You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

128 lines
4.7KB

  1. /*
  2. * copyright (c) 2006 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of Libav.
  5. *
  6. * Libav is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * Libav is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with Libav; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. /**
  21. * @file
  22. * A tree container.
  23. * @author Michael Niedermayer <michaelni@gmx.at>
  24. */
  25. #ifndef AVUTIL_TREE_H
  26. #define AVUTIL_TREE_H
  27. #include "attributes.h"
  28. #include "version.h"
  29. /**
  30. * @addtogroup lavu_tree AVTree
  31. * @ingroup lavu_data
  32. *
  33. * Low-complexity tree container
  34. *
  35. * Insertion, removal, finding equal, largest which is smaller than and
  36. * smallest which is larger than, all have O(log n) worst-case complexity.
  37. * @{
  38. */
  39. struct AVTreeNode;
  40. /**
  41. * Allocate an AVTreeNode.
  42. */
  43. struct AVTreeNode *av_tree_node_alloc(void);
  44. /**
  45. * Find an element.
  46. * @param root a pointer to the root node of the tree
  47. * @param next If next is not NULL, then next[0] will contain the previous
  48. * element and next[1] the next element. If either does not exist,
  49. * then the corresponding entry in next is unchanged.
  50. * @return An element with cmp(key, elem) == 0 or NULL if no such element
  51. * exists in the tree.
  52. */
  53. void *av_tree_find(const struct AVTreeNode *root, void *key,
  54. int (*cmp)(void *key, const void *b), void *next[2]);
  55. /**
  56. * Insert or remove an element.
  57. * If *next is NULL, then the supplied element will be removed if it exists.
  58. * If *next is not NULL, then the supplied element will be inserted, unless
  59. * it already exists in the tree.
  60. * @param rootp A pointer to a pointer to the root node of the tree; note that
  61. * the root node can change during insertions, this is required
  62. * to keep the tree balanced.
  63. * @param next Used to allocate and free AVTreeNodes. For insertion the user
  64. * must set it to an allocated and zeroed object of at least
  65. * av_tree_node_size bytes size. av_tree_insert() will set it to
  66. * NULL if it has been consumed.
  67. * For deleting elements *next is set to NULL by the user and
  68. * av_tree_node_size() will set it to the AVTreeNode which was
  69. * used for the removed element.
  70. * This allows the use of flat arrays, which have
  71. * lower overhead compared to many malloced elements.
  72. * You might want to define a function like:
  73. * @code
  74. * void *tree_insert(struct AVTreeNode **rootp, void *key,
  75. * int (*cmp)(void *key, const void *b),
  76. * AVTreeNode **next)
  77. * {
  78. * if (!*next)
  79. * *next = av_mallocz(av_tree_node_size);
  80. * return av_tree_insert(rootp, key, cmp, next);
  81. * }
  82. * void *tree_remove(struct AVTreeNode **rootp, void *key,
  83. * int (*cmp)(void *key, const void *b, AVTreeNode **next))
  84. * {
  85. * av_freep(next);
  86. * return av_tree_insert(rootp, key, cmp, next);
  87. * }
  88. * @endcode
  89. * @return If no insertion happened, the found element; if an insertion or
  90. * removal happened, then either key or NULL will be returned.
  91. * Which one it is depends on the tree state and the implementation. You
  92. * should make no assumptions that it's one or the other in the code.
  93. */
  94. void *av_tree_insert(struct AVTreeNode **rootp, void *key,
  95. int (*cmp)(void *key, const void *b),
  96. struct AVTreeNode **next);
  97. void av_tree_destroy(struct AVTreeNode *t);
  98. /**
  99. * Apply enu(opaque, &elem) to all the elements in the tree in a given range.
  100. *
  101. * @param cmp a comparison function that returns < 0 for a element below the
  102. * range, > 0 for a element above the range and == 0 for a
  103. * element inside the range
  104. *
  105. * @note The cmp function should use the same ordering used to construct the
  106. * tree.
  107. */
  108. void av_tree_enumerate(struct AVTreeNode *t, void *opaque,
  109. int (*cmp)(void *opaque, void *elem),
  110. int (*enu)(void *opaque, void *elem));
  111. /**
  112. * @}
  113. */
  114. #endif /* AVUTIL_TREE_H */