  99. rv34_gen_vlc(rv34_table_intra_cbp[i][j+k*2], CBP_VLC_SIZE, &intra_vlcs[i].cbp[j][k], rv34_cbp_code);
  100. }
  101. for(j = 0; j < 4; j++)
  102. rv34_gen_vlc(rv34_table_intra_firstpat[i][j], FIRSTBLK_VLC_SIZE, &intra_vlcs[i].first_pattern[j], NULL);
  103. rv34_gen_vlc(rv34_intra_coeff[i], COEFF_VLC_SIZE, &intra_vlcs[i].coefficient, NULL);
  104. }
  105. for(i = 0; i < NUM_INTER_TABLES; i++){
  106. rv34_gen_vlc(rv34_inter_cbppat[i], CBPPAT_VLC_SIZE, &inter_vlcs[i].cbppattern[0], NULL);
  107. for(j = 0; j < 4; j++)
  108. rv34_gen_vlc(rv34_inter_cbp[i][j], CBP_VLC_SIZE, &inter_vlcs[i].cbp[0][j], rv34_cbp_code);
  109. for(j = 0; j < 2; j++){
  110. rv34_gen_vlc(rv34_table_inter_firstpat [i][j], FIRSTBLK_VLC_SIZE, &inter_vlcs[i].first_pattern[j], NULL);
  111. rv34_gen_vlc(rv34_table_inter_secondpat[i][j], OTHERBLK_VLC_SIZE, &inter_vlcs[i].second_pattern[j], NULL);
  112. rv34_gen_vlc(rv34_table_inter_thirdpat [i][j], OTHERBLK_VLC_SIZE, &inter_vlcs[i].third_pattern[j], NULL);
  113. }
  114. rv34_gen_vlc(rv34_inter_coeff[i], COEFF_VLC_SIZE, &inter_vlcs[i].coefficient, NULL);
  115. }
  116. }
  117. /** @} */ // vlc group
  118. /**
  119. * @defgroup transform RV30/40 inverse transform functions
  120. * @{
  121. */
  122. static av_always_inline void rv34_row_transform(int temp[16], DCTELEM *block)
  123. {
  124. int i;
  125. for(i=0; i<4; i++){
  126. const int z0= 13*(block[i+8*0] + block[i+8*2]);
  127. const int z1= 13*(block[i+8*0] - block[i+8*2]);
  128. const int z2= 7* block[i+8*1] - 17*block[i+8*3];
  129. const int z3= 17* block[i+8*1] + 7*block[i+8*3];
  130. temp[4*i+0]= z0+z3;
  131. temp[4*i+1]= z1+z2;
  132. temp[4*i+2]= z1-z2;
  133. temp[4*i+3]= z0-z3;
  134. }
  135. }
  136. /**
  137. * Real Video 3.0/4.0 inverse transform
  138. * Code is almost the same as in SVQ3, only scaling is different.
  139. */
  140. static void rv34_inv_transform(DCTELEM *block){
  141. int temp[16];
  142. int i;
  143. rv34_row_transform(temp, block);
  144. for(i=0; i<4; i++){
  145. const int z0= 13*(temp[4*0+i] + temp[4*2+i]) + 0x200;
  146. const int z1= 13*(temp[4*0+i] - temp[4*2+i]) + 0x200;
  147. const int z2= 7* temp[4*1+i] - 17*temp[4*3+i];
  148. const int z3= 17* temp[4*1+i] + 7*temp[4*3+i];
  149. block[i*8+0]= (z0 + z3)>>10;
  150. block[i*8+1]= (z1 + z2)>>10;
  151. block[i*8+2]= (z1 - z2)>>10;
  152. block[i*8+3]= (z0 - z3)>>10;
  153. }
  154. }
  155. /**
  156. * RealVideo 3.0/4.0 inverse transform for DC block
  157. *
  158. * Code is almost the same as rv34_inv_transform()
  159. * but final coefficients are multiplied by 1.5 and have no rounding.
  160. */
  161. static void rv34_inv_transform_noround(DCTELEM *block){
  162. int temp[16];
  163. int i;
  164. rv34_row_transform(temp, block);
  165. for(i=0; i<4; i++){
  166. const int z0= 13*(temp[4*0+i] + temp[4*2+i]);
  167. const int z1= 13*(temp[4*0+i] - temp[4*2+i]);
  168. const int z2= 7* temp[4*1+i] - 17*temp[4*3+i];
  169. const int z3= 17* temp[4*1+i] + 7*temp[4*3+i];
  170. block[i*8+0]= ((z0 + z3)*3)>>11;
  171. block[i*8+1]= ((z1 + z2)*3)>>11;
  172. block[i*8+2]= ((z1 - z2)*3)>>11;
  173. block[i*8+3]= ((z0 - z3)*3)>>11;
  174. }
  175. }
  176. /** @} */ // transform
  177. /**
  178. * @defgroup block RV30/40 4x4 block decoding functions
  179. * @{
  180. */
  181. /**
  182. * Decode coded block pattern.
  183. */
  184. static int rv34_decode_cbp(GetBitContext *gb, RV34VLC *vlc, int table)
  185. {
  186. int pattern, code, cbp=0;
  187. int ones;
  188. static const int cbp_masks[3] = {0x100000, 0x010000, 0x110000};
  189. static const int shifts[4] = { 0, 2, 8, 10 };
  190. int *curshift = shifts;
  191. int i, t, mask;
  192. code = get_vlc2(gb, vlc->cbppattern[table].table, 9, 2);
  193. pattern = code & 0xF;
  194. code >>= 4;
  195. ones = rv34_count_ones[pattern];
  196. for(mask = 8; mask; mask >>= 1, curshift++){
  197. if(pattern & mask)
  198. cbp |= get_vlc2(gb, vlc->cbp[table][ones].table, vlc->cbp[table][ones].bits, 1) << curshift[0];
  199. }
  200. for(i = 0; i < 4; i++){
  201. t = modulo_three_table[code][i];
  202. if(t == 1)
  203. cbp |= cbp_masks[get_bits1(gb)] << i;
  204. if(t == 2)
  205. cbp |= cbp_masks[2] << i;
  206. }
  207. return cbp;
  208. }
  209. /**
  210. * Get one coefficient value from the bistream and store it.
  211. */
  212. static inline void decode_coeff(DCTELEM *dst, int coef, int esc, GetBitContext *gb, VLC* vlc)
  213. {
  214. if(coef){
  215. if(coef == esc){
  216. coef = get_vlc2(gb, vlc->table, 9, 2);
  217. if(coef > 23){
  218. coef -= 23;
  219. coef = 22 + ((1 << coef) | get_bits(gb, coef));
  220. }
  221. coef += esc;
  222. }
  223. if(get_bits1(gb))
  224. coef = -coef;
  225. *dst = coef;
  226. }
  227. }
  228. /**
  229. * Decode 2x2 subblock of coefficients.
  230. */
  231. static inline void decode_subblock(DCTELEM *dst, int code, const int is_block2, GetBitContext *gb, VLC *vlc)
  232. {
  233. int coeffs[4];
  234. coeffs[0] = modulo_three_table[code][0];
  235. coeffs[1] = modulo_three_table[code][1];
  236. coeffs[2] = modulo_three_table[code][2];
  237. coeffs[3] = modulo_three_table[code][3];
  238. decode_coeff(dst , coeffs[0], 3, gb, vlc);
  239. if(is_block2){
  240. decode_coeff(dst+8, coeffs[1], 2, gb, vlc);
  241. decode_coeff(dst+1, coeffs[2], 2, gb, vlc);
  242. }else{
  243. decode_coeff(dst+1, coeffs[1], 2, gb, vlc);
  244. decode_coeff(dst+8, coeffs[2], 2, gb, vlc);
  245. }
  246. decode_coeff(dst+9, coeffs[3], 2, gb, vlc);
  247. }
  248. /**
  249. * Decode coefficients for 4x4 block.
  250. *
  251. * This is done by filling 2x2 subblocks with decoded coefficients
  252. * in this order (the same for subblocks and subblock coefficients):
  253. * o--o
  254. * /
  255. * /
  256. * o--o
  257. */
  258. static inline void rv34_decode_block(DCTELEM *dst, GetBitContext *gb, RV34VLC *rvlc, int fc, int sc)
  259. {
  260. int code, pattern;
  261. code = get_vlc2(gb, rvlc->first_pattern[fc].table, 9, 2);
  262. pattern = code & 0x7;
  263. code >>= 3;
  264. decode_subblock(dst, code, 0, gb, &rvlc->coefficient);
  265. if(pattern & 4){
  266. code = get_vlc2(gb, rvlc->second_pattern[sc].table, 9, 2);
  267. decode_subblock(dst + 2, code, 0, gb, &rvlc->coefficient);
  268. }
  269. if(pattern & 2){ // Looks like coefficients 1 and 2 are swapped for this block
  270. code = get_vlc2(gb, rvlc->second_pattern[sc].table, 9, 2);
  271. decode_subblock(dst + 8*2, code, 1, gb, &rvlc->coefficient);
  272. }
  273. if(pattern & 1){
  274. code = get_vlc2(gb, rvlc->third_pattern[sc].table, 9, 2);
  275. decode_subblock(dst + 8*2+2, code, 0, gb, &rvlc->coefficient);
  276. }
  277. }
  278. /**
  279. * Dequantize ordinary 4x4 block.
  280. * @todo optimize
  281. */
  282. static inline void rv34_dequant4x4(DCTELEM *block, int Qdc, int Q)
  283. {
  284. int i, j;
  285. block[0] = (block[0] * Qdc + 8) >> 4;
  286. for(i = 0; i < 4; i++)
  287. for(j = !i; j < 4; j++)
  288. block[j + i*8] = (block[j + i*8] * Q + 8) >> 4;
  289. }
  290. /**
  291. * Dequantize 4x4 block of DC values for 16x16 macroblock.
  292. * @todo optimize
  293. */
  294. static inline void rv34_dequant4x4_16x16(DCTELEM *block, int Qdc, int Q)
  295. {
  296. int i;
  297. for(i = 0; i < 3; i++)
  298. block[rv34_dezigzag[i]] = (block[rv34_dezigzag[i]] * Qdc + 8) >> 4;
  299. for(; i < 16; i++)
  300. block[rv34_dezigzag[i]] = (block[rv34_dezigzag[i]] * Q + 8) >> 4;
  301. }
  302. /** @} */ //block functions
  303. /**
  304. * @defgroup bitstream RV30/40 bitstream parsing
  305. * @{
  306. */
  307. /**
  308. * Decode starting slice position.
  309. * @todo Maybe replace with ff_h263_decode_mba() ?
  310. */
  311. int ff_rv34_get_start_offset(GetBitContext *gb, int mb_size)
  312. {
  313. int i;
  314. for(i = 0; i < 5; i++)
  315. if(rv34_mb_max_sizes[i] >= mb_size - 1)
  316. break;
  317. return rv34_mb_bits_sizes[i];
  318. }
  319. /**
  320. * Select VLC set for decoding from current quantizer, modifier and frame type.
  321. */
  322. static inline RV34VLC* choose_vlc_set(int quant, int mod, int type)
  323. {
  324. if(mod == 2 && quant < 19) quant += 10;
  325. else if(mod && quant < 26) quant += 5;
  326. return type ? &inter_vlcs[rv34_quant_to_vlc_set[1][av_clip(quant, 0, 30)]]
  327. : &intra_vlcs[rv34_quant_to_vlc_set[0][av_clip(quant, 0, 30)]];
  328. }
  329. /**
  330. * Decode quantizer difference and return modified quantizer.
  331. */
  332. static inline int rv34_decode_dquant(GetBitContext *gb, int quant)
  333. {
  334. if(get_bits1(gb))
  335. return rv34_dquant_tab[get_bits1(gb)][quant];
  336. else
  337. return get_bits(gb, 5);
  338. }
  339. /** @} */ //bitstream functions
  340. /**
  341. * @defgroup mv motion vector related code (prediction, reconstruction, motion compensation)
  342. * @{
  343. */
  344. /** macroblock partition width in 8x8 blocks */
  345. static const uint8_t part_sizes_w[RV34_MB_TYPES] = { 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2 };
  346. /** macroblock partition height in 8x8 blocks */
  347. static const uint8_t part_sizes_h[RV34_MB_TYPES] = { 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2 };
  348. /** availability index for subblocks */
  349. static const uint8_t avail_indexes[4] = { 5, 6, 9, 10 };
  350. /**
  351. * motion vector prediction
  352. *
  353. * Motion prediction performed for the block by using median prediction of
  354. * motion vectors from the left, top and right top blocks but in corner cases
  355. * some other vectors may be used instead.
  356. */
  357. static void rv34_pred_mv(RV34DecContext *r, int block_type, int subblock_no, int dmv_no)
  358. {
  359. MpegEncContext *s = &r->s;
  360. int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
  361. int A[2] = {0}, B[2], C[2];
  362. int i, j;
  363. int mx, my;
  364. int avail_index = avail_indexes[subblock_no];
  365. int c_off = part_sizes_w[block_type];
  366. mv_pos += (subblock_no & 1) + (subblock_no >> 1)*s->b8_stride;
  367. if(subblock_no == 3)
  368. c_off = -1;
  369. if(r->avail_cache[avail_index - 1]){
  370. A[0] = s->current_picture_ptr->motion_val[0][mv_pos-1][0];
  371. A[1] = s->current_picture_ptr->motion_val[0][mv_pos-1][1];
  372. }
  373. if(r->avail_cache[avail_index - 4]){
  374. B[0] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride][0];
  375. B[1] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride][1];
  376. }else{
  377. B[0] = A[0];
  378. B[1] = A[1];
  379. }
  380. if(!r->avail_cache[avail_index - 4 + c_off]){
  381. if(r->avail_cache[avail_index - 4] && (r->avail_cache[avail_index - 1] || r->rv30)){
  382. C[0] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride-1][0];
  383. C[1] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride-1][1];
  384. }else{
  385. C[0] = A[0];
  386. C[1] = A[1];
  387. }
  388. }else{
  389. C[0] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride+c_off][0];
  390. C[1] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride+c_off][1];
  391. }
  392. mx = mid_pred(A[0], B[0], C[0]);
  393. my = mid_pred(A[1], B[1], C[1]);
  394. mx += r->dmv[dmv_no][0];
  395. my += r->dmv[dmv_no][1];
  396. for(j = 0; j < part_sizes_h[block_type]; j++){
  397. for(i = 0; i < part_sizes_w[block_type]; i++){
  398. s->current_picture_ptr->motion_val[0][mv_pos + i + j*s->b8_stride][0] = mx;
  399. s->current_picture_ptr->motion_val[0][mv_pos + i + j*s->b8_stride][1] = my;
  400. }
  401. }
  402. }
  403. #define GET_PTS_DIFF(a, b) ((a - b + 8192) & 0x1FFF)
  404. /**
  405. * Calculate motion vector component that should be added for direct blocks.
  406. */
  407. static int calc_add_mv(RV34DecContext *r, int dir, int val)
  408. {
  409. int refdist = GET_PTS_DIFF(r->next_pts, r->last_pts);
  410. int dist = dir ? -GET_PTS_DIFF(r->next_pts, r->cur_pts) : GET_PTS_DIFF(r->cur_pts, r->last_pts);
  411. int mul;
  412. if(!refdist) return 0;
  413. mul = (dist << 14) / refdist;
  414. return (val * mul + 0x2000) >> 14;
  415. }
  416. /**
  417. * Predict motion vector for B-frame macroblock.
  418. */
  419. static inline void rv34_pred_b_vector(int A[2], int B[2], int C[2],
  420. int A_avail, int B_avail, int C_avail,
  421. int *mx, int *my)
  422. {
  423. if(A_avail + B_avail + C_avail != 3){
  424. *mx = A[0] + B[0] + C[0];
  425. *my = A[1] + B[1] + C[1];
  426. if(A_avail + B_avail + C_avail == 2){
  427. *mx /= 2;
  428. *my /= 2;
  429. }
  430. }else{
  431. *mx = mid_pred(A[0], B[0], C[0]);
  432. *my = mid_pred(A[1], B[1], C[1]);
  433. }
  434. }
  435. /**
  436. * motion vector prediction for B-frames
  437. */
  438. static void rv34_pred_mv_b(RV34DecContext *r, int block_type, int dir)
  439. {
  440. MpegEncContext *s = &r->s;
  441. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  442. int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
  443. int A[2], B[2], C[2];
  444. int has_A = 0, has_B = 0, has_C = 0;
  445. int mx, my;
  446. int i, j;
  447. Picture *cur_pic = s->current_picture_ptr;
  448. const int mask = dir ? MB_TYPE_L1 : MB_TYPE_L0;
  449. int type = cur_pic->mb_type[mb_pos];
  450. memset(A, 0, sizeof(A));
  451. memset(B, 0, sizeof(B));
  452. memset(C, 0, sizeof(C));
  453. if((r->avail_cache[5-1] & type) & mask){
  454. A[0] = cur_pic->motion_val[dir][mv_pos - 1][0];
  455. A[1] = cur_pic->motion_val[dir][mv_pos - 1][1];
  456. has_A = 1;
  457. }
  458. if((r->avail_cache[5-4] & type) & mask){
  459. B[0] = cur_pic->motion_val[dir][mv_pos - s->b8_stride][0];
  460. B[1] = cur_pic->motion_val[dir][mv_pos - s->b8_stride][1];
  461. has_B = 1;
  462. }
  463. if((r->avail_cache[5-2] & type) & mask){
  464. C[0] = cur_pic->motion_val[dir][mv_pos - s->b8_stride + 2][0];
  465. C[1] = cur_pic->motion_val[dir][mv_pos - s->b8_stride + 2][1];
  466. has_C = 1;
  467. }else if((s->mb_x+1) == s->mb_width && (r->avail_cache[5-5] & type) & mask){
  468. C[0] = cur_pic->motion_val[dir][mv_pos - s->b8_stride - 1][0];
  469. C[1] = cur_pic->motion_val[dir][mv_pos - s->b8_stride - 1][1];
  470. has_C = 1;
  471. }
  472. rv34_pred_b_vector(A, B, C, has_A, has_B, has_C, &mx, &my);
  473. mx += r->dmv[dir][0];
  474. my += r->dmv[dir][1];
  475. for(j = 0; j < 2; j++){
  476. for(i = 0; i < 2; i++){
  477. cur_pic->motion_val[dir][mv_pos + i + j*s->b8_stride][0] = mx;
  478. cur_pic->motion_val[dir][mv_pos + i + j*s->b8_stride][1] = my;
  479. }
  480. }
  481. if(block_type == RV34_MB_B_BACKWARD || block_type == RV34_MB_B_FORWARD)
  482. fill_rectangle(cur_pic->motion_val[!dir][mv_pos], 2, 2, s->b8_stride, 0, 4);
  483. }
  484. /**
  485. * motion vector prediction - RV3 version
  486. */
  487. static void rv34_pred_mv_rv3(RV34DecContext *r, int block_type, int dir)
  488. {
  489. MpegEncContext *s = &r->s;
  490. int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
  491. int A[2] = {0}, B[2], C[2];
  492. int i, j, k;
  493. int mx, my;
  494. int avail_index = avail_indexes[0];
  495. if(r->avail_cache[avail_index - 1]){
  496. A[0] = s->current_picture_ptr->motion_val[0][mv_pos-1][0];
  497. A[1] = s->current_picture_ptr->motion_val[0][mv_pos-1][1];
  498. }
  499. if(r->avail_cache[avail_index - 4]){
  500. B[0] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride][0];
  501. B[1] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride][1];
  502. }else{
  503. B[0] = A[0];
  504. B[1] = A[1];
  505. }
  506. if(!r->avail_cache[avail_index - 4 + 2]){
  507. if(r->avail_cache[avail_index - 4] && (r->avail_cache[avail_index - 1])){
  508. C[0] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride-1][0];
  509. C[1] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride-1][1];
  510. }else{
  511. C[0] = A[0];
  512. C[1] = A[1];
  513. }
  514. }else{
  515. C[0] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride+2][0];
  516. C[1] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride+2][1];
  517. }
  518. mx = mid_pred(A[0], B[0], C[0]);
  519. my = mid_pred(A[1], B[1], C[1]);
  520. mx += r->dmv[0][0];
  521. my += r->dmv[0][1];
  522. for(j = 0; j < 2; j++){
  523. for(i = 0; i < 2; i++){
  524. for(k = 0; k < 2; k++){
  525. s->current_picture_ptr->motion_val[k][mv_pos + i + j*s->b8_stride][0] = mx;
  526. s->current_picture_ptr->motion_val[k][mv_pos + i + j*s->b8_stride][1] = my;
  527. }
  528. }
  529. }
  530. }
  531. static const int chroma_coeffs[3] = { 0, 3, 5 };
  532. /**
  533. * generic motion compensation function
  534. *
  535. * @param r decoder context
  536. * @param block_type type of the current block
  537. * @param xoff horizontal offset from the start of the current block
  538. * @param yoff vertical offset from the start of the current block
  539. * @param mv_off offset to the motion vector information
  540. * @param width width of the current partition in 8x8 blocks
  541. * @param height height of the current partition in 8x8 blocks
  542. */
  543. static inline void rv34_mc(RV34DecContext *r, const int block_type,
  544. const int xoff, const int yoff, int mv_off,
  545. const int width, const int height, int dir,
  546. const int thirdpel,
  547. qpel_mc_func (*qpel_mc)[16],
  548. h264_chroma_mc_func (*chroma_mc))
  549. {
  550. MpegEncContext *s = &r->s;
  551. uint8_t *Y, *U, *V, *srcY, *srcU, *srcV;
  552. int dxy, mx, my, umx, umy, lx, ly, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  553. int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride + mv_off;
  554. int is16x16 = 1;
  555. if(thirdpel){
  556. int chroma_mx, chroma_my;
  557. mx = (s->current_picture_ptr->motion_val[dir][mv_pos][0] + (3 << 24)) / 3 - (1 << 24);
  558. my = (s->current_picture_ptr->motion_val[dir][mv_pos][1] + (3 << 24)) / 3 - (1 << 24);
  559. lx = (s->current_picture_ptr->motion_val[dir][mv_pos][0] + (3 << 24)) % 3;
  560. ly = (s->current_picture_ptr->motion_val[dir][mv_pos][1] + (3 << 24)) % 3;
  561. chroma_mx = (s->current_picture_ptr->motion_val[dir][mv_pos][0] + 1) >> 1;
  562. chroma_my = (s->current_picture_ptr->motion_val[dir][mv_pos][1] + 1) >> 1;
  563. umx = (chroma_mx + (3 << 24)) / 3 - (1 << 24);
  564. umy = (chroma_my + (3 << 24)) / 3 - (1 << 24);
  565. uvmx = chroma_coeffs[(chroma_mx + (3 << 24)) % 3];
  566. uvmy = chroma_coeffs[(chroma_my + (3 << 24)) % 3];
  567. }else{
  568. int cx, cy;
  569. mx = s->current_picture_ptr->motion_val[dir][mv_pos][0] >> 2;
  570. my = s->current_picture_ptr->motion_val[dir][mv_pos][1] >> 2;
  571. lx = s->current_picture_ptr->motion_val[dir][mv_pos][0] & 3;
  572. ly = s->current_picture_ptr->motion_val[dir][mv_pos][1] & 3;
  573. cx = s->current_picture_ptr->motion_val[dir][mv_pos][0] / 2;
  574. cy = s->current_picture_ptr->motion_val[dir][mv_pos][1] / 2;
  575. umx = cx >> 2;
  576. umy = cy >> 2;
  577. uvmx = (cx & 3) << 1;
  578. uvmy = (cy & 3) << 1;
  579. //due to some flaw RV40 uses the same MC compensation routine for H2V2 and H3V3
  580. if(uvmx == 6 && uvmy == 6)
  581. uvmx = uvmy = 4;
  582. }
  583. dxy = ly*4 + lx;
  584. srcY = dir ? s->next_picture_ptr->data[0] : s->last_picture_ptr->data[0];
  585. srcU = dir ? s->next_picture_ptr->data[1] : s->last_picture_ptr->data[1];
  586. srcV = dir ? s->next_picture_ptr->data[2] : s->last_picture_ptr->data[2];
  587. src_x = s->mb_x * 16 + xoff + mx;
  588. src_y = s->mb_y * 16 + yoff + my;
  589. uvsrc_x = s->mb_x * 8 + (xoff >> 1) + umx;
  590. uvsrc_y = s->mb_y * 8 + (yoff >> 1) + umy;
  591. srcY += src_y * s->linesize + src_x;
  592. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  593. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  594. if( (unsigned)(src_x - !!lx*2) > s->h_edge_pos - !!lx*2 - (width <<3) - 4
  595. || (unsigned)(src_y - !!ly*2) > s->v_edge_pos - !!ly*2 - (height<<3) - 4){
  596. uint8_t *uvbuf= s->edge_emu_buffer + 22 * s->linesize;
  597. srcY -= 2 + 2*s->linesize;
  598. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, (width<<3)+6, (height<<3)+6,
  599. src_x - 2, src_y - 2, s->h_edge_pos, s->v_edge_pos);
  600. srcY = s->edge_emu_buffer + 2 + 2*s->linesize;
  601. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, (width<<2)+1, (height<<2)+1,
  602. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  603. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, (width<<2)+1, (height<<2)+1,
  604. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  605. srcU = uvbuf;
  606. srcV = uvbuf + 16;
  607. }
  608. Y = s->dest[0] + xoff + yoff *s->linesize;
  609. U = s->dest[1] + (xoff>>1) + (yoff>>1)*s->uvlinesize;
  610. V = s->dest[2] + (xoff>>1) + (yoff>>1)*s->uvlinesize;
  611. if(block_type == RV34_MB_P_16x8){
  612. qpel_mc[1][dxy](Y, srcY, s->linesize);
  613. Y += 8;
  614. srcY += 8;
  615. }else if(block_type == RV34_MB_P_8x16){
  616. qpel_mc[1][dxy](Y, srcY, s->linesize);
  617. Y += 8 * s->linesize;
  618. srcY += 8 * s->linesize;
  619. }
  620. is16x16 = (block_type != RV34_MB_P_8x8) && (block_type != RV34_MB_P_16x8) && (block_type != RV34_MB_P_8x16);
  621. qpel_mc[!is16x16][dxy](Y, srcY, s->linesize);
  622. chroma_mc[2-width] (U, srcU, s->uvlinesize, height*4, uvmx, uvmy);
  623. chroma_mc[2-width] (V, srcV, s->uvlinesize, height*4, uvmx, uvmy);
  624. }
  625. static void rv34_mc_1mv(RV34DecContext *r, const int block_type,
  626. const int xoff, const int yoff, int mv_off,
  627. const int width, const int height, int dir)
  628. {
  629. rv34_mc(r, block_type, xoff, yoff, mv_off, width, height, dir, r->rv30,
  630. r->rv30 ? r->s.dsp.put_rv30_tpel_pixels_tab
  631. : r->s.dsp.put_rv40_qpel_pixels_tab,
  632. r->rv30 ? r->s.dsp.put_h264_chroma_pixels_tab
  633. : r->s.dsp.put_rv40_chroma_pixels_tab);
  634. }
  635. static void rv34_mc_2mv(RV34DecContext *r, const int block_type)
  636. {
  637. rv34_mc(r, block_type, 0, 0, 0, 2, 2, 0, r->rv30,
  638. r->rv30 ? r->s.dsp.put_rv30_tpel_pixels_tab
  639. : r->s.dsp.put_rv40_qpel_pixels_tab,
  640. r->rv30 ? r->s.dsp.put_h264_chroma_pixels_tab
  641. : r->s.dsp.put_rv40_chroma_pixels_tab);
  642. rv34_mc(r, block_type, 0, 0, 0, 2, 2, 1, r->rv30,
  643. r->rv30 ? r->s.dsp.avg_rv30_tpel_pixels_tab
  644. : r->s.dsp.avg_rv40_qpel_pixels_tab,
  645. r->rv30 ? r->s.dsp.avg_h264_chroma_pixels_tab
  646. : r->s.dsp.avg_rv40_chroma_pixels_tab);
  647. }
  648. static void rv34_mc_2mv_skip(RV34DecContext *r)
  649. {
  650. int i, j;
  651. for(j = 0; j < 2; j++)
  652. for(i = 0; i < 2; i++){
  653. rv34_mc(r, RV34_MB_P_8x8, i*8, j*8, i+j*r->s.b8_stride, 1, 1, 0, r->rv30,
  654. r->rv30 ? r->s.dsp.put_rv30_tpel_pixels_tab
  655. : r->s.dsp.put_rv40_qpel_pixels_tab,
  656. r->rv30 ? r->s.dsp.put_h264_chroma_pixels_tab
  657. : r->s.dsp.put_rv40_chroma_pixels_tab);
  658. rv34_mc(r, RV34_MB_P_8x8, i*8, j*8, i+j*r->s.b8_stride, 1, 1, 1, r->rv30,
  659. r->rv30 ? r->s.dsp.avg_rv30_tpel_pixels_tab
  660. : r->s.dsp.avg_rv40_qpel_pixels_tab,
  661. r->rv30 ? r->s.dsp.avg_h264_chroma_pixels_tab
  662. : r->s.dsp.avg_rv40_chroma_pixels_tab);
  663. }
  664. }
  665. /** number of motion vectors in each macroblock type */
  666. static const int num_mvs[RV34_MB_TYPES] = { 0, 0, 1, 4, 1, 1, 0, 0, 2, 2, 2, 1 };
  667. /**
  668. * Decode motion vector differences
  669. * and perform motion vector reconstruction and motion compensation.
  670. */
  671. static int rv34_decode_mv(RV34DecContext *r, int block_type)
  672. {
  673. MpegEncContext *s = &r->s;
  674. GetBitContext *gb = &s->gb;
  675. int i, j, k, l;
  676. int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
  677. int next_bt;
  678. memset(r->dmv, 0, sizeof(r->dmv));
  679. for(i = 0; i < num_mvs[block_type]; i++){
  680. r->dmv[i][0] = svq3_get_se_golomb(gb);
  681. r->dmv[i][1] = svq3_get_se_golomb(gb);
  682. }
  683. switch(block_type){
  684. case RV34_MB_TYPE_INTRA:
  685. case RV34_MB_TYPE_INTRA16x16:
  686. fill_rectangle(s->current_picture_ptr->motion_val[0][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], 2, 2, s->b8_stride, 0, 4);
  687. return 0;
  688. case RV34_MB_SKIP:
  689. if(s->pict_type == FF_P_TYPE){
  690. fill_rectangle(s->current_picture_ptr->motion_val[0][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], 2, 2, s->b8_stride, 0, 4);
  691. rv34_mc_1mv (r, block_type, 0, 0, 0, 2, 2, 0);
  692. break;
  693. }
  694. case RV34_MB_B_DIRECT:
  695. //surprisingly, it uses motion scheme from next reference frame
  696. next_bt = s->next_picture_ptr->mb_type[s->mb_x + s->mb_y * s->mb_stride];
  697. for(j = 0; j < 2; j++)
  698. for(i = 0; i < 2; i++)
  699. for(k = 0; k < 2; k++)
  700. for(l = 0; l < 2; l++)
  701. s->current_picture_ptr->motion_val[l][mv_pos + i + j*s->b8_stride][k] = calc_add_mv(r, l, s->next_picture_ptr->motion_val[0][mv_pos + i + j*s->b8_stride][k]);
  702. if(IS_16X16(next_bt)) //we can use whole macroblock MC
  703. rv34_mc_2mv(r, block_type);
  704. else
  705. rv34_mc_2mv_skip(r);
  706. fill_rectangle(s->current_picture_ptr->motion_val[0][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], 2, 2, s->b8_stride, 0, 4);
  707. break;
  708. case RV34_MB_P_16x16:
  709. case RV34_MB_P_MIX16x16:
  710. rv34_pred_mv(r, block_type, 0, 0);
  711. rv34_mc_1mv (r, block_type, 0, 0, 0, 2, 2, 0);
  712. break;
  713. case RV34_MB_B_FORWARD:
  714. case RV34_MB_B_BACKWARD:
  715. r->dmv[1][0] = r->dmv[0][0];
  716. r->dmv[1][1] = r->dmv[0][1];
  717. if(r->rv30)
  718. rv34_pred_mv_rv3(r, block_type, block_type == RV34_MB_B_BACKWARD);
  719. else
  720. rv34_pred_mv_b (r, block_type, block_type == RV34_MB_B_BACKWARD);
  721. rv34_mc_1mv (r, block_type, 0, 0, 0, 2, 2, block_type == RV34_MB_B_BACKWARD);
  722. break;
  723. case RV34_MB_P_16x8:
  724. case RV34_MB_P_8x16:
  725. rv34_pred_mv(r, block_type, 0, 0);
  726. rv34_pred_mv(r, block_type, 1 + (block_type == RV34_MB_P_16x8), 1);
  727. if(block_type == RV34_MB_P_16x8){
  728. rv34_mc_1mv(r, block_type, 0, 0, 0, 2, 1, 0);
  729. rv34_mc_1mv(r, block_type, 0, 8, s->b8_stride, 2, 1, 0);
  730. }
  731. if(block_type == RV34_MB_P_8x16){
  732. rv34_mc_1mv(r, block_type, 0, 0, 0, 1, 2, 0);
  733. rv34_mc_1mv(r, block_type, 8, 0, 1, 1, 2, 0);
  734. }
  735. break;
  736. case RV34_MB_B_BIDIR:
  737. rv34_pred_mv_b (r, block_type, 0);
  738. rv34_pred_mv_b (r, block_type, 1);
  739. rv34_mc_2mv (r, block_type);
  740. break;
  741. case RV34_MB_P_8x8:
  742. for(i=0;i< 4;i++){
  743. rv34_pred_mv(r, block_type, i, i);
  744. rv34_mc_1mv (r, block_type, (i&1)<<3, (i&2)<<2, (i&1)+(i>>1)*s->b8_stride, 1, 1, 0);
  745. }
  746. break;
  747. }
  748. return 0;
  749. }
  750. /** @} */ // mv group
  751. /**
  752. * @defgroup recons Macroblock reconstruction functions
  753. * @{
  754. */
  755. /** mapping of RV30/40 intra prediction types to standard H.264 types */
  756. static const int ittrans[9] = {
  757. DC_PRED, VERT_PRED, HOR_PRED, DIAG_DOWN_RIGHT_PRED, DIAG_DOWN_LEFT_PRED,
  758. VERT_RIGHT_PRED, VERT_LEFT_PRED, HOR_UP_PRED, HOR_DOWN_PRED,
  759. };
  760. /** mapping of RV30/40 intra 16x16 prediction types to standard H.264 types */
  761. static const int ittrans16[4] = {
  762. DC_PRED8x8, VERT_PRED8x8, HOR_PRED8x8, PLANE_PRED8x8,
  763. };
  764. /**
  765. * Perform 4x4 intra prediction.
  766. */
  767. static void rv34_pred_4x4_block(RV34DecContext *r, uint8_t *dst, int stride, int itype, int up, int left, int down, int right)
  768. {
  769. uint8_t *prev = dst - stride + 4;
  770. uint32_t topleft;
  771. if(!up && !left)
  772. itype = DC_128_PRED;
  773. else if(!up){
  774. if(itype == VERT_PRED) itype = HOR_PRED;
  775. if(itype == DC_PRED) itype = LEFT_DC_PRED;
  776. }else if(!left){
  777. if(itype == HOR_PRED) itype = VERT_PRED;
  778. if(itype == DC_PRED) itype = TOP_DC_PRED;
  779. if(itype == DIAG_DOWN_LEFT_PRED) itype = DIAG_DOWN_LEFT_PRED_RV40_NODOWN;
  780. }
  781. if(!down){
  782. if(itype == DIAG_DOWN_LEFT_PRED) itype = DIAG_DOWN_LEFT_PRED_RV40_NODOWN;
  783. if(itype == HOR_UP_PRED) itype = HOR_UP_PRED_RV40_NODOWN;
  784. if(itype == VERT_LEFT_PRED) itype = VERT_LEFT_PRED_RV40_NODOWN;
  785. }
  786. if(!right && up){
  787. topleft = dst[-stride + 3] * 0x01010101;
  788. prev = &topleft;
  789. }
  790. r->h.pred4x4[itype](dst, prev, stride);
  791. }
  792. /** add_pixels_clamped for 4x4 block */
  793. static void rv34_add_4x4_block(uint8_t *dst, int stride, DCTELEM block[64], int off)
  794. {
  795. int x, y;
  796. for(y = 0; y < 4; y++)
  797. for(x = 0; x < 4; x++)
  798. dst[x + y*stride] = av_clip_uint8(dst[x + y*stride] + block[off + x+y*8]);
  799. }
  800. static inline int adjust_pred16(int itype, int up, int left)
  801. {
  802. if(!up && !left)
  803. itype = DC_128_PRED8x8;
  804. else if(!up){
  805. if(itype == PLANE_PRED8x8)itype = HOR_PRED8x8;
  806. if(itype == VERT_PRED8x8) itype = HOR_PRED8x8;
  807. if(itype == DC_PRED8x8) itype = LEFT_DC_PRED8x8;
  808. }else if(!left){
  809. if(itype == PLANE_PRED8x8)itype = VERT_PRED8x8;
  810. if(itype == HOR_PRED8x8) itype = VERT_PRED8x8;
  811. if(itype == DC_PRED8x8) itype = TOP_DC_PRED8x8;
  812. }
  813. return itype;
  814. }
  815. static void rv34_output_macroblock(RV34DecContext *r, int8_t *intra_types, int cbp, int is16)
  816. {
  817. MpegEncContext *s = &r->s;
  818. DSPContext *dsp = &s->dsp;
  819. int i, j;
  820. uint8_t *Y, *U, *V;
  821. int itype;
  822. int avail[6*8] = {0};
  823. int idx;
  824. // Set neighbour information.
  825. if(r->avail_cache[0])
  826. avail[0] = 1;
  827. if(r->avail_cache[1])
  828. avail[1] = avail[2] = 1;
  829. if(r->avail_cache[2])
  830. avail[3] = avail[4] = 1;
  831. if(r->avail_cache[3])
  832. avail[5] = 1;
  833. if(r->avail_cache[4])
  834. avail[8] = avail[16] = 1;
  835. if(r->avail_cache[8])
  836. avail[24] = avail[32] = 1;
  837. Y = s->dest[0];
  838. U = s->dest[1];
  839. V = s->dest[2];
  840. if(!is16){
  841. for(j = 0; j < 4; j++){
  842. idx = 9 + j*8;
  843. for(i = 0; i < 4; i++, cbp >>= 1, Y += 4, idx++){
  844. rv34_pred_4x4_block(r, Y, s->linesize, ittrans[intra_types[i]], avail[idx-8], avail[idx-1], avail[idx+7], avail[idx-7]);
  845. avail[idx] = 1;
  846. if(cbp & 1)
  847. rv34_add_4x4_block(Y, s->linesize, s->block[(i>>1)+(j&2)], (i&1)*4+(j&1)*32);
  848. }
  849. Y += s->linesize * 4 - 4*4;
  850. intra_types += s->b4_stride;
  851. }
  852. intra_types -= s->b4_stride * 4;
  853. fill_rectangle(r->avail_cache + 5, 2, 2, 4, 0, 4);
  854. for(j = 0; j < 2; j++){
  855. idx = 5 + j*4;
  856. for(i = 0; i < 2; i++, cbp >>= 1, idx++){
  857. rv34_pred_4x4_block(r, U + i*4 + j*4*s->uvlinesize, s->uvlinesize, ittrans[intra_types[i*2+j*2*s->b4_stride]], r->avail_cache[idx-4], r->avail_cache[idx-1], !i && !j, r->avail_cache[idx-3]);
  858. rv34_pred_4x4_block(r, V + i*4 + j*4*s->uvlinesize, s->uvlinesize, ittrans[intra_types[i*2+j*2*s->b4_stride]], r->avail_cache[idx-4], r->avail_cache[idx-1], !i && !j, r->avail_cache[idx-3]);
  859. r->avail_cache[idx] = 1;
  860. if(cbp & 0x01)
  861. rv34_add_4x4_block(U + i*4 + j*4*s->uvlinesize, s->uvlinesize, s->block[4], i*4+j*32);
  862. if(cbp & 0x10)
  863. rv34_add_4x4_block(V + i*4 + j*4*s->uvlinesize, s->uvlinesize, s->block[5], i*4+j*32);
  864. }
  865. }
  866. }else{
  867. itype = ittrans16[intra_types[0]];
  868. itype = adjust_pred16(itype, r->avail_cache[5-4], r->avail_cache[5-1]);
  869. r->h.pred16x16[itype](Y, s->linesize);
  870. dsp->add_pixels_clamped(s->block[0], Y, s->linesize);
  871. dsp->add_pixels_clamped(s->block[1], Y + 8, s->linesize);
  872. Y += s->linesize * 8;
  873. dsp->add_pixels_clamped(s->block[2], Y, s->linesize);
  874. dsp->add_pixels_clamped(s->block[3], Y + 8, s->linesize);
  875. itype = ittrans16[intra_types[0]];
  876. if(itype == PLANE_PRED8x8) itype = DC_PRED8x8;
  877. itype = adjust_pred16(itype, r->avail_cache[5-4], r->avail_cache[5-1]);
  878. r->h.pred8x8[itype](U, s->uvlinesize);
  879. dsp->add_pixels_clamped(s->block[4], U, s->uvlinesize);
  880. r->h.pred8x8[itype](V, s->uvlinesize);
  881. dsp->add_pixels_clamped(s->block[5], V, s->uvlinesize);
  882. }
  883. }
  884. /** @} */ // recons group
  885. /**
  886. * @addtogroup bitstream
  887. * Decode macroblock header and return CBP in case of success, -1 otherwise.
  888. */
  889. static int rv34_decode_mb_header(RV34DecContext *r, int8_t *intra_types)
  890. {
  891. MpegEncContext *s = &r->s;
  892. GetBitContext *gb = &s->gb;
  893. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  894. int i, t;
  895. if(!r->si.type){
  896. r->is16 = get_bits1(gb);
  897. if(!r->is16 && !r->rv30){
  898. if(!get_bits1(gb))
  899. av_log(s->avctx, AV_LOG_ERROR, "Need DQUANT\n");
  900. }
  901. s->current_picture_ptr->mb_type[mb_pos] = r->is16 ? MB_TYPE_INTRA16x16 : MB_TYPE_INTRA;
  902. r->block_type = r->is16 ? RV34_MB_TYPE_INTRA16x16 : RV34_MB_TYPE_INTRA;
  903. }else{
  904. r->block_type = r->decode_mb_info(r);
  905. if(r->block_type == -1)
  906. return -1;
  907. s->current_picture_ptr->mb_type[mb_pos] = rv34_mb_type_to_lavc[r->block_type];
  908. r->mb_type[mb_pos] = r->block_type;
  909. if(r->block_type == RV34_MB_SKIP){
  910. if(s->pict_type == FF_P_TYPE)
  911. r->mb_type[mb_pos] = RV34_MB_P_16x16;
  912. if(s->pict_type == FF_B_TYPE)
  913. r->mb_type[mb_pos] = RV34_MB_B_DIRECT;
  914. }
  915. r->is16 = !!IS_INTRA16x16(s->current_picture_ptr->mb_type[mb_pos]);
  916. rv34_decode_mv(r, r->block_type);
  917. if(r->block_type == RV34_MB_SKIP){
  918. fill_rectangle(intra_types, 4, 4, s->b4_stride, 0, sizeof(intra_types[0]));
  919. return 0;
  920. }
  921. r->chroma_vlc = 1;
  922. r->luma_vlc = 0;
  923. }
  924. if(IS_INTRA(s->current_picture_ptr->mb_type[mb_pos])){
  925. if(r->is16){
  926. t = get_bits(gb, 2);
  927. fill_rectangle(intra_types, 4, 4, s->b4_stride, t, sizeof(intra_types[0]));
  928. r->luma_vlc = 2;
  929. }else{
  930. if(r->decode_intra_types(r, gb, intra_types) < 0)
  931. return -1;
  932. r->luma_vlc = 1;
  933. }
  934. r->chroma_vlc = 0;
  935. r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 0);
  936. }else{
  937. for(i = 0; i < 16; i++)
  938. intra_types[(i & 3) + (i>>2) * s->b4_stride] = 0;
  939. r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 1);
  940. if(r->mb_type[mb_pos] == RV34_MB_P_MIX16x16){
  941. r->is16 = 1;
  942. r->chroma_vlc = 1;
  943. r->luma_vlc = 2;
  944. r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 0);
  945. }
  946. }
  947. return rv34_decode_cbp(gb, r->cur_vlcs, r->is16);
  948. }
  949. /**
  950. * @addtogroup recons
  951. * @{
  952. */
  953. /**
  954. * mask for retrieving all bits in coded block pattern
  955. * corresponding to one 8x8 block
  956. */
  957. #define LUMA_CBP_BLOCK_MASK 0x33
  958. #define U_CBP_MASK 0x0F0000
  959. #define V_CBP_MASK 0xF00000
  960. static void rv34_apply_differences(RV34DecContext *r, int cbp)
  961. {
  962. static const int shifts[4] = { 0, 2, 8, 10 };
  963. MpegEncContext *s = &r->s;
  964. int i;
  965. for(i = 0; i < 4; i++)
  966. if((cbp & (LUMA_CBP_BLOCK_MASK << shifts[i])) || r->block_type == RV34_MB_P_MIX16x16)
  967. s->dsp.add_pixels_clamped(s->block[i], s->dest[0] + (i & 1)*8 + (i&2)*4*s->linesize, s->linesize);
  968. if(cbp & U_CBP_MASK)
  969. s->dsp.add_pixels_clamped(s->block[4], s->dest[1], s->uvlinesize);
  970. if(cbp & V_CBP_MASK)
  971. s->dsp.add_pixels_clamped(s->block[5], s->dest[2], s->uvlinesize);
  972. }
  973. static int is_mv_diff_gt_3(int16_t (*motion_val)[2], int step)
  974. {
  975. int d;
  976. d = motion_val[0][0] - motion_val[-step][0];
  977. if(d < -3 || d > 3)
  978. return 1;
  979. d = motion_val[0][1] - motion_val[-step][1];
  980. if(d < -3 || d > 3)
  981. return 1;
  982. return 0;
  983. }
  984. static int rv34_set_deblock_coef(RV34DecContext *r)
  985. {
  986. MpegEncContext *s = &r->s;
  987. int hmvmask = 0, vmvmask = 0, i, j;
  988. int midx = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
  989. int16_t (*motion_val)[2] = s->current_picture_ptr->motion_val[0][midx];
  990. for(j = 0; j < 16; j += 8){
  991. for(i = 0; i < 2; i++){
  992. if(is_mv_diff_gt_3(motion_val + i, 1))
  993. vmvmask |= 0x11 << (j + i*2);
  994. if((j || s->mb_y) && is_mv_diff_gt_3(motion_val + i, s->b8_stride))
  995. hmvmask |= 0x03 << (j + i*2);
  996. }
  997. motion_val += s->b8_stride;
  998. }
  999. if(s->first_slice_line)
  1000. hmvmask &= ~0x000F;
  1001. if(!s->mb_x)
  1002. vmvmask &= ~0x1111;
  1003. if(r->rv30){ //RV30 marks both subblocks on the edge for filtering
  1004. vmvmask |= (vmvmask & 0x4444) >> 1;
  1005. hmvmask |= (hmvmask & 0x0F00) >> 4;
  1006. if(s->mb_x)
  1007. r->deblock_coefs[s->mb_x - 1 + s->mb_y*s->mb_stride] |= (vmvmask & 0x1111) << 3;
  1008. if(!s->first_slice_line)
  1009. r->deblock_coefs[s->mb_x + (s->mb_y - 1)*s->mb_stride] |= (hmvmask & 0xF) << 12;
  1010. }
  1011. return hmvmask | vmvmask;
  1012. }
  1013. static int rv34_decode_macroblock(RV34DecContext *r, int8_t *intra_types)
  1014. {
  1015. MpegEncContext *s = &r->s;
  1016. GetBitContext *gb = &s->gb;
  1017. int cbp, cbp2;
  1018. int i, blknum, blkoff;
  1019. DCTELEM block16[64];
  1020. int luma_dc_quant;
  1021. int dist;
  1022. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1023. // Calculate which neighbours are available. Maybe it's worth optimizing too.
  1024. memset(r->avail_cache, 0, sizeof(r->avail_cache));
  1025. fill_rectangle(r->avail_cache + 5, 2, 2, 4, 1, 4);
  1026. dist = (s->mb_x - s->resync_mb_x) + (s->mb_y - s->resync_mb_y) * s->mb_width;
  1027. if(s->mb_x && dist)
  1028. r->avail_cache[4] =
  1029. r->avail_cache[8] = s->current_picture_ptr->mb_type[mb_pos - 1];
  1030. if(dist >= s->mb_width)
  1031. r->avail_cache[1] =
  1032. r->avail_cache[2] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride];
  1033. if(((s->mb_x+1) < s->mb_width) && dist >= s->mb_width - 1)
  1034. r->avail_cache[3] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride + 1];
  1035. if(s->mb_x && dist > s->mb_width)
  1036. r->avail_cache[0] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride - 1];
  1037. s->qscale = r->si.quant;
  1038. cbp = cbp2 = rv34_decode_mb_header(r, intra_types);
  1039. r->cbp_luma [mb_pos] = cbp;
  1040. r->cbp_chroma[mb_pos] = cbp >> 16;
  1041. if(s->pict_type == FF_I_TYPE)
  1042. r->deblock_coefs[mb_pos] = 0xFFFF;
  1043. else
  1044. r->deblock_coefs[mb_pos] = rv34_set_deblock_coef(r) | r->cbp_luma[mb_pos];
  1045. s->current_picture_ptr->qscale_table[mb_pos] = s->qscale;
  1046. if(cbp == -1)
  1047. return -1;
  1048. luma_dc_quant = r->block_type == RV34_MB_P_MIX16x16 ? r->luma_dc_quant_p[s->qscale] : r->luma_dc_quant_i[s->qscale];
  1049. if(r->is16){
  1050. memset(block16, 0, sizeof(block16));
  1051. rv34_decode_block(block16, gb, r->cur_vlcs, 3, 0);
  1052. rv34_dequant4x4_16x16(block16, rv34_qscale_tab[luma_dc_quant],rv34_qscale_tab[s->qscale]);
  1053. rv34_inv_transform_noround(block16);
  1054. }
  1055. for(i = 0; i < 16; i++, cbp >>= 1){
  1056. if(!r->is16 && !(cbp & 1)) continue;
  1057. blknum = ((i & 2) >> 1) + ((i & 8) >> 2);
  1058. blkoff = ((i & 1) << 2) + ((i & 4) << 3);
  1059. if(cbp & 1)
  1060. rv34_decode_block(s->block[blknum] + blkoff, gb, r->cur_vlcs, r->luma_vlc, 0);
  1061. rv34_dequant4x4(s->block[blknum] + blkoff, rv34_qscale_tab[s->qscale],rv34_qscale_tab[s->qscale]);
  1062. if(r->is16) //FIXME: optimize
  1063. s->block[blknum][blkoff] = block16[(i & 3) | ((i & 0xC) << 1)];
  1064. rv34_inv_transform(s->block[blknum] + blkoff);
  1065. }
  1066. if(r->block_type == RV34_MB_P_MIX16x16)
  1067. r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 1);
  1068. for(; i < 24; i++, cbp >>= 1){
  1069. if(!(cbp & 1)) continue;
  1070. blknum = ((i & 4) >> 2) + 4;
  1071. blkoff = ((i & 1) << 2) + ((i & 2) << 4);
  1072. rv34_decode_block(s->block[blknum] + blkoff, gb, r->cur_vlcs, r->chroma_vlc, 1);
  1073. rv34_dequant4x4(s->block[blknum] + blkoff, rv34_qscale_tab[rv34_chroma_quant[1][s->qscale]],rv34_qscale_tab[rv34_chroma_quant[0][s->qscale]]);
  1074. rv34_inv_transform(s->block[blknum] + blkoff);
  1075. }
  1076. if(IS_INTRA(s->current_picture_ptr->mb_type[mb_pos]))
  1077. rv34_output_macroblock(r, intra_types, cbp2, r->is16);
  1078. else
  1079. rv34_apply_differences(r, cbp2);
  1080. return 0;
  1081. }
  1082. static int check_slice_end(RV34DecContext *r, MpegEncContext *s)
  1083. {
  1084. int bits;
  1085. if(s->mb_y >= s->mb_height)
  1086. return 1;
  1087. if(!s->mb_num_left)
  1088. return 1;
  1089. if(r->s.mb_skip_run > 1)
  1090. return 0;
  1091. bits = r->bits - get_bits_count(&s->gb);
  1092. if(bits < 0 || (bits < 8 && !show_bits(&s->gb, bits)))
  1093. return 1;
  1094. return 0;
  1095. }
  1096. static inline int slice_compare(SliceInfo *si1, SliceInfo *si2)
  1097. {
  1098. return si1->type != si2->type ||
  1099. si1->start >= si2->start ||
  1100. si1->width != si2->width ||
  1101. si1->height != si2->height||
  1102. si1->pts != si2->pts;
  1103. }
  1104. static int rv34_decode_slice(RV34DecContext *r, int end, const uint8_t* buf, int buf_size)
  1105. {
  1106. MpegEncContext *s = &r->s;
  1107. GetBitContext *gb = &s->gb;
  1108. int mb_pos;
  1109. int res;
  1110. init_get_bits(&r->s.gb, buf, buf_size*8);
  1111. res = r->parse_slice_header(r, gb, &r->si);
  1112. if(res < 0){
  1113. av_log(s->avctx, AV_LOG_ERROR, "Incorrect or unknown slice header\n");
  1114. return -1;
  1115. }
  1116. if ((s->mb_x == 0 && s->mb_y == 0) || s->current_picture_ptr==NULL) {
  1117. if(s->width != r->si.width || s->height != r->si.height){
  1118. av_log(s->avctx, AV_LOG_DEBUG, "Changing dimensions to %dx%d\n", r->si.width,r->si.height);
  1119. MPV_common_end(s);
  1120. s->width = r->si.width;
  1121. s->height = r->si.height;
  1122. if(MPV_common_init(s) < 0)
  1123. return -1;
  1124. r->intra_types_hist = av_realloc(r->intra_types_hist, s->b4_stride * 4 * 2 * sizeof(*r->intra_types_hist));
  1125. r->intra_types = r->intra_types_hist + s->b4_stride * 4;
  1126. r->mb_type = av_realloc(r->mb_type, r->s.mb_stride * r->s.mb_height * sizeof(*r->mb_type));
  1127. r->cbp_luma = av_realloc(r->cbp_luma, r->s.mb_stride * r->s.mb_height * sizeof(*r->cbp_luma));
  1128. r->cbp_chroma = av_realloc(r->cbp_chroma, r->s.mb_stride * r->s.mb_height * sizeof(*r->cbp_chroma));
  1129. r->deblock_coefs = av_realloc(r->deblock_coefs, r->s.mb_stride * r->s.mb_height * sizeof(*r->deblock_coefs));
  1130. }
  1131. s->pict_type = r->si.type ? r->si.type : FF_I_TYPE;
  1132. if(MPV_frame_start(s, s->avctx) < 0)
  1133. return -1;
  1134. ff_er_frame_start(s);
  1135. r->cur_pts = r->si.pts;
  1136. if(s->pict_type != FF_B_TYPE){
  1137. r->last_pts = r->next_pts;
  1138. r->next_pts = r->cur_pts;
  1139. }
  1140. s->mb_x = s->mb_y = 0;
  1141. }
  1142. r->si.end = end;
  1143. s->qscale = r->si.quant;
  1144. r->bits = buf_size*8;
  1145. s->mb_num_left = r->si.end - r->si.start;
  1146. r->s.mb_skip_run = 0;
  1147. mb_pos = s->mb_x + s->mb_y * s->mb_width;
  1148. if(r->si.start != mb_pos){
  1149. av_log(s->avctx, AV_LOG_ERROR, "Slice indicates MB offset %d, got %d\n", r->si.start, mb_pos);
  1150. s->mb_x = r->si.start % s->mb_width;
  1151. s->mb_y = r->si.start / s->mb_width;
  1152. }
  1153. memset(r->intra_types_hist, -1, s->b4_stride * 4 * 2 * sizeof(*r->intra_types_hist));
  1154. s->first_slice_line = 1;
  1155. s->resync_mb_x= s->mb_x;
  1156. s->resync_mb_y= s->mb_y;
  1157. ff_init_block_index(s);
  1158. while(!check_slice_end(r, s)) {
  1159. ff_update_block_index(s);
  1160. s->dsp.clear_blocks(s->block[0]);
  1161. if(rv34_decode_macroblock(r, r->intra_types + s->mb_x * 4 + 1) < 0){
  1162. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, AC_ERROR|DC_ERROR|MV_ERROR);
  1163. return -1;
  1164. }
  1165. if (++s->mb_x == s->mb_width) {
  1166. s->mb_x = 0;
  1167. s->mb_y++;
  1168. ff_init_block_index(s);
  1169. memmove(r->intra_types_hist, r->intra_types, s->b4_stride * 4 * sizeof(*r->intra_types_hist));
  1170. memset(r->intra_types, -1, s->b4_stride * 4 * sizeof(*r->intra_types_hist));
  1171. if(r->loop_filter && s->mb_y >= 2)
  1172. r->loop_filter(r, s->mb_y - 2);
  1173. }
  1174. if(s->mb_x == s->resync_mb_x)
  1175. s->first_slice_line=0;
  1176. s->mb_num_left--;
  1177. }
  1178. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, AC_END|DC_END|MV_END);
  1179. return s->mb_y == s->mb_height;
  1180. }
  1181. /** @} */ // recons group end
  1182. /**
  1183. * Initialize decoder.
  1184. */
  1185. av_cold int ff_rv34_decode_init(AVCodecContext *avctx)
  1186. {
  1187. RV34DecContext *r = avctx->priv_data;
  1188. MpegEncContext *s = &r->s;
  1189. MPV_decode_defaults(s);
  1190. s->avctx= avctx;
  1191. s->out_format = FMT_H263;
  1192. s->codec_id= avctx->codec_id;
  1193. s->width = avctx->width;
  1194. s->height = avctx->height;
  1195. r->s.avctx = avctx;
  1196. avctx->flags |= CODEC_FLAG_EMU_EDGE;
  1197. r->s.flags |= CODEC_FLAG_EMU_EDGE;
  1198. avctx->pix_fmt = PIX_FMT_YUV420P;
  1199. avctx->has_b_frames = 1;
  1200. s->low_delay = 0;
  1201. if (MPV_common_init(s) < 0)
  1202. return -1;
  1203. ff_h264_pred_init(&r->h, CODEC_ID_RV40);
  1204. r->intra_types_hist = av_malloc(s->b4_stride * 4 * 2 * sizeof(*r->intra_types_hist));
  1205. r->intra_types = r->intra_types_hist + s->b4_stride * 4;
  1206. r->mb_type = av_mallocz(r->s.mb_stride * r->s.mb_height * sizeof(*r->mb_type));
  1207. r->cbp_luma = av_malloc(r->s.mb_stride * r->s.mb_height * sizeof(*r->cbp_luma));
  1208. r->cbp_chroma = av_malloc(r->s.mb_stride * r->s.mb_height * sizeof(*r->cbp_chroma));
  1209. r->deblock_coefs = av_malloc(r->s.mb_stride * r->s.mb_height * sizeof(*r->deblock_coefs));
  1210. if(!intra_vlcs[0].cbppattern[0].bits)
  1211. rv34_init_tables();
  1212. return 0;
  1213. }
  1214. static int get_slice_offset(AVCodecContext *avctx, const uint8_t *buf, int n)
  1215. {
  1216. if(avctx->slice_count) return avctx->slice_offset[n];
  1217. else return AV_RL32(buf + n*8 - 4) == 1 ? AV_RL32(buf + n*8) : AV_RB32(buf + n*8);
  1218. }
  1219. int ff_rv34_decode_frame(AVCodecContext *avctx,
  1220. void *data, int *data_size,
  1221. const uint8_t *buf, int buf_size)
  1222. {
  1223. RV34DecContext *r = avctx->priv_data;
  1224. MpegEncContext *s = &r->s;
  1225. AVFrame *pict = data;
  1226. SliceInfo si;
  1227. int i;
  1228. int slice_count;
  1229. const uint8_t *slices_hdr = NULL;
  1230. int last = 0;
  1231. /* no supplementary picture */
  1232. if (buf_size == 0) {
  1233. /* special case for last picture */
  1234. if (s->low_delay==0 && s->next_picture_ptr) {
  1235. *pict= *(AVFrame*)s->next_picture_ptr;
  1236. s->next_picture_ptr= NULL;
  1237. *data_size = sizeof(AVFrame);
  1238. }
  1239. return 0;
  1240. }
  1241. if(!avctx->slice_count){
  1242. slice_count = (*buf++) + 1;
  1243. slices_hdr = buf + 4;
  1244. buf += 8 * slice_count;
  1245. }else
  1246. slice_count = avctx->slice_count;
  1247. for(i=0; i<slice_count; i++){
  1248. int offset= get_slice_offset(avctx, slices_hdr, i);
  1249. int size;
  1250. if(i+1 == slice_count)
  1251. size= buf_size - offset;
  1252. else
  1253. size= get_slice_offset(avctx, slices_hdr, i+1) - offset;
  1254. if(offset > buf_size){
  1255. av_log(avctx, AV_LOG_ERROR, "Slice offset is greater than frame size\n");
  1256. break;
  1257. }
  1258. r->si.end = s->mb_width * s->mb_height;
  1259. if(i+1 < slice_count){
  1260. init_get_bits(&s->gb, buf+get_slice_offset(avctx, slices_hdr, i+1), (buf_size-get_slice_offset(avctx, slices_hdr, i+1))*8);
  1261. if(r->parse_slice_header(r, &r->s.gb, &si) < 0){
  1262. if(i+2 < slice_count)
  1263. size = get_slice_offset(avctx, slices_hdr, i+2) - offset;
  1264. else
  1265. size = buf_size - offset;
  1266. }else
  1267. r->si.end = si.start;
  1268. }
  1269. if(!i && si.type == FF_B_TYPE && (!s->last_picture_ptr || !s->last_picture_ptr->data[0]))
  1270. return -1;
  1271. last = rv34_decode_slice(r, r->si.end, buf + offset, size);
  1272. s->mb_num_left = r->s.mb_x + r->s.mb_y*r->s.mb_width - r->si.start;
  1273. if(last)
  1274. break;
  1275. }
  1276. if(last){
  1277. if(r->loop_filter)
  1278. r->loop_filter(r, s->mb_height - 1);
  1279. ff_er_frame_end(s);
  1280. MPV_frame_end(s);
  1281. if (s->pict_type == FF_B_TYPE || s->low_delay) {
  1282. *pict= *(AVFrame*)s->current_picture_ptr;
  1283. } else if (s->last_picture_ptr != NULL) {
  1284. *pict= *(AVFrame*)s->last_picture_ptr;
  1285. }
  1286. if(s->last_picture_ptr || s->low_delay){
  1287. *data_size = sizeof(AVFrame);
  1288. ff_print_debug_info(s, pict);
  1289. }
  1290. s->current_picture_ptr= NULL; //so we can detect if frame_end wasnt called (find some nicer solution...)
  1291. }
  1292. return buf_size;
  1293. }
  1294. av_cold int ff_rv34_decode_end(AVCodecContext *avctx)
  1295. {
  1296. RV34DecContext *r = avctx->priv_data;
  1297. MPV_common_end(&r->s);
  1298. av_freep(&r->intra_types_hist);
  1299. r->intra_types = NULL;
  1300. av_freep(&r->mb_type);
  1301. av_freep(&r->cbp_luma);
  1302. av_freep(&r->cbp_chroma);
  1303. av_freep(&r->deblock_coefs);
  1304. return 0;
  1305. }