You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

342 lines
9.4KB

  1. /*
  2. * RTMP Diffie-Hellmann utilities
  3. * Copyright (c) 2009 Andrej Stepanchuk
  4. * Copyright (c) 2009-2010 Howard Chu
  5. * Copyright (c) 2012 Samuel Pitoiset
  6. *
  7. * This file is part of Libav.
  8. *
  9. * Libav is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * Libav is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with Libav; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. /**
  24. * @file
  25. * RTMP Diffie-Hellmann utilities
  26. */
  27. #include <stdint.h>
  28. #include <string.h>
  29. #include "config.h"
  30. #include "libavutil/attributes.h"
  31. #include "libavutil/error.h"
  32. #include "libavutil/mem.h"
  33. #include "libavutil/random_seed.h"
  34. #include "rtmpdh.h"
  35. #define P1024 \
  36. "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" \
  37. "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" \
  38. "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" \
  39. "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" \
  40. "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE65381" \
  41. "FFFFFFFFFFFFFFFF"
  42. #define Q1024 \
  43. "7FFFFFFFFFFFFFFFE487ED5110B4611A62633145C06E0E68" \
  44. "948127044533E63A0105DF531D89CD9128A5043CC71A026E" \
  45. "F7CA8CD9E69D218D98158536F92F8A1BA7F09AB6B6A8E122" \
  46. "F242DABB312F3F637A262174D31BF6B585FFAE5B7A035BF6" \
  47. "F71C35FDAD44CFD2D74F9208BE258FF324943328F67329C0" \
  48. "FFFFFFFFFFFFFFFF"
  49. #if CONFIG_GMP
  50. #define bn_new(bn) \
  51. do { \
  52. bn = av_malloc(sizeof(*bn)); \
  53. if (bn) \
  54. mpz_init2(bn, 1); \
  55. } while (0)
  56. #define bn_free(bn) \
  57. do { \
  58. mpz_clear(bn); \
  59. av_free(bn); \
  60. } while (0)
  61. #define bn_set_word(bn, w) mpz_set_ui(bn, w)
  62. #define bn_cmp(a, b) mpz_cmp(a, b)
  63. #define bn_copy(to, from) mpz_set(to, from)
  64. #define bn_sub_word(bn, w) mpz_sub_ui(bn, bn, w)
  65. #define bn_cmp_1(bn) mpz_cmp_ui(bn, 1)
  66. #define bn_num_bytes(bn) (mpz_sizeinbase(bn, 2) + 7) / 8
  67. #define bn_bn2bin(bn, buf, len) \
  68. do { \
  69. memset(buf, 0, len); \
  70. if (bn_num_bytes(bn) <= len) \
  71. mpz_export(buf, NULL, 1, 1, 0, 0, bn); \
  72. } while (0)
  73. #define bn_bin2bn(bn, buf, len) \
  74. do { \
  75. bn_new(bn); \
  76. if (bn) \
  77. mpz_import(bn, len, 1, 1, 0, 0, buf); \
  78. } while (0)
  79. #define bn_hex2bn(bn, buf, ret) \
  80. do { \
  81. bn_new(bn); \
  82. if (bn) \
  83. ret = (mpz_set_str(bn, buf, 16) == 0); \
  84. else \
  85. ret = 1; \
  86. } while (0)
  87. #define bn_random(bn, num_bits) \
  88. do { \
  89. int bits = num_bits; \
  90. mpz_set_ui(bn, 0); \
  91. for (bits = num_bits; bits > 0; bits -= 32) { \
  92. mpz_mul_2exp(bn, bn, 32); \
  93. mpz_add_ui(bn, bn, av_get_random_seed()); \
  94. } \
  95. mpz_fdiv_r_2exp(bn, bn, num_bits); \
  96. } while (0)
  97. static int bn_modexp(FFBigNum bn, FFBigNum y, FFBigNum q, FFBigNum p)
  98. {
  99. mpz_powm(bn, y, q, p);
  100. return 0;
  101. }
  102. #elif CONFIG_OPENSSL
  103. #define bn_new(bn) bn = BN_new()
  104. #define bn_free(bn) BN_free(bn)
  105. #define bn_set_word(bn, w) BN_set_word(bn, w)
  106. #define bn_cmp(a, b) BN_cmp(a, b)
  107. #define bn_copy(to, from) BN_copy(to, from)
  108. #define bn_sub_word(bn, w) BN_sub_word(bn, w)
  109. #define bn_cmp_1(bn) BN_cmp(bn, BN_value_one())
  110. #define bn_num_bytes(bn) BN_num_bytes(bn)
  111. #define bn_bn2bin(bn, buf, len) BN_bn2bin(bn, buf)
  112. #define bn_bin2bn(bn, buf, len) bn = BN_bin2bn(buf, len, 0)
  113. #define bn_hex2bn(bn, buf, ret) ret = BN_hex2bn(&bn, buf)
  114. #define bn_random(bn, num_bits) BN_rand(bn, num_bits, 0, 0)
  115. static int bn_modexp(FFBigNum bn, FFBigNum y, FFBigNum q, FFBigNum p)
  116. {
  117. BN_CTX *ctx = BN_CTX_new();
  118. if (!ctx)
  119. return AVERROR(ENOMEM);
  120. if (!BN_mod_exp(bn, y, q, p, ctx)) {
  121. BN_CTX_free(ctx);
  122. return AVERROR(EINVAL);
  123. }
  124. BN_CTX_free(ctx);
  125. return 0;
  126. }
  127. #endif
  128. #define MAX_BYTES 18000
  129. #define dh_new() av_mallocz(sizeof(FF_DH))
  130. static FFBigNum dh_generate_key(FF_DH *dh)
  131. {
  132. int num_bytes;
  133. num_bytes = bn_num_bytes(dh->p) - 1;
  134. if (num_bytes <= 0 || num_bytes > MAX_BYTES)
  135. return NULL;
  136. bn_new(dh->priv_key);
  137. if (!dh->priv_key)
  138. return NULL;
  139. bn_random(dh->priv_key, 8 * num_bytes);
  140. bn_new(dh->pub_key);
  141. if (!dh->pub_key) {
  142. bn_free(dh->priv_key);
  143. return NULL;
  144. }
  145. if (bn_modexp(dh->pub_key, dh->g, dh->priv_key, dh->p) < 0)
  146. return NULL;
  147. return dh->pub_key;
  148. }
  149. static int dh_compute_key(FF_DH *dh, FFBigNum pub_key_bn,
  150. uint32_t secret_key_len, uint8_t *secret_key)
  151. {
  152. FFBigNum k;
  153. int ret;
  154. bn_new(k);
  155. if (!k)
  156. return -1;
  157. if ((ret = bn_modexp(k, pub_key_bn, dh->priv_key, dh->p)) < 0) {
  158. bn_free(k);
  159. return ret;
  160. }
  161. bn_bn2bin(k, secret_key, secret_key_len);
  162. bn_free(k);
  163. /* return the length of the shared secret key like DH_compute_key */
  164. return secret_key_len;
  165. }
  166. void ff_dh_free(FF_DH *dh)
  167. {
  168. if (!dh)
  169. return;
  170. bn_free(dh->p);
  171. bn_free(dh->g);
  172. bn_free(dh->pub_key);
  173. bn_free(dh->priv_key);
  174. av_free(dh);
  175. }
  176. static int dh_is_valid_public_key(FFBigNum y, FFBigNum p, FFBigNum q)
  177. {
  178. FFBigNum bn = NULL;
  179. int ret = AVERROR(EINVAL);
  180. bn_new(bn);
  181. if (!bn)
  182. return AVERROR(ENOMEM);
  183. /* y must lie in [2, p - 1] */
  184. bn_set_word(bn, 1);
  185. if (!bn_cmp(y, bn))
  186. goto fail;
  187. /* bn = p - 2 */
  188. bn_copy(bn, p);
  189. bn_sub_word(bn, 1);
  190. if (!bn_cmp(y, bn))
  191. goto fail;
  192. /* Verify with Sophie-Germain prime
  193. *
  194. * This is a nice test to make sure the public key position is calculated
  195. * correctly. This test will fail in about 50% of the cases if applied to
  196. * random data.
  197. */
  198. /* y must fulfill y^q mod p = 1 */
  199. if ((ret = bn_modexp(bn, y, q, p)) < 0)
  200. goto fail;
  201. ret = AVERROR(EINVAL);
  202. if (bn_cmp_1(bn))
  203. goto fail;
  204. ret = 0;
  205. fail:
  206. bn_free(bn);
  207. return ret;
  208. }
  209. av_cold FF_DH *ff_dh_init(int key_len)
  210. {
  211. FF_DH *dh;
  212. int ret;
  213. if (!(dh = dh_new()))
  214. return NULL;
  215. bn_new(dh->g);
  216. if (!dh->g)
  217. goto fail;
  218. bn_hex2bn(dh->p, P1024, ret);
  219. if (!ret)
  220. goto fail;
  221. bn_set_word(dh->g, 2);
  222. dh->length = key_len;
  223. return dh;
  224. fail:
  225. ff_dh_free(dh);
  226. return NULL;
  227. }
  228. int ff_dh_generate_public_key(FF_DH *dh)
  229. {
  230. int ret = 0;
  231. while (!ret) {
  232. FFBigNum q1 = NULL;
  233. if (!dh_generate_key(dh))
  234. return AVERROR(EINVAL);
  235. bn_hex2bn(q1, Q1024, ret);
  236. if (!ret)
  237. return AVERROR(ENOMEM);
  238. ret = dh_is_valid_public_key(dh->pub_key, dh->p, q1);
  239. bn_free(q1);
  240. if (!ret) {
  241. /* the public key is valid */
  242. break;
  243. }
  244. }
  245. return ret;
  246. }
  247. int ff_dh_write_public_key(FF_DH *dh, uint8_t *pub_key, int pub_key_len)
  248. {
  249. int len;
  250. /* compute the length of the public key */
  251. len = bn_num_bytes(dh->pub_key);
  252. if (len <= 0 || len > pub_key_len)
  253. return AVERROR(EINVAL);
  254. /* convert the public key value into big-endian form */
  255. memset(pub_key, 0, pub_key_len);
  256. bn_bn2bin(dh->pub_key, pub_key + pub_key_len - len, len);
  257. return 0;
  258. }
  259. int ff_dh_compute_shared_secret_key(FF_DH *dh, const uint8_t *pub_key,
  260. int pub_key_len, uint8_t *secret_key,
  261. int secret_key_len)
  262. {
  263. FFBigNum q1 = NULL, pub_key_bn = NULL;
  264. int ret;
  265. /* convert the big-endian form of the public key into a bignum */
  266. bn_bin2bn(pub_key_bn, pub_key, pub_key_len);
  267. if (!pub_key_bn)
  268. return AVERROR(ENOMEM);
  269. /* convert the string containing a hexadecimal number into a bignum */
  270. bn_hex2bn(q1, Q1024, ret);
  271. if (!ret) {
  272. ret = AVERROR(ENOMEM);
  273. goto fail;
  274. }
  275. /* when the public key is valid we have to compute the shared secret key */
  276. if ((ret = dh_is_valid_public_key(pub_key_bn, dh->p, q1)) < 0) {
  277. goto fail;
  278. } else if ((ret = dh_compute_key(dh, pub_key_bn, secret_key_len,
  279. secret_key)) < 0) {
  280. ret = AVERROR(EINVAL);
  281. goto fail;
  282. }
  283. fail:
  284. bn_free(pub_key_bn);
  285. bn_free(q1);
  286. return ret;
  287. }