You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2046 lines
74KB

  1. /*
  2. * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include "config.h"
  21. #define _SVID_SOURCE // needed for MAP_ANONYMOUS
  22. #define _DARWIN_C_SOURCE // needed for MAP_ANON
  23. #include <inttypes.h>
  24. #include <math.h>
  25. #include <stdio.h>
  26. #include <string.h>
  27. #if HAVE_SYS_MMAN_H
  28. #include <sys/mman.h>
  29. #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
  30. #define MAP_ANONYMOUS MAP_ANON
  31. #endif
  32. #endif
  33. #if HAVE_VIRTUALALLOC
  34. #define WIN32_LEAN_AND_MEAN
  35. #include <windows.h>
  36. #endif
  37. #include "libavutil/attributes.h"
  38. #include "libavutil/avassert.h"
  39. #include "libavutil/avutil.h"
  40. #include "libavutil/bswap.h"
  41. #include "libavutil/cpu.h"
  42. #include "libavutil/intreadwrite.h"
  43. #include "libavutil/mathematics.h"
  44. #include "libavutil/opt.h"
  45. #include "libavutil/pixdesc.h"
  46. #include "libavutil/x86/asm.h"
  47. #include "libavutil/x86/cpu.h"
  48. #include "rgb2rgb.h"
  49. #include "swscale.h"
  50. #include "swscale_internal.h"
  51. unsigned swscale_version(void)
  52. {
  53. av_assert0(LIBSWSCALE_VERSION_MICRO >= 100);
  54. return LIBSWSCALE_VERSION_INT;
  55. }
  56. const char *swscale_configuration(void)
  57. {
  58. return FFMPEG_CONFIGURATION;
  59. }
  60. const char *swscale_license(void)
  61. {
  62. #define LICENSE_PREFIX "libswscale license: "
  63. return LICENSE_PREFIX FFMPEG_LICENSE + sizeof(LICENSE_PREFIX) - 1;
  64. }
  65. #define RET 0xC3 // near return opcode for x86
  66. typedef struct FormatEntry {
  67. uint8_t is_supported_in :1;
  68. uint8_t is_supported_out :1;
  69. uint8_t is_supported_endianness :1;
  70. } FormatEntry;
  71. static const FormatEntry format_entries[AV_PIX_FMT_NB] = {
  72. [AV_PIX_FMT_YUV420P] = { 1, 1 },
  73. [AV_PIX_FMT_YUYV422] = { 1, 1 },
  74. [AV_PIX_FMT_RGB24] = { 1, 1 },
  75. [AV_PIX_FMT_BGR24] = { 1, 1 },
  76. [AV_PIX_FMT_YUV422P] = { 1, 1 },
  77. [AV_PIX_FMT_YUV444P] = { 1, 1 },
  78. [AV_PIX_FMT_YUV410P] = { 1, 1 },
  79. [AV_PIX_FMT_YUV411P] = { 1, 1 },
  80. [AV_PIX_FMT_GRAY8] = { 1, 1 },
  81. [AV_PIX_FMT_MONOWHITE] = { 1, 1 },
  82. [AV_PIX_FMT_MONOBLACK] = { 1, 1 },
  83. [AV_PIX_FMT_PAL8] = { 1, 0 },
  84. [AV_PIX_FMT_YUVJ420P] = { 1, 1 },
  85. [AV_PIX_FMT_YUVJ411P] = { 1, 1 },
  86. [AV_PIX_FMT_YUVJ422P] = { 1, 1 },
  87. [AV_PIX_FMT_YUVJ444P] = { 1, 1 },
  88. [AV_PIX_FMT_UYVY422] = { 1, 1 },
  89. [AV_PIX_FMT_UYYVYY411] = { 0, 0 },
  90. [AV_PIX_FMT_BGR8] = { 1, 1 },
  91. [AV_PIX_FMT_BGR4] = { 0, 1 },
  92. [AV_PIX_FMT_BGR4_BYTE] = { 1, 1 },
  93. [AV_PIX_FMT_RGB8] = { 1, 1 },
  94. [AV_PIX_FMT_RGB4] = { 0, 1 },
  95. [AV_PIX_FMT_RGB4_BYTE] = { 1, 1 },
  96. [AV_PIX_FMT_NV12] = { 1, 1 },
  97. [AV_PIX_FMT_NV21] = { 1, 1 },
  98. [AV_PIX_FMT_ARGB] = { 1, 1 },
  99. [AV_PIX_FMT_RGBA] = { 1, 1 },
  100. [AV_PIX_FMT_ABGR] = { 1, 1 },
  101. [AV_PIX_FMT_BGRA] = { 1, 1 },
  102. [AV_PIX_FMT_0RGB] = { 1, 1 },
  103. [AV_PIX_FMT_RGB0] = { 1, 1 },
  104. [AV_PIX_FMT_0BGR] = { 1, 1 },
  105. [AV_PIX_FMT_BGR0] = { 1, 1 },
  106. [AV_PIX_FMT_GRAY16BE] = { 1, 1 },
  107. [AV_PIX_FMT_GRAY16LE] = { 1, 1 },
  108. [AV_PIX_FMT_YUV440P] = { 1, 1 },
  109. [AV_PIX_FMT_YUVJ440P] = { 1, 1 },
  110. [AV_PIX_FMT_YUVA420P] = { 1, 1 },
  111. [AV_PIX_FMT_YUVA422P] = { 1, 1 },
  112. [AV_PIX_FMT_YUVA444P] = { 1, 1 },
  113. [AV_PIX_FMT_YUVA420P9BE] = { 1, 1 },
  114. [AV_PIX_FMT_YUVA420P9LE] = { 1, 1 },
  115. [AV_PIX_FMT_YUVA422P9BE] = { 1, 1 },
  116. [AV_PIX_FMT_YUVA422P9LE] = { 1, 1 },
  117. [AV_PIX_FMT_YUVA444P9BE] = { 1, 1 },
  118. [AV_PIX_FMT_YUVA444P9LE] = { 1, 1 },
  119. [AV_PIX_FMT_YUVA420P10BE]= { 1, 1 },
  120. [AV_PIX_FMT_YUVA420P10LE]= { 1, 1 },
  121. [AV_PIX_FMT_YUVA422P10BE]= { 1, 1 },
  122. [AV_PIX_FMT_YUVA422P10LE]= { 1, 1 },
  123. [AV_PIX_FMT_YUVA444P10BE]= { 1, 1 },
  124. [AV_PIX_FMT_YUVA444P10LE]= { 1, 1 },
  125. [AV_PIX_FMT_YUVA420P16BE]= { 1, 1 },
  126. [AV_PIX_FMT_YUVA420P16LE]= { 1, 1 },
  127. [AV_PIX_FMT_YUVA422P16BE]= { 1, 1 },
  128. [AV_PIX_FMT_YUVA422P16LE]= { 1, 1 },
  129. [AV_PIX_FMT_YUVA444P16BE]= { 1, 1 },
  130. [AV_PIX_FMT_YUVA444P16LE]= { 1, 1 },
  131. [AV_PIX_FMT_RGB48BE] = { 1, 1 },
  132. [AV_PIX_FMT_RGB48LE] = { 1, 1 },
  133. [AV_PIX_FMT_RGBA64BE] = { 1, 1 },
  134. [AV_PIX_FMT_RGBA64LE] = { 1, 1 },
  135. [AV_PIX_FMT_RGB565BE] = { 1, 1 },
  136. [AV_PIX_FMT_RGB565LE] = { 1, 1 },
  137. [AV_PIX_FMT_RGB555BE] = { 1, 1 },
  138. [AV_PIX_FMT_RGB555LE] = { 1, 1 },
  139. [AV_PIX_FMT_BGR565BE] = { 1, 1 },
  140. [AV_PIX_FMT_BGR565LE] = { 1, 1 },
  141. [AV_PIX_FMT_BGR555BE] = { 1, 1 },
  142. [AV_PIX_FMT_BGR555LE] = { 1, 1 },
  143. [AV_PIX_FMT_YUV420P16LE] = { 1, 1 },
  144. [AV_PIX_FMT_YUV420P16BE] = { 1, 1 },
  145. [AV_PIX_FMT_YUV422P16LE] = { 1, 1 },
  146. [AV_PIX_FMT_YUV422P16BE] = { 1, 1 },
  147. [AV_PIX_FMT_YUV444P16LE] = { 1, 1 },
  148. [AV_PIX_FMT_YUV444P16BE] = { 1, 1 },
  149. [AV_PIX_FMT_RGB444LE] = { 1, 1 },
  150. [AV_PIX_FMT_RGB444BE] = { 1, 1 },
  151. [AV_PIX_FMT_BGR444LE] = { 1, 1 },
  152. [AV_PIX_FMT_BGR444BE] = { 1, 1 },
  153. [AV_PIX_FMT_Y400A] = { 1, 0 },
  154. [AV_PIX_FMT_BGR48BE] = { 1, 1 },
  155. [AV_PIX_FMT_BGR48LE] = { 1, 1 },
  156. [AV_PIX_FMT_BGRA64BE] = { 0, 0 },
  157. [AV_PIX_FMT_BGRA64LE] = { 0, 0 },
  158. [AV_PIX_FMT_YUV420P9BE] = { 1, 1 },
  159. [AV_PIX_FMT_YUV420P9LE] = { 1, 1 },
  160. [AV_PIX_FMT_YUV420P10BE] = { 1, 1 },
  161. [AV_PIX_FMT_YUV420P10LE] = { 1, 1 },
  162. [AV_PIX_FMT_YUV420P12BE] = { 1, 1 },
  163. [AV_PIX_FMT_YUV420P12LE] = { 1, 1 },
  164. [AV_PIX_FMT_YUV420P14BE] = { 1, 1 },
  165. [AV_PIX_FMT_YUV420P14LE] = { 1, 1 },
  166. [AV_PIX_FMT_YUV422P9BE] = { 1, 1 },
  167. [AV_PIX_FMT_YUV422P9LE] = { 1, 1 },
  168. [AV_PIX_FMT_YUV422P10BE] = { 1, 1 },
  169. [AV_PIX_FMT_YUV422P10LE] = { 1, 1 },
  170. [AV_PIX_FMT_YUV422P12BE] = { 1, 1 },
  171. [AV_PIX_FMT_YUV422P12LE] = { 1, 1 },
  172. [AV_PIX_FMT_YUV422P14BE] = { 1, 1 },
  173. [AV_PIX_FMT_YUV422P14LE] = { 1, 1 },
  174. [AV_PIX_FMT_YUV444P9BE] = { 1, 1 },
  175. [AV_PIX_FMT_YUV444P9LE] = { 1, 1 },
  176. [AV_PIX_FMT_YUV444P10BE] = { 1, 1 },
  177. [AV_PIX_FMT_YUV444P10LE] = { 1, 1 },
  178. [AV_PIX_FMT_YUV444P12BE] = { 1, 1 },
  179. [AV_PIX_FMT_YUV444P12LE] = { 1, 1 },
  180. [AV_PIX_FMT_YUV444P14BE] = { 1, 1 },
  181. [AV_PIX_FMT_YUV444P14LE] = { 1, 1 },
  182. [AV_PIX_FMT_GBRP] = { 1, 1 },
  183. [AV_PIX_FMT_GBRP9LE] = { 1, 1 },
  184. [AV_PIX_FMT_GBRP9BE] = { 1, 1 },
  185. [AV_PIX_FMT_GBRP10LE] = { 1, 1 },
  186. [AV_PIX_FMT_GBRP10BE] = { 1, 1 },
  187. [AV_PIX_FMT_GBRP12LE] = { 1, 1 },
  188. [AV_PIX_FMT_GBRP12BE] = { 1, 1 },
  189. [AV_PIX_FMT_GBRP14LE] = { 1, 1 },
  190. [AV_PIX_FMT_GBRP14BE] = { 1, 1 },
  191. [AV_PIX_FMT_GBRP16LE] = { 1, 0 },
  192. [AV_PIX_FMT_GBRP16BE] = { 1, 0 },
  193. [AV_PIX_FMT_XYZ12BE] = { 1, 0, 1 },
  194. [AV_PIX_FMT_XYZ12LE] = { 1, 0, 1 },
  195. [AV_PIX_FMT_GBRAP] = { 1, 1 },
  196. [AV_PIX_FMT_GBRAP16LE] = { 1, 0 },
  197. [AV_PIX_FMT_GBRAP16BE] = { 1, 0 },
  198. };
  199. int sws_isSupportedInput(enum AVPixelFormat pix_fmt)
  200. {
  201. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  202. format_entries[pix_fmt].is_supported_in : 0;
  203. }
  204. int sws_isSupportedOutput(enum AVPixelFormat pix_fmt)
  205. {
  206. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  207. format_entries[pix_fmt].is_supported_out : 0;
  208. }
  209. int sws_isSupportedEndiannessConversion(enum AVPixelFormat pix_fmt)
  210. {
  211. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  212. format_entries[pix_fmt].is_supported_endianness : 0;
  213. }
  214. extern const int32_t ff_yuv2rgb_coeffs[8][4];
  215. #if FF_API_SWS_FORMAT_NAME
  216. const char *sws_format_name(enum AVPixelFormat format)
  217. {
  218. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(format);
  219. if (desc)
  220. return desc->name;
  221. else
  222. return "Unknown format";
  223. }
  224. #endif
  225. static double getSplineCoeff(double a, double b, double c, double d,
  226. double dist)
  227. {
  228. if (dist <= 1.0)
  229. return ((d * dist + c) * dist + b) * dist + a;
  230. else
  231. return getSplineCoeff(0.0,
  232. b + 2.0 * c + 3.0 * d,
  233. c + 3.0 * d,
  234. -b - 3.0 * c - 6.0 * d,
  235. dist - 1.0);
  236. }
  237. static av_cold int initFilter(int16_t **outFilter, int32_t **filterPos,
  238. int *outFilterSize, int xInc, int srcW,
  239. int dstW, int filterAlign, int one,
  240. int flags, int cpu_flags,
  241. SwsVector *srcFilter, SwsVector *dstFilter,
  242. double param[2])
  243. {
  244. int i;
  245. int filterSize;
  246. int filter2Size;
  247. int minFilterSize;
  248. int64_t *filter = NULL;
  249. int64_t *filter2 = NULL;
  250. const int64_t fone = 1LL << (54 - FFMIN(av_log2(srcW/dstW), 8));
  251. int ret = -1;
  252. emms_c(); // FIXME should not be required but IS (even for non-MMX versions)
  253. // NOTE: the +3 is for the MMX(+1) / SSE(+3) scaler which reads over the end
  254. FF_ALLOC_OR_GOTO(NULL, *filterPos, (dstW + 3) * sizeof(**filterPos), fail);
  255. if (FFABS(xInc - 0x10000) < 10) { // unscaled
  256. int i;
  257. filterSize = 1;
  258. FF_ALLOCZ_OR_GOTO(NULL, filter,
  259. dstW * sizeof(*filter) * filterSize, fail);
  260. for (i = 0; i < dstW; i++) {
  261. filter[i * filterSize] = fone;
  262. (*filterPos)[i] = i;
  263. }
  264. } else if (flags & SWS_POINT) { // lame looking point sampling mode
  265. int i;
  266. int64_t xDstInSrc;
  267. filterSize = 1;
  268. FF_ALLOC_OR_GOTO(NULL, filter,
  269. dstW * sizeof(*filter) * filterSize, fail);
  270. xDstInSrc = xInc / 2 - 0x8000;
  271. for (i = 0; i < dstW; i++) {
  272. int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
  273. (*filterPos)[i] = xx;
  274. filter[i] = fone;
  275. xDstInSrc += xInc;
  276. }
  277. } else if ((xInc <= (1 << 16) && (flags & SWS_AREA)) ||
  278. (flags & SWS_FAST_BILINEAR)) { // bilinear upscale
  279. int i;
  280. int64_t xDstInSrc;
  281. filterSize = 2;
  282. FF_ALLOC_OR_GOTO(NULL, filter,
  283. dstW * sizeof(*filter) * filterSize, fail);
  284. xDstInSrc = xInc / 2 - 0x8000;
  285. for (i = 0; i < dstW; i++) {
  286. int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
  287. int j;
  288. (*filterPos)[i] = xx;
  289. // bilinear upscale / linear interpolate / area averaging
  290. for (j = 0; j < filterSize; j++) {
  291. int64_t coeff= fone - FFABS(((int64_t)xx<<16) - xDstInSrc)*(fone>>16);
  292. if (coeff < 0)
  293. coeff = 0;
  294. filter[i * filterSize + j] = coeff;
  295. xx++;
  296. }
  297. xDstInSrc += xInc;
  298. }
  299. } else {
  300. int64_t xDstInSrc;
  301. int sizeFactor;
  302. if (flags & SWS_BICUBIC)
  303. sizeFactor = 4;
  304. else if (flags & SWS_X)
  305. sizeFactor = 8;
  306. else if (flags & SWS_AREA)
  307. sizeFactor = 1; // downscale only, for upscale it is bilinear
  308. else if (flags & SWS_GAUSS)
  309. sizeFactor = 8; // infinite ;)
  310. else if (flags & SWS_LANCZOS)
  311. sizeFactor = param[0] != SWS_PARAM_DEFAULT ? ceil(2 * param[0]) : 6;
  312. else if (flags & SWS_SINC)
  313. sizeFactor = 20; // infinite ;)
  314. else if (flags & SWS_SPLINE)
  315. sizeFactor = 20; // infinite ;)
  316. else if (flags & SWS_BILINEAR)
  317. sizeFactor = 2;
  318. else {
  319. av_assert0(0);
  320. }
  321. if (xInc <= 1 << 16)
  322. filterSize = 1 + sizeFactor; // upscale
  323. else
  324. filterSize = 1 + (sizeFactor * srcW + dstW - 1) / dstW;
  325. filterSize = FFMIN(filterSize, srcW - 2);
  326. filterSize = FFMAX(filterSize, 1);
  327. FF_ALLOC_OR_GOTO(NULL, filter,
  328. dstW * sizeof(*filter) * filterSize, fail);
  329. xDstInSrc = xInc - 0x10000;
  330. for (i = 0; i < dstW; i++) {
  331. int xx = (xDstInSrc - ((filterSize - 2) << 16)) / (1 << 17);
  332. int j;
  333. (*filterPos)[i] = xx;
  334. for (j = 0; j < filterSize; j++) {
  335. int64_t d = (FFABS(((int64_t)xx << 17) - xDstInSrc)) << 13;
  336. double floatd;
  337. int64_t coeff;
  338. if (xInc > 1 << 16)
  339. d = d * dstW / srcW;
  340. floatd = d * (1.0 / (1 << 30));
  341. if (flags & SWS_BICUBIC) {
  342. int64_t B = (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1 << 24);
  343. int64_t C = (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1 << 24);
  344. if (d >= 1LL << 31) {
  345. coeff = 0.0;
  346. } else {
  347. int64_t dd = (d * d) >> 30;
  348. int64_t ddd = (dd * d) >> 30;
  349. if (d < 1LL << 30)
  350. coeff = (12 * (1 << 24) - 9 * B - 6 * C) * ddd +
  351. (-18 * (1 << 24) + 12 * B + 6 * C) * dd +
  352. (6 * (1 << 24) - 2 * B) * (1 << 30);
  353. else
  354. coeff = (-B - 6 * C) * ddd +
  355. (6 * B + 30 * C) * dd +
  356. (-12 * B - 48 * C) * d +
  357. (8 * B + 24 * C) * (1 << 30);
  358. }
  359. coeff /= (1LL<<54)/fone;
  360. }
  361. #if 0
  362. else if (flags & SWS_X) {
  363. double p = param ? param * 0.01 : 0.3;
  364. coeff = d ? sin(d * M_PI) / (d * M_PI) : 1.0;
  365. coeff *= pow(2.0, -p * d * d);
  366. }
  367. #endif
  368. else if (flags & SWS_X) {
  369. double A = param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
  370. double c;
  371. if (floatd < 1.0)
  372. c = cos(floatd * M_PI);
  373. else
  374. c = -1.0;
  375. if (c < 0.0)
  376. c = -pow(-c, A);
  377. else
  378. c = pow(c, A);
  379. coeff = (c * 0.5 + 0.5) * fone;
  380. } else if (flags & SWS_AREA) {
  381. int64_t d2 = d - (1 << 29);
  382. if (d2 * xInc < -(1LL << (29 + 16)))
  383. coeff = 1.0 * (1LL << (30 + 16));
  384. else if (d2 * xInc < (1LL << (29 + 16)))
  385. coeff = -d2 * xInc + (1LL << (29 + 16));
  386. else
  387. coeff = 0.0;
  388. coeff *= fone >> (30 + 16);
  389. } else if (flags & SWS_GAUSS) {
  390. double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  391. coeff = (pow(2.0, -p * floatd * floatd)) * fone;
  392. } else if (flags & SWS_SINC) {
  393. coeff = (d ? sin(floatd * M_PI) / (floatd * M_PI) : 1.0) * fone;
  394. } else if (flags & SWS_LANCZOS) {
  395. double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  396. coeff = (d ? sin(floatd * M_PI) * sin(floatd * M_PI / p) /
  397. (floatd * floatd * M_PI * M_PI / p) : 1.0) * fone;
  398. if (floatd > p)
  399. coeff = 0;
  400. } else if (flags & SWS_BILINEAR) {
  401. coeff = (1 << 30) - d;
  402. if (coeff < 0)
  403. coeff = 0;
  404. coeff *= fone >> 30;
  405. } else if (flags & SWS_SPLINE) {
  406. double p = -2.196152422706632;
  407. coeff = getSplineCoeff(1.0, 0.0, p, -p - 1.0, floatd) * fone;
  408. } else {
  409. av_assert0(0);
  410. }
  411. filter[i * filterSize + j] = coeff;
  412. xx++;
  413. }
  414. xDstInSrc += 2 * xInc;
  415. }
  416. }
  417. /* apply src & dst Filter to filter -> filter2
  418. * av_free(filter);
  419. */
  420. av_assert0(filterSize > 0);
  421. filter2Size = filterSize;
  422. if (srcFilter)
  423. filter2Size += srcFilter->length - 1;
  424. if (dstFilter)
  425. filter2Size += dstFilter->length - 1;
  426. av_assert0(filter2Size > 0);
  427. FF_ALLOCZ_OR_GOTO(NULL, filter2, filter2Size * dstW * sizeof(*filter2), fail);
  428. for (i = 0; i < dstW; i++) {
  429. int j, k;
  430. if (srcFilter) {
  431. for (k = 0; k < srcFilter->length; k++) {
  432. for (j = 0; j < filterSize; j++)
  433. filter2[i * filter2Size + k + j] +=
  434. srcFilter->coeff[k] * filter[i * filterSize + j];
  435. }
  436. } else {
  437. for (j = 0; j < filterSize; j++)
  438. filter2[i * filter2Size + j] = filter[i * filterSize + j];
  439. }
  440. // FIXME dstFilter
  441. (*filterPos)[i] += (filterSize - 1) / 2 - (filter2Size - 1) / 2;
  442. }
  443. av_freep(&filter);
  444. /* try to reduce the filter-size (step1 find size and shift left) */
  445. // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
  446. minFilterSize = 0;
  447. for (i = dstW - 1; i >= 0; i--) {
  448. int min = filter2Size;
  449. int j;
  450. int64_t cutOff = 0.0;
  451. /* get rid of near zero elements on the left by shifting left */
  452. for (j = 0; j < filter2Size; j++) {
  453. int k;
  454. cutOff += FFABS(filter2[i * filter2Size]);
  455. if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
  456. break;
  457. /* preserve monotonicity because the core can't handle the
  458. * filter otherwise */
  459. if (i < dstW - 1 && (*filterPos)[i] >= (*filterPos)[i + 1])
  460. break;
  461. // move filter coefficients left
  462. for (k = 1; k < filter2Size; k++)
  463. filter2[i * filter2Size + k - 1] = filter2[i * filter2Size + k];
  464. filter2[i * filter2Size + k - 1] = 0;
  465. (*filterPos)[i]++;
  466. }
  467. cutOff = 0;
  468. /* count near zeros on the right */
  469. for (j = filter2Size - 1; j > 0; j--) {
  470. cutOff += FFABS(filter2[i * filter2Size + j]);
  471. if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
  472. break;
  473. min--;
  474. }
  475. if (min > minFilterSize)
  476. minFilterSize = min;
  477. }
  478. if (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC) {
  479. // we can handle the special case 4, so we don't want to go the full 8
  480. if (minFilterSize < 5)
  481. filterAlign = 4;
  482. /* We really don't want to waste our time doing useless computation, so
  483. * fall back on the scalar C code for very small filters.
  484. * Vectorizing is worth it only if you have a decent-sized vector. */
  485. if (minFilterSize < 3)
  486. filterAlign = 1;
  487. }
  488. if (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) {
  489. // special case for unscaled vertical filtering
  490. if (minFilterSize == 1 && filterAlign == 2)
  491. filterAlign = 1;
  492. }
  493. av_assert0(minFilterSize > 0);
  494. filterSize = (minFilterSize + (filterAlign - 1)) & (~(filterAlign - 1));
  495. av_assert0(filterSize > 0);
  496. filter = av_malloc(filterSize * dstW * sizeof(*filter));
  497. if (filterSize >= MAX_FILTER_SIZE * 16 /
  498. ((flags & SWS_ACCURATE_RND) ? APCK_SIZE : 16) || !filter) {
  499. av_log(NULL, AV_LOG_ERROR, "sws: filterSize %d is too large, try less extreem scaling or increase MAX_FILTER_SIZE and recompile\n", filterSize);
  500. goto fail;
  501. }
  502. *outFilterSize = filterSize;
  503. if (flags & SWS_PRINT_INFO)
  504. av_log(NULL, AV_LOG_VERBOSE,
  505. "SwScaler: reducing / aligning filtersize %d -> %d\n",
  506. filter2Size, filterSize);
  507. /* try to reduce the filter-size (step2 reduce it) */
  508. for (i = 0; i < dstW; i++) {
  509. int j;
  510. for (j = 0; j < filterSize; j++) {
  511. if (j >= filter2Size)
  512. filter[i * filterSize + j] = 0;
  513. else
  514. filter[i * filterSize + j] = filter2[i * filter2Size + j];
  515. if ((flags & SWS_BITEXACT) && j >= minFilterSize)
  516. filter[i * filterSize + j] = 0;
  517. }
  518. }
  519. // FIXME try to align filterPos if possible
  520. // fix borders
  521. for (i = 0; i < dstW; i++) {
  522. int j;
  523. if ((*filterPos)[i] < 0) {
  524. // move filter coefficients left to compensate for filterPos
  525. for (j = 1; j < filterSize; j++) {
  526. int left = FFMAX(j + (*filterPos)[i], 0);
  527. filter[i * filterSize + left] += filter[i * filterSize + j];
  528. filter[i * filterSize + j] = 0;
  529. }
  530. (*filterPos)[i]= 0;
  531. }
  532. if ((*filterPos)[i] + filterSize > srcW) {
  533. int shift = (*filterPos)[i] + filterSize - srcW;
  534. // move filter coefficients right to compensate for filterPos
  535. for (j = filterSize - 2; j >= 0; j--) {
  536. int right = FFMIN(j + shift, filterSize - 1);
  537. filter[i * filterSize + right] += filter[i * filterSize + j];
  538. filter[i * filterSize + j] = 0;
  539. }
  540. (*filterPos)[i]= srcW - filterSize;
  541. }
  542. }
  543. // Note the +1 is for the MMX scaler which reads over the end
  544. /* align at 16 for AltiVec (needed by hScale_altivec_real) */
  545. FF_ALLOCZ_OR_GOTO(NULL, *outFilter,
  546. *outFilterSize * (dstW + 3) * sizeof(int16_t), fail);
  547. /* normalize & store in outFilter */
  548. for (i = 0; i < dstW; i++) {
  549. int j;
  550. int64_t error = 0;
  551. int64_t sum = 0;
  552. for (j = 0; j < filterSize; j++) {
  553. sum += filter[i * filterSize + j];
  554. }
  555. sum = (sum + one / 2) / one;
  556. for (j = 0; j < *outFilterSize; j++) {
  557. int64_t v = filter[i * filterSize + j] + error;
  558. int intV = ROUNDED_DIV(v, sum);
  559. (*outFilter)[i * (*outFilterSize) + j] = intV;
  560. error = v - intV * sum;
  561. }
  562. }
  563. (*filterPos)[dstW + 0] =
  564. (*filterPos)[dstW + 1] =
  565. (*filterPos)[dstW + 2] = (*filterPos)[dstW - 1]; /* the MMX/SSE scaler will
  566. * read over the end */
  567. for (i = 0; i < *outFilterSize; i++) {
  568. int k = (dstW - 1) * (*outFilterSize) + i;
  569. (*outFilter)[k + 1 * (*outFilterSize)] =
  570. (*outFilter)[k + 2 * (*outFilterSize)] =
  571. (*outFilter)[k + 3 * (*outFilterSize)] = (*outFilter)[k];
  572. }
  573. ret = 0;
  574. fail:
  575. if(ret < 0)
  576. av_log(NULL, AV_LOG_ERROR, "sws: initFilter failed\n");
  577. av_free(filter);
  578. av_free(filter2);
  579. return ret;
  580. }
  581. #if HAVE_MMXEXT_INLINE
  582. static av_cold int init_hscaler_mmxext(int dstW, int xInc, uint8_t *filterCode,
  583. int16_t *filter, int32_t *filterPos,
  584. int numSplits)
  585. {
  586. uint8_t *fragmentA;
  587. x86_reg imm8OfPShufW1A;
  588. x86_reg imm8OfPShufW2A;
  589. x86_reg fragmentLengthA;
  590. uint8_t *fragmentB;
  591. x86_reg imm8OfPShufW1B;
  592. x86_reg imm8OfPShufW2B;
  593. x86_reg fragmentLengthB;
  594. int fragmentPos;
  595. int xpos, i;
  596. // create an optimized horizontal scaling routine
  597. /* This scaler is made of runtime-generated MMXEXT code using specially tuned
  598. * pshufw instructions. For every four output pixels, if four input pixels
  599. * are enough for the fast bilinear scaling, then a chunk of fragmentB is
  600. * used. If five input pixels are needed, then a chunk of fragmentA is used.
  601. */
  602. // code fragment
  603. __asm__ volatile (
  604. "jmp 9f \n\t"
  605. // Begin
  606. "0: \n\t"
  607. "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
  608. "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
  609. "movd 1(%%"REG_c", %%"REG_S"), %%mm1 \n\t"
  610. "punpcklbw %%mm7, %%mm1 \n\t"
  611. "punpcklbw %%mm7, %%mm0 \n\t"
  612. "pshufw $0xFF, %%mm1, %%mm1 \n\t"
  613. "1: \n\t"
  614. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  615. "2: \n\t"
  616. "psubw %%mm1, %%mm0 \n\t"
  617. "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
  618. "pmullw %%mm3, %%mm0 \n\t"
  619. "psllw $7, %%mm1 \n\t"
  620. "paddw %%mm1, %%mm0 \n\t"
  621. "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
  622. "add $8, %%"REG_a" \n\t"
  623. // End
  624. "9: \n\t"
  625. // "int $3 \n\t"
  626. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  627. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  628. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  629. "dec %1 \n\t"
  630. "dec %2 \n\t"
  631. "sub %0, %1 \n\t"
  632. "sub %0, %2 \n\t"
  633. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  634. "sub %0, %3 \n\t"
  635. : "=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
  636. "=r" (fragmentLengthA)
  637. );
  638. __asm__ volatile (
  639. "jmp 9f \n\t"
  640. // Begin
  641. "0: \n\t"
  642. "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
  643. "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
  644. "punpcklbw %%mm7, %%mm0 \n\t"
  645. "pshufw $0xFF, %%mm0, %%mm1 \n\t"
  646. "1: \n\t"
  647. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  648. "2: \n\t"
  649. "psubw %%mm1, %%mm0 \n\t"
  650. "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
  651. "pmullw %%mm3, %%mm0 \n\t"
  652. "psllw $7, %%mm1 \n\t"
  653. "paddw %%mm1, %%mm0 \n\t"
  654. "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
  655. "add $8, %%"REG_a" \n\t"
  656. // End
  657. "9: \n\t"
  658. // "int $3 \n\t"
  659. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  660. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  661. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  662. "dec %1 \n\t"
  663. "dec %2 \n\t"
  664. "sub %0, %1 \n\t"
  665. "sub %0, %2 \n\t"
  666. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  667. "sub %0, %3 \n\t"
  668. : "=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
  669. "=r" (fragmentLengthB)
  670. );
  671. xpos = 0; // lumXInc/2 - 0x8000; // difference between pixel centers
  672. fragmentPos = 0;
  673. for (i = 0; i < dstW / numSplits; i++) {
  674. int xx = xpos >> 16;
  675. if ((i & 3) == 0) {
  676. int a = 0;
  677. int b = ((xpos + xInc) >> 16) - xx;
  678. int c = ((xpos + xInc * 2) >> 16) - xx;
  679. int d = ((xpos + xInc * 3) >> 16) - xx;
  680. int inc = (d + 1 < 4);
  681. uint8_t *fragment = (d + 1 < 4) ? fragmentB : fragmentA;
  682. x86_reg imm8OfPShufW1 = (d + 1 < 4) ? imm8OfPShufW1B : imm8OfPShufW1A;
  683. x86_reg imm8OfPShufW2 = (d + 1 < 4) ? imm8OfPShufW2B : imm8OfPShufW2A;
  684. x86_reg fragmentLength = (d + 1 < 4) ? fragmentLengthB : fragmentLengthA;
  685. int maxShift = 3 - (d + inc);
  686. int shift = 0;
  687. if (filterCode) {
  688. filter[i] = ((xpos & 0xFFFF) ^ 0xFFFF) >> 9;
  689. filter[i + 1] = (((xpos + xInc) & 0xFFFF) ^ 0xFFFF) >> 9;
  690. filter[i + 2] = (((xpos + xInc * 2) & 0xFFFF) ^ 0xFFFF) >> 9;
  691. filter[i + 3] = (((xpos + xInc * 3) & 0xFFFF) ^ 0xFFFF) >> 9;
  692. filterPos[i / 2] = xx;
  693. memcpy(filterCode + fragmentPos, fragment, fragmentLength);
  694. filterCode[fragmentPos + imm8OfPShufW1] = (a + inc) |
  695. ((b + inc) << 2) |
  696. ((c + inc) << 4) |
  697. ((d + inc) << 6);
  698. filterCode[fragmentPos + imm8OfPShufW2] = a | (b << 2) |
  699. (c << 4) |
  700. (d << 6);
  701. if (i + 4 - inc >= dstW)
  702. shift = maxShift; // avoid overread
  703. else if ((filterPos[i / 2] & 3) <= maxShift)
  704. shift = filterPos[i / 2] & 3; // align
  705. if (shift && i >= shift) {
  706. filterCode[fragmentPos + imm8OfPShufW1] += 0x55 * shift;
  707. filterCode[fragmentPos + imm8OfPShufW2] += 0x55 * shift;
  708. filterPos[i / 2] -= shift;
  709. }
  710. }
  711. fragmentPos += fragmentLength;
  712. if (filterCode)
  713. filterCode[fragmentPos] = RET;
  714. }
  715. xpos += xInc;
  716. }
  717. if (filterCode)
  718. filterPos[((i / 2) + 1) & (~1)] = xpos >> 16; // needed to jump to the next part
  719. return fragmentPos + 1;
  720. }
  721. #endif /* HAVE_MMXEXT_INLINE */
  722. static void getSubSampleFactors(int *h, int *v, enum AVPixelFormat format)
  723. {
  724. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(format);
  725. *h = desc->log2_chroma_w;
  726. *v = desc->log2_chroma_h;
  727. }
  728. static void fill_rgb2yuv_table(SwsContext *c, const int table[4], int dstRange)
  729. {
  730. int64_t W, V, Z, Cy, Cu, Cv;
  731. int64_t vr = table[0];
  732. int64_t ub = table[1];
  733. int64_t ug = -table[2];
  734. int64_t vg = -table[3];
  735. int64_t ONE = 65536;
  736. int64_t cy = ONE;
  737. uint8_t *p = (uint8_t*)c->input_rgb2yuv_table;
  738. int i;
  739. static const int8_t map[] = {
  740. BY_IDX, GY_IDX, -1 , BY_IDX, BY_IDX, GY_IDX, -1 , BY_IDX,
  741. RY_IDX, -1 , GY_IDX, RY_IDX, RY_IDX, -1 , GY_IDX, RY_IDX,
  742. RY_IDX, GY_IDX, -1 , RY_IDX, RY_IDX, GY_IDX, -1 , RY_IDX,
  743. BY_IDX, -1 , GY_IDX, BY_IDX, BY_IDX, -1 , GY_IDX, BY_IDX,
  744. BU_IDX, GU_IDX, -1 , BU_IDX, BU_IDX, GU_IDX, -1 , BU_IDX,
  745. RU_IDX, -1 , GU_IDX, RU_IDX, RU_IDX, -1 , GU_IDX, RU_IDX,
  746. RU_IDX, GU_IDX, -1 , RU_IDX, RU_IDX, GU_IDX, -1 , RU_IDX,
  747. BU_IDX, -1 , GU_IDX, BU_IDX, BU_IDX, -1 , GU_IDX, BU_IDX,
  748. BV_IDX, GV_IDX, -1 , BV_IDX, BV_IDX, GV_IDX, -1 , BV_IDX,
  749. RV_IDX, -1 , GV_IDX, RV_IDX, RV_IDX, -1 , GV_IDX, RV_IDX,
  750. RV_IDX, GV_IDX, -1 , RV_IDX, RV_IDX, GV_IDX, -1 , RV_IDX,
  751. BV_IDX, -1 , GV_IDX, BV_IDX, BV_IDX, -1 , GV_IDX, BV_IDX,
  752. RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX,
  753. BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX,
  754. GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 ,
  755. -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX,
  756. RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX,
  757. BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX,
  758. GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 ,
  759. -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX,
  760. RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX,
  761. BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX,
  762. GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 ,
  763. -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, //23
  764. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //24
  765. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //25
  766. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //26
  767. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //27
  768. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //28
  769. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //29
  770. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //30
  771. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //31
  772. BY_IDX, GY_IDX, RY_IDX, -1 , -1 , -1 , -1 , -1 , //32
  773. BU_IDX, GU_IDX, RU_IDX, -1 , -1 , -1 , -1 , -1 , //33
  774. BV_IDX, GV_IDX, RV_IDX, -1 , -1 , -1 , -1 , -1 , //34
  775. };
  776. dstRange = 0; //FIXME range = 1 is handled elsewhere
  777. if (!dstRange) {
  778. cy = cy * 255 / 219;
  779. } else {
  780. vr = vr * 224 / 255;
  781. ub = ub * 224 / 255;
  782. ug = ug * 224 / 255;
  783. vg = vg * 224 / 255;
  784. }
  785. W = ROUNDED_DIV(ONE*ONE*ug, ub);
  786. V = ROUNDED_DIV(ONE*ONE*vg, vr);
  787. Z = ONE*ONE-W-V;
  788. Cy = ROUNDED_DIV(cy*Z, ONE);
  789. Cu = ROUNDED_DIV(ub*Z, ONE);
  790. Cv = ROUNDED_DIV(vr*Z, ONE);
  791. c->input_rgb2yuv_table[RY_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*V , Cy);
  792. c->input_rgb2yuv_table[GY_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cy);
  793. c->input_rgb2yuv_table[BY_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*W , Cy);
  794. c->input_rgb2yuv_table[RU_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*V , Cu);
  795. c->input_rgb2yuv_table[GU_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cu);
  796. c->input_rgb2yuv_table[BU_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*(Z+W) , Cu);
  797. c->input_rgb2yuv_table[RV_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*(V+Z) , Cv);
  798. c->input_rgb2yuv_table[GV_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cv);
  799. c->input_rgb2yuv_table[BV_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*W , Cv);
  800. if(/*!dstRange && */table == ff_yuv2rgb_coeffs[SWS_CS_DEFAULT]) {
  801. c->input_rgb2yuv_table[BY_IDX] = ((int)(0.114 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  802. c->input_rgb2yuv_table[BV_IDX] = (-(int)(0.081 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  803. c->input_rgb2yuv_table[BU_IDX] = ((int)(0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  804. c->input_rgb2yuv_table[GY_IDX] = ((int)(0.587 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  805. c->input_rgb2yuv_table[GV_IDX] = (-(int)(0.419 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  806. c->input_rgb2yuv_table[GU_IDX] = (-(int)(0.331 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  807. c->input_rgb2yuv_table[RY_IDX] = ((int)(0.299 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  808. c->input_rgb2yuv_table[RV_IDX] = ((int)(0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  809. c->input_rgb2yuv_table[RU_IDX] = (-(int)(0.169 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  810. }
  811. for(i=0; i<FF_ARRAY_ELEMS(map); i++)
  812. AV_WL16(p + 16*4 + 2*i, map[i] >= 0 ? c->input_rgb2yuv_table[map[i]] : 0);
  813. }
  814. static void fill_xyztables(struct SwsContext *c)
  815. {
  816. int i;
  817. double xyzgamma = XYZ_GAMMA;
  818. double rgbgamma = 1.0 / RGB_GAMMA;
  819. static const int16_t xyz2rgb_matrix[3][4] = {
  820. {13270, -6295, -2041},
  821. {-3969, 7682, 170},
  822. { 228, -835, 4329} };
  823. static int16_t xyzgamma_tab[4096], rgbgamma_tab[4096];
  824. memcpy(c->xyz2rgb_matrix, xyz2rgb_matrix, sizeof(c->xyz2rgb_matrix));
  825. c->xyzgamma = xyzgamma_tab;
  826. c->rgbgamma = rgbgamma_tab;
  827. if (rgbgamma_tab[4095])
  828. return;
  829. /* set gamma vectors */
  830. for (i = 0; i < 4096; i++) {
  831. xyzgamma_tab[i] = lrint(pow(i / 4095.0, xyzgamma) * 4095.0);
  832. rgbgamma_tab[i] = lrint(pow(i / 4095.0, rgbgamma) * 4095.0);
  833. }
  834. }
  835. int sws_setColorspaceDetails(struct SwsContext *c, const int inv_table[4],
  836. int srcRange, const int table[4], int dstRange,
  837. int brightness, int contrast, int saturation)
  838. {
  839. const AVPixFmtDescriptor *desc_dst = av_pix_fmt_desc_get(c->dstFormat);
  840. const AVPixFmtDescriptor *desc_src = av_pix_fmt_desc_get(c->srcFormat);
  841. memcpy(c->srcColorspaceTable, inv_table, sizeof(int) * 4);
  842. memcpy(c->dstColorspaceTable, table, sizeof(int) * 4);
  843. if(!isYUV(c->dstFormat) && !isGray(c->dstFormat))
  844. dstRange = 0;
  845. if(!isYUV(c->srcFormat) && !isGray(c->srcFormat))
  846. srcRange = 0;
  847. c->brightness = brightness;
  848. c->contrast = contrast;
  849. c->saturation = saturation;
  850. c->srcRange = srcRange;
  851. c->dstRange = dstRange;
  852. fill_xyztables(c);
  853. if ((isYUV(c->dstFormat) || isGray(c->dstFormat)) && (isYUV(c->srcFormat) || isGray(c->srcFormat)))
  854. return -1;
  855. c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
  856. c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
  857. if (!isYUV(c->dstFormat) && !isGray(c->dstFormat)) {
  858. ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness,
  859. contrast, saturation);
  860. // FIXME factorize
  861. if (HAVE_ALTIVEC && av_get_cpu_flags() & AV_CPU_FLAG_ALTIVEC)
  862. ff_yuv2rgb_init_tables_altivec(c, inv_table, brightness,
  863. contrast, saturation);
  864. }
  865. fill_rgb2yuv_table(c, table, dstRange);
  866. return 0;
  867. }
  868. int sws_getColorspaceDetails(struct SwsContext *c, int **inv_table,
  869. int *srcRange, int **table, int *dstRange,
  870. int *brightness, int *contrast, int *saturation)
  871. {
  872. if (!c || isYUV(c->dstFormat) || isGray(c->dstFormat))
  873. return -1;
  874. *inv_table = c->srcColorspaceTable;
  875. *table = c->dstColorspaceTable;
  876. *srcRange = c->srcRange;
  877. *dstRange = c->dstRange;
  878. *brightness = c->brightness;
  879. *contrast = c->contrast;
  880. *saturation = c->saturation;
  881. return 0;
  882. }
  883. static int handle_jpeg(enum AVPixelFormat *format)
  884. {
  885. switch (*format) {
  886. case AV_PIX_FMT_YUVJ420P:
  887. *format = AV_PIX_FMT_YUV420P;
  888. return 1;
  889. case AV_PIX_FMT_YUVJ411P:
  890. *format = AV_PIX_FMT_YUV411P;
  891. return 1;
  892. case AV_PIX_FMT_YUVJ422P:
  893. *format = AV_PIX_FMT_YUV422P;
  894. return 1;
  895. case AV_PIX_FMT_YUVJ444P:
  896. *format = AV_PIX_FMT_YUV444P;
  897. return 1;
  898. case AV_PIX_FMT_YUVJ440P:
  899. *format = AV_PIX_FMT_YUV440P;
  900. return 1;
  901. default:
  902. return 0;
  903. }
  904. }
  905. static int handle_0alpha(enum AVPixelFormat *format)
  906. {
  907. switch (*format) {
  908. case AV_PIX_FMT_0BGR : *format = AV_PIX_FMT_ABGR ; return 1;
  909. case AV_PIX_FMT_BGR0 : *format = AV_PIX_FMT_BGRA ; return 4;
  910. case AV_PIX_FMT_0RGB : *format = AV_PIX_FMT_ARGB ; return 1;
  911. case AV_PIX_FMT_RGB0 : *format = AV_PIX_FMT_RGBA ; return 4;
  912. default: return 0;
  913. }
  914. }
  915. static int handle_xyz(enum AVPixelFormat *format)
  916. {
  917. switch (*format) {
  918. case AV_PIX_FMT_XYZ12BE : *format = AV_PIX_FMT_RGB48BE; return 1;
  919. case AV_PIX_FMT_XYZ12LE : *format = AV_PIX_FMT_RGB48LE; return 1;
  920. default: return 0;
  921. }
  922. }
  923. SwsContext *sws_alloc_context(void)
  924. {
  925. SwsContext *c = av_mallocz(sizeof(SwsContext));
  926. if (c) {
  927. c->av_class = &sws_context_class;
  928. av_opt_set_defaults(c);
  929. }
  930. return c;
  931. }
  932. av_cold int sws_init_context(SwsContext *c, SwsFilter *srcFilter,
  933. SwsFilter *dstFilter)
  934. {
  935. int i, j;
  936. int usesVFilter, usesHFilter;
  937. int unscaled;
  938. SwsFilter dummyFilter = { NULL, NULL, NULL, NULL };
  939. int srcW = c->srcW;
  940. int srcH = c->srcH;
  941. int dstW = c->dstW;
  942. int dstH = c->dstH;
  943. int dst_stride = FFALIGN(dstW * sizeof(int16_t) + 66, 16);
  944. int flags, cpu_flags;
  945. enum AVPixelFormat srcFormat = c->srcFormat;
  946. enum AVPixelFormat dstFormat = c->dstFormat;
  947. const AVPixFmtDescriptor *desc_src = av_pix_fmt_desc_get(srcFormat);
  948. const AVPixFmtDescriptor *desc_dst = av_pix_fmt_desc_get(dstFormat);
  949. cpu_flags = av_get_cpu_flags();
  950. flags = c->flags;
  951. emms_c();
  952. if (!rgb15to16)
  953. sws_rgb2rgb_init();
  954. unscaled = (srcW == dstW && srcH == dstH);
  955. handle_jpeg(&srcFormat);
  956. handle_jpeg(&dstFormat);
  957. if(srcFormat!=c->srcFormat || dstFormat!=c->dstFormat)
  958. av_log(c, AV_LOG_WARNING, "deprecated pixel format used, make sure you did set range correctly\n");
  959. handle_0alpha(&srcFormat);
  960. handle_0alpha(&dstFormat);
  961. handle_xyz(&srcFormat);
  962. handle_xyz(&dstFormat);
  963. if(srcFormat!=c->srcFormat || dstFormat!=c->dstFormat){
  964. c->srcFormat= srcFormat;
  965. c->dstFormat= dstFormat;
  966. }
  967. if (!(unscaled && sws_isSupportedEndiannessConversion(srcFormat) &&
  968. av_pix_fmt_swap_endianness(srcFormat) == dstFormat)) {
  969. if (!sws_isSupportedInput(srcFormat)) {
  970. av_log(c, AV_LOG_ERROR, "%s is not supported as input pixel format\n",
  971. av_get_pix_fmt_name(srcFormat));
  972. return AVERROR(EINVAL);
  973. }
  974. if (!sws_isSupportedOutput(dstFormat)) {
  975. av_log(c, AV_LOG_ERROR, "%s is not supported as output pixel format\n",
  976. av_get_pix_fmt_name(dstFormat));
  977. return AVERROR(EINVAL);
  978. }
  979. }
  980. i = flags & (SWS_POINT |
  981. SWS_AREA |
  982. SWS_BILINEAR |
  983. SWS_FAST_BILINEAR |
  984. SWS_BICUBIC |
  985. SWS_X |
  986. SWS_GAUSS |
  987. SWS_LANCZOS |
  988. SWS_SINC |
  989. SWS_SPLINE |
  990. SWS_BICUBLIN);
  991. if (!i || (i & (i - 1))) {
  992. av_log(c, AV_LOG_ERROR, "Exactly one scaler algorithm must be chosen, got %X\n", i);
  993. return AVERROR(EINVAL);
  994. }
  995. /* sanity check */
  996. if (srcW < 1 || srcH < 1 || dstW < 1 || dstH < 1) {
  997. /* FIXME check if these are enough and try to lower them after
  998. * fixing the relevant parts of the code */
  999. av_log(c, AV_LOG_ERROR, "%dx%d -> %dx%d is invalid scaling dimension\n",
  1000. srcW, srcH, dstW, dstH);
  1001. return AVERROR(EINVAL);
  1002. }
  1003. if (!dstFilter)
  1004. dstFilter = &dummyFilter;
  1005. if (!srcFilter)
  1006. srcFilter = &dummyFilter;
  1007. c->lumXInc = (((int64_t)srcW << 16) + (dstW >> 1)) / dstW;
  1008. c->lumYInc = (((int64_t)srcH << 16) + (dstH >> 1)) / dstH;
  1009. c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
  1010. c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
  1011. c->vRounder = 4 * 0x0001000100010001ULL;
  1012. usesVFilter = (srcFilter->lumV && srcFilter->lumV->length > 1) ||
  1013. (srcFilter->chrV && srcFilter->chrV->length > 1) ||
  1014. (dstFilter->lumV && dstFilter->lumV->length > 1) ||
  1015. (dstFilter->chrV && dstFilter->chrV->length > 1);
  1016. usesHFilter = (srcFilter->lumH && srcFilter->lumH->length > 1) ||
  1017. (srcFilter->chrH && srcFilter->chrH->length > 1) ||
  1018. (dstFilter->lumH && dstFilter->lumH->length > 1) ||
  1019. (dstFilter->chrH && dstFilter->chrH->length > 1);
  1020. getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
  1021. getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
  1022. if (isAnyRGB(dstFormat) && !(flags&SWS_FULL_CHR_H_INT)) {
  1023. if (dstW&1) {
  1024. av_log(c, AV_LOG_DEBUG, "Forcing full internal H chroma due to odd output size\n");
  1025. flags |= SWS_FULL_CHR_H_INT;
  1026. c->flags = flags;
  1027. }
  1028. }
  1029. if(dstFormat == AV_PIX_FMT_BGR4_BYTE ||
  1030. dstFormat == AV_PIX_FMT_RGB4_BYTE ||
  1031. dstFormat == AV_PIX_FMT_BGR8 ||
  1032. dstFormat == AV_PIX_FMT_RGB8) {
  1033. if (flags & SWS_ERROR_DIFFUSION && !(flags & SWS_FULL_CHR_H_INT)) {
  1034. av_log(c, AV_LOG_DEBUG,
  1035. "Error diffusion dither is only supported in full chroma interpolation for destination format '%s'\n",
  1036. av_get_pix_fmt_name(dstFormat));
  1037. flags |= SWS_FULL_CHR_H_INT;
  1038. c->flags = flags;
  1039. }
  1040. if (!(flags & SWS_ERROR_DIFFUSION) && (flags & SWS_FULL_CHR_H_INT)) {
  1041. av_log(c, AV_LOG_DEBUG,
  1042. "Ordered dither is not supported in full chroma interpolation for destination format '%s'\n",
  1043. av_get_pix_fmt_name(dstFormat));
  1044. flags |= SWS_ERROR_DIFFUSION;
  1045. c->flags = flags;
  1046. }
  1047. }
  1048. if (isPlanarRGB(dstFormat)) {
  1049. if (!(flags & SWS_FULL_CHR_H_INT)) {
  1050. av_log(c, AV_LOG_DEBUG,
  1051. "%s output is not supported with half chroma resolution, switching to full\n",
  1052. av_get_pix_fmt_name(dstFormat));
  1053. flags |= SWS_FULL_CHR_H_INT;
  1054. c->flags = flags;
  1055. }
  1056. }
  1057. /* reuse chroma for 2 pixels RGB/BGR unless user wants full
  1058. * chroma interpolation */
  1059. if (flags & SWS_FULL_CHR_H_INT &&
  1060. isAnyRGB(dstFormat) &&
  1061. !isPlanarRGB(dstFormat) &&
  1062. dstFormat != AV_PIX_FMT_RGBA &&
  1063. dstFormat != AV_PIX_FMT_ARGB &&
  1064. dstFormat != AV_PIX_FMT_BGRA &&
  1065. dstFormat != AV_PIX_FMT_ABGR &&
  1066. dstFormat != AV_PIX_FMT_RGB24 &&
  1067. dstFormat != AV_PIX_FMT_BGR24 &&
  1068. dstFormat != AV_PIX_FMT_BGR4_BYTE &&
  1069. dstFormat != AV_PIX_FMT_RGB4_BYTE &&
  1070. dstFormat != AV_PIX_FMT_BGR8 &&
  1071. dstFormat != AV_PIX_FMT_RGB8
  1072. ) {
  1073. av_log(c, AV_LOG_WARNING,
  1074. "full chroma interpolation for destination format '%s' not yet implemented\n",
  1075. av_get_pix_fmt_name(dstFormat));
  1076. flags &= ~SWS_FULL_CHR_H_INT;
  1077. c->flags = flags;
  1078. }
  1079. if (isAnyRGB(dstFormat) && !(flags & SWS_FULL_CHR_H_INT))
  1080. c->chrDstHSubSample = 1;
  1081. // drop some chroma lines if the user wants it
  1082. c->vChrDrop = (flags & SWS_SRC_V_CHR_DROP_MASK) >>
  1083. SWS_SRC_V_CHR_DROP_SHIFT;
  1084. c->chrSrcVSubSample += c->vChrDrop;
  1085. /* drop every other pixel for chroma calculation unless user
  1086. * wants full chroma */
  1087. if (isAnyRGB(srcFormat) && !(flags & SWS_FULL_CHR_H_INP) &&
  1088. srcFormat != AV_PIX_FMT_RGB8 && srcFormat != AV_PIX_FMT_BGR8 &&
  1089. srcFormat != AV_PIX_FMT_RGB4 && srcFormat != AV_PIX_FMT_BGR4 &&
  1090. srcFormat != AV_PIX_FMT_RGB4_BYTE && srcFormat != AV_PIX_FMT_BGR4_BYTE &&
  1091. srcFormat != AV_PIX_FMT_GBRP9BE && srcFormat != AV_PIX_FMT_GBRP9LE &&
  1092. srcFormat != AV_PIX_FMT_GBRP10BE && srcFormat != AV_PIX_FMT_GBRP10LE &&
  1093. srcFormat != AV_PIX_FMT_GBRP12BE && srcFormat != AV_PIX_FMT_GBRP12LE &&
  1094. srcFormat != AV_PIX_FMT_GBRP14BE && srcFormat != AV_PIX_FMT_GBRP14LE &&
  1095. srcFormat != AV_PIX_FMT_GBRP16BE && srcFormat != AV_PIX_FMT_GBRP16LE &&
  1096. ((dstW >> c->chrDstHSubSample) <= (srcW >> 1) ||
  1097. (flags & SWS_FAST_BILINEAR)))
  1098. c->chrSrcHSubSample = 1;
  1099. // Note the FF_CEIL_RSHIFT is so that we always round toward +inf.
  1100. c->chrSrcW = FF_CEIL_RSHIFT(srcW, c->chrSrcHSubSample);
  1101. c->chrSrcH = FF_CEIL_RSHIFT(srcH, c->chrSrcVSubSample);
  1102. c->chrDstW = FF_CEIL_RSHIFT(dstW, c->chrDstHSubSample);
  1103. c->chrDstH = FF_CEIL_RSHIFT(dstH, c->chrDstVSubSample);
  1104. FF_ALLOC_OR_GOTO(c, c->formatConvBuffer, FFALIGN(srcW*2+78, 16) * 2, fail);
  1105. /* unscaled special cases */
  1106. if (unscaled && !usesHFilter && !usesVFilter &&
  1107. (c->srcRange == c->dstRange || isAnyRGB(dstFormat))) {
  1108. ff_get_unscaled_swscale(c);
  1109. if (c->swScale) {
  1110. if (flags & SWS_PRINT_INFO)
  1111. av_log(c, AV_LOG_INFO,
  1112. "using unscaled %s -> %s special converter\n",
  1113. av_get_pix_fmt_name(srcFormat), av_get_pix_fmt_name(dstFormat));
  1114. return 0;
  1115. }
  1116. }
  1117. c->srcBpc = 1 + desc_src->comp[0].depth_minus1;
  1118. if (c->srcBpc < 8)
  1119. c->srcBpc = 8;
  1120. c->dstBpc = 1 + desc_dst->comp[0].depth_minus1;
  1121. if (c->dstBpc < 8)
  1122. c->dstBpc = 8;
  1123. if (isAnyRGB(srcFormat) || srcFormat == AV_PIX_FMT_PAL8)
  1124. c->srcBpc = 16;
  1125. if (c->dstBpc == 16)
  1126. dst_stride <<= 1;
  1127. if (INLINE_MMXEXT(cpu_flags) && c->srcBpc == 8 && c->dstBpc <= 14) {
  1128. c->canMMXEXTBeUsed = (dstW >= srcW && (dstW & 31) == 0 &&
  1129. (srcW & 15) == 0) ? 1 : 0;
  1130. if (!c->canMMXEXTBeUsed && dstW >= srcW && (srcW & 15) == 0
  1131. && (flags & SWS_FAST_BILINEAR)) {
  1132. if (flags & SWS_PRINT_INFO)
  1133. av_log(c, AV_LOG_INFO,
  1134. "output width is not a multiple of 32 -> no MMXEXT scaler\n");
  1135. }
  1136. if (usesHFilter || isNBPS(c->srcFormat) || is16BPS(c->srcFormat) || isAnyRGB(c->srcFormat))
  1137. c->canMMXEXTBeUsed = 0;
  1138. } else
  1139. c->canMMXEXTBeUsed = 0;
  1140. c->chrXInc = (((int64_t)c->chrSrcW << 16) + (c->chrDstW >> 1)) / c->chrDstW;
  1141. c->chrYInc = (((int64_t)c->chrSrcH << 16) + (c->chrDstH >> 1)) / c->chrDstH;
  1142. /* Match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src
  1143. * to pixel n-2 of dst, but only for the FAST_BILINEAR mode otherwise do
  1144. * correct scaling.
  1145. * n-2 is the last chrominance sample available.
  1146. * This is not perfect, but no one should notice the difference, the more
  1147. * correct variant would be like the vertical one, but that would require
  1148. * some special code for the first and last pixel */
  1149. if (flags & SWS_FAST_BILINEAR) {
  1150. if (c->canMMXEXTBeUsed) {
  1151. c->lumXInc += 20;
  1152. c->chrXInc += 20;
  1153. }
  1154. // we don't use the x86 asm scaler if MMX is available
  1155. else if (INLINE_MMX(cpu_flags) && c->dstBpc <= 14) {
  1156. c->lumXInc = ((int64_t)(srcW - 2) << 16) / (dstW - 2) - 20;
  1157. c->chrXInc = ((int64_t)(c->chrSrcW - 2) << 16) / (c->chrDstW - 2) - 20;
  1158. }
  1159. }
  1160. #define USE_MMAP (HAVE_MMAP && HAVE_MPROTECT && defined MAP_ANONYMOUS)
  1161. /* precalculate horizontal scaler filter coefficients */
  1162. {
  1163. #if HAVE_MMXEXT_INLINE
  1164. // can't downscale !!!
  1165. if (c->canMMXEXTBeUsed && (flags & SWS_FAST_BILINEAR)) {
  1166. c->lumMmxextFilterCodeSize = init_hscaler_mmxext(dstW, c->lumXInc, NULL,
  1167. NULL, NULL, 8);
  1168. c->chrMmxextFilterCodeSize = init_hscaler_mmxext(c->chrDstW, c->chrXInc,
  1169. NULL, NULL, NULL, 4);
  1170. #if USE_MMAP
  1171. c->lumMmxextFilterCode = mmap(NULL, c->lumMmxextFilterCodeSize,
  1172. PROT_READ | PROT_WRITE,
  1173. MAP_PRIVATE | MAP_ANONYMOUS,
  1174. -1, 0);
  1175. c->chrMmxextFilterCode = mmap(NULL, c->chrMmxextFilterCodeSize,
  1176. PROT_READ | PROT_WRITE,
  1177. MAP_PRIVATE | MAP_ANONYMOUS,
  1178. -1, 0);
  1179. #elif HAVE_VIRTUALALLOC
  1180. c->lumMmxextFilterCode = VirtualAlloc(NULL,
  1181. c->lumMmxextFilterCodeSize,
  1182. MEM_COMMIT,
  1183. PAGE_EXECUTE_READWRITE);
  1184. c->chrMmxextFilterCode = VirtualAlloc(NULL,
  1185. c->chrMmxextFilterCodeSize,
  1186. MEM_COMMIT,
  1187. PAGE_EXECUTE_READWRITE);
  1188. #else
  1189. c->lumMmxextFilterCode = av_malloc(c->lumMmxextFilterCodeSize);
  1190. c->chrMmxextFilterCode = av_malloc(c->chrMmxextFilterCodeSize);
  1191. #endif
  1192. #ifdef MAP_ANONYMOUS
  1193. if (c->lumMmxextFilterCode == MAP_FAILED || c->chrMmxextFilterCode == MAP_FAILED)
  1194. #else
  1195. if (!c->lumMmxextFilterCode || !c->chrMmxextFilterCode)
  1196. #endif
  1197. {
  1198. av_log(c, AV_LOG_ERROR, "Failed to allocate MMX2FilterCode\n");
  1199. return AVERROR(ENOMEM);
  1200. }
  1201. FF_ALLOCZ_OR_GOTO(c, c->hLumFilter, (dstW / 8 + 8) * sizeof(int16_t), fail);
  1202. FF_ALLOCZ_OR_GOTO(c, c->hChrFilter, (c->chrDstW / 4 + 8) * sizeof(int16_t), fail);
  1203. FF_ALLOCZ_OR_GOTO(c, c->hLumFilterPos, (dstW / 2 / 8 + 8) * sizeof(int32_t), fail);
  1204. FF_ALLOCZ_OR_GOTO(c, c->hChrFilterPos, (c->chrDstW / 2 / 4 + 8) * sizeof(int32_t), fail);
  1205. init_hscaler_mmxext( dstW, c->lumXInc, c->lumMmxextFilterCode,
  1206. c->hLumFilter, (uint32_t*)c->hLumFilterPos, 8);
  1207. init_hscaler_mmxext(c->chrDstW, c->chrXInc, c->chrMmxextFilterCode,
  1208. c->hChrFilter, (uint32_t*)c->hChrFilterPos, 4);
  1209. #if USE_MMAP
  1210. mprotect(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize, PROT_EXEC | PROT_READ);
  1211. mprotect(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize, PROT_EXEC | PROT_READ);
  1212. #endif
  1213. } else
  1214. #endif /* HAVE_MMXEXT_INLINE */
  1215. {
  1216. const int filterAlign =
  1217. (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? 4 :
  1218. (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC) ? 8 :
  1219. 1;
  1220. if (initFilter(&c->hLumFilter, &c->hLumFilterPos,
  1221. &c->hLumFilterSize, c->lumXInc,
  1222. srcW, dstW, filterAlign, 1 << 14,
  1223. (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
  1224. cpu_flags, srcFilter->lumH, dstFilter->lumH,
  1225. c->param) < 0)
  1226. goto fail;
  1227. if (initFilter(&c->hChrFilter, &c->hChrFilterPos,
  1228. &c->hChrFilterSize, c->chrXInc,
  1229. c->chrSrcW, c->chrDstW, filterAlign, 1 << 14,
  1230. (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
  1231. cpu_flags, srcFilter->chrH, dstFilter->chrH,
  1232. c->param) < 0)
  1233. goto fail;
  1234. }
  1235. } // initialize horizontal stuff
  1236. /* precalculate vertical scaler filter coefficients */
  1237. {
  1238. const int filterAlign =
  1239. (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? 2 :
  1240. (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC) ? 8 :
  1241. 1;
  1242. if (initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize,
  1243. c->lumYInc, srcH, dstH, filterAlign, (1 << 12),
  1244. (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
  1245. cpu_flags, srcFilter->lumV, dstFilter->lumV,
  1246. c->param) < 0)
  1247. goto fail;
  1248. if (initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize,
  1249. c->chrYInc, c->chrSrcH, c->chrDstH,
  1250. filterAlign, (1 << 12),
  1251. (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
  1252. cpu_flags, srcFilter->chrV, dstFilter->chrV,
  1253. c->param) < 0)
  1254. goto fail;
  1255. #if HAVE_ALTIVEC
  1256. FF_ALLOC_OR_GOTO(c, c->vYCoeffsBank, sizeof(vector signed short) * c->vLumFilterSize * c->dstH, fail);
  1257. FF_ALLOC_OR_GOTO(c, c->vCCoeffsBank, sizeof(vector signed short) * c->vChrFilterSize * c->chrDstH, fail);
  1258. for (i = 0; i < c->vLumFilterSize * c->dstH; i++) {
  1259. int j;
  1260. short *p = (short *)&c->vYCoeffsBank[i];
  1261. for (j = 0; j < 8; j++)
  1262. p[j] = c->vLumFilter[i];
  1263. }
  1264. for (i = 0; i < c->vChrFilterSize * c->chrDstH; i++) {
  1265. int j;
  1266. short *p = (short *)&c->vCCoeffsBank[i];
  1267. for (j = 0; j < 8; j++)
  1268. p[j] = c->vChrFilter[i];
  1269. }
  1270. #endif
  1271. }
  1272. // calculate buffer sizes so that they won't run out while handling these damn slices
  1273. c->vLumBufSize = c->vLumFilterSize;
  1274. c->vChrBufSize = c->vChrFilterSize;
  1275. for (i = 0; i < dstH; i++) {
  1276. int chrI = (int64_t)i * c->chrDstH / dstH;
  1277. int nextSlice = FFMAX(c->vLumFilterPos[i] + c->vLumFilterSize - 1,
  1278. ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)
  1279. << c->chrSrcVSubSample));
  1280. nextSlice >>= c->chrSrcVSubSample;
  1281. nextSlice <<= c->chrSrcVSubSample;
  1282. if (c->vLumFilterPos[i] + c->vLumBufSize < nextSlice)
  1283. c->vLumBufSize = nextSlice - c->vLumFilterPos[i];
  1284. if (c->vChrFilterPos[chrI] + c->vChrBufSize <
  1285. (nextSlice >> c->chrSrcVSubSample))
  1286. c->vChrBufSize = (nextSlice >> c->chrSrcVSubSample) -
  1287. c->vChrFilterPos[chrI];
  1288. }
  1289. for (i = 0; i < 4; i++)
  1290. FF_ALLOCZ_OR_GOTO(c, c->dither_error[i], (c->dstW+2) * sizeof(int), fail);
  1291. /* Allocate pixbufs (we use dynamic allocation because otherwise we would
  1292. * need to allocate several megabytes to handle all possible cases) */
  1293. FF_ALLOC_OR_GOTO(c, c->lumPixBuf, c->vLumBufSize * 3 * sizeof(int16_t *), fail);
  1294. FF_ALLOC_OR_GOTO(c, c->chrUPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail);
  1295. FF_ALLOC_OR_GOTO(c, c->chrVPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail);
  1296. if (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat))
  1297. FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf, c->vLumBufSize * 3 * sizeof(int16_t *), fail);
  1298. /* Note we need at least one pixel more at the end because of the MMX code
  1299. * (just in case someone wants to replace the 4000/8000). */
  1300. /* align at 16 bytes for AltiVec */
  1301. for (i = 0; i < c->vLumBufSize; i++) {
  1302. FF_ALLOCZ_OR_GOTO(c, c->lumPixBuf[i + c->vLumBufSize],
  1303. dst_stride + 16, fail);
  1304. c->lumPixBuf[i] = c->lumPixBuf[i + c->vLumBufSize];
  1305. }
  1306. // 64 / c->scalingBpp is the same as 16 / sizeof(scaling_intermediate)
  1307. c->uv_off = (dst_stride>>1) + 64 / (c->dstBpc &~ 7);
  1308. c->uv_offx2 = dst_stride + 16;
  1309. for (i = 0; i < c->vChrBufSize; i++) {
  1310. FF_ALLOC_OR_GOTO(c, c->chrUPixBuf[i + c->vChrBufSize],
  1311. dst_stride * 2 + 32, fail);
  1312. c->chrUPixBuf[i] = c->chrUPixBuf[i + c->vChrBufSize];
  1313. c->chrVPixBuf[i] = c->chrVPixBuf[i + c->vChrBufSize]
  1314. = c->chrUPixBuf[i] + (dst_stride >> 1) + 8;
  1315. }
  1316. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf)
  1317. for (i = 0; i < c->vLumBufSize; i++) {
  1318. FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf[i + c->vLumBufSize],
  1319. dst_stride + 16, fail);
  1320. c->alpPixBuf[i] = c->alpPixBuf[i + c->vLumBufSize];
  1321. }
  1322. // try to avoid drawing green stuff between the right end and the stride end
  1323. for (i = 0; i < c->vChrBufSize; i++)
  1324. if(desc_dst->comp[0].depth_minus1 == 15){
  1325. av_assert0(c->dstBpc > 14);
  1326. for(j=0; j<dst_stride/2+1; j++)
  1327. ((int32_t*)(c->chrUPixBuf[i]))[j] = 1<<18;
  1328. } else
  1329. for(j=0; j<dst_stride+1; j++)
  1330. ((int16_t*)(c->chrUPixBuf[i]))[j] = 1<<14;
  1331. av_assert0(c->chrDstH <= dstH);
  1332. if (flags & SWS_PRINT_INFO) {
  1333. if (flags & SWS_FAST_BILINEAR)
  1334. av_log(c, AV_LOG_INFO, "FAST_BILINEAR scaler, ");
  1335. else if (flags & SWS_BILINEAR)
  1336. av_log(c, AV_LOG_INFO, "BILINEAR scaler, ");
  1337. else if (flags & SWS_BICUBIC)
  1338. av_log(c, AV_LOG_INFO, "BICUBIC scaler, ");
  1339. else if (flags & SWS_X)
  1340. av_log(c, AV_LOG_INFO, "Experimental scaler, ");
  1341. else if (flags & SWS_POINT)
  1342. av_log(c, AV_LOG_INFO, "Nearest Neighbor / POINT scaler, ");
  1343. else if (flags & SWS_AREA)
  1344. av_log(c, AV_LOG_INFO, "Area Averaging scaler, ");
  1345. else if (flags & SWS_BICUBLIN)
  1346. av_log(c, AV_LOG_INFO, "luma BICUBIC / chroma BILINEAR scaler, ");
  1347. else if (flags & SWS_GAUSS)
  1348. av_log(c, AV_LOG_INFO, "Gaussian scaler, ");
  1349. else if (flags & SWS_SINC)
  1350. av_log(c, AV_LOG_INFO, "Sinc scaler, ");
  1351. else if (flags & SWS_LANCZOS)
  1352. av_log(c, AV_LOG_INFO, "Lanczos scaler, ");
  1353. else if (flags & SWS_SPLINE)
  1354. av_log(c, AV_LOG_INFO, "Bicubic spline scaler, ");
  1355. else
  1356. av_log(c, AV_LOG_INFO, "ehh flags invalid?! ");
  1357. av_log(c, AV_LOG_INFO, "from %s to %s%s ",
  1358. av_get_pix_fmt_name(srcFormat),
  1359. #ifdef DITHER1XBPP
  1360. dstFormat == AV_PIX_FMT_BGR555 || dstFormat == AV_PIX_FMT_BGR565 ||
  1361. dstFormat == AV_PIX_FMT_RGB444BE || dstFormat == AV_PIX_FMT_RGB444LE ||
  1362. dstFormat == AV_PIX_FMT_BGR444BE || dstFormat == AV_PIX_FMT_BGR444LE ?
  1363. "dithered " : "",
  1364. #else
  1365. "",
  1366. #endif
  1367. av_get_pix_fmt_name(dstFormat));
  1368. if (INLINE_MMXEXT(cpu_flags))
  1369. av_log(c, AV_LOG_INFO, "using MMXEXT\n");
  1370. else if (INLINE_AMD3DNOW(cpu_flags))
  1371. av_log(c, AV_LOG_INFO, "using 3DNOW\n");
  1372. else if (INLINE_MMX(cpu_flags))
  1373. av_log(c, AV_LOG_INFO, "using MMX\n");
  1374. else if (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC)
  1375. av_log(c, AV_LOG_INFO, "using AltiVec\n");
  1376. else
  1377. av_log(c, AV_LOG_INFO, "using C\n");
  1378. av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
  1379. av_log(c, AV_LOG_DEBUG,
  1380. "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1381. c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
  1382. av_log(c, AV_LOG_DEBUG,
  1383. "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1384. c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH,
  1385. c->chrXInc, c->chrYInc);
  1386. }
  1387. c->swScale = ff_getSwsFunc(c);
  1388. return 0;
  1389. fail: // FIXME replace things by appropriate error codes
  1390. return -1;
  1391. }
  1392. #if FF_API_SWS_GETCONTEXT
  1393. SwsContext *sws_getContext(int srcW, int srcH, enum AVPixelFormat srcFormat,
  1394. int dstW, int dstH, enum AVPixelFormat dstFormat,
  1395. int flags, SwsFilter *srcFilter,
  1396. SwsFilter *dstFilter, const double *param)
  1397. {
  1398. SwsContext *c;
  1399. if (!(c = sws_alloc_context()))
  1400. return NULL;
  1401. c->flags = flags;
  1402. c->srcW = srcW;
  1403. c->srcH = srcH;
  1404. c->dstW = dstW;
  1405. c->dstH = dstH;
  1406. c->srcRange = handle_jpeg(&srcFormat);
  1407. c->dstRange = handle_jpeg(&dstFormat);
  1408. c->src0Alpha = handle_0alpha(&srcFormat);
  1409. c->dst0Alpha = handle_0alpha(&dstFormat);
  1410. c->srcXYZ = handle_xyz(&srcFormat);
  1411. c->dstXYZ = handle_xyz(&dstFormat);
  1412. c->srcFormat = srcFormat;
  1413. c->dstFormat = dstFormat;
  1414. if (param) {
  1415. c->param[0] = param[0];
  1416. c->param[1] = param[1];
  1417. }
  1418. sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], c->srcRange,
  1419. ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/,
  1420. c->dstRange, 0, 1 << 16, 1 << 16);
  1421. if (sws_init_context(c, srcFilter, dstFilter) < 0) {
  1422. sws_freeContext(c);
  1423. return NULL;
  1424. }
  1425. return c;
  1426. }
  1427. #endif
  1428. SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
  1429. float lumaSharpen, float chromaSharpen,
  1430. float chromaHShift, float chromaVShift,
  1431. int verbose)
  1432. {
  1433. SwsFilter *filter = av_malloc(sizeof(SwsFilter));
  1434. if (!filter)
  1435. return NULL;
  1436. if (lumaGBlur != 0.0) {
  1437. filter->lumH = sws_getGaussianVec(lumaGBlur, 3.0);
  1438. filter->lumV = sws_getGaussianVec(lumaGBlur, 3.0);
  1439. } else {
  1440. filter->lumH = sws_getIdentityVec();
  1441. filter->lumV = sws_getIdentityVec();
  1442. }
  1443. if (chromaGBlur != 0.0) {
  1444. filter->chrH = sws_getGaussianVec(chromaGBlur, 3.0);
  1445. filter->chrV = sws_getGaussianVec(chromaGBlur, 3.0);
  1446. } else {
  1447. filter->chrH = sws_getIdentityVec();
  1448. filter->chrV = sws_getIdentityVec();
  1449. }
  1450. if (chromaSharpen != 0.0) {
  1451. SwsVector *id = sws_getIdentityVec();
  1452. sws_scaleVec(filter->chrH, -chromaSharpen);
  1453. sws_scaleVec(filter->chrV, -chromaSharpen);
  1454. sws_addVec(filter->chrH, id);
  1455. sws_addVec(filter->chrV, id);
  1456. sws_freeVec(id);
  1457. }
  1458. if (lumaSharpen != 0.0) {
  1459. SwsVector *id = sws_getIdentityVec();
  1460. sws_scaleVec(filter->lumH, -lumaSharpen);
  1461. sws_scaleVec(filter->lumV, -lumaSharpen);
  1462. sws_addVec(filter->lumH, id);
  1463. sws_addVec(filter->lumV, id);
  1464. sws_freeVec(id);
  1465. }
  1466. if (chromaHShift != 0.0)
  1467. sws_shiftVec(filter->chrH, (int)(chromaHShift + 0.5));
  1468. if (chromaVShift != 0.0)
  1469. sws_shiftVec(filter->chrV, (int)(chromaVShift + 0.5));
  1470. sws_normalizeVec(filter->chrH, 1.0);
  1471. sws_normalizeVec(filter->chrV, 1.0);
  1472. sws_normalizeVec(filter->lumH, 1.0);
  1473. sws_normalizeVec(filter->lumV, 1.0);
  1474. if (verbose)
  1475. sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
  1476. if (verbose)
  1477. sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
  1478. return filter;
  1479. }
  1480. SwsVector *sws_allocVec(int length)
  1481. {
  1482. SwsVector *vec;
  1483. if(length <= 0 || length > INT_MAX/ sizeof(double))
  1484. return NULL;
  1485. vec = av_malloc(sizeof(SwsVector));
  1486. if (!vec)
  1487. return NULL;
  1488. vec->length = length;
  1489. vec->coeff = av_malloc(sizeof(double) * length);
  1490. if (!vec->coeff)
  1491. av_freep(&vec);
  1492. return vec;
  1493. }
  1494. SwsVector *sws_getGaussianVec(double variance, double quality)
  1495. {
  1496. const int length = (int)(variance * quality + 0.5) | 1;
  1497. int i;
  1498. double middle = (length - 1) * 0.5;
  1499. SwsVector *vec;
  1500. if(variance < 0 || quality < 0)
  1501. return NULL;
  1502. vec = sws_allocVec(length);
  1503. if (!vec)
  1504. return NULL;
  1505. for (i = 0; i < length; i++) {
  1506. double dist = i - middle;
  1507. vec->coeff[i] = exp(-dist * dist / (2 * variance * variance)) /
  1508. sqrt(2 * variance * M_PI);
  1509. }
  1510. sws_normalizeVec(vec, 1.0);
  1511. return vec;
  1512. }
  1513. SwsVector *sws_getConstVec(double c, int length)
  1514. {
  1515. int i;
  1516. SwsVector *vec = sws_allocVec(length);
  1517. if (!vec)
  1518. return NULL;
  1519. for (i = 0; i < length; i++)
  1520. vec->coeff[i] = c;
  1521. return vec;
  1522. }
  1523. SwsVector *sws_getIdentityVec(void)
  1524. {
  1525. return sws_getConstVec(1.0, 1);
  1526. }
  1527. static double sws_dcVec(SwsVector *a)
  1528. {
  1529. int i;
  1530. double sum = 0;
  1531. for (i = 0; i < a->length; i++)
  1532. sum += a->coeff[i];
  1533. return sum;
  1534. }
  1535. void sws_scaleVec(SwsVector *a, double scalar)
  1536. {
  1537. int i;
  1538. for (i = 0; i < a->length; i++)
  1539. a->coeff[i] *= scalar;
  1540. }
  1541. void sws_normalizeVec(SwsVector *a, double height)
  1542. {
  1543. sws_scaleVec(a, height / sws_dcVec(a));
  1544. }
  1545. static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b)
  1546. {
  1547. int length = a->length + b->length - 1;
  1548. int i, j;
  1549. SwsVector *vec = sws_getConstVec(0.0, length);
  1550. if (!vec)
  1551. return NULL;
  1552. for (i = 0; i < a->length; i++) {
  1553. for (j = 0; j < b->length; j++) {
  1554. vec->coeff[i + j] += a->coeff[i] * b->coeff[j];
  1555. }
  1556. }
  1557. return vec;
  1558. }
  1559. static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b)
  1560. {
  1561. int length = FFMAX(a->length, b->length);
  1562. int i;
  1563. SwsVector *vec = sws_getConstVec(0.0, length);
  1564. if (!vec)
  1565. return NULL;
  1566. for (i = 0; i < a->length; i++)
  1567. vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
  1568. for (i = 0; i < b->length; i++)
  1569. vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] += b->coeff[i];
  1570. return vec;
  1571. }
  1572. static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b)
  1573. {
  1574. int length = FFMAX(a->length, b->length);
  1575. int i;
  1576. SwsVector *vec = sws_getConstVec(0.0, length);
  1577. if (!vec)
  1578. return NULL;
  1579. for (i = 0; i < a->length; i++)
  1580. vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
  1581. for (i = 0; i < b->length; i++)
  1582. vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] -= b->coeff[i];
  1583. return vec;
  1584. }
  1585. /* shift left / or right if "shift" is negative */
  1586. static SwsVector *sws_getShiftedVec(SwsVector *a, int shift)
  1587. {
  1588. int length = a->length + FFABS(shift) * 2;
  1589. int i;
  1590. SwsVector *vec = sws_getConstVec(0.0, length);
  1591. if (!vec)
  1592. return NULL;
  1593. for (i = 0; i < a->length; i++) {
  1594. vec->coeff[i + (length - 1) / 2 -
  1595. (a->length - 1) / 2 - shift] = a->coeff[i];
  1596. }
  1597. return vec;
  1598. }
  1599. void sws_shiftVec(SwsVector *a, int shift)
  1600. {
  1601. SwsVector *shifted = sws_getShiftedVec(a, shift);
  1602. av_free(a->coeff);
  1603. a->coeff = shifted->coeff;
  1604. a->length = shifted->length;
  1605. av_free(shifted);
  1606. }
  1607. void sws_addVec(SwsVector *a, SwsVector *b)
  1608. {
  1609. SwsVector *sum = sws_sumVec(a, b);
  1610. av_free(a->coeff);
  1611. a->coeff = sum->coeff;
  1612. a->length = sum->length;
  1613. av_free(sum);
  1614. }
  1615. void sws_subVec(SwsVector *a, SwsVector *b)
  1616. {
  1617. SwsVector *diff = sws_diffVec(a, b);
  1618. av_free(a->coeff);
  1619. a->coeff = diff->coeff;
  1620. a->length = diff->length;
  1621. av_free(diff);
  1622. }
  1623. void sws_convVec(SwsVector *a, SwsVector *b)
  1624. {
  1625. SwsVector *conv = sws_getConvVec(a, b);
  1626. av_free(a->coeff);
  1627. a->coeff = conv->coeff;
  1628. a->length = conv->length;
  1629. av_free(conv);
  1630. }
  1631. SwsVector *sws_cloneVec(SwsVector *a)
  1632. {
  1633. int i;
  1634. SwsVector *vec = sws_allocVec(a->length);
  1635. if (!vec)
  1636. return NULL;
  1637. for (i = 0; i < a->length; i++)
  1638. vec->coeff[i] = a->coeff[i];
  1639. return vec;
  1640. }
  1641. void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
  1642. {
  1643. int i;
  1644. double max = 0;
  1645. double min = 0;
  1646. double range;
  1647. for (i = 0; i < a->length; i++)
  1648. if (a->coeff[i] > max)
  1649. max = a->coeff[i];
  1650. for (i = 0; i < a->length; i++)
  1651. if (a->coeff[i] < min)
  1652. min = a->coeff[i];
  1653. range = max - min;
  1654. for (i = 0; i < a->length; i++) {
  1655. int x = (int)((a->coeff[i] - min) * 60.0 / range + 0.5);
  1656. av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
  1657. for (; x > 0; x--)
  1658. av_log(log_ctx, log_level, " ");
  1659. av_log(log_ctx, log_level, "|\n");
  1660. }
  1661. }
  1662. void sws_freeVec(SwsVector *a)
  1663. {
  1664. if (!a)
  1665. return;
  1666. av_freep(&a->coeff);
  1667. a->length = 0;
  1668. av_free(a);
  1669. }
  1670. void sws_freeFilter(SwsFilter *filter)
  1671. {
  1672. if (!filter)
  1673. return;
  1674. if (filter->lumH)
  1675. sws_freeVec(filter->lumH);
  1676. if (filter->lumV)
  1677. sws_freeVec(filter->lumV);
  1678. if (filter->chrH)
  1679. sws_freeVec(filter->chrH);
  1680. if (filter->chrV)
  1681. sws_freeVec(filter->chrV);
  1682. av_free(filter);
  1683. }
  1684. void sws_freeContext(SwsContext *c)
  1685. {
  1686. int i;
  1687. if (!c)
  1688. return;
  1689. if (c->lumPixBuf) {
  1690. for (i = 0; i < c->vLumBufSize; i++)
  1691. av_freep(&c->lumPixBuf[i]);
  1692. av_freep(&c->lumPixBuf);
  1693. }
  1694. if (c->chrUPixBuf) {
  1695. for (i = 0; i < c->vChrBufSize; i++)
  1696. av_freep(&c->chrUPixBuf[i]);
  1697. av_freep(&c->chrUPixBuf);
  1698. av_freep(&c->chrVPixBuf);
  1699. }
  1700. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf) {
  1701. for (i = 0; i < c->vLumBufSize; i++)
  1702. av_freep(&c->alpPixBuf[i]);
  1703. av_freep(&c->alpPixBuf);
  1704. }
  1705. for (i = 0; i < 4; i++)
  1706. av_freep(&c->dither_error[i]);
  1707. av_freep(&c->vLumFilter);
  1708. av_freep(&c->vChrFilter);
  1709. av_freep(&c->hLumFilter);
  1710. av_freep(&c->hChrFilter);
  1711. #if HAVE_ALTIVEC
  1712. av_freep(&c->vYCoeffsBank);
  1713. av_freep(&c->vCCoeffsBank);
  1714. #endif
  1715. av_freep(&c->vLumFilterPos);
  1716. av_freep(&c->vChrFilterPos);
  1717. av_freep(&c->hLumFilterPos);
  1718. av_freep(&c->hChrFilterPos);
  1719. #if HAVE_MMX_INLINE
  1720. #if USE_MMAP
  1721. if (c->lumMmxextFilterCode)
  1722. munmap(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize);
  1723. if (c->chrMmxextFilterCode)
  1724. munmap(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize);
  1725. #elif HAVE_VIRTUALALLOC
  1726. if (c->lumMmxextFilterCode)
  1727. VirtualFree(c->lumMmxextFilterCode, 0, MEM_RELEASE);
  1728. if (c->chrMmxextFilterCode)
  1729. VirtualFree(c->chrMmxextFilterCode, 0, MEM_RELEASE);
  1730. #else
  1731. av_free(c->lumMmxextFilterCode);
  1732. av_free(c->chrMmxextFilterCode);
  1733. #endif
  1734. c->lumMmxextFilterCode = NULL;
  1735. c->chrMmxextFilterCode = NULL;
  1736. #endif /* HAVE_MMX_INLINE */
  1737. av_freep(&c->yuvTable);
  1738. av_freep(&c->formatConvBuffer);
  1739. av_free(c);
  1740. }
  1741. struct SwsContext *sws_getCachedContext(struct SwsContext *context, int srcW,
  1742. int srcH, enum AVPixelFormat srcFormat,
  1743. int dstW, int dstH,
  1744. enum AVPixelFormat dstFormat, int flags,
  1745. SwsFilter *srcFilter,
  1746. SwsFilter *dstFilter,
  1747. const double *param)
  1748. {
  1749. static const double default_param[2] = { SWS_PARAM_DEFAULT,
  1750. SWS_PARAM_DEFAULT };
  1751. if (!param)
  1752. param = default_param;
  1753. if (context &&
  1754. (context->srcW != srcW ||
  1755. context->srcH != srcH ||
  1756. context->srcFormat != srcFormat ||
  1757. context->dstW != dstW ||
  1758. context->dstH != dstH ||
  1759. context->dstFormat != dstFormat ||
  1760. context->flags != flags ||
  1761. context->param[0] != param[0] ||
  1762. context->param[1] != param[1])) {
  1763. sws_freeContext(context);
  1764. context = NULL;
  1765. }
  1766. if (!context) {
  1767. if (!(context = sws_alloc_context()))
  1768. return NULL;
  1769. context->srcW = srcW;
  1770. context->srcH = srcH;
  1771. context->srcRange = handle_jpeg(&srcFormat);
  1772. context->src0Alpha = handle_0alpha(&srcFormat);
  1773. context->srcXYZ = handle_xyz(&srcFormat);
  1774. context->srcFormat = srcFormat;
  1775. context->dstW = dstW;
  1776. context->dstH = dstH;
  1777. context->dstRange = handle_jpeg(&dstFormat);
  1778. context->dst0Alpha = handle_0alpha(&dstFormat);
  1779. context->dstXYZ = handle_xyz(&dstFormat);
  1780. context->dstFormat = dstFormat;
  1781. context->flags = flags;
  1782. context->param[0] = param[0];
  1783. context->param[1] = param[1];
  1784. sws_setColorspaceDetails(context, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT],
  1785. context->srcRange,
  1786. ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/,
  1787. context->dstRange, 0, 1 << 16, 1 << 16);
  1788. if (sws_init_context(context, srcFilter, dstFilter) < 0) {
  1789. sws_freeContext(context);
  1790. return NULL;
  1791. }
  1792. }
  1793. return context;
  1794. }