You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

566 lines
20KB

  1. /*
  2. * Copyright (c) 2015 Ronald S. Bultje <rsbultje@gmail.com>
  3. *
  4. * This file is part of Libav.
  5. *
  6. * Libav is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * Libav is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License along
  17. * with Libav; if not, write to the Free Software Foundation, Inc.,
  18. * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
  19. */
  20. #include <math.h>
  21. #include <string.h>
  22. #include "libavutil/common.h"
  23. #include "libavutil/internal.h"
  24. #include "libavutil/intreadwrite.h"
  25. #include "libavutil/mathematics.h"
  26. #include "libavcodec/vp9.h"
  27. #include "libavcodec/vp9data.h"
  28. #include "checkasm.h"
  29. static const uint32_t pixel_mask[3] = { 0xffffffff, 0x03ff03ff, 0x0fff0fff };
  30. #define BIT_DEPTH 8
  31. #define SIZEOF_PIXEL ((BIT_DEPTH + 7) / 8)
  32. #define randomize_buffers() \
  33. do { \
  34. uint32_t mask = pixel_mask[(BIT_DEPTH - 8) >> 1]; \
  35. for (y = 0; y < sz; y++) { \
  36. for (x = 0; x < sz * SIZEOF_PIXEL; x += 4) { \
  37. uint32_t r = rnd() & mask; \
  38. AV_WN32A(dst + y * sz * SIZEOF_PIXEL + x, r); \
  39. AV_WN32A(src + y * sz * SIZEOF_PIXEL + x, rnd() & mask); \
  40. } \
  41. for (x = 0; x < sz; x++) { \
  42. if (BIT_DEPTH == 8) { \
  43. coef[y * sz + x] = src[y * sz + x] - dst[y * sz + x]; \
  44. } else { \
  45. ((int32_t *) coef)[y * sz + x] = \
  46. ((uint16_t *) src)[y * sz + x] - \
  47. ((uint16_t *) dst)[y * sz + x]; \
  48. } \
  49. } \
  50. } \
  51. } while(0)
  52. // wht function copied from libvpx
  53. static void fwht_1d(double *out, const double *in, int sz)
  54. {
  55. double t0 = in[0] + in[1];
  56. double t3 = in[3] - in[2];
  57. double t4 = trunc((t0 - t3) * 0.5);
  58. double t1 = t4 - in[1];
  59. double t2 = t4 - in[2];
  60. out[0] = t0 - t2;
  61. out[1] = t2;
  62. out[2] = t3 + t1;
  63. out[3] = t1;
  64. }
  65. // standard DCT-II
  66. static void fdct_1d(double *out, const double *in, int sz)
  67. {
  68. int k, n;
  69. for (k = 0; k < sz; k++) {
  70. out[k] = 0.0;
  71. for (n = 0; n < sz; n++)
  72. out[k] += in[n] * cos(M_PI * (2 * n + 1) * k / (sz * 2.0));
  73. }
  74. out[0] *= M_SQRT1_2;
  75. }
  76. // see "Towards jointly optimal spatial prediction and adaptive transform in
  77. // video/image coding", by J. Han, A. Saxena, and K. Rose
  78. // IEEE Proc. ICASSP, pp. 726-729, Mar. 2010.
  79. static void fadst4_1d(double *out, const double *in, int sz)
  80. {
  81. int k, n;
  82. for (k = 0; k < sz; k++) {
  83. out[k] = 0.0;
  84. for (n = 0; n < sz; n++)
  85. out[k] += in[n] * sin(M_PI * (n + 1) * (2 * k + 1) / (sz * 2.0 + 1.0));
  86. }
  87. }
  88. // see "A Butterfly Structured Design of The Hybrid Transform Coding Scheme",
  89. // by Jingning Han, Yaowu Xu, and Debargha Mukherjee
  90. // http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/41418.pdf
  91. static void fadst_1d(double *out, const double *in, int sz)
  92. {
  93. int k, n;
  94. for (k = 0; k < sz; k++) {
  95. out[k] = 0.0;
  96. for (n = 0; n < sz; n++)
  97. out[k] += in[n] * sin(M_PI * (2 * n + 1) * (2 * k + 1) / (sz * 4.0));
  98. }
  99. }
  100. typedef void (*ftx1d_fn)(double *out, const double *in, int sz);
  101. static void ftx_2d(double *out, const double *in, enum TxfmMode tx,
  102. enum TxfmType txtp, int sz)
  103. {
  104. static const double scaling_factors[5][4] = {
  105. { 4.0, 16.0 * M_SQRT1_2 / 3.0, 16.0 * M_SQRT1_2 / 3.0, 32.0 / 9.0 },
  106. { 2.0, 2.0, 2.0, 2.0 },
  107. { 1.0, 1.0, 1.0, 1.0 },
  108. { 0.25 },
  109. { 4.0 }
  110. };
  111. static const ftx1d_fn ftx1d_tbl[5][4][2] = {
  112. {
  113. { fdct_1d, fdct_1d },
  114. { fadst4_1d, fdct_1d },
  115. { fdct_1d, fadst4_1d },
  116. { fadst4_1d, fadst4_1d },
  117. }, {
  118. { fdct_1d, fdct_1d },
  119. { fadst_1d, fdct_1d },
  120. { fdct_1d, fadst_1d },
  121. { fadst_1d, fadst_1d },
  122. }, {
  123. { fdct_1d, fdct_1d },
  124. { fadst_1d, fdct_1d },
  125. { fdct_1d, fadst_1d },
  126. { fadst_1d, fadst_1d },
  127. }, {
  128. { fdct_1d, fdct_1d },
  129. }, {
  130. { fwht_1d, fwht_1d },
  131. },
  132. };
  133. double temp[1024];
  134. double scaling_factor = scaling_factors[tx][txtp];
  135. int i, j;
  136. // cols
  137. for (i = 0; i < sz; ++i) {
  138. double temp_out[32];
  139. ftx1d_tbl[tx][txtp][0](temp_out, &in[i * sz], sz);
  140. // scale and transpose
  141. for (j = 0; j < sz; ++j)
  142. temp[j * sz + i] = temp_out[j] * scaling_factor;
  143. }
  144. // rows
  145. for (i = 0; i < sz; i++)
  146. ftx1d_tbl[tx][txtp][1](&out[i * sz], &temp[i * sz], sz);
  147. }
  148. static void ftx(int16_t *buf, enum TxfmMode tx,
  149. enum TxfmType txtp, int sz, int bit_depth)
  150. {
  151. double ind[1024], outd[1024];
  152. int n;
  153. emms_c();
  154. for (n = 0; n < sz * sz; n++) {
  155. if (bit_depth == 8)
  156. ind[n] = buf[n];
  157. else
  158. ind[n] = ((int32_t *) buf)[n];
  159. }
  160. ftx_2d(outd, ind, tx, txtp, sz);
  161. for (n = 0; n < sz * sz; n++) {
  162. if (bit_depth == 8)
  163. buf[n] = lrint(outd[n]);
  164. else
  165. ((int32_t *) buf)[n] = lrint(outd[n]);
  166. }
  167. }
  168. static int copy_subcoefs(int16_t *out, const int16_t *in, enum TxfmMode tx,
  169. enum TxfmType txtp, int sz, int sub, int bit_depth)
  170. {
  171. // copy the topleft coefficients such that the return value (being the
  172. // coefficient scantable index for the eob token) guarantees that only
  173. // the topleft $sub out of $sz (where $sz >= $sub) coefficients in both
  174. // dimensions are non-zero. This leads to braching to specific optimized
  175. // simd versions (e.g. dc-only) so that we get full asm coverage in this
  176. // test
  177. int n;
  178. const int16_t *scan = ff_vp9_scans[tx][txtp];
  179. int eob;
  180. for (n = 0; n < sz * sz; n++) {
  181. int rc = scan[n], rcx = rc % sz, rcy = rc / sz;
  182. // find eob for this sub-idct
  183. if (rcx >= sub || rcy >= sub)
  184. break;
  185. // copy coef
  186. if (bit_depth == 8) {
  187. out[rc] = in[rc];
  188. } else {
  189. AV_COPY32(&out[rc * 2], &in[rc * 2]);
  190. }
  191. }
  192. eob = n;
  193. for (; n < sz * sz; n++) {
  194. int rc = scan[n];
  195. // zero
  196. if (bit_depth == 8) {
  197. out[rc] = 0;
  198. } else {
  199. AV_ZERO32(&out[rc * 2]);
  200. }
  201. }
  202. return eob;
  203. }
  204. static int iszero(const int16_t *c, int sz)
  205. {
  206. int n;
  207. for (n = 0; n < sz / sizeof(int16_t); n += 2)
  208. if (AV_RN32A(&c[n]))
  209. return 0;
  210. return 1;
  211. }
  212. #define SIZEOF_COEF (2 * ((BIT_DEPTH + 7) / 8))
  213. static void check_itxfm(void)
  214. {
  215. LOCAL_ALIGNED_32(uint8_t, src, [32 * 32 * 2]);
  216. LOCAL_ALIGNED(32, uint8_t, dst, [32 * 32 * 2]);
  217. LOCAL_ALIGNED(32, uint8_t, dst0, [32 * 32 * 2]);
  218. LOCAL_ALIGNED(32, uint8_t, dst1, [32 * 32 * 2]);
  219. LOCAL_ALIGNED(32, int16_t, coef, [32 * 32 * 2]);
  220. LOCAL_ALIGNED(32, int16_t, subcoef0, [32 * 32 * 2]);
  221. LOCAL_ALIGNED(32, int16_t, subcoef1, [32 * 32 * 2]);
  222. declare_func(void, uint8_t *dst, ptrdiff_t stride, int16_t *block, int eob);
  223. VP9DSPContext dsp;
  224. int y, x, tx, txtp, sub;
  225. static const char *const txtp_types[N_TXFM_TYPES] = {
  226. [DCT_DCT] = "dct_dct", [DCT_ADST] = "adst_dct",
  227. [ADST_DCT] = "dct_adst", [ADST_ADST] = "adst_adst"
  228. };
  229. ff_vp9dsp_init(&dsp);
  230. for (tx = TX_4X4; tx <= N_TXFM_SIZES /* 4 = lossless */; tx++) {
  231. int sz = 4 << (tx & 3);
  232. int n_txtps = tx < TX_32X32 ? N_TXFM_TYPES : 1;
  233. for (txtp = 0; txtp < n_txtps; txtp++) {
  234. // skip testing sub-IDCTs for WHT or ADST since they don't
  235. // implement it in any of the SIMD functions. If they do,
  236. // consider changing this to ensure we have complete test
  237. // coverage. Test sub=1 for dc-only, then 2, 4, 8, 12, etc,
  238. // since the arm version can distinguish them at that level.
  239. for (sub = (txtp == 0 && tx < 4) ? 1 : sz; sub <= sz;
  240. sub < 4 ? (sub <<= 1) : (sub += 4)) {
  241. if (check_func(dsp.itxfm_add[tx][txtp],
  242. "vp9_inv_%s_%dx%d_sub%d_add",
  243. tx == 4 ? "wht_wht" : txtp_types[txtp],
  244. sz, sz, sub)) {
  245. int eob;
  246. randomize_buffers();
  247. ftx(coef, tx, txtp, sz, BIT_DEPTH);
  248. if (sub < sz) {
  249. eob = copy_subcoefs(subcoef0, coef, tx, txtp,
  250. sz, sub, BIT_DEPTH);
  251. } else {
  252. eob = sz * sz;
  253. memcpy(subcoef0, coef, sz * sz * SIZEOF_COEF);
  254. }
  255. memcpy(dst0, dst, sz * sz * SIZEOF_PIXEL);
  256. memcpy(dst1, dst, sz * sz * SIZEOF_PIXEL);
  257. memcpy(subcoef1, subcoef0, sz * sz * SIZEOF_COEF);
  258. call_ref(dst0, sz * SIZEOF_PIXEL, subcoef0, eob);
  259. call_new(dst1, sz * SIZEOF_PIXEL, subcoef1, eob);
  260. if (memcmp(dst0, dst1, sz * sz * SIZEOF_PIXEL) ||
  261. !iszero(subcoef0, sz * sz * SIZEOF_COEF) ||
  262. !iszero(subcoef1, sz * sz * SIZEOF_COEF))
  263. fail();
  264. bench_new(dst, sz * SIZEOF_PIXEL, coef, eob);
  265. }
  266. }
  267. }
  268. }
  269. report("itxfm");
  270. }
  271. #undef randomize_buffers
  272. #define setpx(a,b,c) \
  273. do { \
  274. if (SIZEOF_PIXEL == 1) { \
  275. buf0[(a) + (b) * jstride] = av_clip_uint8(c); \
  276. } else { \
  277. ((uint16_t *)buf0)[(a) + (b) * jstride] = av_clip_uintp2(c, BIT_DEPTH); \
  278. } \
  279. } while (0)
  280. #define setdx(a,b,c,d) setpx(a,b,c-(d)+(rnd()%((d)*2+1)))
  281. #define setsx(a,b,c,d) setdx(a,b,c,(d) << (BIT_DEPTH - 8))
  282. static void randomize_loopfilter_buffers(int bidx, int lineoff, int str,
  283. int bit_depth, int dir,
  284. const int *E, const int *F,
  285. const int *H, const int *I,
  286. uint8_t *buf0, uint8_t *buf1)
  287. {
  288. uint32_t mask = (1 << BIT_DEPTH) - 1;
  289. int off = dir ? lineoff : lineoff * 16;
  290. int istride = dir ? 1 : 16;
  291. int jstride = dir ? str : 1;
  292. int i, j;
  293. for (i = 0; i < 2; i++) /* flat16 */ {
  294. int idx = off + i * istride, p0, q0;
  295. setpx(idx, 0, q0 = rnd() & mask);
  296. setsx(idx, -1, p0 = q0, E[bidx] >> 2);
  297. for (j = 1; j < 8; j++) {
  298. setsx(idx, -1 - j, p0, F[bidx]);
  299. setsx(idx, j, q0, F[bidx]);
  300. }
  301. }
  302. for (i = 2; i < 4; i++) /* flat8 */ {
  303. int idx = off + i * istride, p0, q0;
  304. setpx(idx, 0, q0 = rnd() & mask);
  305. setsx(idx, -1, p0 = q0, E[bidx] >> 2);
  306. for (j = 1; j < 4; j++) {
  307. setsx(idx, -1 - j, p0, F[bidx]);
  308. setsx(idx, j, q0, F[bidx]);
  309. }
  310. for (j = 4; j < 8; j++) {
  311. setpx(idx, -1 - j, rnd() & mask);
  312. setpx(idx, j, rnd() & mask);
  313. }
  314. }
  315. for (i = 4; i < 6; i++) /* regular */ {
  316. int idx = off + i * istride, p2, p1, p0, q0, q1, q2;
  317. setpx(idx, 0, q0 = rnd() & mask);
  318. setsx(idx, 1, q1 = q0, I[bidx]);
  319. setsx(idx, 2, q2 = q1, I[bidx]);
  320. setsx(idx, 3, q2, I[bidx]);
  321. setsx(idx, -1, p0 = q0, E[bidx] >> 2);
  322. setsx(idx, -2, p1 = p0, I[bidx]);
  323. setsx(idx, -3, p2 = p1, I[bidx]);
  324. setsx(idx, -4, p2, I[bidx]);
  325. for (j = 4; j < 8; j++) {
  326. setpx(idx, -1 - j, rnd() & mask);
  327. setpx(idx, j, rnd() & mask);
  328. }
  329. }
  330. for (i = 6; i < 8; i++) /* off */ {
  331. int idx = off + i * istride;
  332. for (j = 0; j < 8; j++) {
  333. setpx(idx, -1 - j, rnd() & mask);
  334. setpx(idx, j, rnd() & mask);
  335. }
  336. }
  337. }
  338. #define randomize_buffers(bidx, lineoff, str) \
  339. randomize_loopfilter_buffers(bidx, lineoff, str, BIT_DEPTH, dir, \
  340. E, F, H, I, buf0, buf1)
  341. static void check_loopfilter(void)
  342. {
  343. LOCAL_ALIGNED_32(uint8_t, base0, [32 + 16 * 16 * 2]);
  344. LOCAL_ALIGNED_32(uint8_t, base1, [32 + 16 * 16 * 2]);
  345. VP9DSPContext dsp;
  346. int dir, wd, wd2;
  347. static const char *const dir_name[2] = { "h", "v" };
  348. static const int E[2] = { 20, 28 }, I[2] = { 10, 16 };
  349. static const int H[2] = { 7, 11 }, F[2] = { 1, 1 };
  350. declare_func(void, uint8_t *dst, ptrdiff_t stride, int E, int I, int H);
  351. ff_vp9dsp_init(&dsp);
  352. for (dir = 0; dir < 2; dir++) {
  353. uint8_t *buf0, *buf1;
  354. int midoff = (dir ? 8 * 8 : 8) * SIZEOF_PIXEL;
  355. int midoff_aligned = (dir ? 8 * 8 : 16) * SIZEOF_PIXEL;
  356. buf0 = base0 + midoff_aligned;
  357. buf1 = base1 + midoff_aligned;
  358. for (wd = 0; wd < 3; wd++) {
  359. // 4/8/16wd_8px
  360. if (check_func(dsp.loop_filter_8[wd][dir],
  361. "vp9_loop_filter_%s_%d_8",
  362. dir_name[dir], 4 << wd)) {
  363. randomize_buffers(0, 0, 8);
  364. memcpy(buf1 - midoff, buf0 - midoff,
  365. 16 * 8 * SIZEOF_PIXEL);
  366. call_ref(buf0, 16 * SIZEOF_PIXEL >> dir, E[0], I[0], H[0]);
  367. call_new(buf1, 16 * SIZEOF_PIXEL >> dir, E[0], I[0], H[0]);
  368. if (memcmp(buf0 - midoff, buf1 - midoff, 16 * 8 * SIZEOF_PIXEL))
  369. fail();
  370. bench_new(buf1, 16 * SIZEOF_PIXEL >> dir, E[0], I[0], H[0]);
  371. }
  372. }
  373. midoff = (dir ? 16 * 8 : 8) * SIZEOF_PIXEL;
  374. midoff_aligned = (dir ? 16 * 8 : 16) * SIZEOF_PIXEL;
  375. buf0 = base0 + midoff_aligned;
  376. buf1 = base1 + midoff_aligned;
  377. // 16wd_16px loopfilter
  378. if (check_func(dsp.loop_filter_16[dir],
  379. "vp9_loop_filter_%s_16_16",
  380. dir_name[dir])) {
  381. randomize_buffers(0, 0, 16);
  382. randomize_buffers(0, 8, 16);
  383. memcpy(buf1 - midoff, buf0 - midoff, 16 * 16 * SIZEOF_PIXEL);
  384. call_ref(buf0, 16 * SIZEOF_PIXEL, E[0], I[0], H[0]);
  385. call_new(buf1, 16 * SIZEOF_PIXEL, E[0], I[0], H[0]);
  386. if (memcmp(buf0 - midoff, buf1 - midoff, 16 * 16 * SIZEOF_PIXEL))
  387. fail();
  388. bench_new(buf1, 16 * SIZEOF_PIXEL, E[0], I[0], H[0]);
  389. }
  390. for (wd = 0; wd < 2; wd++) {
  391. for (wd2 = 0; wd2 < 2; wd2++) {
  392. // mix2 loopfilter
  393. if (check_func(dsp.loop_filter_mix2[wd][wd2][dir],
  394. "vp9_loop_filter_mix2_%s_%d%d_16",
  395. dir_name[dir], 4 << wd, 4 << wd2)) {
  396. randomize_buffers(0, 0, 16);
  397. randomize_buffers(1, 8, 16);
  398. memcpy(buf1 - midoff, buf0 - midoff, 16 * 16 * SIZEOF_PIXEL);
  399. #define M(a) ((a[1] << 8) | a[0])
  400. call_ref(buf0, 16 * SIZEOF_PIXEL, M(E), M(I), M(H));
  401. call_new(buf1, 16 * SIZEOF_PIXEL, M(E), M(I), M(H));
  402. if (memcmp(buf0 - midoff, buf1 - midoff, 16 * 16 * SIZEOF_PIXEL))
  403. fail();
  404. bench_new(buf1, 16 * SIZEOF_PIXEL, M(E), M(I), M(H));
  405. #undef M
  406. }
  407. }
  408. }
  409. }
  410. report("loopfilter");
  411. }
  412. #undef setsx
  413. #undef setpx
  414. #undef setdx
  415. #undef randomize_buffers
  416. #define DST_BUF_SIZE (size * size * SIZEOF_PIXEL)
  417. #define SRC_BUF_STRIDE 72
  418. #define SRC_BUF_SIZE ((size + 7) * SRC_BUF_STRIDE * SIZEOF_PIXEL)
  419. #define src (buf + 3 * SIZEOF_PIXEL * (SRC_BUF_STRIDE + 1))
  420. #define randomize_buffers() \
  421. do { \
  422. uint32_t mask = pixel_mask[(BIT_DEPTH - 8) >> 1]; \
  423. int k; \
  424. for (k = 0; k < SRC_BUF_SIZE; k += 4) { \
  425. uint32_t r = rnd() & mask; \
  426. AV_WN32A(buf + k, r); \
  427. } \
  428. if (op == 1) { \
  429. for (k = 0; k < DST_BUF_SIZE; k += 4) { \
  430. uint32_t r = rnd() & mask; \
  431. AV_WN32A(dst0 + k, r); \
  432. AV_WN32A(dst1 + k, r); \
  433. } \
  434. } \
  435. } while (0)
  436. static void check_mc(void)
  437. {
  438. static const char *const filter_names[4] = {
  439. "8tap_smooth", "8tap_regular", "8tap_sharp", "bilin"
  440. };
  441. static const char *const subpel_names[2][2] = { { "", "h" }, { "v", "hv" } };
  442. static const char *const op_names[2] = { "put", "avg" };
  443. LOCAL_ALIGNED_32(uint8_t, buf, [72 * 72 * 2]);
  444. LOCAL_ALIGNED_32(uint8_t, dst0, [64 * 64 * 2]);
  445. LOCAL_ALIGNED_32(uint8_t, dst1, [64 * 64 * 2]);
  446. char str[256];
  447. VP9DSPContext dsp;
  448. int op, hsize, filter, dx, dy;
  449. declare_func_emms(AV_CPU_FLAG_MMX | AV_CPU_FLAG_MMXEXT,
  450. void, uint8_t *dst, ptrdiff_t dst_stride,
  451. const uint8_t *ref, ptrdiff_t ref_stride,
  452. int h, int mx, int my);
  453. for (op = 0; op < 2; op++) {
  454. ff_vp9dsp_init(&dsp);
  455. for (hsize = 0; hsize < 5; hsize++) {
  456. int size = 64 >> hsize;
  457. for (filter = 0; filter < 4; filter++) {
  458. for (dx = 0; dx < 2; dx++) {
  459. for (dy = 0; dy < 2; dy++) {
  460. if (dx || dy) {
  461. snprintf(str, sizeof(str), "%s_%s_%d%s", op_names[op],
  462. filter_names[filter], size,
  463. subpel_names[dy][dx]);
  464. } else {
  465. snprintf(str, sizeof(str), "%s%d", op_names[op], size);
  466. }
  467. if (check_func(dsp.mc[hsize][filter][op][dx][dy],
  468. "vp9_%s", str)) {
  469. int mx = dx ? 1 + (rnd() % 14) : 0;
  470. int my = dy ? 1 + (rnd() % 14) : 0;
  471. randomize_buffers();
  472. call_ref(dst0, size * SIZEOF_PIXEL,
  473. src, SRC_BUF_STRIDE * SIZEOF_PIXEL,
  474. size, mx, my);
  475. call_new(dst1, size * SIZEOF_PIXEL,
  476. src, SRC_BUF_STRIDE * SIZEOF_PIXEL,
  477. size, mx, my);
  478. if (memcmp(dst0, dst1, DST_BUF_SIZE))
  479. fail();
  480. // SIMD implementations for each filter of subpel
  481. // functions are identical
  482. if (filter >= 1 && filter <= 2) continue;
  483. bench_new(dst1, size * SIZEOF_PIXEL,
  484. src, SRC_BUF_STRIDE * SIZEOF_PIXEL,
  485. size, mx, my);
  486. }
  487. }
  488. }
  489. }
  490. }
  491. }
  492. report("mc");
  493. }
  494. void checkasm_check_vp9dsp(void)
  495. {
  496. check_itxfm();
  497. check_loopfilter();
  498. check_mc();
  499. }