You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2043 lines
68KB

  1. /*
  2. * QDM2 compatible decoder
  3. * Copyright (c) 2003 Ewald Snel
  4. * Copyright (c) 2005 Benjamin Larsson
  5. * Copyright (c) 2005 Alex Beregszaszi
  6. * Copyright (c) 2005 Roberto Togni
  7. *
  8. * This file is part of FFmpeg.
  9. *
  10. * FFmpeg is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU Lesser General Public
  12. * License as published by the Free Software Foundation; either
  13. * version 2.1 of the License, or (at your option) any later version.
  14. *
  15. * FFmpeg is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  18. * Lesser General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU Lesser General Public
  21. * License along with FFmpeg; if not, write to the Free Software
  22. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  23. */
  24. /**
  25. * @file qdm2.c
  26. * QDM2 decoder
  27. * @author Ewald Snel, Benjamin Larsson, Alex Beregszaszi, Roberto Togni
  28. * The decoder is not perfect yet, there are still some distortions
  29. * especially on files encoded with 16 or 8 subbands.
  30. */
  31. #include <math.h>
  32. #include <stddef.h>
  33. #include <stdio.h>
  34. #define ALT_BITSTREAM_READER_LE
  35. #include "avcodec.h"
  36. #include "bitstream.h"
  37. #include "dsputil.h"
  38. #include "mpegaudio.h"
  39. #include "qdm2data.h"
  40. #undef NDEBUG
  41. #include <assert.h>
  42. #define SOFTCLIP_THRESHOLD 27600
  43. #define HARDCLIP_THRESHOLD 35716
  44. #define QDM2_LIST_ADD(list, size, packet) \
  45. do { \
  46. if (size > 0) { \
  47. list[size - 1].next = &list[size]; \
  48. } \
  49. list[size].packet = packet; \
  50. list[size].next = NULL; \
  51. size++; \
  52. } while(0)
  53. // Result is 8, 16 or 30
  54. #define QDM2_SB_USED(sub_sampling) (((sub_sampling) >= 2) ? 30 : 8 << (sub_sampling))
  55. #define FIX_NOISE_IDX(noise_idx) \
  56. if ((noise_idx) >= 3840) \
  57. (noise_idx) -= 3840; \
  58. #define SB_DITHERING_NOISE(sb,noise_idx) (noise_table[(noise_idx)++] * sb_noise_attenuation[(sb)])
  59. #define BITS_LEFT(length,gb) ((length) - get_bits_count ((gb)))
  60. #define SAMPLES_NEEDED \
  61. av_log (NULL,AV_LOG_INFO,"This file triggers some untested code. Please contact the developers.\n");
  62. #define SAMPLES_NEEDED_2(why) \
  63. av_log (NULL,AV_LOG_INFO,"This file triggers some missing code. Please contact the developers.\nPosition: %s\n",why);
  64. typedef int8_t sb_int8_array[2][30][64];
  65. /**
  66. * Subpacket
  67. */
  68. typedef struct {
  69. int type; ///< subpacket type
  70. unsigned int size; ///< subpacket size
  71. const uint8_t *data; ///< pointer to subpacket data (points to input data buffer, it's not a private copy)
  72. } QDM2SubPacket;
  73. /**
  74. * A node in the subpacket list
  75. */
  76. typedef struct QDM2SubPNode {
  77. QDM2SubPacket *packet; ///< packet
  78. struct QDM2SubPNode *next; ///< pointer to next packet in the list, NULL if leaf node
  79. } QDM2SubPNode;
  80. typedef struct {
  81. float level;
  82. float *samples_im;
  83. float *samples_re;
  84. const float *table;
  85. int phase;
  86. int phase_shift;
  87. int duration;
  88. short time_index;
  89. short cutoff;
  90. } FFTTone;
  91. typedef struct {
  92. int16_t sub_packet;
  93. uint8_t channel;
  94. int16_t offset;
  95. int16_t exp;
  96. uint8_t phase;
  97. } FFTCoefficient;
  98. typedef struct {
  99. float re;
  100. float im;
  101. } QDM2Complex;
  102. typedef struct {
  103. DECLARE_ALIGNED_16(QDM2Complex, complex[256 + 1]);
  104. float samples_im[MPA_MAX_CHANNELS][256];
  105. float samples_re[MPA_MAX_CHANNELS][256];
  106. } QDM2FFT;
  107. /**
  108. * QDM2 decoder context
  109. */
  110. typedef struct {
  111. /// Parameters from codec header, do not change during playback
  112. int nb_channels; ///< number of channels
  113. int channels; ///< number of channels
  114. int group_size; ///< size of frame group (16 frames per group)
  115. int fft_size; ///< size of FFT, in complex numbers
  116. int checksum_size; ///< size of data block, used also for checksum
  117. /// Parameters built from header parameters, do not change during playback
  118. int group_order; ///< order of frame group
  119. int fft_order; ///< order of FFT (actually fftorder+1)
  120. int fft_frame_size; ///< size of fft frame, in components (1 comples = re + im)
  121. int frame_size; ///< size of data frame
  122. int frequency_range;
  123. int sub_sampling; ///< subsampling: 0=25%, 1=50%, 2=100% */
  124. int coeff_per_sb_select; ///< selector for "num. of coeffs. per subband" tables. Can be 0, 1, 2
  125. int cm_table_select; ///< selector for "coding method" tables. Can be 0, 1 (from init: 0-4)
  126. /// Packets and packet lists
  127. QDM2SubPacket sub_packets[16]; ///< the packets themselves
  128. QDM2SubPNode sub_packet_list_A[16]; ///< list of all packets
  129. QDM2SubPNode sub_packet_list_B[16]; ///< FFT packets B are on list
  130. int sub_packets_B; ///< number of packets on 'B' list
  131. QDM2SubPNode sub_packet_list_C[16]; ///< packets with errors?
  132. QDM2SubPNode sub_packet_list_D[16]; ///< DCT packets
  133. /// FFT and tones
  134. FFTTone fft_tones[1000];
  135. int fft_tone_start;
  136. int fft_tone_end;
  137. FFTCoefficient fft_coefs[1000];
  138. int fft_coefs_index;
  139. int fft_coefs_min_index[5];
  140. int fft_coefs_max_index[5];
  141. int fft_level_exp[6];
  142. FFTContext fft_ctx;
  143. FFTComplex exptab[128];
  144. QDM2FFT fft;
  145. /// I/O data
  146. const uint8_t *compressed_data;
  147. int compressed_size;
  148. float output_buffer[1024];
  149. /// Synthesis filter
  150. DECLARE_ALIGNED_16(MPA_INT, synth_buf[MPA_MAX_CHANNELS][512*2]);
  151. int synth_buf_offset[MPA_MAX_CHANNELS];
  152. DECLARE_ALIGNED_16(int32_t, sb_samples[MPA_MAX_CHANNELS][128][SBLIMIT]);
  153. /// Mixed temporary data used in decoding
  154. float tone_level[MPA_MAX_CHANNELS][30][64];
  155. int8_t coding_method[MPA_MAX_CHANNELS][30][64];
  156. int8_t quantized_coeffs[MPA_MAX_CHANNELS][10][8];
  157. int8_t tone_level_idx_base[MPA_MAX_CHANNELS][30][8];
  158. int8_t tone_level_idx_hi1[MPA_MAX_CHANNELS][3][8][8];
  159. int8_t tone_level_idx_mid[MPA_MAX_CHANNELS][26][8];
  160. int8_t tone_level_idx_hi2[MPA_MAX_CHANNELS][26];
  161. int8_t tone_level_idx[MPA_MAX_CHANNELS][30][64];
  162. int8_t tone_level_idx_temp[MPA_MAX_CHANNELS][30][64];
  163. // Flags
  164. int has_errors; ///< packet has errors
  165. int superblocktype_2_3; ///< select fft tables and some algorithm based on superblock type
  166. int do_synth_filter; ///< used to perform or skip synthesis filter
  167. int sub_packet;
  168. int noise_idx; ///< index for dithering noise table
  169. } QDM2Context;
  170. static uint8_t empty_buffer[FF_INPUT_BUFFER_PADDING_SIZE];
  171. static VLC vlc_tab_level;
  172. static VLC vlc_tab_diff;
  173. static VLC vlc_tab_run;
  174. static VLC fft_level_exp_alt_vlc;
  175. static VLC fft_level_exp_vlc;
  176. static VLC fft_stereo_exp_vlc;
  177. static VLC fft_stereo_phase_vlc;
  178. static VLC vlc_tab_tone_level_idx_hi1;
  179. static VLC vlc_tab_tone_level_idx_mid;
  180. static VLC vlc_tab_tone_level_idx_hi2;
  181. static VLC vlc_tab_type30;
  182. static VLC vlc_tab_type34;
  183. static VLC vlc_tab_fft_tone_offset[5];
  184. static uint16_t softclip_table[HARDCLIP_THRESHOLD - SOFTCLIP_THRESHOLD + 1];
  185. static float noise_table[4096];
  186. static uint8_t random_dequant_index[256][5];
  187. static uint8_t random_dequant_type24[128][3];
  188. static float noise_samples[128];
  189. static DECLARE_ALIGNED_16(MPA_INT, mpa_window[512]);
  190. static void softclip_table_init(void) {
  191. int i;
  192. double dfl = SOFTCLIP_THRESHOLD - 32767;
  193. float delta = 1.0 / -dfl;
  194. for (i = 0; i < HARDCLIP_THRESHOLD - SOFTCLIP_THRESHOLD + 1; i++)
  195. softclip_table[i] = SOFTCLIP_THRESHOLD - ((int)(sin((float)i * delta) * dfl) & 0x0000FFFF);
  196. }
  197. // random generated table
  198. static void rnd_table_init(void) {
  199. int i,j;
  200. uint32_t ldw,hdw;
  201. uint64_t tmp64_1;
  202. uint64_t random_seed = 0;
  203. float delta = 1.0 / 16384.0;
  204. for(i = 0; i < 4096 ;i++) {
  205. random_seed = random_seed * 214013 + 2531011;
  206. noise_table[i] = (delta * (float)(((int32_t)random_seed >> 16) & 0x00007FFF)- 1.0) * 1.3;
  207. }
  208. for (i = 0; i < 256 ;i++) {
  209. random_seed = 81;
  210. ldw = i;
  211. for (j = 0; j < 5 ;j++) {
  212. random_dequant_index[i][j] = (uint8_t)((ldw / random_seed) & 0xFF);
  213. ldw = (uint32_t)ldw % (uint32_t)random_seed;
  214. tmp64_1 = (random_seed * 0x55555556);
  215. hdw = (uint32_t)(tmp64_1 >> 32);
  216. random_seed = (uint64_t)(hdw + (ldw >> 31));
  217. }
  218. }
  219. for (i = 0; i < 128 ;i++) {
  220. random_seed = 25;
  221. ldw = i;
  222. for (j = 0; j < 3 ;j++) {
  223. random_dequant_type24[i][j] = (uint8_t)((ldw / random_seed) & 0xFF);
  224. ldw = (uint32_t)ldw % (uint32_t)random_seed;
  225. tmp64_1 = (random_seed * 0x66666667);
  226. hdw = (uint32_t)(tmp64_1 >> 33);
  227. random_seed = hdw + (ldw >> 31);
  228. }
  229. }
  230. }
  231. static void init_noise_samples(void) {
  232. int i;
  233. int random_seed = 0;
  234. float delta = 1.0 / 16384.0;
  235. for (i = 0; i < 128;i++) {
  236. random_seed = random_seed * 214013 + 2531011;
  237. noise_samples[i] = (delta * (float)((random_seed >> 16) & 0x00007fff) - 1.0);
  238. }
  239. }
  240. static void qdm2_init_vlc(void)
  241. {
  242. init_vlc (&vlc_tab_level, 8, 24,
  243. vlc_tab_level_huffbits, 1, 1,
  244. vlc_tab_level_huffcodes, 2, 2, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  245. init_vlc (&vlc_tab_diff, 8, 37,
  246. vlc_tab_diff_huffbits, 1, 1,
  247. vlc_tab_diff_huffcodes, 2, 2, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  248. init_vlc (&vlc_tab_run, 5, 6,
  249. vlc_tab_run_huffbits, 1, 1,
  250. vlc_tab_run_huffcodes, 1, 1, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  251. init_vlc (&fft_level_exp_alt_vlc, 8, 28,
  252. fft_level_exp_alt_huffbits, 1, 1,
  253. fft_level_exp_alt_huffcodes, 2, 2, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  254. init_vlc (&fft_level_exp_vlc, 8, 20,
  255. fft_level_exp_huffbits, 1, 1,
  256. fft_level_exp_huffcodes, 2, 2, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  257. init_vlc (&fft_stereo_exp_vlc, 6, 7,
  258. fft_stereo_exp_huffbits, 1, 1,
  259. fft_stereo_exp_huffcodes, 1, 1, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  260. init_vlc (&fft_stereo_phase_vlc, 6, 9,
  261. fft_stereo_phase_huffbits, 1, 1,
  262. fft_stereo_phase_huffcodes, 1, 1, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  263. init_vlc (&vlc_tab_tone_level_idx_hi1, 8, 20,
  264. vlc_tab_tone_level_idx_hi1_huffbits, 1, 1,
  265. vlc_tab_tone_level_idx_hi1_huffcodes, 2, 2, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  266. init_vlc (&vlc_tab_tone_level_idx_mid, 8, 24,
  267. vlc_tab_tone_level_idx_mid_huffbits, 1, 1,
  268. vlc_tab_tone_level_idx_mid_huffcodes, 2, 2, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  269. init_vlc (&vlc_tab_tone_level_idx_hi2, 8, 24,
  270. vlc_tab_tone_level_idx_hi2_huffbits, 1, 1,
  271. vlc_tab_tone_level_idx_hi2_huffcodes, 2, 2, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  272. init_vlc (&vlc_tab_type30, 6, 9,
  273. vlc_tab_type30_huffbits, 1, 1,
  274. vlc_tab_type30_huffcodes, 1, 1, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  275. init_vlc (&vlc_tab_type34, 5, 10,
  276. vlc_tab_type34_huffbits, 1, 1,
  277. vlc_tab_type34_huffcodes, 1, 1, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  278. init_vlc (&vlc_tab_fft_tone_offset[0], 8, 23,
  279. vlc_tab_fft_tone_offset_0_huffbits, 1, 1,
  280. vlc_tab_fft_tone_offset_0_huffcodes, 2, 2, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  281. init_vlc (&vlc_tab_fft_tone_offset[1], 8, 28,
  282. vlc_tab_fft_tone_offset_1_huffbits, 1, 1,
  283. vlc_tab_fft_tone_offset_1_huffcodes, 2, 2, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  284. init_vlc (&vlc_tab_fft_tone_offset[2], 8, 32,
  285. vlc_tab_fft_tone_offset_2_huffbits, 1, 1,
  286. vlc_tab_fft_tone_offset_2_huffcodes, 2, 2, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  287. init_vlc (&vlc_tab_fft_tone_offset[3], 8, 35,
  288. vlc_tab_fft_tone_offset_3_huffbits, 1, 1,
  289. vlc_tab_fft_tone_offset_3_huffcodes, 2, 2, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  290. init_vlc (&vlc_tab_fft_tone_offset[4], 8, 38,
  291. vlc_tab_fft_tone_offset_4_huffbits, 1, 1,
  292. vlc_tab_fft_tone_offset_4_huffcodes, 2, 2, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  293. }
  294. /* for floating point to fixed point conversion */
  295. static const float f2i_scale = (float) (1 << (FRAC_BITS - 15));
  296. static int qdm2_get_vlc (GetBitContext *gb, VLC *vlc, int flag, int depth)
  297. {
  298. int value;
  299. value = get_vlc2(gb, vlc->table, vlc->bits, depth);
  300. /* stage-2, 3 bits exponent escape sequence */
  301. if (value-- == 0)
  302. value = get_bits (gb, get_bits (gb, 3) + 1);
  303. /* stage-3, optional */
  304. if (flag) {
  305. int tmp = vlc_stage3_values[value];
  306. if ((value & ~3) > 0)
  307. tmp += get_bits (gb, (value >> 2));
  308. value = tmp;
  309. }
  310. return value;
  311. }
  312. static int qdm2_get_se_vlc (VLC *vlc, GetBitContext *gb, int depth)
  313. {
  314. int value = qdm2_get_vlc (gb, vlc, 0, depth);
  315. return (value & 1) ? ((value + 1) >> 1) : -(value >> 1);
  316. }
  317. /**
  318. * QDM2 checksum
  319. *
  320. * @param data pointer to data to be checksum'ed
  321. * @param length data length
  322. * @param value checksum value
  323. *
  324. * @return 0 if checksum is OK
  325. */
  326. static uint16_t qdm2_packet_checksum (const uint8_t *data, int length, int value) {
  327. int i;
  328. for (i=0; i < length; i++)
  329. value -= data[i];
  330. return (uint16_t)(value & 0xffff);
  331. }
  332. /**
  333. * Fills a QDM2SubPacket structure with packet type, size, and data pointer.
  334. *
  335. * @param gb bitreader context
  336. * @param sub_packet packet under analysis
  337. */
  338. static void qdm2_decode_sub_packet_header (GetBitContext *gb, QDM2SubPacket *sub_packet)
  339. {
  340. sub_packet->type = get_bits (gb, 8);
  341. if (sub_packet->type == 0) {
  342. sub_packet->size = 0;
  343. sub_packet->data = NULL;
  344. } else {
  345. sub_packet->size = get_bits (gb, 8);
  346. if (sub_packet->type & 0x80) {
  347. sub_packet->size <<= 8;
  348. sub_packet->size |= get_bits (gb, 8);
  349. sub_packet->type &= 0x7f;
  350. }
  351. if (sub_packet->type == 0x7f)
  352. sub_packet->type |= (get_bits (gb, 8) << 8);
  353. sub_packet->data = &gb->buffer[get_bits_count(gb) / 8]; // FIXME: this depends on bitreader internal data
  354. }
  355. av_log(NULL,AV_LOG_DEBUG,"Subpacket: type=%d size=%d start_offs=%x\n",
  356. sub_packet->type, sub_packet->size, get_bits_count(gb) / 8);
  357. }
  358. /**
  359. * Return node pointer to first packet of requested type in list.
  360. *
  361. * @param list list of subpackets to be scanned
  362. * @param type type of searched subpacket
  363. * @return node pointer for subpacket if found, else NULL
  364. */
  365. static QDM2SubPNode* qdm2_search_subpacket_type_in_list (QDM2SubPNode *list, int type)
  366. {
  367. while (list != NULL && list->packet != NULL) {
  368. if (list->packet->type == type)
  369. return list;
  370. list = list->next;
  371. }
  372. return NULL;
  373. }
  374. /**
  375. * Replaces 8 elements with their average value.
  376. * Called by qdm2_decode_superblock before starting subblock decoding.
  377. *
  378. * @param q context
  379. */
  380. static void average_quantized_coeffs (QDM2Context *q)
  381. {
  382. int i, j, n, ch, sum;
  383. n = coeff_per_sb_for_avg[q->coeff_per_sb_select][QDM2_SB_USED(q->sub_sampling) - 1] + 1;
  384. for (ch = 0; ch < q->nb_channels; ch++)
  385. for (i = 0; i < n; i++) {
  386. sum = 0;
  387. for (j = 0; j < 8; j++)
  388. sum += q->quantized_coeffs[ch][i][j];
  389. sum /= 8;
  390. if (sum > 0)
  391. sum--;
  392. for (j=0; j < 8; j++)
  393. q->quantized_coeffs[ch][i][j] = sum;
  394. }
  395. }
  396. /**
  397. * Build subband samples with noise weighted by q->tone_level.
  398. * Called by synthfilt_build_sb_samples.
  399. *
  400. * @param q context
  401. * @param sb subband index
  402. */
  403. static void build_sb_samples_from_noise (QDM2Context *q, int sb)
  404. {
  405. int ch, j;
  406. FIX_NOISE_IDX(q->noise_idx);
  407. if (!q->nb_channels)
  408. return;
  409. for (ch = 0; ch < q->nb_channels; ch++)
  410. for (j = 0; j < 64; j++) {
  411. q->sb_samples[ch][j * 2][sb] = (int32_t)(f2i_scale * SB_DITHERING_NOISE(sb,q->noise_idx) * q->tone_level[ch][sb][j] + .5);
  412. q->sb_samples[ch][j * 2 + 1][sb] = (int32_t)(f2i_scale * SB_DITHERING_NOISE(sb,q->noise_idx) * q->tone_level[ch][sb][j] + .5);
  413. }
  414. }
  415. /**
  416. * Called while processing data from subpackets 11 and 12.
  417. * Used after making changes to coding_method array.
  418. *
  419. * @param sb subband index
  420. * @param channels number of channels
  421. * @param coding_method q->coding_method[0][0][0]
  422. */
  423. static void fix_coding_method_array (int sb, int channels, sb_int8_array coding_method)
  424. {
  425. int j,k;
  426. int ch;
  427. int run, case_val;
  428. int switchtable[23] = {0,5,1,5,5,5,5,5,2,5,5,5,5,5,5,5,3,5,5,5,5,5,4};
  429. for (ch = 0; ch < channels; ch++) {
  430. for (j = 0; j < 64; ) {
  431. if((coding_method[ch][sb][j] - 8) > 22) {
  432. run = 1;
  433. case_val = 8;
  434. } else {
  435. switch (switchtable[coding_method[ch][sb][j]-8]) {
  436. case 0: run = 10; case_val = 10; break;
  437. case 1: run = 1; case_val = 16; break;
  438. case 2: run = 5; case_val = 24; break;
  439. case 3: run = 3; case_val = 30; break;
  440. case 4: run = 1; case_val = 30; break;
  441. case 5: run = 1; case_val = 8; break;
  442. default: run = 1; case_val = 8; break;
  443. }
  444. }
  445. for (k = 0; k < run; k++)
  446. if (j + k < 128)
  447. if (coding_method[ch][sb + (j + k) / 64][(j + k) % 64] > coding_method[ch][sb][j])
  448. if (k > 0) {
  449. SAMPLES_NEEDED
  450. //not debugged, almost never used
  451. memset(&coding_method[ch][sb][j + k], case_val, k * sizeof(int8_t));
  452. memset(&coding_method[ch][sb][j + k], case_val, 3 * sizeof(int8_t));
  453. }
  454. j += run;
  455. }
  456. }
  457. }
  458. /**
  459. * Related to synthesis filter
  460. * Called by process_subpacket_10
  461. *
  462. * @param q context
  463. * @param flag 1 if called after getting data from subpacket 10, 0 if no subpacket 10
  464. */
  465. static void fill_tone_level_array (QDM2Context *q, int flag)
  466. {
  467. int i, sb, ch, sb_used;
  468. int tmp, tab;
  469. // This should never happen
  470. if (q->nb_channels <= 0)
  471. return;
  472. for (ch = 0; ch < q->nb_channels; ch++)
  473. for (sb = 0; sb < 30; sb++)
  474. for (i = 0; i < 8; i++) {
  475. if ((tab=coeff_per_sb_for_dequant[q->coeff_per_sb_select][sb]) < (last_coeff[q->coeff_per_sb_select] - 1))
  476. tmp = q->quantized_coeffs[ch][tab + 1][i] * dequant_table[q->coeff_per_sb_select][tab + 1][sb]+
  477. q->quantized_coeffs[ch][tab][i] * dequant_table[q->coeff_per_sb_select][tab][sb];
  478. else
  479. tmp = q->quantized_coeffs[ch][tab][i] * dequant_table[q->coeff_per_sb_select][tab][sb];
  480. if(tmp < 0)
  481. tmp += 0xff;
  482. q->tone_level_idx_base[ch][sb][i] = (tmp / 256) & 0xff;
  483. }
  484. sb_used = QDM2_SB_USED(q->sub_sampling);
  485. if ((q->superblocktype_2_3 != 0) && !flag) {
  486. for (sb = 0; sb < sb_used; sb++)
  487. for (ch = 0; ch < q->nb_channels; ch++)
  488. for (i = 0; i < 64; i++) {
  489. q->tone_level_idx[ch][sb][i] = q->tone_level_idx_base[ch][sb][i / 8];
  490. if (q->tone_level_idx[ch][sb][i] < 0)
  491. q->tone_level[ch][sb][i] = 0;
  492. else
  493. q->tone_level[ch][sb][i] = fft_tone_level_table[0][q->tone_level_idx[ch][sb][i] & 0x3f];
  494. }
  495. } else {
  496. tab = q->superblocktype_2_3 ? 0 : 1;
  497. for (sb = 0; sb < sb_used; sb++) {
  498. if ((sb >= 4) && (sb <= 23)) {
  499. for (ch = 0; ch < q->nb_channels; ch++)
  500. for (i = 0; i < 64; i++) {
  501. tmp = q->tone_level_idx_base[ch][sb][i / 8] -
  502. q->tone_level_idx_hi1[ch][sb / 8][i / 8][i % 8] -
  503. q->tone_level_idx_mid[ch][sb - 4][i / 8] -
  504. q->tone_level_idx_hi2[ch][sb - 4];
  505. q->tone_level_idx[ch][sb][i] = tmp & 0xff;
  506. if ((tmp < 0) || (!q->superblocktype_2_3 && !tmp))
  507. q->tone_level[ch][sb][i] = 0;
  508. else
  509. q->tone_level[ch][sb][i] = fft_tone_level_table[tab][tmp & 0x3f];
  510. }
  511. } else {
  512. if (sb > 4) {
  513. for (ch = 0; ch < q->nb_channels; ch++)
  514. for (i = 0; i < 64; i++) {
  515. tmp = q->tone_level_idx_base[ch][sb][i / 8] -
  516. q->tone_level_idx_hi1[ch][2][i / 8][i % 8] -
  517. q->tone_level_idx_hi2[ch][sb - 4];
  518. q->tone_level_idx[ch][sb][i] = tmp & 0xff;
  519. if ((tmp < 0) || (!q->superblocktype_2_3 && !tmp))
  520. q->tone_level[ch][sb][i] = 0;
  521. else
  522. q->tone_level[ch][sb][i] = fft_tone_level_table[tab][tmp & 0x3f];
  523. }
  524. } else {
  525. for (ch = 0; ch < q->nb_channels; ch++)
  526. for (i = 0; i < 64; i++) {
  527. tmp = q->tone_level_idx[ch][sb][i] = q->tone_level_idx_base[ch][sb][i / 8];
  528. if ((tmp < 0) || (!q->superblocktype_2_3 && !tmp))
  529. q->tone_level[ch][sb][i] = 0;
  530. else
  531. q->tone_level[ch][sb][i] = fft_tone_level_table[tab][tmp & 0x3f];
  532. }
  533. }
  534. }
  535. }
  536. }
  537. return;
  538. }
  539. /**
  540. * Related to synthesis filter
  541. * Called by process_subpacket_11
  542. * c is built with data from subpacket 11
  543. * Most of this function is used only if superblock_type_2_3 == 0, never seen it in samples
  544. *
  545. * @param tone_level_idx
  546. * @param tone_level_idx_temp
  547. * @param coding_method q->coding_method[0][0][0]
  548. * @param nb_channels number of channels
  549. * @param c coming from subpacket 11, passed as 8*c
  550. * @param superblocktype_2_3 flag based on superblock packet type
  551. * @param cm_table_select q->cm_table_select
  552. */
  553. static void fill_coding_method_array (sb_int8_array tone_level_idx, sb_int8_array tone_level_idx_temp,
  554. sb_int8_array coding_method, int nb_channels,
  555. int c, int superblocktype_2_3, int cm_table_select)
  556. {
  557. int ch, sb, j;
  558. int tmp, acc, esp_40, comp;
  559. int add1, add2, add3, add4;
  560. int64_t multres;
  561. // This should never happen
  562. if (nb_channels <= 0)
  563. return;
  564. if (!superblocktype_2_3) {
  565. /* This case is untested, no samples available */
  566. SAMPLES_NEEDED
  567. for (ch = 0; ch < nb_channels; ch++)
  568. for (sb = 0; sb < 30; sb++) {
  569. for (j = 1; j < 63; j++) { // The loop only iterates to 63 so the code doesn't overflow the buffer
  570. add1 = tone_level_idx[ch][sb][j] - 10;
  571. if (add1 < 0)
  572. add1 = 0;
  573. add2 = add3 = add4 = 0;
  574. if (sb > 1) {
  575. add2 = tone_level_idx[ch][sb - 2][j] + tone_level_idx_offset_table[sb][0] - 6;
  576. if (add2 < 0)
  577. add2 = 0;
  578. }
  579. if (sb > 0) {
  580. add3 = tone_level_idx[ch][sb - 1][j] + tone_level_idx_offset_table[sb][1] - 6;
  581. if (add3 < 0)
  582. add3 = 0;
  583. }
  584. if (sb < 29) {
  585. add4 = tone_level_idx[ch][sb + 1][j] + tone_level_idx_offset_table[sb][3] - 6;
  586. if (add4 < 0)
  587. add4 = 0;
  588. }
  589. tmp = tone_level_idx[ch][sb][j + 1] * 2 - add4 - add3 - add2 - add1;
  590. if (tmp < 0)
  591. tmp = 0;
  592. tone_level_idx_temp[ch][sb][j + 1] = tmp & 0xff;
  593. }
  594. tone_level_idx_temp[ch][sb][0] = tone_level_idx_temp[ch][sb][1];
  595. }
  596. acc = 0;
  597. for (ch = 0; ch < nb_channels; ch++)
  598. for (sb = 0; sb < 30; sb++)
  599. for (j = 0; j < 64; j++)
  600. acc += tone_level_idx_temp[ch][sb][j];
  601. if (acc)
  602. tmp = c * 256 / (acc & 0xffff);
  603. multres = 0x66666667 * (acc * 10);
  604. esp_40 = (multres >> 32) / 8 + ((multres & 0xffffffff) >> 31);
  605. for (ch = 0; ch < nb_channels; ch++)
  606. for (sb = 0; sb < 30; sb++)
  607. for (j = 0; j < 64; j++) {
  608. comp = tone_level_idx_temp[ch][sb][j]* esp_40 * 10;
  609. if (comp < 0)
  610. comp += 0xff;
  611. comp /= 256; // signed shift
  612. switch(sb) {
  613. case 0:
  614. if (comp < 30)
  615. comp = 30;
  616. comp += 15;
  617. break;
  618. case 1:
  619. if (comp < 24)
  620. comp = 24;
  621. comp += 10;
  622. break;
  623. case 2:
  624. case 3:
  625. case 4:
  626. if (comp < 16)
  627. comp = 16;
  628. }
  629. if (comp <= 5)
  630. tmp = 0;
  631. else if (comp <= 10)
  632. tmp = 10;
  633. else if (comp <= 16)
  634. tmp = 16;
  635. else if (comp <= 24)
  636. tmp = -1;
  637. else
  638. tmp = 0;
  639. coding_method[ch][sb][j] = ((tmp & 0xfffa) + 30 )& 0xff;
  640. }
  641. for (sb = 0; sb < 30; sb++)
  642. fix_coding_method_array(sb, nb_channels, coding_method);
  643. for (ch = 0; ch < nb_channels; ch++)
  644. for (sb = 0; sb < 30; sb++)
  645. for (j = 0; j < 64; j++)
  646. if (sb >= 10) {
  647. if (coding_method[ch][sb][j] < 10)
  648. coding_method[ch][sb][j] = 10;
  649. } else {
  650. if (sb >= 2) {
  651. if (coding_method[ch][sb][j] < 16)
  652. coding_method[ch][sb][j] = 16;
  653. } else {
  654. if (coding_method[ch][sb][j] < 30)
  655. coding_method[ch][sb][j] = 30;
  656. }
  657. }
  658. } else { // superblocktype_2_3 != 0
  659. for (ch = 0; ch < nb_channels; ch++)
  660. for (sb = 0; sb < 30; sb++)
  661. for (j = 0; j < 64; j++)
  662. coding_method[ch][sb][j] = coding_method_table[cm_table_select][sb];
  663. }
  664. return;
  665. }
  666. /**
  667. *
  668. * Called by process_subpacket_11 to process more data from subpacket 11 with sb 0-8
  669. * Called by process_subpacket_12 to process data from subpacket 12 with sb 8-sb_used
  670. *
  671. * @param q context
  672. * @param gb bitreader context
  673. * @param length packet length in bits
  674. * @param sb_min lower subband processed (sb_min included)
  675. * @param sb_max higher subband processed (sb_max excluded)
  676. */
  677. static void synthfilt_build_sb_samples (QDM2Context *q, GetBitContext *gb, int length, int sb_min, int sb_max)
  678. {
  679. int sb, j, k, n, ch, run, channels;
  680. int joined_stereo, zero_encoding, chs;
  681. int type34_first;
  682. float type34_div = 0;
  683. float type34_predictor;
  684. float samples[10], sign_bits[16];
  685. if (length == 0) {
  686. // If no data use noise
  687. for (sb=sb_min; sb < sb_max; sb++)
  688. build_sb_samples_from_noise (q, sb);
  689. return;
  690. }
  691. for (sb = sb_min; sb < sb_max; sb++) {
  692. FIX_NOISE_IDX(q->noise_idx);
  693. channels = q->nb_channels;
  694. if (q->nb_channels <= 1 || sb < 12)
  695. joined_stereo = 0;
  696. else if (sb >= 24)
  697. joined_stereo = 1;
  698. else
  699. joined_stereo = (BITS_LEFT(length,gb) >= 1) ? get_bits1 (gb) : 0;
  700. if (joined_stereo) {
  701. if (BITS_LEFT(length,gb) >= 16)
  702. for (j = 0; j < 16; j++)
  703. sign_bits[j] = get_bits1 (gb);
  704. for (j = 0; j < 64; j++)
  705. if (q->coding_method[1][sb][j] > q->coding_method[0][sb][j])
  706. q->coding_method[0][sb][j] = q->coding_method[1][sb][j];
  707. fix_coding_method_array(sb, q->nb_channels, q->coding_method);
  708. channels = 1;
  709. }
  710. for (ch = 0; ch < channels; ch++) {
  711. zero_encoding = (BITS_LEFT(length,gb) >= 1) ? get_bits1(gb) : 0;
  712. type34_predictor = 0.0;
  713. type34_first = 1;
  714. for (j = 0; j < 128; ) {
  715. switch (q->coding_method[ch][sb][j / 2]) {
  716. case 8:
  717. if (BITS_LEFT(length,gb) >= 10) {
  718. if (zero_encoding) {
  719. for (k = 0; k < 5; k++) {
  720. if ((j + 2 * k) >= 128)
  721. break;
  722. samples[2 * k] = get_bits1(gb) ? dequant_1bit[joined_stereo][2 * get_bits1(gb)] : 0;
  723. }
  724. } else {
  725. n = get_bits(gb, 8);
  726. for (k = 0; k < 5; k++)
  727. samples[2 * k] = dequant_1bit[joined_stereo][random_dequant_index[n][k]];
  728. }
  729. for (k = 0; k < 5; k++)
  730. samples[2 * k + 1] = SB_DITHERING_NOISE(sb,q->noise_idx);
  731. } else {
  732. for (k = 0; k < 10; k++)
  733. samples[k] = SB_DITHERING_NOISE(sb,q->noise_idx);
  734. }
  735. run = 10;
  736. break;
  737. case 10:
  738. if (BITS_LEFT(length,gb) >= 1) {
  739. float f = 0.81;
  740. if (get_bits1(gb))
  741. f = -f;
  742. f -= noise_samples[((sb + 1) * (j +5 * ch + 1)) & 127] * 9.0 / 40.0;
  743. samples[0] = f;
  744. } else {
  745. samples[0] = SB_DITHERING_NOISE(sb,q->noise_idx);
  746. }
  747. run = 1;
  748. break;
  749. case 16:
  750. if (BITS_LEFT(length,gb) >= 10) {
  751. if (zero_encoding) {
  752. for (k = 0; k < 5; k++) {
  753. if ((j + k) >= 128)
  754. break;
  755. samples[k] = (get_bits1(gb) == 0) ? 0 : dequant_1bit[joined_stereo][2 * get_bits1(gb)];
  756. }
  757. } else {
  758. n = get_bits (gb, 8);
  759. for (k = 0; k < 5; k++)
  760. samples[k] = dequant_1bit[joined_stereo][random_dequant_index[n][k]];
  761. }
  762. } else {
  763. for (k = 0; k < 5; k++)
  764. samples[k] = SB_DITHERING_NOISE(sb,q->noise_idx);
  765. }
  766. run = 5;
  767. break;
  768. case 24:
  769. if (BITS_LEFT(length,gb) >= 7) {
  770. n = get_bits(gb, 7);
  771. for (k = 0; k < 3; k++)
  772. samples[k] = (random_dequant_type24[n][k] - 2.0) * 0.5;
  773. } else {
  774. for (k = 0; k < 3; k++)
  775. samples[k] = SB_DITHERING_NOISE(sb,q->noise_idx);
  776. }
  777. run = 3;
  778. break;
  779. case 30:
  780. if (BITS_LEFT(length,gb) >= 4)
  781. samples[0] = type30_dequant[qdm2_get_vlc(gb, &vlc_tab_type30, 0, 1)];
  782. else
  783. samples[0] = SB_DITHERING_NOISE(sb,q->noise_idx);
  784. run = 1;
  785. break;
  786. case 34:
  787. if (BITS_LEFT(length,gb) >= 7) {
  788. if (type34_first) {
  789. type34_div = (float)(1 << get_bits(gb, 2));
  790. samples[0] = ((float)get_bits(gb, 5) - 16.0) / 15.0;
  791. type34_predictor = samples[0];
  792. type34_first = 0;
  793. } else {
  794. samples[0] = type34_delta[qdm2_get_vlc(gb, &vlc_tab_type34, 0, 1)] / type34_div + type34_predictor;
  795. type34_predictor = samples[0];
  796. }
  797. } else {
  798. samples[0] = SB_DITHERING_NOISE(sb,q->noise_idx);
  799. }
  800. run = 1;
  801. break;
  802. default:
  803. samples[0] = SB_DITHERING_NOISE(sb,q->noise_idx);
  804. run = 1;
  805. break;
  806. }
  807. if (joined_stereo) {
  808. float tmp[10][MPA_MAX_CHANNELS];
  809. for (k = 0; k < run; k++) {
  810. tmp[k][0] = samples[k];
  811. tmp[k][1] = (sign_bits[(j + k) / 8]) ? -samples[k] : samples[k];
  812. }
  813. for (chs = 0; chs < q->nb_channels; chs++)
  814. for (k = 0; k < run; k++)
  815. if ((j + k) < 128)
  816. q->sb_samples[chs][j + k][sb] = (int32_t)(f2i_scale * q->tone_level[chs][sb][((j + k)/2)] * tmp[k][chs] + .5);
  817. } else {
  818. for (k = 0; k < run; k++)
  819. if ((j + k) < 128)
  820. q->sb_samples[ch][j + k][sb] = (int32_t)(f2i_scale * q->tone_level[ch][sb][(j + k)/2] * samples[k] + .5);
  821. }
  822. j += run;
  823. } // j loop
  824. } // channel loop
  825. } // subband loop
  826. }
  827. /**
  828. * Init the first element of a channel in quantized_coeffs with data from packet 10 (quantized_coeffs[ch][0]).
  829. * This is similar to process_subpacket_9, but for a single channel and for element [0]
  830. * same VLC tables as process_subpacket_9 are used.
  831. *
  832. * @param q context
  833. * @param quantized_coeffs pointer to quantized_coeffs[ch][0]
  834. * @param gb bitreader context
  835. * @param length packet length in bits
  836. */
  837. static void init_quantized_coeffs_elem0 (int8_t *quantized_coeffs, GetBitContext *gb, int length)
  838. {
  839. int i, k, run, level, diff;
  840. if (BITS_LEFT(length,gb) < 16)
  841. return;
  842. level = qdm2_get_vlc(gb, &vlc_tab_level, 0, 2);
  843. quantized_coeffs[0] = level;
  844. for (i = 0; i < 7; ) {
  845. if (BITS_LEFT(length,gb) < 16)
  846. break;
  847. run = qdm2_get_vlc(gb, &vlc_tab_run, 0, 1) + 1;
  848. if (BITS_LEFT(length,gb) < 16)
  849. break;
  850. diff = qdm2_get_se_vlc(&vlc_tab_diff, gb, 2);
  851. for (k = 1; k <= run; k++)
  852. quantized_coeffs[i + k] = (level + ((k * diff) / run));
  853. level += diff;
  854. i += run;
  855. }
  856. }
  857. /**
  858. * Related to synthesis filter, process data from packet 10
  859. * Init part of quantized_coeffs via function init_quantized_coeffs_elem0
  860. * Init tone_level_idx_hi1, tone_level_idx_hi2, tone_level_idx_mid with data from packet 10
  861. *
  862. * @param q context
  863. * @param gb bitreader context
  864. * @param length packet length in bits
  865. */
  866. static void init_tone_level_dequantization (QDM2Context *q, GetBitContext *gb, int length)
  867. {
  868. int sb, j, k, n, ch;
  869. for (ch = 0; ch < q->nb_channels; ch++) {
  870. init_quantized_coeffs_elem0(q->quantized_coeffs[ch][0], gb, length);
  871. if (BITS_LEFT(length,gb) < 16) {
  872. memset(q->quantized_coeffs[ch][0], 0, 8);
  873. break;
  874. }
  875. }
  876. n = q->sub_sampling + 1;
  877. for (sb = 0; sb < n; sb++)
  878. for (ch = 0; ch < q->nb_channels; ch++)
  879. for (j = 0; j < 8; j++) {
  880. if (BITS_LEFT(length,gb) < 1)
  881. break;
  882. if (get_bits1(gb)) {
  883. for (k=0; k < 8; k++) {
  884. if (BITS_LEFT(length,gb) < 16)
  885. break;
  886. q->tone_level_idx_hi1[ch][sb][j][k] = qdm2_get_vlc(gb, &vlc_tab_tone_level_idx_hi1, 0, 2);
  887. }
  888. } else {
  889. for (k=0; k < 8; k++)
  890. q->tone_level_idx_hi1[ch][sb][j][k] = 0;
  891. }
  892. }
  893. n = QDM2_SB_USED(q->sub_sampling) - 4;
  894. for (sb = 0; sb < n; sb++)
  895. for (ch = 0; ch < q->nb_channels; ch++) {
  896. if (BITS_LEFT(length,gb) < 16)
  897. break;
  898. q->tone_level_idx_hi2[ch][sb] = qdm2_get_vlc(gb, &vlc_tab_tone_level_idx_hi2, 0, 2);
  899. if (sb > 19)
  900. q->tone_level_idx_hi2[ch][sb] -= 16;
  901. else
  902. for (j = 0; j < 8; j++)
  903. q->tone_level_idx_mid[ch][sb][j] = -16;
  904. }
  905. n = QDM2_SB_USED(q->sub_sampling) - 5;
  906. for (sb = 0; sb < n; sb++)
  907. for (ch = 0; ch < q->nb_channels; ch++)
  908. for (j = 0; j < 8; j++) {
  909. if (BITS_LEFT(length,gb) < 16)
  910. break;
  911. q->tone_level_idx_mid[ch][sb][j] = qdm2_get_vlc(gb, &vlc_tab_tone_level_idx_mid, 0, 2) - 32;
  912. }
  913. }
  914. /**
  915. * Process subpacket 9, init quantized_coeffs with data from it
  916. *
  917. * @param q context
  918. * @param node pointer to node with packet
  919. */
  920. static void process_subpacket_9 (QDM2Context *q, QDM2SubPNode *node)
  921. {
  922. GetBitContext gb;
  923. int i, j, k, n, ch, run, level, diff;
  924. init_get_bits(&gb, node->packet->data, node->packet->size*8);
  925. n = coeff_per_sb_for_avg[q->coeff_per_sb_select][QDM2_SB_USED(q->sub_sampling) - 1] + 1; // same as averagesomething function
  926. for (i = 1; i < n; i++)
  927. for (ch=0; ch < q->nb_channels; ch++) {
  928. level = qdm2_get_vlc(&gb, &vlc_tab_level, 0, 2);
  929. q->quantized_coeffs[ch][i][0] = level;
  930. for (j = 0; j < (8 - 1); ) {
  931. run = qdm2_get_vlc(&gb, &vlc_tab_run, 0, 1) + 1;
  932. diff = qdm2_get_se_vlc(&vlc_tab_diff, &gb, 2);
  933. for (k = 1; k <= run; k++)
  934. q->quantized_coeffs[ch][i][j + k] = (level + ((k*diff) / run));
  935. level += diff;
  936. j += run;
  937. }
  938. }
  939. for (ch = 0; ch < q->nb_channels; ch++)
  940. for (i = 0; i < 8; i++)
  941. q->quantized_coeffs[ch][0][i] = 0;
  942. }
  943. /**
  944. * Process subpacket 10 if not null, else
  945. *
  946. * @param q context
  947. * @param node pointer to node with packet
  948. * @param length packet length in bits
  949. */
  950. static void process_subpacket_10 (QDM2Context *q, QDM2SubPNode *node, int length)
  951. {
  952. GetBitContext gb;
  953. init_get_bits(&gb, ((node == NULL) ? empty_buffer : node->packet->data), ((node == NULL) ? 0 : node->packet->size*8));
  954. if (length != 0) {
  955. init_tone_level_dequantization(q, &gb, length);
  956. fill_tone_level_array(q, 1);
  957. } else {
  958. fill_tone_level_array(q, 0);
  959. }
  960. }
  961. /**
  962. * Process subpacket 11
  963. *
  964. * @param q context
  965. * @param node pointer to node with packet
  966. * @param length packet length in bit
  967. */
  968. static void process_subpacket_11 (QDM2Context *q, QDM2SubPNode *node, int length)
  969. {
  970. GetBitContext gb;
  971. init_get_bits(&gb, ((node == NULL) ? empty_buffer : node->packet->data), ((node == NULL) ? 0 : node->packet->size*8));
  972. if (length >= 32) {
  973. int c = get_bits (&gb, 13);
  974. if (c > 3)
  975. fill_coding_method_array (q->tone_level_idx, q->tone_level_idx_temp, q->coding_method,
  976. q->nb_channels, 8*c, q->superblocktype_2_3, q->cm_table_select);
  977. }
  978. synthfilt_build_sb_samples(q, &gb, length, 0, 8);
  979. }
  980. /**
  981. * Process subpacket 12
  982. *
  983. * @param q context
  984. * @param node pointer to node with packet
  985. * @param length packet length in bits
  986. */
  987. static void process_subpacket_12 (QDM2Context *q, QDM2SubPNode *node, int length)
  988. {
  989. GetBitContext gb;
  990. init_get_bits(&gb, ((node == NULL) ? empty_buffer : node->packet->data), ((node == NULL) ? 0 : node->packet->size*8));
  991. synthfilt_build_sb_samples(q, &gb, length, 8, QDM2_SB_USED(q->sub_sampling));
  992. }
  993. /*
  994. * Process new subpackets for synthesis filter
  995. *
  996. * @param q context
  997. * @param list list with synthesis filter packets (list D)
  998. */
  999. static void process_synthesis_subpackets (QDM2Context *q, QDM2SubPNode *list)
  1000. {
  1001. QDM2SubPNode *nodes[4];
  1002. nodes[0] = qdm2_search_subpacket_type_in_list(list, 9);
  1003. if (nodes[0] != NULL)
  1004. process_subpacket_9(q, nodes[0]);
  1005. nodes[1] = qdm2_search_subpacket_type_in_list(list, 10);
  1006. if (nodes[1] != NULL)
  1007. process_subpacket_10(q, nodes[1], nodes[1]->packet->size << 3);
  1008. else
  1009. process_subpacket_10(q, NULL, 0);
  1010. nodes[2] = qdm2_search_subpacket_type_in_list(list, 11);
  1011. if (nodes[0] != NULL && nodes[1] != NULL && nodes[2] != NULL)
  1012. process_subpacket_11(q, nodes[2], (nodes[2]->packet->size << 3));
  1013. else
  1014. process_subpacket_11(q, NULL, 0);
  1015. nodes[3] = qdm2_search_subpacket_type_in_list(list, 12);
  1016. if (nodes[0] != NULL && nodes[1] != NULL && nodes[3] != NULL)
  1017. process_subpacket_12(q, nodes[3], (nodes[3]->packet->size << 3));
  1018. else
  1019. process_subpacket_12(q, NULL, 0);
  1020. }
  1021. /*
  1022. * Decode superblock, fill packet lists.
  1023. *
  1024. * @param q context
  1025. */
  1026. static void qdm2_decode_super_block (QDM2Context *q)
  1027. {
  1028. GetBitContext gb;
  1029. QDM2SubPacket header, *packet;
  1030. int i, packet_bytes, sub_packet_size, sub_packets_D;
  1031. unsigned int next_index = 0;
  1032. memset(q->tone_level_idx_hi1, 0, sizeof(q->tone_level_idx_hi1));
  1033. memset(q->tone_level_idx_mid, 0, sizeof(q->tone_level_idx_mid));
  1034. memset(q->tone_level_idx_hi2, 0, sizeof(q->tone_level_idx_hi2));
  1035. q->sub_packets_B = 0;
  1036. sub_packets_D = 0;
  1037. average_quantized_coeffs(q); // average elements in quantized_coeffs[max_ch][10][8]
  1038. init_get_bits(&gb, q->compressed_data, q->compressed_size*8);
  1039. qdm2_decode_sub_packet_header(&gb, &header);
  1040. if (header.type < 2 || header.type >= 8) {
  1041. q->has_errors = 1;
  1042. av_log(NULL,AV_LOG_ERROR,"bad superblock type\n");
  1043. return;
  1044. }
  1045. q->superblocktype_2_3 = (header.type == 2 || header.type == 3);
  1046. packet_bytes = (q->compressed_size - get_bits_count(&gb) / 8);
  1047. init_get_bits(&gb, header.data, header.size*8);
  1048. if (header.type == 2 || header.type == 4 || header.type == 5) {
  1049. int csum = 257 * get_bits(&gb, 8) + 2 * get_bits(&gb, 8);
  1050. csum = qdm2_packet_checksum(q->compressed_data, q->checksum_size, csum);
  1051. if (csum != 0) {
  1052. q->has_errors = 1;
  1053. av_log(NULL,AV_LOG_ERROR,"bad packet checksum\n");
  1054. return;
  1055. }
  1056. }
  1057. q->sub_packet_list_B[0].packet = NULL;
  1058. q->sub_packet_list_D[0].packet = NULL;
  1059. for (i = 0; i < 6; i++)
  1060. if (--q->fft_level_exp[i] < 0)
  1061. q->fft_level_exp[i] = 0;
  1062. for (i = 0; packet_bytes > 0; i++) {
  1063. int j;
  1064. q->sub_packet_list_A[i].next = NULL;
  1065. if (i > 0) {
  1066. q->sub_packet_list_A[i - 1].next = &q->sub_packet_list_A[i];
  1067. /* seek to next block */
  1068. init_get_bits(&gb, header.data, header.size*8);
  1069. skip_bits(&gb, next_index*8);
  1070. if (next_index >= header.size)
  1071. break;
  1072. }
  1073. /* decode subpacket */
  1074. packet = &q->sub_packets[i];
  1075. qdm2_decode_sub_packet_header(&gb, packet);
  1076. next_index = packet->size + get_bits_count(&gb) / 8;
  1077. sub_packet_size = ((packet->size > 0xff) ? 1 : 0) + packet->size + 2;
  1078. if (packet->type == 0)
  1079. break;
  1080. if (sub_packet_size > packet_bytes) {
  1081. if (packet->type != 10 && packet->type != 11 && packet->type != 12)
  1082. break;
  1083. packet->size += packet_bytes - sub_packet_size;
  1084. }
  1085. packet_bytes -= sub_packet_size;
  1086. /* add subpacket to 'all subpackets' list */
  1087. q->sub_packet_list_A[i].packet = packet;
  1088. /* add subpacket to related list */
  1089. if (packet->type == 8) {
  1090. SAMPLES_NEEDED_2("packet type 8");
  1091. return;
  1092. } else if (packet->type >= 9 && packet->type <= 12) {
  1093. /* packets for MPEG Audio like Synthesis Filter */
  1094. QDM2_LIST_ADD(q->sub_packet_list_D, sub_packets_D, packet);
  1095. } else if (packet->type == 13) {
  1096. for (j = 0; j < 6; j++)
  1097. q->fft_level_exp[j] = get_bits(&gb, 6);
  1098. } else if (packet->type == 14) {
  1099. for (j = 0; j < 6; j++)
  1100. q->fft_level_exp[j] = qdm2_get_vlc(&gb, &fft_level_exp_vlc, 0, 2);
  1101. } else if (packet->type == 15) {
  1102. SAMPLES_NEEDED_2("packet type 15")
  1103. return;
  1104. } else if (packet->type >= 16 && packet->type < 48 && !fft_subpackets[packet->type - 16]) {
  1105. /* packets for FFT */
  1106. QDM2_LIST_ADD(q->sub_packet_list_B, q->sub_packets_B, packet);
  1107. }
  1108. } // Packet bytes loop
  1109. /* **************************************************************** */
  1110. if (q->sub_packet_list_D[0].packet != NULL) {
  1111. process_synthesis_subpackets(q, q->sub_packet_list_D);
  1112. q->do_synth_filter = 1;
  1113. } else if (q->do_synth_filter) {
  1114. process_subpacket_10(q, NULL, 0);
  1115. process_subpacket_11(q, NULL, 0);
  1116. process_subpacket_12(q, NULL, 0);
  1117. }
  1118. /* **************************************************************** */
  1119. }
  1120. static void qdm2_fft_init_coefficient (QDM2Context *q, int sub_packet,
  1121. int offset, int duration, int channel,
  1122. int exp, int phase)
  1123. {
  1124. if (q->fft_coefs_min_index[duration] < 0)
  1125. q->fft_coefs_min_index[duration] = q->fft_coefs_index;
  1126. q->fft_coefs[q->fft_coefs_index].sub_packet = ((sub_packet >= 16) ? (sub_packet - 16) : sub_packet);
  1127. q->fft_coefs[q->fft_coefs_index].channel = channel;
  1128. q->fft_coefs[q->fft_coefs_index].offset = offset;
  1129. q->fft_coefs[q->fft_coefs_index].exp = exp;
  1130. q->fft_coefs[q->fft_coefs_index].phase = phase;
  1131. q->fft_coefs_index++;
  1132. }
  1133. static void qdm2_fft_decode_tones (QDM2Context *q, int duration, GetBitContext *gb, int b)
  1134. {
  1135. int channel, stereo, phase, exp;
  1136. int local_int_4, local_int_8, stereo_phase, local_int_10;
  1137. int local_int_14, stereo_exp, local_int_20, local_int_28;
  1138. int n, offset;
  1139. local_int_4 = 0;
  1140. local_int_28 = 0;
  1141. local_int_20 = 2;
  1142. local_int_8 = (4 - duration);
  1143. local_int_10 = 1 << (q->group_order - duration - 1);
  1144. offset = 1;
  1145. while (1) {
  1146. if (q->superblocktype_2_3) {
  1147. while ((n = qdm2_get_vlc(gb, &vlc_tab_fft_tone_offset[local_int_8], 1, 2)) < 2) {
  1148. offset = 1;
  1149. if (n == 0) {
  1150. local_int_4 += local_int_10;
  1151. local_int_28 += (1 << local_int_8);
  1152. } else {
  1153. local_int_4 += 8*local_int_10;
  1154. local_int_28 += (8 << local_int_8);
  1155. }
  1156. }
  1157. offset += (n - 2);
  1158. } else {
  1159. offset += qdm2_get_vlc(gb, &vlc_tab_fft_tone_offset[local_int_8], 1, 2);
  1160. while (offset >= (local_int_10 - 1)) {
  1161. offset += (1 - (local_int_10 - 1));
  1162. local_int_4 += local_int_10;
  1163. local_int_28 += (1 << local_int_8);
  1164. }
  1165. }
  1166. if (local_int_4 >= q->group_size)
  1167. return;
  1168. local_int_14 = (offset >> local_int_8);
  1169. if (q->nb_channels > 1) {
  1170. channel = get_bits1(gb);
  1171. stereo = get_bits1(gb);
  1172. } else {
  1173. channel = 0;
  1174. stereo = 0;
  1175. }
  1176. exp = qdm2_get_vlc(gb, (b ? &fft_level_exp_vlc : &fft_level_exp_alt_vlc), 0, 2);
  1177. exp += q->fft_level_exp[fft_level_index_table[local_int_14]];
  1178. exp = (exp < 0) ? 0 : exp;
  1179. phase = get_bits(gb, 3);
  1180. stereo_exp = 0;
  1181. stereo_phase = 0;
  1182. if (stereo) {
  1183. stereo_exp = (exp - qdm2_get_vlc(gb, &fft_stereo_exp_vlc, 0, 1));
  1184. stereo_phase = (phase - qdm2_get_vlc(gb, &fft_stereo_phase_vlc, 0, 1));
  1185. if (stereo_phase < 0)
  1186. stereo_phase += 8;
  1187. }
  1188. if (q->frequency_range > (local_int_14 + 1)) {
  1189. int sub_packet = (local_int_20 + local_int_28);
  1190. qdm2_fft_init_coefficient(q, sub_packet, offset, duration, channel, exp, phase);
  1191. if (stereo)
  1192. qdm2_fft_init_coefficient(q, sub_packet, offset, duration, (1 - channel), stereo_exp, stereo_phase);
  1193. }
  1194. offset++;
  1195. }
  1196. }
  1197. static void qdm2_decode_fft_packets (QDM2Context *q)
  1198. {
  1199. int i, j, min, max, value, type, unknown_flag;
  1200. GetBitContext gb;
  1201. if (q->sub_packet_list_B[0].packet == NULL)
  1202. return;
  1203. /* reset minimum indexes for FFT coefficients */
  1204. q->fft_coefs_index = 0;
  1205. for (i=0; i < 5; i++)
  1206. q->fft_coefs_min_index[i] = -1;
  1207. /* process subpackets ordered by type, largest type first */
  1208. for (i = 0, max = 256; i < q->sub_packets_B; i++) {
  1209. QDM2SubPacket *packet= NULL;
  1210. /* find subpacket with largest type less than max */
  1211. for (j = 0, min = 0; j < q->sub_packets_B; j++) {
  1212. value = q->sub_packet_list_B[j].packet->type;
  1213. if (value > min && value < max) {
  1214. min = value;
  1215. packet = q->sub_packet_list_B[j].packet;
  1216. }
  1217. }
  1218. max = min;
  1219. /* check for errors (?) */
  1220. if (!packet)
  1221. return;
  1222. if (i == 0 && (packet->type < 16 || packet->type >= 48 || fft_subpackets[packet->type - 16]))
  1223. return;
  1224. /* decode FFT tones */
  1225. init_get_bits (&gb, packet->data, packet->size*8);
  1226. if (packet->type >= 32 && packet->type < 48 && !fft_subpackets[packet->type - 16])
  1227. unknown_flag = 1;
  1228. else
  1229. unknown_flag = 0;
  1230. type = packet->type;
  1231. if ((type >= 17 && type < 24) || (type >= 33 && type < 40)) {
  1232. int duration = q->sub_sampling + 5 - (type & 15);
  1233. if (duration >= 0 && duration < 4)
  1234. qdm2_fft_decode_tones(q, duration, &gb, unknown_flag);
  1235. } else if (type == 31) {
  1236. for (j=0; j < 4; j++)
  1237. qdm2_fft_decode_tones(q, j, &gb, unknown_flag);
  1238. } else if (type == 46) {
  1239. for (j=0; j < 6; j++)
  1240. q->fft_level_exp[j] = get_bits(&gb, 6);
  1241. for (j=0; j < 4; j++)
  1242. qdm2_fft_decode_tones(q, j, &gb, unknown_flag);
  1243. }
  1244. } // Loop on B packets
  1245. /* calculate maximum indexes for FFT coefficients */
  1246. for (i = 0, j = -1; i < 5; i++)
  1247. if (q->fft_coefs_min_index[i] >= 0) {
  1248. if (j >= 0)
  1249. q->fft_coefs_max_index[j] = q->fft_coefs_min_index[i];
  1250. j = i;
  1251. }
  1252. if (j >= 0)
  1253. q->fft_coefs_max_index[j] = q->fft_coefs_index;
  1254. }
  1255. static void qdm2_fft_generate_tone (QDM2Context *q, FFTTone *tone)
  1256. {
  1257. float level, f[6];
  1258. int i;
  1259. QDM2Complex c;
  1260. const double iscale = 2.0*M_PI / 512.0;
  1261. tone->phase += tone->phase_shift;
  1262. /* calculate current level (maximum amplitude) of tone */
  1263. level = fft_tone_envelope_table[tone->duration][tone->time_index] * tone->level;
  1264. c.im = level * sin(tone->phase*iscale);
  1265. c.re = level * cos(tone->phase*iscale);
  1266. /* generate FFT coefficients for tone */
  1267. if (tone->duration >= 3 || tone->cutoff >= 3) {
  1268. tone->samples_im[0] += c.im;
  1269. tone->samples_re[0] += c.re;
  1270. tone->samples_im[1] -= c.im;
  1271. tone->samples_re[1] -= c.re;
  1272. } else {
  1273. f[1] = -tone->table[4];
  1274. f[0] = tone->table[3] - tone->table[0];
  1275. f[2] = 1.0 - tone->table[2] - tone->table[3];
  1276. f[3] = tone->table[1] + tone->table[4] - 1.0;
  1277. f[4] = tone->table[0] - tone->table[1];
  1278. f[5] = tone->table[2];
  1279. for (i = 0; i < 2; i++) {
  1280. tone->samples_re[fft_cutoff_index_table[tone->cutoff][i]] += c.re * f[i];
  1281. tone->samples_im[fft_cutoff_index_table[tone->cutoff][i]] += c.im *((tone->cutoff <= i) ? -f[i] : f[i]);
  1282. }
  1283. for (i = 0; i < 4; i++) {
  1284. tone->samples_re[i] += c.re * f[i+2];
  1285. tone->samples_im[i] += c.im * f[i+2];
  1286. }
  1287. }
  1288. /* copy the tone if it has not yet died out */
  1289. if (++tone->time_index < ((1 << (5 - tone->duration)) - 1)) {
  1290. memcpy(&q->fft_tones[q->fft_tone_end], tone, sizeof(FFTTone));
  1291. q->fft_tone_end = (q->fft_tone_end + 1) % 1000;
  1292. }
  1293. }
  1294. static void qdm2_fft_tone_synthesizer (QDM2Context *q, int sub_packet)
  1295. {
  1296. int i, j, ch;
  1297. const double iscale = 0.25 * M_PI;
  1298. for (ch = 0; ch < q->channels; ch++) {
  1299. memset(q->fft.samples_im[ch], 0, q->fft_size * sizeof(float));
  1300. memset(q->fft.samples_re[ch], 0, q->fft_size * sizeof(float));
  1301. }
  1302. /* apply FFT tones with duration 4 (1 FFT period) */
  1303. if (q->fft_coefs_min_index[4] >= 0)
  1304. for (i = q->fft_coefs_min_index[4]; i < q->fft_coefs_max_index[4]; i++) {
  1305. float level;
  1306. QDM2Complex c;
  1307. if (q->fft_coefs[i].sub_packet != sub_packet)
  1308. break;
  1309. ch = (q->channels == 1) ? 0 : q->fft_coefs[i].channel;
  1310. level = (q->fft_coefs[i].exp < 0) ? 0.0 : fft_tone_level_table[q->superblocktype_2_3 ? 0 : 1][q->fft_coefs[i].exp & 63];
  1311. c.re = level * cos(q->fft_coefs[i].phase * iscale);
  1312. c.im = level * sin(q->fft_coefs[i].phase * iscale);
  1313. q->fft.samples_re[ch][q->fft_coefs[i].offset + 0] += c.re;
  1314. q->fft.samples_im[ch][q->fft_coefs[i].offset + 0] += c.im;
  1315. q->fft.samples_re[ch][q->fft_coefs[i].offset + 1] -= c.re;
  1316. q->fft.samples_im[ch][q->fft_coefs[i].offset + 1] -= c.im;
  1317. }
  1318. /* generate existing FFT tones */
  1319. for (i = q->fft_tone_end; i != q->fft_tone_start; ) {
  1320. qdm2_fft_generate_tone(q, &q->fft_tones[q->fft_tone_start]);
  1321. q->fft_tone_start = (q->fft_tone_start + 1) % 1000;
  1322. }
  1323. /* create and generate new FFT tones with duration 0 (long) to 3 (short) */
  1324. for (i = 0; i < 4; i++)
  1325. if (q->fft_coefs_min_index[i] >= 0) {
  1326. for (j = q->fft_coefs_min_index[i]; j < q->fft_coefs_max_index[i]; j++) {
  1327. int offset, four_i;
  1328. FFTTone tone;
  1329. if (q->fft_coefs[j].sub_packet != sub_packet)
  1330. break;
  1331. four_i = (4 - i);
  1332. offset = q->fft_coefs[j].offset >> four_i;
  1333. ch = (q->channels == 1) ? 0 : q->fft_coefs[j].channel;
  1334. if (offset < q->frequency_range) {
  1335. if (offset < 2)
  1336. tone.cutoff = offset;
  1337. else
  1338. tone.cutoff = (offset >= 60) ? 3 : 2;
  1339. tone.level = (q->fft_coefs[j].exp < 0) ? 0.0 : fft_tone_level_table[q->superblocktype_2_3 ? 0 : 1][q->fft_coefs[j].exp & 63];
  1340. tone.samples_im = &q->fft.samples_im[ch][offset];
  1341. tone.samples_re = &q->fft.samples_re[ch][offset];
  1342. tone.table = fft_tone_sample_table[i][q->fft_coefs[j].offset - (offset << four_i)];
  1343. tone.phase = 64 * q->fft_coefs[j].phase - (offset << 8) - 128;
  1344. tone.phase_shift = (2 * q->fft_coefs[j].offset + 1) << (7 - four_i);
  1345. tone.duration = i;
  1346. tone.time_index = 0;
  1347. qdm2_fft_generate_tone(q, &tone);
  1348. }
  1349. }
  1350. q->fft_coefs_min_index[i] = j;
  1351. }
  1352. }
  1353. static void qdm2_calculate_fft (QDM2Context *q, int channel, int sub_packet)
  1354. {
  1355. const int n = 1 << (q->fft_order - 1);
  1356. const int n2 = n >> 1;
  1357. const float gain = (q->channels == 1 && q->nb_channels == 2) ? 0.25f : 0.50f;
  1358. float c, s, f0, f1, f2, f3;
  1359. int i, j;
  1360. /* prerotation (or something like that) */
  1361. for (i=1; i < n2; i++) {
  1362. j = (n - i);
  1363. c = q->exptab[i].re;
  1364. s = -q->exptab[i].im;
  1365. f0 = (q->fft.samples_re[channel][i] - q->fft.samples_re[channel][j]) * gain;
  1366. f1 = (q->fft.samples_im[channel][i] + q->fft.samples_im[channel][j]) * gain;
  1367. f2 = (q->fft.samples_re[channel][i] + q->fft.samples_re[channel][j]) * gain;
  1368. f3 = (q->fft.samples_im[channel][i] - q->fft.samples_im[channel][j]) * gain;
  1369. q->fft.complex[i].re = s * f0 - c * f1 + f2;
  1370. q->fft.complex[i].im = c * f0 + s * f1 + f3;
  1371. q->fft.complex[j].re = -s * f0 + c * f1 + f2;
  1372. q->fft.complex[j].im = c * f0 + s * f1 - f3;
  1373. }
  1374. q->fft.complex[ 0].re = q->fft.samples_re[channel][ 0] * gain * 2.0;
  1375. q->fft.complex[ 0].im = q->fft.samples_re[channel][ 0] * gain * 2.0;
  1376. q->fft.complex[n2].re = q->fft.samples_re[channel][n2] * gain * 2.0;
  1377. q->fft.complex[n2].im = -q->fft.samples_im[channel][n2] * gain * 2.0;
  1378. ff_fft_permute(&q->fft_ctx, (FFTComplex *) q->fft.complex);
  1379. ff_fft_calc (&q->fft_ctx, (FFTComplex *) q->fft.complex);
  1380. /* add samples to output buffer */
  1381. for (i = 0; i < ((q->fft_frame_size + 15) & ~15); i++)
  1382. q->output_buffer[q->channels * i + channel] += ((float *) q->fft.complex)[i];
  1383. }
  1384. /**
  1385. * @param q context
  1386. * @param index subpacket number
  1387. */
  1388. static void qdm2_synthesis_filter (QDM2Context *q, int index)
  1389. {
  1390. OUT_INT samples[MPA_MAX_CHANNELS * MPA_FRAME_SIZE];
  1391. int i, k, ch, sb_used, sub_sampling, dither_state = 0;
  1392. /* copy sb_samples */
  1393. sb_used = QDM2_SB_USED(q->sub_sampling);
  1394. for (ch = 0; ch < q->channels; ch++)
  1395. for (i = 0; i < 8; i++)
  1396. for (k=sb_used; k < SBLIMIT; k++)
  1397. q->sb_samples[ch][(8 * index) + i][k] = 0;
  1398. for (ch = 0; ch < q->nb_channels; ch++) {
  1399. OUT_INT *samples_ptr = samples + ch;
  1400. for (i = 0; i < 8; i++) {
  1401. ff_mpa_synth_filter(q->synth_buf[ch], &(q->synth_buf_offset[ch]),
  1402. mpa_window, &dither_state,
  1403. samples_ptr, q->nb_channels,
  1404. q->sb_samples[ch][(8 * index) + i]);
  1405. samples_ptr += 32 * q->nb_channels;
  1406. }
  1407. }
  1408. /* add samples to output buffer */
  1409. sub_sampling = (4 >> q->sub_sampling);
  1410. for (ch = 0; ch < q->channels; ch++)
  1411. for (i = 0; i < q->frame_size; i++)
  1412. q->output_buffer[q->channels * i + ch] += (float)(samples[q->nb_channels * sub_sampling * i + ch] >> (sizeof(OUT_INT)*8-16));
  1413. }
  1414. /**
  1415. * Init static data (does not depend on specific file)
  1416. *
  1417. * @param q context
  1418. */
  1419. static void qdm2_init(QDM2Context *q) {
  1420. static int initialized = 0;
  1421. if (initialized != 0)
  1422. return;
  1423. initialized = 1;
  1424. qdm2_init_vlc();
  1425. ff_mpa_synth_init(mpa_window);
  1426. softclip_table_init();
  1427. rnd_table_init();
  1428. init_noise_samples();
  1429. av_log(NULL, AV_LOG_DEBUG, "init done\n");
  1430. }
  1431. #if 0
  1432. static void dump_context(QDM2Context *q)
  1433. {
  1434. int i;
  1435. #define PRINT(a,b) av_log(NULL,AV_LOG_DEBUG," %s = %d\n", a, b);
  1436. PRINT("compressed_data",q->compressed_data);
  1437. PRINT("compressed_size",q->compressed_size);
  1438. PRINT("frame_size",q->frame_size);
  1439. PRINT("checksum_size",q->checksum_size);
  1440. PRINT("channels",q->channels);
  1441. PRINT("nb_channels",q->nb_channels);
  1442. PRINT("fft_frame_size",q->fft_frame_size);
  1443. PRINT("fft_size",q->fft_size);
  1444. PRINT("sub_sampling",q->sub_sampling);
  1445. PRINT("fft_order",q->fft_order);
  1446. PRINT("group_order",q->group_order);
  1447. PRINT("group_size",q->group_size);
  1448. PRINT("sub_packet",q->sub_packet);
  1449. PRINT("frequency_range",q->frequency_range);
  1450. PRINT("has_errors",q->has_errors);
  1451. PRINT("fft_tone_end",q->fft_tone_end);
  1452. PRINT("fft_tone_start",q->fft_tone_start);
  1453. PRINT("fft_coefs_index",q->fft_coefs_index);
  1454. PRINT("coeff_per_sb_select",q->coeff_per_sb_select);
  1455. PRINT("cm_table_select",q->cm_table_select);
  1456. PRINT("noise_idx",q->noise_idx);
  1457. for (i = q->fft_tone_start; i < q->fft_tone_end; i++)
  1458. {
  1459. FFTTone *t = &q->fft_tones[i];
  1460. av_log(NULL,AV_LOG_DEBUG,"Tone (%d) dump:\n", i);
  1461. av_log(NULL,AV_LOG_DEBUG," level = %f\n", t->level);
  1462. // PRINT(" level", t->level);
  1463. PRINT(" phase", t->phase);
  1464. PRINT(" phase_shift", t->phase_shift);
  1465. PRINT(" duration", t->duration);
  1466. PRINT(" samples_im", t->samples_im);
  1467. PRINT(" samples_re", t->samples_re);
  1468. PRINT(" table", t->table);
  1469. }
  1470. }
  1471. #endif
  1472. /**
  1473. * Init parameters from codec extradata
  1474. */
  1475. static int qdm2_decode_init(AVCodecContext *avctx)
  1476. {
  1477. QDM2Context *s = avctx->priv_data;
  1478. uint8_t *extradata;
  1479. int extradata_size;
  1480. int tmp_val, tmp, size;
  1481. int i;
  1482. float alpha;
  1483. /* extradata parsing
  1484. Structure:
  1485. wave {
  1486. frma (QDM2)
  1487. QDCA
  1488. QDCP
  1489. }
  1490. 32 size (including this field)
  1491. 32 tag (=frma)
  1492. 32 type (=QDM2 or QDMC)
  1493. 32 size (including this field, in bytes)
  1494. 32 tag (=QDCA) // maybe mandatory parameters
  1495. 32 unknown (=1)
  1496. 32 channels (=2)
  1497. 32 samplerate (=44100)
  1498. 32 bitrate (=96000)
  1499. 32 block size (=4096)
  1500. 32 frame size (=256) (for one channel)
  1501. 32 packet size (=1300)
  1502. 32 size (including this field, in bytes)
  1503. 32 tag (=QDCP) // maybe some tuneable parameters
  1504. 32 float1 (=1.0)
  1505. 32 zero ?
  1506. 32 float2 (=1.0)
  1507. 32 float3 (=1.0)
  1508. 32 unknown (27)
  1509. 32 unknown (8)
  1510. 32 zero ?
  1511. */
  1512. if (!avctx->extradata || (avctx->extradata_size < 48)) {
  1513. av_log(avctx, AV_LOG_ERROR, "extradata missing or truncated\n");
  1514. return -1;
  1515. }
  1516. extradata = avctx->extradata;
  1517. extradata_size = avctx->extradata_size;
  1518. while (extradata_size > 7) {
  1519. if (!memcmp(extradata, "frmaQDM", 7))
  1520. break;
  1521. extradata++;
  1522. extradata_size--;
  1523. }
  1524. if (extradata_size < 12) {
  1525. av_log(avctx, AV_LOG_ERROR, "not enough extradata (%i)\n",
  1526. extradata_size);
  1527. return -1;
  1528. }
  1529. if (memcmp(extradata, "frmaQDM", 7)) {
  1530. av_log(avctx, AV_LOG_ERROR, "invalid headers, QDM? not found\n");
  1531. return -1;
  1532. }
  1533. if (extradata[7] == 'C') {
  1534. // s->is_qdmc = 1;
  1535. av_log(avctx, AV_LOG_ERROR, "stream is QDMC version 1, which is not supported\n");
  1536. return -1;
  1537. }
  1538. extradata += 8;
  1539. extradata_size -= 8;
  1540. size = AV_RB32(extradata);
  1541. if(size > extradata_size){
  1542. av_log(avctx, AV_LOG_ERROR, "extradata size too small, %i < %i\n",
  1543. extradata_size, size);
  1544. return -1;
  1545. }
  1546. extradata += 4;
  1547. av_log(avctx, AV_LOG_DEBUG, "size: %d\n", size);
  1548. if (AV_RB32(extradata) != MKBETAG('Q','D','C','A')) {
  1549. av_log(avctx, AV_LOG_ERROR, "invalid extradata, expecting QDCA\n");
  1550. return -1;
  1551. }
  1552. extradata += 8;
  1553. avctx->channels = s->nb_channels = s->channels = AV_RB32(extradata);
  1554. extradata += 4;
  1555. avctx->sample_rate = AV_RB32(extradata);
  1556. extradata += 4;
  1557. avctx->bit_rate = AV_RB32(extradata);
  1558. extradata += 4;
  1559. s->group_size = AV_RB32(extradata);
  1560. extradata += 4;
  1561. s->fft_size = AV_RB32(extradata);
  1562. extradata += 4;
  1563. s->checksum_size = AV_RB32(extradata);
  1564. extradata += 4;
  1565. s->fft_order = av_log2(s->fft_size) + 1;
  1566. s->fft_frame_size = 2 * s->fft_size; // complex has two floats
  1567. // something like max decodable tones
  1568. s->group_order = av_log2(s->group_size) + 1;
  1569. s->frame_size = s->group_size / 16; // 16 iterations per super block
  1570. s->sub_sampling = s->fft_order - 7;
  1571. s->frequency_range = 255 / (1 << (2 - s->sub_sampling));
  1572. switch ((s->sub_sampling * 2 + s->channels - 1)) {
  1573. case 0: tmp = 40; break;
  1574. case 1: tmp = 48; break;
  1575. case 2: tmp = 56; break;
  1576. case 3: tmp = 72; break;
  1577. case 4: tmp = 80; break;
  1578. case 5: tmp = 100;break;
  1579. default: tmp=s->sub_sampling; break;
  1580. }
  1581. tmp_val = 0;
  1582. if ((tmp * 1000) < avctx->bit_rate) tmp_val = 1;
  1583. if ((tmp * 1440) < avctx->bit_rate) tmp_val = 2;
  1584. if ((tmp * 1760) < avctx->bit_rate) tmp_val = 3;
  1585. if ((tmp * 2240) < avctx->bit_rate) tmp_val = 4;
  1586. s->cm_table_select = tmp_val;
  1587. if (s->sub_sampling == 0)
  1588. tmp = 7999;
  1589. else
  1590. tmp = ((-(s->sub_sampling -1)) & 8000) + 20000;
  1591. /*
  1592. 0: 7999 -> 0
  1593. 1: 20000 -> 2
  1594. 2: 28000 -> 2
  1595. */
  1596. if (tmp < 8000)
  1597. s->coeff_per_sb_select = 0;
  1598. else if (tmp <= 16000)
  1599. s->coeff_per_sb_select = 1;
  1600. else
  1601. s->coeff_per_sb_select = 2;
  1602. // Fail on unknown fft order, if it's > 9 it can overflow s->exptab[]
  1603. if ((s->fft_order < 7) || (s->fft_order > 9)) {
  1604. av_log(avctx, AV_LOG_ERROR, "Unknown FFT order (%d), contact the developers!\n", s->fft_order);
  1605. return -1;
  1606. }
  1607. ff_fft_init(&s->fft_ctx, s->fft_order - 1, 1);
  1608. for (i = 1; i < (1 << (s->fft_order - 2)); i++) {
  1609. alpha = 2 * M_PI * (float)i / (float)(1 << (s->fft_order - 1));
  1610. s->exptab[i].re = cos(alpha);
  1611. s->exptab[i].im = sin(alpha);
  1612. }
  1613. qdm2_init(s);
  1614. avctx->sample_fmt = SAMPLE_FMT_S16;
  1615. // dump_context(s);
  1616. return 0;
  1617. }
  1618. static int qdm2_decode_close(AVCodecContext *avctx)
  1619. {
  1620. QDM2Context *s = avctx->priv_data;
  1621. ff_fft_end(&s->fft_ctx);
  1622. return 0;
  1623. }
  1624. static void qdm2_decode (QDM2Context *q, const uint8_t *in, int16_t *out)
  1625. {
  1626. int ch, i;
  1627. const int frame_size = (q->frame_size * q->channels);
  1628. /* select input buffer */
  1629. q->compressed_data = in;
  1630. q->compressed_size = q->checksum_size;
  1631. // dump_context(q);
  1632. /* copy old block, clear new block of output samples */
  1633. memmove(q->output_buffer, &q->output_buffer[frame_size], frame_size * sizeof(float));
  1634. memset(&q->output_buffer[frame_size], 0, frame_size * sizeof(float));
  1635. /* decode block of QDM2 compressed data */
  1636. if (q->sub_packet == 0) {
  1637. q->has_errors = 0; // zero it for a new super block
  1638. av_log(NULL,AV_LOG_DEBUG,"Superblock follows\n");
  1639. qdm2_decode_super_block(q);
  1640. }
  1641. /* parse subpackets */
  1642. if (!q->has_errors) {
  1643. if (q->sub_packet == 2)
  1644. qdm2_decode_fft_packets(q);
  1645. qdm2_fft_tone_synthesizer(q, q->sub_packet);
  1646. }
  1647. /* sound synthesis stage 1 (FFT) */
  1648. for (ch = 0; ch < q->channels; ch++) {
  1649. qdm2_calculate_fft(q, ch, q->sub_packet);
  1650. if (!q->has_errors && q->sub_packet_list_C[0].packet != NULL) {
  1651. SAMPLES_NEEDED_2("has errors, and C list is not empty")
  1652. return;
  1653. }
  1654. }
  1655. /* sound synthesis stage 2 (MPEG audio like synthesis filter) */
  1656. if (!q->has_errors && q->do_synth_filter)
  1657. qdm2_synthesis_filter(q, q->sub_packet);
  1658. q->sub_packet = (q->sub_packet + 1) % 16;
  1659. /* clip and convert output float[] to 16bit signed samples */
  1660. for (i = 0; i < frame_size; i++) {
  1661. int value = (int)q->output_buffer[i];
  1662. if (value > SOFTCLIP_THRESHOLD)
  1663. value = (value > HARDCLIP_THRESHOLD) ? 32767 : softclip_table[ value - SOFTCLIP_THRESHOLD];
  1664. else if (value < -SOFTCLIP_THRESHOLD)
  1665. value = (value < -HARDCLIP_THRESHOLD) ? -32767 : -softclip_table[-value - SOFTCLIP_THRESHOLD];
  1666. out[i] = value;
  1667. }
  1668. }
  1669. static int qdm2_decode_frame(AVCodecContext *avctx,
  1670. void *data, int *data_size,
  1671. const uint8_t *buf, int buf_size)
  1672. {
  1673. QDM2Context *s = avctx->priv_data;
  1674. if(!buf)
  1675. return 0;
  1676. if(buf_size < s->checksum_size)
  1677. return -1;
  1678. *data_size = s->channels * s->frame_size * sizeof(int16_t);
  1679. av_log(avctx, AV_LOG_DEBUG, "decode(%d): %p[%d] -> %p[%d]\n",
  1680. buf_size, buf, s->checksum_size, data, *data_size);
  1681. qdm2_decode(s, buf, data);
  1682. // reading only when next superblock found
  1683. if (s->sub_packet == 0) {
  1684. return s->checksum_size;
  1685. }
  1686. return 0;
  1687. }
  1688. AVCodec qdm2_decoder =
  1689. {
  1690. .name = "qdm2",
  1691. .type = CODEC_TYPE_AUDIO,
  1692. .id = CODEC_ID_QDM2,
  1693. .priv_data_size = sizeof(QDM2Context),
  1694. .init = qdm2_decode_init,
  1695. .close = qdm2_decode_close,
  1696. .decode = qdm2_decode_frame,
  1697. .long_name = NULL_IF_CONFIG_SMALL("QDesign Music Codec 2"),
  1698. };