You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

738 lines
34KB

  1. /*
  2. * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of Libav.
  5. *
  6. * Libav is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * Libav is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with Libav; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #ifndef SWSCALE_SWSCALE_INTERNAL_H
  21. #define SWSCALE_SWSCALE_INTERNAL_H
  22. #include "config.h"
  23. #include "libavutil/avassert.h"
  24. #include "libavutil/avutil.h"
  25. #include "libavutil/common.h"
  26. #include "libavutil/log.h"
  27. #include "libavutil/pixfmt.h"
  28. #include "libavutil/pixdesc.h"
  29. #include "libavutil/ppc/util_altivec.h"
  30. #define STR(s) AV_TOSTRING(s) // AV_STRINGIFY is too long
  31. #define FAST_BGR2YV12 // use 7-bit instead of 15-bit coefficients
  32. #define MAX_FILTER_SIZE 256
  33. #if HAVE_BIGENDIAN
  34. #define ALT32_CORR (-1)
  35. #else
  36. #define ALT32_CORR 1
  37. #endif
  38. #if ARCH_X86_64
  39. # define APCK_PTR2 8
  40. # define APCK_COEF 16
  41. # define APCK_SIZE 24
  42. #else
  43. # define APCK_PTR2 4
  44. # define APCK_COEF 8
  45. # define APCK_SIZE 16
  46. #endif
  47. struct SwsContext;
  48. typedef int (*SwsFunc)(struct SwsContext *context, const uint8_t *src[],
  49. int srcStride[], int srcSliceY, int srcSliceH,
  50. uint8_t *dst[], int dstStride[]);
  51. /**
  52. * Write one line of horizontally scaled data to planar output
  53. * without any additional vertical scaling (or point-scaling).
  54. *
  55. * @param src scaled source data, 15 bits for 8-10-bit output,
  56. * 19 bits for 16-bit output (in int32_t)
  57. * @param dest pointer to the output plane. For >8-bit
  58. * output, this is in uint16_t
  59. * @param dstW width of destination in pixels
  60. * @param dither ordered dither array of type int16_t and size 8
  61. * @param offset Dither offset
  62. */
  63. typedef void (*yuv2planar1_fn)(const int16_t *src, uint8_t *dest, int dstW,
  64. const uint8_t *dither, int offset);
  65. /**
  66. * Write one line of horizontally scaled data to planar output
  67. * with multi-point vertical scaling between input pixels.
  68. *
  69. * @param filter vertical luma/alpha scaling coefficients, 12 bits [0,4096]
  70. * @param src scaled luma (Y) or alpha (A) source data, 15 bits for
  71. * 8-10-bit output, 19 bits for 16-bit output (in int32_t)
  72. * @param filterSize number of vertical input lines to scale
  73. * @param dest pointer to output plane. For >8-bit
  74. * output, this is in uint16_t
  75. * @param dstW width of destination pixels
  76. * @param offset Dither offset
  77. */
  78. typedef void (*yuv2planarX_fn)(const int16_t *filter, int filterSize,
  79. const int16_t **src, uint8_t *dest, int dstW,
  80. const uint8_t *dither, int offset);
  81. /**
  82. * Write one line of horizontally scaled chroma to interleaved output
  83. * with multi-point vertical scaling between input pixels.
  84. *
  85. * @param c SWS scaling context
  86. * @param chrFilter vertical chroma scaling coefficients, 12 bits [0,4096]
  87. * @param chrUSrc scaled chroma (U) source data, 15 bits for 8-10-bit
  88. * output, 19 bits for 16-bit output (in int32_t)
  89. * @param chrVSrc scaled chroma (V) source data, 15 bits for 8-10-bit
  90. * output, 19 bits for 16-bit output (in int32_t)
  91. * @param chrFilterSize number of vertical chroma input lines to scale
  92. * @param dest pointer to the output plane. For >8-bit
  93. * output, this is in uint16_t
  94. * @param dstW width of chroma planes
  95. */
  96. typedef void (*yuv2interleavedX_fn)(struct SwsContext *c,
  97. const int16_t *chrFilter,
  98. int chrFilterSize,
  99. const int16_t **chrUSrc,
  100. const int16_t **chrVSrc,
  101. uint8_t *dest, int dstW);
  102. /**
  103. * Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB
  104. * output without any additional vertical scaling (or point-scaling). Note
  105. * that this function may do chroma scaling, see the "uvalpha" argument.
  106. *
  107. * @param c SWS scaling context
  108. * @param lumSrc scaled luma (Y) source data, 15 bits for 8-10-bit output,
  109. * 19 bits for 16-bit output (in int32_t)
  110. * @param chrUSrc scaled chroma (U) source data, 15 bits for 8-10-bit output,
  111. * 19 bits for 16-bit output (in int32_t)
  112. * @param chrVSrc scaled chroma (V) source data, 15 bits for 8-10-bit output,
  113. * 19 bits for 16-bit output (in int32_t)
  114. * @param alpSrc scaled alpha (A) source data, 15 bits for 8-10-bit output,
  115. * 19 bits for 16-bit output (in int32_t)
  116. * @param dest pointer to the output plane. For 16-bit output, this is
  117. * uint16_t
  118. * @param dstW width of lumSrc and alpSrc in pixels, number of pixels
  119. * to write into dest[]
  120. * @param uvalpha chroma scaling coefficient for the second line of chroma
  121. * pixels, either 2048 or 0. If 0, one chroma input is used
  122. * for 2 output pixels (or if the SWS_FLAG_FULL_CHR_INT flag
  123. * is set, it generates 1 output pixel). If 2048, two chroma
  124. * input pixels should be averaged for 2 output pixels (this
  125. * only happens if SWS_FLAG_FULL_CHR_INT is not set)
  126. * @param y vertical line number for this output. This does not need
  127. * to be used to calculate the offset in the destination,
  128. * but can be used to generate comfort noise using dithering
  129. * for some output formats.
  130. */
  131. typedef void (*yuv2packed1_fn)(struct SwsContext *c, const int16_t *lumSrc,
  132. const int16_t *chrUSrc[2],
  133. const int16_t *chrVSrc[2],
  134. const int16_t *alpSrc, uint8_t *dest,
  135. int dstW, int uvalpha, int y);
  136. /**
  137. * Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB
  138. * output by doing bilinear scaling between two input lines.
  139. *
  140. * @param c SWS scaling context
  141. * @param lumSrc scaled luma (Y) source data, 15 bits for 8-10-bit output,
  142. * 19 bits for 16-bit output (in int32_t)
  143. * @param chrUSrc scaled chroma (U) source data, 15 bits for 8-10-bit output,
  144. * 19 bits for 16-bit output (in int32_t)
  145. * @param chrVSrc scaled chroma (V) source data, 15 bits for 8-10-bit output,
  146. * 19 bits for 16-bit output (in int32_t)
  147. * @param alpSrc scaled alpha (A) source data, 15 bits for 8-10-bit output,
  148. * 19 bits for 16-bit output (in int32_t)
  149. * @param dest pointer to the output plane. For 16-bit output, this is
  150. * uint16_t
  151. * @param dstW width of lumSrc and alpSrc in pixels, number of pixels
  152. * to write into dest[]
  153. * @param yalpha luma/alpha scaling coefficients for the second input line.
  154. * The first line's coefficients can be calculated by using
  155. * 4096 - yalpha
  156. * @param uvalpha chroma scaling coefficient for the second input line. The
  157. * first line's coefficients can be calculated by using
  158. * 4096 - uvalpha
  159. * @param y vertical line number for this output. This does not need
  160. * to be used to calculate the offset in the destination,
  161. * but can be used to generate comfort noise using dithering
  162. * for some output formats.
  163. */
  164. typedef void (*yuv2packed2_fn)(struct SwsContext *c, const int16_t *lumSrc[2],
  165. const int16_t *chrUSrc[2],
  166. const int16_t *chrVSrc[2],
  167. const int16_t *alpSrc[2],
  168. uint8_t *dest,
  169. int dstW, int yalpha, int uvalpha, int y);
  170. /**
  171. * Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB
  172. * output by doing multi-point vertical scaling between input pixels.
  173. *
  174. * @param c SWS scaling context
  175. * @param lumFilter vertical luma/alpha scaling coefficients, 12 bits [0,4096]
  176. * @param lumSrc scaled luma (Y) source data, 15 bits for 8-10-bit output,
  177. * 19 bits for 16-bit output (in int32_t)
  178. * @param lumFilterSize number of vertical luma/alpha input lines to scale
  179. * @param chrFilter vertical chroma scaling coefficients, 12 bits [0,4096]
  180. * @param chrUSrc scaled chroma (U) source data, 15 bits for 8-10-bit output,
  181. * 19 bits for 16-bit output (in int32_t)
  182. * @param chrVSrc scaled chroma (V) source data, 15 bits for 8-10-bit output,
  183. * 19 bits for 16-bit output (in int32_t)
  184. * @param chrFilterSize number of vertical chroma input lines to scale
  185. * @param alpSrc scaled alpha (A) source data, 15 bits for 8-10-bit output,
  186. * 19 bits for 16-bit output (in int32_t)
  187. * @param dest pointer to the output plane. For 16-bit output, this is
  188. * uint16_t
  189. * @param dstW width of lumSrc and alpSrc in pixels, number of pixels
  190. * to write into dest[]
  191. * @param y vertical line number for this output. This does not need
  192. * to be used to calculate the offset in the destination,
  193. * but can be used to generate comfort noise using dithering
  194. * or some output formats.
  195. */
  196. typedef void (*yuv2packedX_fn)(struct SwsContext *c, const int16_t *lumFilter,
  197. const int16_t **lumSrc, int lumFilterSize,
  198. const int16_t *chrFilter,
  199. const int16_t **chrUSrc,
  200. const int16_t **chrVSrc, int chrFilterSize,
  201. const int16_t **alpSrc, uint8_t *dest,
  202. int dstW, int y);
  203. /**
  204. * Write one line of horizontally scaled Y/U/V/A to YUV/RGB
  205. * output by doing multi-point vertical scaling between input pixels.
  206. *
  207. * @param c SWS scaling context
  208. * @param lumFilter vertical luma/alpha scaling coefficients, 12 bits [0,4096]
  209. * @param lumSrc scaled luma (Y) source data, 15 bits for 8-10-bit output,
  210. * 19 bits for 16-bit output (in int32_t)
  211. * @param lumFilterSize number of vertical luma/alpha input lines to scale
  212. * @param chrFilter vertical chroma scaling coefficients, 12 bits [0,4096]
  213. * @param chrUSrc scaled chroma (U) source data, 15 bits for 8-10-bit output,
  214. * 19 bits for 16-bit output (in int32_t)
  215. * @param chrVSrc scaled chroma (V) source data, 15 bits for 8-10-bit output,
  216. * 19 bits for 16-bit output (in int32_t)
  217. * @param chrFilterSize number of vertical chroma input lines to scale
  218. * @param alpSrc scaled alpha (A) source data, 15 bits for 8-10-bit output,
  219. * 19 bits for 16-bit output (in int32_t)
  220. * @param dest pointer to the output planes. For 16-bit output, this is
  221. * uint16_t
  222. * @param dstW width of lumSrc and alpSrc in pixels, number of pixels
  223. * to write into dest[]
  224. * @param y vertical line number for this output. This does not need
  225. * to be used to calculate the offset in the destination,
  226. * but can be used to generate comfort noise using dithering
  227. * or some output formats.
  228. */
  229. typedef void (*yuv2anyX_fn)(struct SwsContext *c, const int16_t *lumFilter,
  230. const int16_t **lumSrc, int lumFilterSize,
  231. const int16_t *chrFilter,
  232. const int16_t **chrUSrc,
  233. const int16_t **chrVSrc, int chrFilterSize,
  234. const int16_t **alpSrc, uint8_t **dest,
  235. int dstW, int y);
  236. /* This struct should be aligned on at least a 32-byte boundary. */
  237. typedef struct SwsContext {
  238. /**
  239. * info on struct for av_log
  240. */
  241. const AVClass *av_class;
  242. /**
  243. * Note that src, dst, srcStride, dstStride will be copied in the
  244. * sws_scale() wrapper so they can be freely modified here.
  245. */
  246. SwsFunc swscale;
  247. int srcW; ///< Width of source luma/alpha planes.
  248. int srcH; ///< Height of source luma/alpha planes.
  249. int dstH; ///< Height of destination luma/alpha planes.
  250. int chrSrcW; ///< Width of source chroma planes.
  251. int chrSrcH; ///< Height of source chroma planes.
  252. int chrDstW; ///< Width of destination chroma planes.
  253. int chrDstH; ///< Height of destination chroma planes.
  254. int lumXInc, chrXInc;
  255. int lumYInc, chrYInc;
  256. enum AVPixelFormat dstFormat; ///< Destination pixel format.
  257. enum AVPixelFormat srcFormat; ///< Source pixel format.
  258. int dstFormatBpp; ///< Number of bits per pixel of the destination pixel format.
  259. int srcFormatBpp; ///< Number of bits per pixel of the source pixel format.
  260. int dstBpc, srcBpc;
  261. int chrSrcHSubSample; ///< Binary logarithm of horizontal subsampling factor between luma/alpha and chroma planes in source image.
  262. int chrSrcVSubSample; ///< Binary logarithm of vertical subsampling factor between luma/alpha and chroma planes in source image.
  263. int chrDstHSubSample; ///< Binary logarithm of horizontal subsampling factor between luma/alpha and chroma planes in destination image.
  264. int chrDstVSubSample; ///< Binary logarithm of vertical subsampling factor between luma/alpha and chroma planes in destination image.
  265. int vChrDrop; ///< Binary logarithm of extra vertical subsampling factor in source image chroma planes specified by user.
  266. int sliceDir; ///< Direction that slices are fed to the scaler (1 = top-to-bottom, -1 = bottom-to-top).
  267. double param[2]; ///< Input parameters for scaling algorithms that need them.
  268. uint32_t pal_yuv[256];
  269. uint32_t pal_rgb[256];
  270. /**
  271. * @name Scaled horizontal lines ring buffer.
  272. * The horizontal scaler keeps just enough scaled lines in a ring buffer
  273. * so they may be passed to the vertical scaler. The pointers to the
  274. * allocated buffers for each line are duplicated in sequence in the ring
  275. * buffer to simplify indexing and avoid wrapping around between lines
  276. * inside the vertical scaler code. The wrapping is done before the
  277. * vertical scaler is called.
  278. */
  279. //@{
  280. int16_t **lumPixBuf; ///< Ring buffer for scaled horizontal luma plane lines to be fed to the vertical scaler.
  281. int16_t **chrUPixBuf; ///< Ring buffer for scaled horizontal chroma plane lines to be fed to the vertical scaler.
  282. int16_t **chrVPixBuf; ///< Ring buffer for scaled horizontal chroma plane lines to be fed to the vertical scaler.
  283. int16_t **alpPixBuf; ///< Ring buffer for scaled horizontal alpha plane lines to be fed to the vertical scaler.
  284. int vLumBufSize; ///< Number of vertical luma/alpha lines allocated in the ring buffer.
  285. int vChrBufSize; ///< Number of vertical chroma lines allocated in the ring buffer.
  286. int lastInLumBuf; ///< Last scaled horizontal luma/alpha line from source in the ring buffer.
  287. int lastInChrBuf; ///< Last scaled horizontal chroma line from source in the ring buffer.
  288. int lumBufIndex; ///< Index in ring buffer of the last scaled horizontal luma/alpha line from source.
  289. int chrBufIndex; ///< Index in ring buffer of the last scaled horizontal chroma line from source.
  290. //@}
  291. uint8_t *formatConvBuffer;
  292. /**
  293. * @name Horizontal and vertical filters.
  294. * To better understand the following fields, here is a pseudo-code of
  295. * their usage in filtering a horizontal line:
  296. * @code
  297. * for (i = 0; i < width; i++) {
  298. * dst[i] = 0;
  299. * for (j = 0; j < filterSize; j++)
  300. * dst[i] += src[ filterPos[i] + j ] * filter[ filterSize * i + j ];
  301. * dst[i] >>= FRAC_BITS; // The actual implementation is fixed-point.
  302. * }
  303. * @endcode
  304. */
  305. //@{
  306. int16_t *hLumFilter; ///< Array of horizontal filter coefficients for luma/alpha planes.
  307. int16_t *hChrFilter; ///< Array of horizontal filter coefficients for chroma planes.
  308. int16_t *vLumFilter; ///< Array of vertical filter coefficients for luma/alpha planes.
  309. int16_t *vChrFilter; ///< Array of vertical filter coefficients for chroma planes.
  310. int32_t *hLumFilterPos; ///< Array of horizontal filter starting positions for each dst[i] for luma/alpha planes.
  311. int32_t *hChrFilterPos; ///< Array of horizontal filter starting positions for each dst[i] for chroma planes.
  312. int32_t *vLumFilterPos; ///< Array of vertical filter starting positions for each dst[i] for luma/alpha planes.
  313. int32_t *vChrFilterPos; ///< Array of vertical filter starting positions for each dst[i] for chroma planes.
  314. int hLumFilterSize; ///< Horizontal filter size for luma/alpha pixels.
  315. int hChrFilterSize; ///< Horizontal filter size for chroma pixels.
  316. int vLumFilterSize; ///< Vertical filter size for luma/alpha pixels.
  317. int vChrFilterSize; ///< Vertical filter size for chroma pixels.
  318. //@}
  319. int lumMmxextFilterCodeSize; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code size for luma/alpha planes.
  320. int chrMmxextFilterCodeSize; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code size for chroma planes.
  321. uint8_t *lumMmxextFilterCode; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code for luma/alpha planes.
  322. uint8_t *chrMmxextFilterCode; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code for chroma planes.
  323. int canMMXEXTBeUsed;
  324. int dstY; ///< Last destination vertical line output from last slice.
  325. int flags; ///< Flags passed by the user to select scaler algorithm, optimizations, subsampling, etc...
  326. void *yuvTable; // pointer to the yuv->rgb table start so it can be freed()
  327. uint8_t *table_rV[256];
  328. uint8_t *table_gU[256];
  329. int table_gV[256];
  330. uint8_t *table_bU[256];
  331. //Colorspace stuff
  332. int contrast, brightness, saturation; // for sws_getColorspaceDetails
  333. int srcColorspaceTable[4];
  334. int dstColorspaceTable[4];
  335. int srcRange; ///< 0 = MPG YUV range, 1 = JPG YUV range (source image).
  336. int dstRange; ///< 0 = MPG YUV range, 1 = JPG YUV range (destination image).
  337. int yuv2rgb_y_offset;
  338. int yuv2rgb_y_coeff;
  339. int yuv2rgb_v2r_coeff;
  340. int yuv2rgb_v2g_coeff;
  341. int yuv2rgb_u2g_coeff;
  342. int yuv2rgb_u2b_coeff;
  343. #define RED_DITHER "0*8"
  344. #define GREEN_DITHER "1*8"
  345. #define BLUE_DITHER "2*8"
  346. #define Y_COEFF "3*8"
  347. #define VR_COEFF "4*8"
  348. #define UB_COEFF "5*8"
  349. #define VG_COEFF "6*8"
  350. #define UG_COEFF "7*8"
  351. #define Y_OFFSET "8*8"
  352. #define U_OFFSET "9*8"
  353. #define V_OFFSET "10*8"
  354. #define LUM_MMX_FILTER_OFFSET "11*8"
  355. #define CHR_MMX_FILTER_OFFSET "11*8+4*4*256"
  356. #define DSTW_OFFSET "11*8+4*4*256*2" //do not change, it is hardcoded in the ASM
  357. #define ESP_OFFSET "11*8+4*4*256*2+8"
  358. #define VROUNDER_OFFSET "11*8+4*4*256*2+16"
  359. #define U_TEMP "11*8+4*4*256*2+24"
  360. #define V_TEMP "11*8+4*4*256*2+32"
  361. #define Y_TEMP "11*8+4*4*256*2+40"
  362. #define ALP_MMX_FILTER_OFFSET "11*8+4*4*256*2+48"
  363. #define UV_OFF_PX "11*8+4*4*256*3+48"
  364. #define UV_OFF_BYTE "11*8+4*4*256*3+56"
  365. #define DITHER16 "11*8+4*4*256*3+64"
  366. #define DITHER32 "11*8+4*4*256*3+80"
  367. DECLARE_ALIGNED(8, uint64_t, redDither);
  368. DECLARE_ALIGNED(8, uint64_t, greenDither);
  369. DECLARE_ALIGNED(8, uint64_t, blueDither);
  370. DECLARE_ALIGNED(8, uint64_t, yCoeff);
  371. DECLARE_ALIGNED(8, uint64_t, vrCoeff);
  372. DECLARE_ALIGNED(8, uint64_t, ubCoeff);
  373. DECLARE_ALIGNED(8, uint64_t, vgCoeff);
  374. DECLARE_ALIGNED(8, uint64_t, ugCoeff);
  375. DECLARE_ALIGNED(8, uint64_t, yOffset);
  376. DECLARE_ALIGNED(8, uint64_t, uOffset);
  377. DECLARE_ALIGNED(8, uint64_t, vOffset);
  378. int32_t lumMmxFilter[4 * MAX_FILTER_SIZE];
  379. int32_t chrMmxFilter[4 * MAX_FILTER_SIZE];
  380. int dstW; ///< Width of destination luma/alpha planes.
  381. DECLARE_ALIGNED(8, uint64_t, esp);
  382. DECLARE_ALIGNED(8, uint64_t, vRounder);
  383. DECLARE_ALIGNED(8, uint64_t, u_temp);
  384. DECLARE_ALIGNED(8, uint64_t, v_temp);
  385. DECLARE_ALIGNED(8, uint64_t, y_temp);
  386. int32_t alpMmxFilter[4 * MAX_FILTER_SIZE];
  387. // alignment of these values is not necessary, but merely here
  388. // to maintain the same offset across x8632 and x86-64. Once we
  389. // use proper offset macros in the asm, they can be removed.
  390. DECLARE_ALIGNED(8, ptrdiff_t, uv_off_px); ///< offset (in pixels) between u and v planes
  391. DECLARE_ALIGNED(8, ptrdiff_t, uv_off_byte); ///< offset (in bytes) between u and v planes
  392. DECLARE_ALIGNED(8, uint16_t, dither16)[8];
  393. DECLARE_ALIGNED(8, uint32_t, dither32)[8];
  394. const uint8_t *chrDither8, *lumDither8;
  395. #if HAVE_ALTIVEC
  396. vector signed short CY;
  397. vector signed short CRV;
  398. vector signed short CBU;
  399. vector signed short CGU;
  400. vector signed short CGV;
  401. vector signed short OY;
  402. vector unsigned short CSHIFT;
  403. vector signed short *vYCoeffsBank, *vCCoeffsBank;
  404. #endif
  405. /* function pointers for swscale() */
  406. yuv2planar1_fn yuv2plane1;
  407. yuv2planarX_fn yuv2planeX;
  408. yuv2interleavedX_fn yuv2nv12cX;
  409. yuv2packed1_fn yuv2packed1;
  410. yuv2packed2_fn yuv2packed2;
  411. yuv2packedX_fn yuv2packedX;
  412. yuv2anyX_fn yuv2anyX;
  413. /// Unscaled conversion of luma plane to YV12 for horizontal scaler.
  414. void (*lumToYV12)(uint8_t *dst, const uint8_t *src,
  415. int width, uint32_t *pal);
  416. /// Unscaled conversion of alpha plane to YV12 for horizontal scaler.
  417. void (*alpToYV12)(uint8_t *dst, const uint8_t *src,
  418. int width, uint32_t *pal);
  419. /// Unscaled conversion of chroma planes to YV12 for horizontal scaler.
  420. void (*chrToYV12)(uint8_t *dstU, uint8_t *dstV,
  421. const uint8_t *src1, const uint8_t *src2,
  422. int width, uint32_t *pal);
  423. /**
  424. * Functions to read planar input, such as planar RGB, and convert
  425. * internally to Y/UV/A.
  426. */
  427. /** @{ */
  428. void (*readLumPlanar)(uint8_t *dst, const uint8_t *src[4], int width);
  429. void (*readChrPlanar)(uint8_t *dstU, uint8_t *dstV, const uint8_t *src[4],
  430. int width);
  431. void (*readAlpPlanar)(uint8_t *dst, const uint8_t *src[4], int width);
  432. /** @} */
  433. /**
  434. * Scale one horizontal line of input data using a bilinear filter
  435. * to produce one line of output data. Compared to SwsContext->hScale(),
  436. * please take note of the following caveats when using these:
  437. * - Scaling is done using only 7 bits instead of 14-bit coefficients.
  438. * - You can use no more than 5 input pixels to produce 4 output
  439. * pixels. Therefore, this filter should not be used for downscaling
  440. * by more than ~20% in width (because that equals more than 5/4th
  441. * downscaling and thus more than 5 pixels input per 4 pixels output).
  442. * - In general, bilinear filters create artifacts during downscaling
  443. * (even when <20%), because one output pixel will span more than one
  444. * input pixel, and thus some pixels will need edges of both neighbor
  445. * pixels to interpolate the output pixel. Since you can use at most
  446. * two input pixels per output pixel in bilinear scaling, this is
  447. * impossible and thus downscaling by any size will create artifacts.
  448. * To enable this type of scaling, set SWS_FLAG_FAST_BILINEAR
  449. * in SwsContext->flags.
  450. */
  451. /** @{ */
  452. void (*hyscale_fast)(struct SwsContext *c,
  453. int16_t *dst, int dstWidth,
  454. const uint8_t *src, int srcW, int xInc);
  455. void (*hcscale_fast)(struct SwsContext *c,
  456. int16_t *dst1, int16_t *dst2, int dstWidth,
  457. const uint8_t *src1, const uint8_t *src2,
  458. int srcW, int xInc);
  459. /** @} */
  460. /**
  461. * Scale one horizontal line of input data using a filter over the input
  462. * lines, to produce one (differently sized) line of output data.
  463. *
  464. * @param dst pointer to destination buffer for horizontally scaled
  465. * data. If the number of bits per component of one
  466. * destination pixel (SwsContext->dstBpc) is <= 10, data
  467. * will be 15 bpc in 16 bits (int16_t) width. Else (i.e.
  468. * SwsContext->dstBpc == 16), data will be 19bpc in
  469. * 32 bits (int32_t) width.
  470. * @param dstW width of destination image
  471. * @param src pointer to source data to be scaled. If the number of
  472. * bits per component of a source pixel (SwsContext->srcBpc)
  473. * is 8, this is 8bpc in 8 bits (uint8_t) width. Else
  474. * (i.e. SwsContext->dstBpc > 8), this is native depth
  475. * in 16 bits (uint16_t) width. In other words, for 9-bit
  476. * YUV input, this is 9bpc, for 10-bit YUV input, this is
  477. * 10bpc, and for 16-bit RGB or YUV, this is 16bpc.
  478. * @param filter filter coefficients to be used per output pixel for
  479. * scaling. This contains 14bpp filtering coefficients.
  480. * Guaranteed to contain dstW * filterSize entries.
  481. * @param filterPos position of the first input pixel to be used for
  482. * each output pixel during scaling. Guaranteed to
  483. * contain dstW entries.
  484. * @param filterSize the number of input coefficients to be used (and
  485. * thus the number of input pixels to be used) for
  486. * creating a single output pixel. Is aligned to 4
  487. * (and input coefficients thus padded with zeroes)
  488. * to simplify creating SIMD code.
  489. */
  490. /** @{ */
  491. void (*hyScale)(struct SwsContext *c, int16_t *dst, int dstW,
  492. const uint8_t *src, const int16_t *filter,
  493. const int32_t *filterPos, int filterSize);
  494. void (*hcScale)(struct SwsContext *c, int16_t *dst, int dstW,
  495. const uint8_t *src, const int16_t *filter,
  496. const int32_t *filterPos, int filterSize);
  497. /** @} */
  498. /// Color range conversion function for luma plane if needed.
  499. void (*lumConvertRange)(int16_t *dst, int width);
  500. /// Color range conversion function for chroma planes if needed.
  501. void (*chrConvertRange)(int16_t *dst1, int16_t *dst2, int width);
  502. int needs_hcscale; ///< Set if there are chroma planes to be converted.
  503. } SwsContext;
  504. //FIXME check init (where 0)
  505. SwsFunc ff_yuv2rgb_get_func_ptr(SwsContext *c);
  506. int ff_yuv2rgb_c_init_tables(SwsContext *c, const int inv_table[4],
  507. int fullRange, int brightness,
  508. int contrast, int saturation);
  509. void ff_yuv2rgb_init_tables_ppc(SwsContext *c, const int inv_table[4],
  510. int brightness, int contrast, int saturation);
  511. void updateMMXDitherTables(SwsContext *c, int dstY, int lumBufIndex, int chrBufIndex,
  512. int lastInLumBuf, int lastInChrBuf);
  513. SwsFunc ff_yuv2rgb_init_x86(SwsContext *c);
  514. SwsFunc ff_yuv2rgb_init_ppc(SwsContext *c);
  515. const char *sws_format_name(enum AVPixelFormat format);
  516. static av_always_inline int is16BPS(enum AVPixelFormat pix_fmt)
  517. {
  518. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  519. av_assert0(desc);
  520. return desc->comp[0].depth == 16;
  521. }
  522. static av_always_inline int is9_15BPS(enum AVPixelFormat pix_fmt)
  523. {
  524. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  525. av_assert0(desc);
  526. return desc->comp[0].depth >= 9 && desc->comp[0].depth <= 15;
  527. }
  528. static av_always_inline int isBE(enum AVPixelFormat pix_fmt)
  529. {
  530. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  531. av_assert0(desc);
  532. return desc->flags & AV_PIX_FMT_FLAG_BE;
  533. }
  534. static av_always_inline int isYUV(enum AVPixelFormat pix_fmt)
  535. {
  536. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  537. av_assert0(desc);
  538. return !(desc->flags & AV_PIX_FMT_FLAG_RGB) && desc->nb_components >= 2;
  539. }
  540. static av_always_inline int isPlanarYUV(enum AVPixelFormat pix_fmt)
  541. {
  542. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  543. av_assert0(desc);
  544. return ((desc->flags & AV_PIX_FMT_FLAG_PLANAR) && isYUV(pix_fmt));
  545. }
  546. static av_always_inline int isRGB(enum AVPixelFormat pix_fmt)
  547. {
  548. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  549. av_assert0(desc);
  550. return (desc->flags & AV_PIX_FMT_FLAG_RGB);
  551. }
  552. #define isGray(x) \
  553. ((x) == AV_PIX_FMT_GRAY8 || \
  554. (x) == AV_PIX_FMT_YA8 || \
  555. (x) == AV_PIX_FMT_GRAY12BE || \
  556. (x) == AV_PIX_FMT_GRAY12LE || \
  557. (x) == AV_PIX_FMT_GRAY16BE || \
  558. (x) == AV_PIX_FMT_GRAY16LE || \
  559. (x) == AV_PIX_FMT_YA16BE || \
  560. (x) == AV_PIX_FMT_YA16LE)
  561. #define isRGBinInt(x) \
  562. ((x) == AV_PIX_FMT_RGB48BE || \
  563. (x) == AV_PIX_FMT_RGB48LE || \
  564. (x) == AV_PIX_FMT_RGB32 || \
  565. (x) == AV_PIX_FMT_RGB32_1 || \
  566. (x) == AV_PIX_FMT_RGB24 || \
  567. (x) == AV_PIX_FMT_RGB565BE || \
  568. (x) == AV_PIX_FMT_RGB565LE || \
  569. (x) == AV_PIX_FMT_RGB555BE || \
  570. (x) == AV_PIX_FMT_RGB555LE || \
  571. (x) == AV_PIX_FMT_RGB444BE || \
  572. (x) == AV_PIX_FMT_RGB444LE || \
  573. (x) == AV_PIX_FMT_RGB8 || \
  574. (x) == AV_PIX_FMT_RGB4 || \
  575. (x) == AV_PIX_FMT_RGB4_BYTE || \
  576. (x) == AV_PIX_FMT_RGBA64BE || \
  577. (x) == AV_PIX_FMT_RGBA64LE || \
  578. (x) == AV_PIX_FMT_MONOBLACK || \
  579. (x) == AV_PIX_FMT_MONOWHITE)
  580. #define isBGRinInt(x) \
  581. ((x) == AV_PIX_FMT_BGR48BE || \
  582. (x) == AV_PIX_FMT_BGR48LE || \
  583. (x) == AV_PIX_FMT_BGR32 || \
  584. (x) == AV_PIX_FMT_BGR32_1 || \
  585. (x) == AV_PIX_FMT_BGR24 || \
  586. (x) == AV_PIX_FMT_BGR565BE || \
  587. (x) == AV_PIX_FMT_BGR565LE || \
  588. (x) == AV_PIX_FMT_BGR555BE || \
  589. (x) == AV_PIX_FMT_BGR555LE || \
  590. (x) == AV_PIX_FMT_BGR444BE || \
  591. (x) == AV_PIX_FMT_BGR444LE || \
  592. (x) == AV_PIX_FMT_BGR8 || \
  593. (x) == AV_PIX_FMT_BGR4 || \
  594. (x) == AV_PIX_FMT_BGR4_BYTE || \
  595. (x) == AV_PIX_FMT_BGRA64BE || \
  596. (x) == AV_PIX_FMT_BGRA64LE || \
  597. (x) == AV_PIX_FMT_MONOBLACK || \
  598. (x) == AV_PIX_FMT_MONOWHITE)
  599. #define isAnyRGB(x) \
  600. (isRGBinInt(x) || \
  601. isBGRinInt(x))
  602. static av_always_inline int isALPHA(enum AVPixelFormat pix_fmt)
  603. {
  604. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  605. av_assert0(desc);
  606. return desc->nb_components == 2 || desc->nb_components == 4;
  607. }
  608. static av_always_inline int isPacked(enum AVPixelFormat pix_fmt)
  609. {
  610. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  611. av_assert0(desc);
  612. return ((desc->nb_components >= 2 && !(desc->flags & AV_PIX_FMT_FLAG_PLANAR)) ||
  613. pix_fmt == AV_PIX_FMT_PAL8);
  614. }
  615. static av_always_inline int isPlanar(enum AVPixelFormat pix_fmt)
  616. {
  617. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  618. av_assert0(desc);
  619. return (desc->nb_components >= 2 && (desc->flags & AV_PIX_FMT_FLAG_PLANAR));
  620. }
  621. static av_always_inline int isPackedRGB(enum AVPixelFormat pix_fmt)
  622. {
  623. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  624. av_assert0(desc);
  625. return ((desc->flags & (AV_PIX_FMT_FLAG_PLANAR | AV_PIX_FMT_FLAG_RGB)) == AV_PIX_FMT_FLAG_RGB);
  626. }
  627. static av_always_inline int isPlanarRGB(enum AVPixelFormat pix_fmt)
  628. {
  629. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  630. av_assert0(desc);
  631. return ((desc->flags & (AV_PIX_FMT_FLAG_PLANAR | AV_PIX_FMT_FLAG_RGB)) ==
  632. (AV_PIX_FMT_FLAG_PLANAR | AV_PIX_FMT_FLAG_RGB));
  633. }
  634. static av_always_inline int usePal(enum AVPixelFormat pix_fmt)
  635. {
  636. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  637. av_assert0(desc);
  638. return ((desc->flags & AV_PIX_FMT_FLAG_PAL) || (desc->flags & AV_PIX_FMT_FLAG_PSEUDOPAL) ||
  639. pix_fmt == AV_PIX_FMT_YA8);
  640. }
  641. extern const uint64_t ff_dither4[2];
  642. extern const uint64_t ff_dither8[2];
  643. extern const uint8_t ff_dither_4x4_16[4][8];
  644. extern const uint8_t ff_dither_8x8_32[8][8];
  645. extern const uint8_t ff_dither_8x8_73[8][8];
  646. extern const uint8_t ff_dither_8x8_128[8][8];
  647. extern const uint8_t ff_dither_8x8_220[8][8];
  648. extern const int32_t ff_yuv2rgb_coeffs[8][4];
  649. extern const AVClass ff_sws_context_class;
  650. /**
  651. * Set c->swscale to an unscaled converter if one exists for the specific
  652. * source and destination formats, bit depths, flags, etc.
  653. */
  654. void ff_get_unscaled_swscale(SwsContext *c);
  655. void ff_get_unscaled_swscale_ppc(SwsContext *c);
  656. /**
  657. * Return function pointer to fastest main scaler path function depending
  658. * on architecture and available optimizations.
  659. */
  660. SwsFunc ff_getSwsFunc(SwsContext *c);
  661. void ff_sws_init_input_funcs(SwsContext *c);
  662. void ff_sws_init_output_funcs(SwsContext *c,
  663. yuv2planar1_fn *yuv2plane1,
  664. yuv2planarX_fn *yuv2planeX,
  665. yuv2interleavedX_fn *yuv2nv12cX,
  666. yuv2packed1_fn *yuv2packed1,
  667. yuv2packed2_fn *yuv2packed2,
  668. yuv2packedX_fn *yuv2packedX,
  669. yuv2anyX_fn *yuv2anyX);
  670. void ff_sws_init_swscale_ppc(SwsContext *c);
  671. void ff_sws_init_swscale_x86(SwsContext *c);
  672. #endif /* SWSCALE_SWSCALE_INTERNAL_H */