You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2901 lines
101KB

  1. /*
  2. * Matroska file demuxer
  3. * Copyright (c) 2003-2008 The Libav Project
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * Matroska file demuxer
  24. * @author Ronald Bultje <rbultje@ronald.bitfreak.net>
  25. * @author with a little help from Moritz Bunkus <moritz@bunkus.org>
  26. * @author totally reworked by Aurelien Jacobs <aurel@gnuage.org>
  27. * @see specs available on the Matroska project page: http://www.matroska.org/
  28. */
  29. #include "config.h"
  30. #include <inttypes.h>
  31. #include <stdio.h>
  32. #if CONFIG_BZLIB
  33. #include <bzlib.h>
  34. #endif
  35. #if CONFIG_ZLIB
  36. #include <zlib.h>
  37. #endif
  38. #include "libavutil/avstring.h"
  39. #include "libavutil/dict.h"
  40. #include "libavutil/intfloat.h"
  41. #include "libavutil/intreadwrite.h"
  42. #include "libavutil/lzo.h"
  43. #include "libavutil/mathematics.h"
  44. #include "libavutil/spherical.h"
  45. #include "libavcodec/bytestream.h"
  46. #include "libavcodec/flac.h"
  47. #include "libavcodec/mpeg4audio.h"
  48. #include "avformat.h"
  49. #include "avio_internal.h"
  50. #include "internal.h"
  51. #include "isom.h"
  52. #include "matroska.h"
  53. #include "oggdec.h"
  54. /* For ff_codec_get_id(). */
  55. #include "riff.h"
  56. #include "rmsipr.h"
  57. typedef enum {
  58. EBML_NONE,
  59. EBML_UINT,
  60. EBML_FLOAT,
  61. EBML_STR,
  62. EBML_UTF8,
  63. EBML_BIN,
  64. EBML_NEST,
  65. EBML_PASS,
  66. EBML_STOP,
  67. EBML_TYPE_COUNT
  68. } EbmlType;
  69. typedef const struct EbmlSyntax {
  70. uint32_t id;
  71. EbmlType type;
  72. int list_elem_size;
  73. int data_offset;
  74. union {
  75. uint64_t u;
  76. double f;
  77. const char *s;
  78. const struct EbmlSyntax *n;
  79. } def;
  80. } EbmlSyntax;
  81. typedef struct EbmlList {
  82. int nb_elem;
  83. void *elem;
  84. } EbmlList;
  85. typedef struct EbmlBin {
  86. int size;
  87. uint8_t *data;
  88. int64_t pos;
  89. } EbmlBin;
  90. typedef struct Ebml {
  91. uint64_t version;
  92. uint64_t max_size;
  93. uint64_t id_length;
  94. char *doctype;
  95. uint64_t doctype_version;
  96. } Ebml;
  97. typedef struct MatroskaTrackCompression {
  98. uint64_t algo;
  99. EbmlBin settings;
  100. } MatroskaTrackCompression;
  101. typedef struct MatroskaTrackEncoding {
  102. uint64_t scope;
  103. uint64_t type;
  104. MatroskaTrackCompression compression;
  105. } MatroskaTrackEncoding;
  106. typedef struct MatroskaTrackVideoProjection {
  107. uint64_t type;
  108. EbmlBin private;
  109. double yaw;
  110. double pitch;
  111. double roll;
  112. } MatroskaTrackVideoProjection;
  113. typedef struct MatroskaTrackVideo {
  114. double frame_rate;
  115. uint64_t display_width;
  116. uint64_t display_height;
  117. uint64_t pixel_width;
  118. uint64_t pixel_height;
  119. uint64_t fourcc;
  120. uint64_t interlaced;
  121. uint64_t field_order;
  122. uint64_t stereo_mode;
  123. MatroskaTrackVideoProjection projection;
  124. } MatroskaTrackVideo;
  125. typedef struct MatroskaTrackAudio {
  126. double samplerate;
  127. double out_samplerate;
  128. uint64_t bitdepth;
  129. uint64_t channels;
  130. /* real audio header (extracted from extradata) */
  131. int coded_framesize;
  132. int sub_packet_h;
  133. int frame_size;
  134. int sub_packet_size;
  135. int sub_packet_cnt;
  136. int pkt_cnt;
  137. uint64_t buf_timecode;
  138. uint8_t *buf;
  139. } MatroskaTrackAudio;
  140. typedef struct MatroskaTrack {
  141. uint64_t num;
  142. uint64_t uid;
  143. uint64_t type;
  144. char *name;
  145. char *codec_id;
  146. EbmlBin codec_priv;
  147. char *language;
  148. double time_scale;
  149. uint64_t default_duration;
  150. uint64_t flag_default;
  151. uint64_t flag_forced;
  152. MatroskaTrackVideo video;
  153. MatroskaTrackAudio audio;
  154. EbmlList encodings;
  155. uint64_t codec_delay;
  156. AVStream *stream;
  157. int64_t end_timecode;
  158. int ms_compat;
  159. } MatroskaTrack;
  160. typedef struct MatroskaAttachment {
  161. uint64_t uid;
  162. char *filename;
  163. char *mime;
  164. EbmlBin bin;
  165. AVStream *stream;
  166. } MatroskaAttachment;
  167. typedef struct MatroskaChapter {
  168. uint64_t start;
  169. uint64_t end;
  170. uint64_t uid;
  171. char *title;
  172. AVChapter *chapter;
  173. } MatroskaChapter;
  174. typedef struct MatroskaIndexPos {
  175. uint64_t track;
  176. uint64_t pos;
  177. } MatroskaIndexPos;
  178. typedef struct MatroskaIndex {
  179. uint64_t time;
  180. EbmlList pos;
  181. } MatroskaIndex;
  182. typedef struct MatroskaTag {
  183. char *name;
  184. char *string;
  185. char *lang;
  186. uint64_t def;
  187. EbmlList sub;
  188. } MatroskaTag;
  189. typedef struct MatroskaTagTarget {
  190. char *type;
  191. uint64_t typevalue;
  192. uint64_t trackuid;
  193. uint64_t chapteruid;
  194. uint64_t attachuid;
  195. } MatroskaTagTarget;
  196. typedef struct MatroskaTags {
  197. MatroskaTagTarget target;
  198. EbmlList tag;
  199. } MatroskaTags;
  200. typedef struct MatroskaSeekhead {
  201. uint64_t id;
  202. uint64_t pos;
  203. } MatroskaSeekhead;
  204. typedef struct MatroskaLevel {
  205. uint64_t start;
  206. uint64_t length;
  207. } MatroskaLevel;
  208. typedef struct MatroskaCluster {
  209. uint64_t timecode;
  210. EbmlList blocks;
  211. } MatroskaCluster;
  212. typedef struct MatroskaDemuxContext {
  213. AVFormatContext *ctx;
  214. /* EBML stuff */
  215. int num_levels;
  216. MatroskaLevel levels[EBML_MAX_DEPTH];
  217. int level_up;
  218. uint32_t current_id;
  219. uint64_t time_scale;
  220. double duration;
  221. char *title;
  222. EbmlList tracks;
  223. EbmlList attachments;
  224. EbmlList chapters;
  225. EbmlList index;
  226. EbmlList tags;
  227. EbmlList seekhead;
  228. /* byte position of the segment inside the stream */
  229. int64_t segment_start;
  230. /* the packet queue */
  231. AVPacket **packets;
  232. int num_packets;
  233. AVPacket *prev_pkt;
  234. int done;
  235. /* What to skip before effectively reading a packet. */
  236. int skip_to_keyframe;
  237. uint64_t skip_to_timecode;
  238. /* File has a CUES element, but we defer parsing until it is needed. */
  239. int cues_parsing_deferred;
  240. int current_cluster_num_blocks;
  241. int64_t current_cluster_pos;
  242. MatroskaCluster current_cluster;
  243. /* File has SSA subtitles which prevent incremental cluster parsing. */
  244. int contains_ssa;
  245. } MatroskaDemuxContext;
  246. typedef struct MatroskaBlock {
  247. uint64_t duration;
  248. int64_t reference;
  249. uint64_t non_simple;
  250. EbmlBin bin;
  251. } MatroskaBlock;
  252. static EbmlSyntax ebml_header[] = {
  253. { EBML_ID_EBMLREADVERSION, EBML_UINT, 0, offsetof(Ebml, version), { .u = EBML_VERSION } },
  254. { EBML_ID_EBMLMAXSIZELENGTH, EBML_UINT, 0, offsetof(Ebml, max_size), { .u = 8 } },
  255. { EBML_ID_EBMLMAXIDLENGTH, EBML_UINT, 0, offsetof(Ebml, id_length), { .u = 4 } },
  256. { EBML_ID_DOCTYPE, EBML_STR, 0, offsetof(Ebml, doctype), { .s = "(none)" } },
  257. { EBML_ID_DOCTYPEREADVERSION, EBML_UINT, 0, offsetof(Ebml, doctype_version), { .u = 1 } },
  258. { EBML_ID_EBMLVERSION, EBML_NONE },
  259. { EBML_ID_DOCTYPEVERSION, EBML_NONE },
  260. { 0 }
  261. };
  262. static EbmlSyntax ebml_syntax[] = {
  263. { EBML_ID_HEADER, EBML_NEST, 0, 0, { .n = ebml_header } },
  264. { 0 }
  265. };
  266. static EbmlSyntax matroska_info[] = {
  267. { MATROSKA_ID_TIMECODESCALE, EBML_UINT, 0, offsetof(MatroskaDemuxContext, time_scale), { .u = 1000000 } },
  268. { MATROSKA_ID_DURATION, EBML_FLOAT, 0, offsetof(MatroskaDemuxContext, duration) },
  269. { MATROSKA_ID_TITLE, EBML_UTF8, 0, offsetof(MatroskaDemuxContext, title) },
  270. { MATROSKA_ID_WRITINGAPP, EBML_NONE },
  271. { MATROSKA_ID_MUXINGAPP, EBML_NONE },
  272. { MATROSKA_ID_DATEUTC, EBML_NONE },
  273. { MATROSKA_ID_SEGMENTUID, EBML_NONE },
  274. { 0 }
  275. };
  276. static const EbmlSyntax matroska_track_video_projection[] = {
  277. { MATROSKA_ID_VIDEOPROJECTIONTYPE, EBML_UINT, 0, offsetof(MatroskaTrackVideoProjection, type), { .u = MATROSKA_VIDEO_PROJECTION_TYPE_RECTANGULAR } },
  278. { MATROSKA_ID_VIDEOPROJECTIONPRIVATE, EBML_BIN, 0, offsetof(MatroskaTrackVideoProjection, private) },
  279. { MATROSKA_ID_VIDEOPROJECTIONPOSEYAW, EBML_FLOAT, 0, offsetof(MatroskaTrackVideoProjection, yaw), { .f=0.0 } },
  280. { MATROSKA_ID_VIDEOPROJECTIONPOSEPITCH, EBML_FLOAT, 0, offsetof(MatroskaTrackVideoProjection, pitch), { .f=0.0 } },
  281. { MATROSKA_ID_VIDEOPROJECTIONPOSEROLL, EBML_FLOAT, 0, offsetof(MatroskaTrackVideoProjection, roll), { .f=0.0 } },
  282. { 0 }
  283. };
  284. static EbmlSyntax matroska_track_video[] = {
  285. { MATROSKA_ID_VIDEOFRAMERATE, EBML_FLOAT, 0, offsetof(MatroskaTrackVideo, frame_rate) },
  286. { MATROSKA_ID_VIDEODISPLAYWIDTH, EBML_UINT, 0, offsetof(MatroskaTrackVideo, display_width) },
  287. { MATROSKA_ID_VIDEODISPLAYHEIGHT, EBML_UINT, 0, offsetof(MatroskaTrackVideo, display_height) },
  288. { MATROSKA_ID_VIDEOPIXELWIDTH, EBML_UINT, 0, offsetof(MatroskaTrackVideo, pixel_width) },
  289. { MATROSKA_ID_VIDEOPIXELHEIGHT, EBML_UINT, 0, offsetof(MatroskaTrackVideo, pixel_height) },
  290. { MATROSKA_ID_VIDEOCOLORSPACE, EBML_UINT, 0, offsetof(MatroskaTrackVideo, fourcc) },
  291. { MATROSKA_ID_VIDEOPROJECTION, EBML_NEST, 0, offsetof(MatroskaTrackVideo, projection), { .n = matroska_track_video_projection } },
  292. { MATROSKA_ID_VIDEOPIXELCROPB, EBML_NONE },
  293. { MATROSKA_ID_VIDEOPIXELCROPT, EBML_NONE },
  294. { MATROSKA_ID_VIDEOPIXELCROPL, EBML_NONE },
  295. { MATROSKA_ID_VIDEOPIXELCROPR, EBML_NONE },
  296. { MATROSKA_ID_VIDEODISPLAYUNIT, EBML_NONE },
  297. { MATROSKA_ID_VIDEOFLAGINTERLACED, EBML_UINT, 0, offsetof(MatroskaTrackVideo, interlaced), { .u = MATROSKA_VIDEO_INTERLACE_FLAG_UNDETERMINED } },
  298. { MATROSKA_ID_VIDEOFIELDORDER, EBML_UINT, 0, offsetof(MatroskaTrackVideo, field_order), { .u = MATROSKA_VIDEO_FIELDORDER_UNDETERMINED } },
  299. { MATROSKA_ID_VIDEOSTEREOMODE, EBML_UINT, 0, offsetof(MatroskaTrackVideo, stereo_mode), { .u = MATROSKA_VIDEO_STEREOMODE_TYPE_NB } },
  300. { MATROSKA_ID_VIDEOASPECTRATIO, EBML_NONE },
  301. { 0 }
  302. };
  303. static EbmlSyntax matroska_track_audio[] = {
  304. { MATROSKA_ID_AUDIOSAMPLINGFREQ, EBML_FLOAT, 0, offsetof(MatroskaTrackAudio, samplerate), { .f = 8000.0 } },
  305. { MATROSKA_ID_AUDIOOUTSAMPLINGFREQ, EBML_FLOAT, 0, offsetof(MatroskaTrackAudio, out_samplerate) },
  306. { MATROSKA_ID_AUDIOBITDEPTH, EBML_UINT, 0, offsetof(MatroskaTrackAudio, bitdepth) },
  307. { MATROSKA_ID_AUDIOCHANNELS, EBML_UINT, 0, offsetof(MatroskaTrackAudio, channels), { .u = 1 } },
  308. { 0 }
  309. };
  310. static EbmlSyntax matroska_track_encoding_compression[] = {
  311. { MATROSKA_ID_ENCODINGCOMPALGO, EBML_UINT, 0, offsetof(MatroskaTrackCompression, algo), { .u = 0 } },
  312. { MATROSKA_ID_ENCODINGCOMPSETTINGS, EBML_BIN, 0, offsetof(MatroskaTrackCompression, settings) },
  313. { 0 }
  314. };
  315. static EbmlSyntax matroska_track_encoding[] = {
  316. { MATROSKA_ID_ENCODINGSCOPE, EBML_UINT, 0, offsetof(MatroskaTrackEncoding, scope), { .u = 1 } },
  317. { MATROSKA_ID_ENCODINGTYPE, EBML_UINT, 0, offsetof(MatroskaTrackEncoding, type), { .u = 0 } },
  318. { MATROSKA_ID_ENCODINGCOMPRESSION, EBML_NEST, 0, offsetof(MatroskaTrackEncoding, compression), { .n = matroska_track_encoding_compression } },
  319. { MATROSKA_ID_ENCODINGORDER, EBML_NONE },
  320. { 0 }
  321. };
  322. static EbmlSyntax matroska_track_encodings[] = {
  323. { MATROSKA_ID_TRACKCONTENTENCODING, EBML_NEST, sizeof(MatroskaTrackEncoding), offsetof(MatroskaTrack, encodings), { .n = matroska_track_encoding } },
  324. { 0 }
  325. };
  326. static EbmlSyntax matroska_track[] = {
  327. { MATROSKA_ID_TRACKNUMBER, EBML_UINT, 0, offsetof(MatroskaTrack, num) },
  328. { MATROSKA_ID_TRACKNAME, EBML_UTF8, 0, offsetof(MatroskaTrack, name) },
  329. { MATROSKA_ID_TRACKUID, EBML_UINT, 0, offsetof(MatroskaTrack, uid) },
  330. { MATROSKA_ID_TRACKTYPE, EBML_UINT, 0, offsetof(MatroskaTrack, type) },
  331. { MATROSKA_ID_CODECID, EBML_STR, 0, offsetof(MatroskaTrack, codec_id) },
  332. { MATROSKA_ID_CODECPRIVATE, EBML_BIN, 0, offsetof(MatroskaTrack, codec_priv) },
  333. { MATROSKA_ID_CODECDELAY, EBML_UINT, 0, offsetof(MatroskaTrack, codec_delay) },
  334. { MATROSKA_ID_TRACKLANGUAGE, EBML_UTF8, 0, offsetof(MatroskaTrack, language), { .s = "eng" } },
  335. { MATROSKA_ID_TRACKDEFAULTDURATION, EBML_UINT, 0, offsetof(MatroskaTrack, default_duration) },
  336. { MATROSKA_ID_TRACKTIMECODESCALE, EBML_FLOAT, 0, offsetof(MatroskaTrack, time_scale), { .f = 1.0 } },
  337. { MATROSKA_ID_TRACKFLAGDEFAULT, EBML_UINT, 0, offsetof(MatroskaTrack, flag_default), { .u = 1 } },
  338. { MATROSKA_ID_TRACKFLAGFORCED, EBML_UINT, 0, offsetof(MatroskaTrack, flag_forced), { .u = 0 } },
  339. { MATROSKA_ID_TRACKVIDEO, EBML_NEST, 0, offsetof(MatroskaTrack, video), { .n = matroska_track_video } },
  340. { MATROSKA_ID_TRACKAUDIO, EBML_NEST, 0, offsetof(MatroskaTrack, audio), { .n = matroska_track_audio } },
  341. { MATROSKA_ID_TRACKCONTENTENCODINGS, EBML_NEST, 0, 0, { .n = matroska_track_encodings } },
  342. { MATROSKA_ID_TRACKFLAGENABLED, EBML_NONE },
  343. { MATROSKA_ID_TRACKFLAGLACING, EBML_NONE },
  344. { MATROSKA_ID_CODECNAME, EBML_NONE },
  345. { MATROSKA_ID_CODECDECODEALL, EBML_NONE },
  346. { MATROSKA_ID_CODECINFOURL, EBML_NONE },
  347. { MATROSKA_ID_CODECDOWNLOADURL, EBML_NONE },
  348. { MATROSKA_ID_TRACKMINCACHE, EBML_NONE },
  349. { MATROSKA_ID_TRACKMAXCACHE, EBML_NONE },
  350. { MATROSKA_ID_TRACKMAXBLKADDID, EBML_NONE },
  351. { 0 }
  352. };
  353. static EbmlSyntax matroska_tracks[] = {
  354. { MATROSKA_ID_TRACKENTRY, EBML_NEST, sizeof(MatroskaTrack), offsetof(MatroskaDemuxContext, tracks), { .n = matroska_track } },
  355. { 0 }
  356. };
  357. static EbmlSyntax matroska_attachment[] = {
  358. { MATROSKA_ID_FILEUID, EBML_UINT, 0, offsetof(MatroskaAttachment, uid) },
  359. { MATROSKA_ID_FILENAME, EBML_UTF8, 0, offsetof(MatroskaAttachment, filename) },
  360. { MATROSKA_ID_FILEMIMETYPE, EBML_STR, 0, offsetof(MatroskaAttachment, mime) },
  361. { MATROSKA_ID_FILEDATA, EBML_BIN, 0, offsetof(MatroskaAttachment, bin) },
  362. { MATROSKA_ID_FILEDESC, EBML_NONE },
  363. { 0 }
  364. };
  365. static EbmlSyntax matroska_attachments[] = {
  366. { MATROSKA_ID_ATTACHEDFILE, EBML_NEST, sizeof(MatroskaAttachment), offsetof(MatroskaDemuxContext, attachments), { .n = matroska_attachment } },
  367. { 0 }
  368. };
  369. static EbmlSyntax matroska_chapter_display[] = {
  370. { MATROSKA_ID_CHAPSTRING, EBML_UTF8, 0, offsetof(MatroskaChapter, title) },
  371. { MATROSKA_ID_CHAPLANG, EBML_NONE },
  372. { 0 }
  373. };
  374. static EbmlSyntax matroska_chapter_entry[] = {
  375. { MATROSKA_ID_CHAPTERTIMESTART, EBML_UINT, 0, offsetof(MatroskaChapter, start), { .u = AV_NOPTS_VALUE } },
  376. { MATROSKA_ID_CHAPTERTIMEEND, EBML_UINT, 0, offsetof(MatroskaChapter, end), { .u = AV_NOPTS_VALUE } },
  377. { MATROSKA_ID_CHAPTERUID, EBML_UINT, 0, offsetof(MatroskaChapter, uid) },
  378. { MATROSKA_ID_CHAPTERDISPLAY, EBML_NEST, 0, 0, { .n = matroska_chapter_display } },
  379. { MATROSKA_ID_CHAPTERFLAGHIDDEN, EBML_NONE },
  380. { MATROSKA_ID_CHAPTERFLAGENABLED, EBML_NONE },
  381. { MATROSKA_ID_CHAPTERPHYSEQUIV, EBML_NONE },
  382. { MATROSKA_ID_CHAPTERATOM, EBML_NONE },
  383. { 0 }
  384. };
  385. static EbmlSyntax matroska_chapter[] = {
  386. { MATROSKA_ID_CHAPTERATOM, EBML_NEST, sizeof(MatroskaChapter), offsetof(MatroskaDemuxContext, chapters), { .n = matroska_chapter_entry } },
  387. { MATROSKA_ID_EDITIONUID, EBML_NONE },
  388. { MATROSKA_ID_EDITIONFLAGHIDDEN, EBML_NONE },
  389. { MATROSKA_ID_EDITIONFLAGDEFAULT, EBML_NONE },
  390. { MATROSKA_ID_EDITIONFLAGORDERED, EBML_NONE },
  391. { 0 }
  392. };
  393. static EbmlSyntax matroska_chapters[] = {
  394. { MATROSKA_ID_EDITIONENTRY, EBML_NEST, 0, 0, { .n = matroska_chapter } },
  395. { 0 }
  396. };
  397. static EbmlSyntax matroska_index_pos[] = {
  398. { MATROSKA_ID_CUETRACK, EBML_UINT, 0, offsetof(MatroskaIndexPos, track) },
  399. { MATROSKA_ID_CUECLUSTERPOSITION, EBML_UINT, 0, offsetof(MatroskaIndexPos, pos) },
  400. { MATROSKA_ID_CUEBLOCKNUMBER, EBML_NONE },
  401. { 0 }
  402. };
  403. static EbmlSyntax matroska_index_entry[] = {
  404. { MATROSKA_ID_CUETIME, EBML_UINT, 0, offsetof(MatroskaIndex, time) },
  405. { MATROSKA_ID_CUETRACKPOSITION, EBML_NEST, sizeof(MatroskaIndexPos), offsetof(MatroskaIndex, pos), { .n = matroska_index_pos } },
  406. { 0 }
  407. };
  408. static EbmlSyntax matroska_index[] = {
  409. { MATROSKA_ID_POINTENTRY, EBML_NEST, sizeof(MatroskaIndex), offsetof(MatroskaDemuxContext, index), { .n = matroska_index_entry } },
  410. { 0 }
  411. };
  412. static EbmlSyntax matroska_simpletag[] = {
  413. { MATROSKA_ID_TAGNAME, EBML_UTF8, 0, offsetof(MatroskaTag, name) },
  414. { MATROSKA_ID_TAGSTRING, EBML_UTF8, 0, offsetof(MatroskaTag, string) },
  415. { MATROSKA_ID_TAGLANG, EBML_STR, 0, offsetof(MatroskaTag, lang), { .s = "und" } },
  416. { MATROSKA_ID_TAGDEFAULT, EBML_UINT, 0, offsetof(MatroskaTag, def) },
  417. { MATROSKA_ID_TAGDEFAULT_BUG, EBML_UINT, 0, offsetof(MatroskaTag, def) },
  418. { MATROSKA_ID_SIMPLETAG, EBML_NEST, sizeof(MatroskaTag), offsetof(MatroskaTag, sub), { .n = matroska_simpletag } },
  419. { 0 }
  420. };
  421. static EbmlSyntax matroska_tagtargets[] = {
  422. { MATROSKA_ID_TAGTARGETS_TYPE, EBML_STR, 0, offsetof(MatroskaTagTarget, type) },
  423. { MATROSKA_ID_TAGTARGETS_TYPEVALUE, EBML_UINT, 0, offsetof(MatroskaTagTarget, typevalue), { .u = 50 } },
  424. { MATROSKA_ID_TAGTARGETS_TRACKUID, EBML_UINT, 0, offsetof(MatroskaTagTarget, trackuid) },
  425. { MATROSKA_ID_TAGTARGETS_CHAPTERUID, EBML_UINT, 0, offsetof(MatroskaTagTarget, chapteruid) },
  426. { MATROSKA_ID_TAGTARGETS_ATTACHUID, EBML_UINT, 0, offsetof(MatroskaTagTarget, attachuid) },
  427. { 0 }
  428. };
  429. static EbmlSyntax matroska_tag[] = {
  430. { MATROSKA_ID_SIMPLETAG, EBML_NEST, sizeof(MatroskaTag), offsetof(MatroskaTags, tag), { .n = matroska_simpletag } },
  431. { MATROSKA_ID_TAGTARGETS, EBML_NEST, 0, offsetof(MatroskaTags, target), { .n = matroska_tagtargets } },
  432. { 0 }
  433. };
  434. static EbmlSyntax matroska_tags[] = {
  435. { MATROSKA_ID_TAG, EBML_NEST, sizeof(MatroskaTags), offsetof(MatroskaDemuxContext, tags), { .n = matroska_tag } },
  436. { 0 }
  437. };
  438. static EbmlSyntax matroska_seekhead_entry[] = {
  439. { MATROSKA_ID_SEEKID, EBML_UINT, 0, offsetof(MatroskaSeekhead, id) },
  440. { MATROSKA_ID_SEEKPOSITION, EBML_UINT, 0, offsetof(MatroskaSeekhead, pos), { .u = -1 } },
  441. { 0 }
  442. };
  443. static EbmlSyntax matroska_seekhead[] = {
  444. { MATROSKA_ID_SEEKENTRY, EBML_NEST, sizeof(MatroskaSeekhead), offsetof(MatroskaDemuxContext, seekhead), { .n = matroska_seekhead_entry } },
  445. { 0 }
  446. };
  447. static EbmlSyntax matroska_segment[] = {
  448. { MATROSKA_ID_INFO, EBML_NEST, 0, 0, { .n = matroska_info } },
  449. { MATROSKA_ID_TRACKS, EBML_NEST, 0, 0, { .n = matroska_tracks } },
  450. { MATROSKA_ID_ATTACHMENTS, EBML_NEST, 0, 0, { .n = matroska_attachments } },
  451. { MATROSKA_ID_CHAPTERS, EBML_NEST, 0, 0, { .n = matroska_chapters } },
  452. { MATROSKA_ID_CUES, EBML_NEST, 0, 0, { .n = matroska_index } },
  453. { MATROSKA_ID_TAGS, EBML_NEST, 0, 0, { .n = matroska_tags } },
  454. { MATROSKA_ID_SEEKHEAD, EBML_NEST, 0, 0, { .n = matroska_seekhead } },
  455. { MATROSKA_ID_CLUSTER, EBML_STOP },
  456. { 0 }
  457. };
  458. static EbmlSyntax matroska_segments[] = {
  459. { MATROSKA_ID_SEGMENT, EBML_NEST, 0, 0, { .n = matroska_segment } },
  460. { 0 }
  461. };
  462. static EbmlSyntax matroska_blockgroup[] = {
  463. { MATROSKA_ID_BLOCK, EBML_BIN, 0, offsetof(MatroskaBlock, bin) },
  464. { MATROSKA_ID_SIMPLEBLOCK, EBML_BIN, 0, offsetof(MatroskaBlock, bin) },
  465. { MATROSKA_ID_BLOCKDURATION, EBML_UINT, 0, offsetof(MatroskaBlock, duration), { .u = AV_NOPTS_VALUE } },
  466. { MATROSKA_ID_BLOCKREFERENCE, EBML_UINT, 0, offsetof(MatroskaBlock, reference) },
  467. { MATROSKA_ID_CODECSTATE, EBML_NONE },
  468. { 1, EBML_UINT, 0, offsetof(MatroskaBlock, non_simple), { .u = 1 } },
  469. { 0 }
  470. };
  471. static EbmlSyntax matroska_cluster[] = {
  472. { MATROSKA_ID_CLUSTERTIMECODE, EBML_UINT, 0, offsetof(MatroskaCluster, timecode) },
  473. { MATROSKA_ID_BLOCKGROUP, EBML_NEST, sizeof(MatroskaBlock), offsetof(MatroskaCluster, blocks), { .n = matroska_blockgroup } },
  474. { MATROSKA_ID_SIMPLEBLOCK, EBML_PASS, sizeof(MatroskaBlock), offsetof(MatroskaCluster, blocks), { .n = matroska_blockgroup } },
  475. { MATROSKA_ID_CLUSTERPOSITION, EBML_NONE },
  476. { MATROSKA_ID_CLUSTERPREVSIZE, EBML_NONE },
  477. { 0 }
  478. };
  479. static EbmlSyntax matroska_clusters[] = {
  480. { MATROSKA_ID_CLUSTER, EBML_NEST, 0, 0, { .n = matroska_cluster } },
  481. { MATROSKA_ID_INFO, EBML_NONE },
  482. { MATROSKA_ID_CUES, EBML_NONE },
  483. { MATROSKA_ID_TAGS, EBML_NONE },
  484. { MATROSKA_ID_SEEKHEAD, EBML_NONE },
  485. { 0 }
  486. };
  487. static EbmlSyntax matroska_cluster_incremental_parsing[] = {
  488. { MATROSKA_ID_CLUSTERTIMECODE, EBML_UINT, 0, offsetof(MatroskaCluster, timecode) },
  489. { MATROSKA_ID_BLOCKGROUP, EBML_NEST, sizeof(MatroskaBlock), offsetof(MatroskaCluster, blocks), { .n = matroska_blockgroup } },
  490. { MATROSKA_ID_SIMPLEBLOCK, EBML_PASS, sizeof(MatroskaBlock), offsetof(MatroskaCluster, blocks), { .n = matroska_blockgroup } },
  491. { MATROSKA_ID_CLUSTERPOSITION, EBML_NONE },
  492. { MATROSKA_ID_CLUSTERPREVSIZE, EBML_NONE },
  493. { MATROSKA_ID_INFO, EBML_NONE },
  494. { MATROSKA_ID_CUES, EBML_NONE },
  495. { MATROSKA_ID_TAGS, EBML_NONE },
  496. { MATROSKA_ID_SEEKHEAD, EBML_NONE },
  497. { MATROSKA_ID_CLUSTER, EBML_STOP },
  498. { 0 }
  499. };
  500. static EbmlSyntax matroska_cluster_incremental[] = {
  501. { MATROSKA_ID_CLUSTERTIMECODE, EBML_UINT, 0, offsetof(MatroskaCluster, timecode) },
  502. { MATROSKA_ID_BLOCKGROUP, EBML_STOP },
  503. { MATROSKA_ID_SIMPLEBLOCK, EBML_STOP },
  504. { MATROSKA_ID_CLUSTERPOSITION, EBML_NONE },
  505. { MATROSKA_ID_CLUSTERPREVSIZE, EBML_NONE },
  506. { 0 }
  507. };
  508. static EbmlSyntax matroska_clusters_incremental[] = {
  509. { MATROSKA_ID_CLUSTER, EBML_NEST, 0, 0, { .n = matroska_cluster_incremental } },
  510. { MATROSKA_ID_INFO, EBML_NONE },
  511. { MATROSKA_ID_CUES, EBML_NONE },
  512. { MATROSKA_ID_TAGS, EBML_NONE },
  513. { MATROSKA_ID_SEEKHEAD, EBML_NONE },
  514. { 0 }
  515. };
  516. static const char *const matroska_doctypes[] = { "matroska", "webm" };
  517. static int matroska_resync(MatroskaDemuxContext *matroska, int64_t last_pos)
  518. {
  519. AVIOContext *pb = matroska->ctx->pb;
  520. uint32_t id;
  521. matroska->current_id = 0;
  522. matroska->num_levels = 0;
  523. /* seek to next position to resync from */
  524. if (avio_seek(pb, last_pos + 1, SEEK_SET) < 0)
  525. goto eof;
  526. id = avio_rb32(pb);
  527. // try to find a toplevel element
  528. while (!pb->eof_reached) {
  529. if (id == MATROSKA_ID_INFO || id == MATROSKA_ID_TRACKS ||
  530. id == MATROSKA_ID_CUES || id == MATROSKA_ID_TAGS ||
  531. id == MATROSKA_ID_SEEKHEAD || id == MATROSKA_ID_ATTACHMENTS ||
  532. id == MATROSKA_ID_CLUSTER || id == MATROSKA_ID_CHAPTERS) {
  533. matroska->current_id = id;
  534. return 0;
  535. }
  536. id = (id << 8) | avio_r8(pb);
  537. }
  538. eof:
  539. matroska->done = 1;
  540. return AVERROR_EOF;
  541. }
  542. /*
  543. * Return: Whether we reached the end of a level in the hierarchy or not.
  544. */
  545. static int ebml_level_end(MatroskaDemuxContext *matroska)
  546. {
  547. AVIOContext *pb = matroska->ctx->pb;
  548. int64_t pos = avio_tell(pb);
  549. if (matroska->num_levels > 0) {
  550. MatroskaLevel *level = &matroska->levels[matroska->num_levels - 1];
  551. if (pos - level->start >= level->length || matroska->current_id) {
  552. matroska->num_levels--;
  553. return 1;
  554. }
  555. }
  556. return 0;
  557. }
  558. /*
  559. * Read: an "EBML number", which is defined as a variable-length
  560. * array of bytes. The first byte indicates the length by giving a
  561. * number of 0-bits followed by a one. The position of the first
  562. * "one" bit inside the first byte indicates the length of this
  563. * number.
  564. * Returns: number of bytes read, < 0 on error
  565. */
  566. static int ebml_read_num(MatroskaDemuxContext *matroska, AVIOContext *pb,
  567. int max_size, uint64_t *number)
  568. {
  569. int read = 1, n = 1;
  570. uint64_t total = 0;
  571. /* The first byte tells us the length in bytes - avio_r8() can normally
  572. * return 0, but since that's not a valid first ebmlID byte, we can
  573. * use it safely here to catch EOS. */
  574. if (!(total = avio_r8(pb))) {
  575. /* we might encounter EOS here */
  576. if (!pb->eof_reached) {
  577. int64_t pos = avio_tell(pb);
  578. av_log(matroska->ctx, AV_LOG_ERROR,
  579. "Read error at pos. %"PRIu64" (0x%"PRIx64")\n",
  580. pos, pos);
  581. return pb->error ? pb->error : AVERROR(EIO);
  582. }
  583. return AVERROR_EOF;
  584. }
  585. /* get the length of the EBML number */
  586. read = 8 - ff_log2_tab[total];
  587. if (read > max_size) {
  588. int64_t pos = avio_tell(pb) - 1;
  589. av_log(matroska->ctx, AV_LOG_ERROR,
  590. "Invalid EBML number size tag 0x%02x at pos %"PRIu64" (0x%"PRIx64")\n",
  591. (uint8_t) total, pos, pos);
  592. return AVERROR_INVALIDDATA;
  593. }
  594. /* read out length */
  595. total ^= 1 << ff_log2_tab[total];
  596. while (n++ < read)
  597. total = (total << 8) | avio_r8(pb);
  598. *number = total;
  599. return read;
  600. }
  601. /**
  602. * Read a EBML length value.
  603. * This needs special handling for the "unknown length" case which has multiple
  604. * encodings.
  605. */
  606. static int ebml_read_length(MatroskaDemuxContext *matroska, AVIOContext *pb,
  607. uint64_t *number)
  608. {
  609. int res = ebml_read_num(matroska, pb, 8, number);
  610. if (res > 0 && *number + 1 == 1ULL << (7 * res))
  611. *number = 0xffffffffffffffULL;
  612. return res;
  613. }
  614. /*
  615. * Read the next element as an unsigned int.
  616. * 0 is success, < 0 is failure.
  617. */
  618. static int ebml_read_uint(AVIOContext *pb, int size, uint64_t *num)
  619. {
  620. int n = 0;
  621. if (size > 8)
  622. return AVERROR_INVALIDDATA;
  623. /* big-endian ordering; build up number */
  624. *num = 0;
  625. while (n++ < size)
  626. *num = (*num << 8) | avio_r8(pb);
  627. return 0;
  628. }
  629. /*
  630. * Read the next element as a float.
  631. * 0 is success, < 0 is failure.
  632. */
  633. static int ebml_read_float(AVIOContext *pb, int size, double *num)
  634. {
  635. if (size == 0)
  636. *num = 0;
  637. else if (size == 4)
  638. *num = av_int2float(avio_rb32(pb));
  639. else if (size == 8)
  640. *num = av_int2double(avio_rb64(pb));
  641. else
  642. return AVERROR_INVALIDDATA;
  643. return 0;
  644. }
  645. /*
  646. * Read the next element as an ASCII string.
  647. * 0 is success, < 0 is failure.
  648. */
  649. static int ebml_read_ascii(AVIOContext *pb, int size, char **str)
  650. {
  651. char *res;
  652. /* EBML strings are usually not 0-terminated, so we allocate one
  653. * byte more, read the string and NULL-terminate it ourselves. */
  654. if (!(res = av_malloc(size + 1)))
  655. return AVERROR(ENOMEM);
  656. if (avio_read(pb, (uint8_t *) res, size) != size) {
  657. av_free(res);
  658. return AVERROR(EIO);
  659. }
  660. (res)[size] = '\0';
  661. av_free(*str);
  662. *str = res;
  663. return 0;
  664. }
  665. /*
  666. * Read the next element as binary data.
  667. * 0 is success, < 0 is failure.
  668. */
  669. static int ebml_read_binary(AVIOContext *pb, int length, EbmlBin *bin)
  670. {
  671. av_free(bin->data);
  672. bin->size = 0;
  673. if (!(bin->data = av_mallocz(length + AV_INPUT_BUFFER_PADDING_SIZE)))
  674. return AVERROR(ENOMEM);
  675. bin->pos = avio_tell(pb);
  676. if (avio_read(pb, bin->data, length) != length) {
  677. av_freep(&bin->data);
  678. return AVERROR(EIO);
  679. }
  680. bin->size = length;
  681. return 0;
  682. }
  683. /*
  684. * Read the next element, but only the header. The contents
  685. * are supposed to be sub-elements which can be read separately.
  686. * 0 is success, < 0 is failure.
  687. */
  688. static int ebml_read_master(MatroskaDemuxContext *matroska, uint64_t length)
  689. {
  690. AVIOContext *pb = matroska->ctx->pb;
  691. MatroskaLevel *level;
  692. if (matroska->num_levels >= EBML_MAX_DEPTH) {
  693. av_log(matroska->ctx, AV_LOG_ERROR,
  694. "File moves beyond max. allowed depth (%d)\n", EBML_MAX_DEPTH);
  695. return AVERROR(ENOSYS);
  696. }
  697. level = &matroska->levels[matroska->num_levels++];
  698. level->start = avio_tell(pb);
  699. level->length = length;
  700. return 0;
  701. }
  702. /*
  703. * Read signed/unsigned "EBML" numbers.
  704. * Return: number of bytes processed, < 0 on error
  705. */
  706. static int matroska_ebmlnum_uint(MatroskaDemuxContext *matroska,
  707. uint8_t *data, uint32_t size, uint64_t *num)
  708. {
  709. AVIOContext pb;
  710. ffio_init_context(&pb, data, size, 0, NULL, NULL, NULL, NULL);
  711. return ebml_read_num(matroska, &pb, FFMIN(size, 8), num);
  712. }
  713. /*
  714. * Same as above, but signed.
  715. */
  716. static int matroska_ebmlnum_sint(MatroskaDemuxContext *matroska,
  717. uint8_t *data, uint32_t size, int64_t *num)
  718. {
  719. uint64_t unum;
  720. int res;
  721. /* read as unsigned number first */
  722. if ((res = matroska_ebmlnum_uint(matroska, data, size, &unum)) < 0)
  723. return res;
  724. /* make signed (weird way) */
  725. *num = unum - ((1LL << (7 * res - 1)) - 1);
  726. return res;
  727. }
  728. static int ebml_parse_elem(MatroskaDemuxContext *matroska,
  729. EbmlSyntax *syntax, void *data);
  730. static int ebml_parse_id(MatroskaDemuxContext *matroska, EbmlSyntax *syntax,
  731. uint32_t id, void *data)
  732. {
  733. int i;
  734. for (i = 0; syntax[i].id; i++)
  735. if (id == syntax[i].id)
  736. break;
  737. if (!syntax[i].id && id == MATROSKA_ID_CLUSTER &&
  738. matroska->num_levels > 0 &&
  739. matroska->levels[matroska->num_levels - 1].length == 0xffffffffffffff)
  740. return 0; // we reached the end of an unknown size cluster
  741. if (!syntax[i].id && id != EBML_ID_VOID && id != EBML_ID_CRC32) {
  742. av_log(matroska->ctx, AV_LOG_INFO, "Unknown entry 0x%"PRIX32"\n", id);
  743. if (matroska->ctx->error_recognition & AV_EF_EXPLODE)
  744. return AVERROR_INVALIDDATA;
  745. }
  746. return ebml_parse_elem(matroska, &syntax[i], data);
  747. }
  748. static int ebml_parse(MatroskaDemuxContext *matroska, EbmlSyntax *syntax,
  749. void *data)
  750. {
  751. if (!matroska->current_id) {
  752. uint64_t id;
  753. int res = ebml_read_num(matroska, matroska->ctx->pb, 4, &id);
  754. if (res < 0)
  755. return res;
  756. matroska->current_id = id | 1 << 7 * res;
  757. }
  758. return ebml_parse_id(matroska, syntax, matroska->current_id, data);
  759. }
  760. static int ebml_parse_nest(MatroskaDemuxContext *matroska, EbmlSyntax *syntax,
  761. void *data)
  762. {
  763. int i, res = 0;
  764. for (i = 0; syntax[i].id; i++)
  765. switch (syntax[i].type) {
  766. case EBML_UINT:
  767. *(uint64_t *) ((char *) data + syntax[i].data_offset) = syntax[i].def.u;
  768. break;
  769. case EBML_FLOAT:
  770. *(double *) ((char *) data + syntax[i].data_offset) = syntax[i].def.f;
  771. break;
  772. case EBML_STR:
  773. case EBML_UTF8:
  774. // the default may be NULL
  775. if (syntax[i].def.s) {
  776. uint8_t **dst = (uint8_t **) ((uint8_t *) data + syntax[i].data_offset);
  777. *dst = av_strdup(syntax[i].def.s);
  778. if (!*dst)
  779. return AVERROR(ENOMEM);
  780. }
  781. break;
  782. }
  783. while (!res && !ebml_level_end(matroska))
  784. res = ebml_parse(matroska, syntax, data);
  785. return res;
  786. }
  787. static int ebml_parse_elem(MatroskaDemuxContext *matroska,
  788. EbmlSyntax *syntax, void *data)
  789. {
  790. static const uint64_t max_lengths[EBML_TYPE_COUNT] = {
  791. [EBML_UINT] = 8,
  792. [EBML_FLOAT] = 8,
  793. // max. 16 MB for strings
  794. [EBML_STR] = 0x1000000,
  795. [EBML_UTF8] = 0x1000000,
  796. // max. 256 MB for binary data
  797. [EBML_BIN] = 0x10000000,
  798. // no limits for anything else
  799. };
  800. AVIOContext *pb = matroska->ctx->pb;
  801. uint32_t id = syntax->id;
  802. uint64_t length;
  803. int res;
  804. data = (char *) data + syntax->data_offset;
  805. if (syntax->list_elem_size) {
  806. EbmlList *list = data;
  807. if ((res = av_reallocp_array(&list->elem,
  808. list->nb_elem + 1,
  809. syntax->list_elem_size)) < 0) {
  810. list->nb_elem = 0;
  811. return res;
  812. }
  813. data = (char *) list->elem + list->nb_elem * syntax->list_elem_size;
  814. memset(data, 0, syntax->list_elem_size);
  815. list->nb_elem++;
  816. }
  817. if (syntax->type != EBML_PASS && syntax->type != EBML_STOP) {
  818. matroska->current_id = 0;
  819. if ((res = ebml_read_length(matroska, pb, &length)) < 0)
  820. return res;
  821. if (max_lengths[syntax->type] && length > max_lengths[syntax->type]) {
  822. av_log(matroska->ctx, AV_LOG_ERROR,
  823. "Invalid length 0x%"PRIx64" > 0x%"PRIx64" for syntax element %i\n",
  824. length, max_lengths[syntax->type], syntax->type);
  825. return AVERROR_INVALIDDATA;
  826. }
  827. }
  828. switch (syntax->type) {
  829. case EBML_UINT:
  830. res = ebml_read_uint(pb, length, data);
  831. break;
  832. case EBML_FLOAT:
  833. res = ebml_read_float(pb, length, data);
  834. break;
  835. case EBML_STR:
  836. case EBML_UTF8:
  837. res = ebml_read_ascii(pb, length, data);
  838. break;
  839. case EBML_BIN:
  840. res = ebml_read_binary(pb, length, data);
  841. break;
  842. case EBML_NEST:
  843. if ((res = ebml_read_master(matroska, length)) < 0)
  844. return res;
  845. if (id == MATROSKA_ID_SEGMENT)
  846. matroska->segment_start = avio_tell(matroska->ctx->pb);
  847. return ebml_parse_nest(matroska, syntax->def.n, data);
  848. case EBML_PASS:
  849. return ebml_parse_id(matroska, syntax->def.n, id, data);
  850. case EBML_STOP:
  851. return 1;
  852. default:
  853. return avio_skip(pb, length) < 0 ? AVERROR(EIO) : 0;
  854. }
  855. if (res == AVERROR_INVALIDDATA)
  856. av_log(matroska->ctx, AV_LOG_ERROR, "Invalid element\n");
  857. else if (res == AVERROR(EIO))
  858. av_log(matroska->ctx, AV_LOG_ERROR, "Read error\n");
  859. return res;
  860. }
  861. static void ebml_free(EbmlSyntax *syntax, void *data)
  862. {
  863. int i, j;
  864. for (i = 0; syntax[i].id; i++) {
  865. void *data_off = (char *) data + syntax[i].data_offset;
  866. switch (syntax[i].type) {
  867. case EBML_STR:
  868. case EBML_UTF8:
  869. av_freep(data_off);
  870. break;
  871. case EBML_BIN:
  872. av_freep(&((EbmlBin *) data_off)->data);
  873. break;
  874. case EBML_NEST:
  875. if (syntax[i].list_elem_size) {
  876. EbmlList *list = data_off;
  877. char *ptr = list->elem;
  878. for (j = 0; j < list->nb_elem;
  879. j++, ptr += syntax[i].list_elem_size)
  880. ebml_free(syntax[i].def.n, ptr);
  881. av_free(list->elem);
  882. } else
  883. ebml_free(syntax[i].def.n, data_off);
  884. default:
  885. break;
  886. }
  887. }
  888. }
  889. /*
  890. * Autodetecting...
  891. */
  892. static int matroska_probe(AVProbeData *p)
  893. {
  894. uint64_t total = 0;
  895. int len_mask = 0x80, size = 1, n = 1, i;
  896. /* EBML header? */
  897. if (AV_RB32(p->buf) != EBML_ID_HEADER)
  898. return 0;
  899. /* length of header */
  900. total = p->buf[4];
  901. while (size <= 8 && !(total & len_mask)) {
  902. size++;
  903. len_mask >>= 1;
  904. }
  905. if (size > 8)
  906. return 0;
  907. total &= (len_mask - 1);
  908. while (n < size)
  909. total = (total << 8) | p->buf[4 + n++];
  910. /* Does the probe data contain the whole header? */
  911. if (p->buf_size < 4 + size + total)
  912. return 0;
  913. /* The header should contain a known document type. For now,
  914. * we don't parse the whole header but simply check for the
  915. * availability of that array of characters inside the header.
  916. * Not fully fool-proof, but good enough. */
  917. for (i = 0; i < FF_ARRAY_ELEMS(matroska_doctypes); i++) {
  918. int probelen = strlen(matroska_doctypes[i]);
  919. if (total < probelen)
  920. continue;
  921. for (n = 4 + size; n <= 4 + size + total - probelen; n++)
  922. if (!memcmp(p->buf + n, matroska_doctypes[i], probelen))
  923. return AVPROBE_SCORE_MAX;
  924. }
  925. // probably valid EBML header but no recognized doctype
  926. return AVPROBE_SCORE_EXTENSION;
  927. }
  928. static MatroskaTrack *matroska_find_track_by_num(MatroskaDemuxContext *matroska,
  929. int num)
  930. {
  931. MatroskaTrack *tracks = matroska->tracks.elem;
  932. int i;
  933. for (i = 0; i < matroska->tracks.nb_elem; i++)
  934. if (tracks[i].num == num)
  935. return &tracks[i];
  936. av_log(matroska->ctx, AV_LOG_ERROR, "Invalid track number %d\n", num);
  937. return NULL;
  938. }
  939. static int matroska_decode_buffer(uint8_t **buf, int *buf_size,
  940. MatroskaTrack *track)
  941. {
  942. MatroskaTrackEncoding *encodings = track->encodings.elem;
  943. uint8_t *data = *buf;
  944. int isize = *buf_size;
  945. uint8_t *pkt_data = NULL;
  946. uint8_t av_unused *newpktdata;
  947. int pkt_size = isize;
  948. int result = 0;
  949. int olen;
  950. if (pkt_size >= 10000000)
  951. return AVERROR_INVALIDDATA;
  952. switch (encodings[0].compression.algo) {
  953. case MATROSKA_TRACK_ENCODING_COMP_HEADERSTRIP:
  954. {
  955. int header_size = encodings[0].compression.settings.size;
  956. uint8_t *header = encodings[0].compression.settings.data;
  957. if (!header_size)
  958. return 0;
  959. pkt_size = isize + header_size;
  960. pkt_data = av_malloc(pkt_size);
  961. if (!pkt_data)
  962. return AVERROR(ENOMEM);
  963. memcpy(pkt_data, header, header_size);
  964. memcpy(pkt_data + header_size, data, isize);
  965. break;
  966. }
  967. #if CONFIG_LZO
  968. case MATROSKA_TRACK_ENCODING_COMP_LZO:
  969. do {
  970. olen = pkt_size *= 3;
  971. newpktdata = av_realloc(pkt_data, pkt_size + AV_LZO_OUTPUT_PADDING);
  972. if (!newpktdata) {
  973. result = AVERROR(ENOMEM);
  974. goto failed;
  975. }
  976. pkt_data = newpktdata;
  977. result = av_lzo1x_decode(pkt_data, &olen, data, &isize);
  978. } while (result == AV_LZO_OUTPUT_FULL && pkt_size < 10000000);
  979. if (result) {
  980. result = AVERROR_INVALIDDATA;
  981. goto failed;
  982. }
  983. pkt_size -= olen;
  984. break;
  985. #endif
  986. #if CONFIG_ZLIB
  987. case MATROSKA_TRACK_ENCODING_COMP_ZLIB:
  988. {
  989. z_stream zstream = { 0 };
  990. if (inflateInit(&zstream) != Z_OK)
  991. return -1;
  992. zstream.next_in = data;
  993. zstream.avail_in = isize;
  994. do {
  995. pkt_size *= 3;
  996. newpktdata = av_realloc(pkt_data, pkt_size);
  997. if (!newpktdata) {
  998. inflateEnd(&zstream);
  999. goto failed;
  1000. }
  1001. pkt_data = newpktdata;
  1002. zstream.avail_out = pkt_size - zstream.total_out;
  1003. zstream.next_out = pkt_data + zstream.total_out;
  1004. result = inflate(&zstream, Z_NO_FLUSH);
  1005. } while (result == Z_OK && pkt_size < 10000000);
  1006. pkt_size = zstream.total_out;
  1007. inflateEnd(&zstream);
  1008. if (result != Z_STREAM_END) {
  1009. if (result == Z_MEM_ERROR)
  1010. result = AVERROR(ENOMEM);
  1011. else
  1012. result = AVERROR_INVALIDDATA;
  1013. goto failed;
  1014. }
  1015. break;
  1016. }
  1017. #endif
  1018. #if CONFIG_BZLIB
  1019. case MATROSKA_TRACK_ENCODING_COMP_BZLIB:
  1020. {
  1021. bz_stream bzstream = { 0 };
  1022. if (BZ2_bzDecompressInit(&bzstream, 0, 0) != BZ_OK)
  1023. return -1;
  1024. bzstream.next_in = data;
  1025. bzstream.avail_in = isize;
  1026. do {
  1027. pkt_size *= 3;
  1028. newpktdata = av_realloc(pkt_data, pkt_size);
  1029. if (!newpktdata) {
  1030. BZ2_bzDecompressEnd(&bzstream);
  1031. goto failed;
  1032. }
  1033. pkt_data = newpktdata;
  1034. bzstream.avail_out = pkt_size - bzstream.total_out_lo32;
  1035. bzstream.next_out = pkt_data + bzstream.total_out_lo32;
  1036. result = BZ2_bzDecompress(&bzstream);
  1037. } while (result == BZ_OK && pkt_size < 10000000);
  1038. pkt_size = bzstream.total_out_lo32;
  1039. BZ2_bzDecompressEnd(&bzstream);
  1040. if (result != BZ_STREAM_END) {
  1041. if (result == BZ_MEM_ERROR)
  1042. result = AVERROR(ENOMEM);
  1043. else
  1044. result = AVERROR_INVALIDDATA;
  1045. goto failed;
  1046. }
  1047. break;
  1048. }
  1049. #endif
  1050. default:
  1051. return AVERROR_INVALIDDATA;
  1052. }
  1053. *buf = pkt_data;
  1054. *buf_size = pkt_size;
  1055. return 0;
  1056. failed:
  1057. av_free(pkt_data);
  1058. return result;
  1059. }
  1060. static void matroska_fix_ass_packet(MatroskaDemuxContext *matroska,
  1061. AVPacket *pkt, uint64_t display_duration)
  1062. {
  1063. AVBufferRef *line;
  1064. char *layer, *ptr = pkt->data, *end = ptr + pkt->size;
  1065. for (; *ptr != ',' && ptr < end - 1; ptr++)
  1066. ;
  1067. if (*ptr == ',')
  1068. layer = ++ptr;
  1069. for (; *ptr != ',' && ptr < end - 1; ptr++)
  1070. ;
  1071. if (*ptr == ',') {
  1072. int64_t end_pts = pkt->pts + display_duration;
  1073. int sc = matroska->time_scale * pkt->pts / 10000000;
  1074. int ec = matroska->time_scale * end_pts / 10000000;
  1075. int sh, sm, ss, eh, em, es, len;
  1076. sh = sc / 360000;
  1077. sc -= 360000 * sh;
  1078. sm = sc / 6000;
  1079. sc -= 6000 * sm;
  1080. ss = sc / 100;
  1081. sc -= 100 * ss;
  1082. eh = ec / 360000;
  1083. ec -= 360000 * eh;
  1084. em = ec / 6000;
  1085. ec -= 6000 * em;
  1086. es = ec / 100;
  1087. ec -= 100 * es;
  1088. *ptr++ = '\0';
  1089. len = 50 + end - ptr + AV_INPUT_BUFFER_PADDING_SIZE;
  1090. if (!(line = av_buffer_alloc(len)))
  1091. return;
  1092. snprintf(line->data, len,
  1093. "Dialogue: %s,%d:%02d:%02d.%02d,%d:%02d:%02d.%02d,%s\r\n",
  1094. layer, sh, sm, ss, sc, eh, em, es, ec, ptr);
  1095. av_buffer_unref(&pkt->buf);
  1096. pkt->buf = line;
  1097. pkt->data = line->data;
  1098. pkt->size = strlen(line->data);
  1099. }
  1100. }
  1101. static int matroska_merge_packets(AVPacket *out, AVPacket *in)
  1102. {
  1103. int old_size = out->size;
  1104. int ret = av_grow_packet(out, in->size);
  1105. if (ret < 0)
  1106. return ret;
  1107. memcpy(out->data + old_size, in->data, in->size);
  1108. av_packet_unref(in);
  1109. av_free(in);
  1110. return 0;
  1111. }
  1112. static void matroska_convert_tag(AVFormatContext *s, EbmlList *list,
  1113. AVDictionary **metadata, char *prefix)
  1114. {
  1115. MatroskaTag *tags = list->elem;
  1116. char key[1024];
  1117. int i;
  1118. for (i = 0; i < list->nb_elem; i++) {
  1119. const char *lang = tags[i].lang &&
  1120. strcmp(tags[i].lang, "und") ? tags[i].lang : NULL;
  1121. if (!tags[i].name) {
  1122. av_log(s, AV_LOG_WARNING, "Skipping invalid tag with no TagName.\n");
  1123. continue;
  1124. }
  1125. if (prefix)
  1126. snprintf(key, sizeof(key), "%s/%s", prefix, tags[i].name);
  1127. else
  1128. av_strlcpy(key, tags[i].name, sizeof(key));
  1129. if (tags[i].def || !lang) {
  1130. av_dict_set(metadata, key, tags[i].string, 0);
  1131. if (tags[i].sub.nb_elem)
  1132. matroska_convert_tag(s, &tags[i].sub, metadata, key);
  1133. }
  1134. if (lang) {
  1135. av_strlcat(key, "-", sizeof(key));
  1136. av_strlcat(key, lang, sizeof(key));
  1137. av_dict_set(metadata, key, tags[i].string, 0);
  1138. if (tags[i].sub.nb_elem)
  1139. matroska_convert_tag(s, &tags[i].sub, metadata, key);
  1140. }
  1141. }
  1142. ff_metadata_conv(metadata, NULL, ff_mkv_metadata_conv);
  1143. }
  1144. static void matroska_convert_tags(AVFormatContext *s)
  1145. {
  1146. MatroskaDemuxContext *matroska = s->priv_data;
  1147. MatroskaTags *tags = matroska->tags.elem;
  1148. int i, j;
  1149. for (i = 0; i < matroska->tags.nb_elem; i++) {
  1150. if (tags[i].target.attachuid) {
  1151. MatroskaAttachment *attachment = matroska->attachments.elem;
  1152. int found = 0;
  1153. for (j = 0; j < matroska->attachments.nb_elem; j++) {
  1154. if (attachment[j].uid == tags[i].target.attachuid &&
  1155. attachment[j].stream) {
  1156. matroska_convert_tag(s, &tags[i].tag,
  1157. &attachment[j].stream->metadata, NULL);
  1158. found = 1;
  1159. }
  1160. }
  1161. if (!found) {
  1162. av_log(NULL, AV_LOG_WARNING,
  1163. "The tags at index %d refer to a "
  1164. "non-existent attachment %"PRId64".\n",
  1165. i, tags[i].target.attachuid);
  1166. }
  1167. } else if (tags[i].target.chapteruid) {
  1168. MatroskaChapter *chapter = matroska->chapters.elem;
  1169. int found = 0;
  1170. for (j = 0; j < matroska->chapters.nb_elem; j++) {
  1171. if (chapter[j].uid == tags[i].target.chapteruid &&
  1172. chapter[j].chapter) {
  1173. matroska_convert_tag(s, &tags[i].tag,
  1174. &chapter[j].chapter->metadata, NULL);
  1175. found = 1;
  1176. }
  1177. }
  1178. if (!found) {
  1179. av_log(NULL, AV_LOG_WARNING,
  1180. "The tags at index %d refer to a non-existent chapter "
  1181. "%"PRId64".\n",
  1182. i, tags[i].target.chapteruid);
  1183. }
  1184. } else if (tags[i].target.trackuid) {
  1185. MatroskaTrack *track = matroska->tracks.elem;
  1186. int found = 0;
  1187. for (j = 0; j < matroska->tracks.nb_elem; j++) {
  1188. if (track[j].uid == tags[i].target.trackuid &&
  1189. track[j].stream) {
  1190. matroska_convert_tag(s, &tags[i].tag,
  1191. &track[j].stream->metadata, NULL);
  1192. found = 1;
  1193. }
  1194. }
  1195. if (!found) {
  1196. av_log(NULL, AV_LOG_WARNING,
  1197. "The tags at index %d refer to a non-existent track "
  1198. "%"PRId64".\n",
  1199. i, tags[i].target.trackuid);
  1200. }
  1201. } else {
  1202. matroska_convert_tag(s, &tags[i].tag, &s->metadata,
  1203. tags[i].target.type);
  1204. }
  1205. }
  1206. }
  1207. static int matroska_parse_seekhead_entry(MatroskaDemuxContext *matroska,
  1208. int idx)
  1209. {
  1210. EbmlList *seekhead_list = &matroska->seekhead;
  1211. uint32_t level_up = matroska->level_up;
  1212. uint32_t saved_id = matroska->current_id;
  1213. MatroskaSeekhead *seekhead = seekhead_list->elem;
  1214. int64_t before_pos = avio_tell(matroska->ctx->pb);
  1215. MatroskaLevel level;
  1216. int64_t offset;
  1217. int ret = 0;
  1218. if (idx >= seekhead_list->nb_elem ||
  1219. seekhead[idx].id == MATROSKA_ID_SEEKHEAD ||
  1220. seekhead[idx].id == MATROSKA_ID_CLUSTER)
  1221. return 0;
  1222. /* seek */
  1223. offset = seekhead[idx].pos + matroska->segment_start;
  1224. if (avio_seek(matroska->ctx->pb, offset, SEEK_SET) == offset) {
  1225. /* We don't want to lose our seekhead level, so we add
  1226. * a dummy. This is a crude hack. */
  1227. if (matroska->num_levels == EBML_MAX_DEPTH) {
  1228. av_log(matroska->ctx, AV_LOG_INFO,
  1229. "Max EBML element depth (%d) reached, "
  1230. "cannot parse further.\n", EBML_MAX_DEPTH);
  1231. ret = AVERROR_INVALIDDATA;
  1232. } else {
  1233. level.start = 0;
  1234. level.length = (uint64_t) -1;
  1235. matroska->levels[matroska->num_levels] = level;
  1236. matroska->num_levels++;
  1237. matroska->current_id = 0;
  1238. ret = ebml_parse(matroska, matroska_segment, matroska);
  1239. /* remove dummy level */
  1240. while (matroska->num_levels) {
  1241. uint64_t length = matroska->levels[--matroska->num_levels].length;
  1242. if (length == (uint64_t) -1)
  1243. break;
  1244. }
  1245. }
  1246. }
  1247. /* seek back */
  1248. avio_seek(matroska->ctx->pb, before_pos, SEEK_SET);
  1249. matroska->level_up = level_up;
  1250. matroska->current_id = saved_id;
  1251. return ret;
  1252. }
  1253. static void matroska_execute_seekhead(MatroskaDemuxContext *matroska)
  1254. {
  1255. EbmlList *seekhead_list = &matroska->seekhead;
  1256. int64_t before_pos = avio_tell(matroska->ctx->pb);
  1257. int i;
  1258. // we should not do any seeking in the streaming case
  1259. if (!(matroska->ctx->pb->seekable & AVIO_SEEKABLE_NORMAL) ||
  1260. (matroska->ctx->flags & AVFMT_FLAG_IGNIDX))
  1261. return;
  1262. for (i = 0; i < seekhead_list->nb_elem; i++) {
  1263. MatroskaSeekhead *seekhead = seekhead_list->elem;
  1264. if (seekhead[i].pos <= before_pos)
  1265. continue;
  1266. // defer cues parsing until we actually need cue data.
  1267. if (seekhead[i].id == MATROSKA_ID_CUES) {
  1268. matroska->cues_parsing_deferred = 1;
  1269. continue;
  1270. }
  1271. if (matroska_parse_seekhead_entry(matroska, i) < 0)
  1272. break;
  1273. }
  1274. }
  1275. static void matroska_parse_cues(MatroskaDemuxContext *matroska)
  1276. {
  1277. EbmlList *seekhead_list = &matroska->seekhead;
  1278. MatroskaSeekhead *seekhead = seekhead_list->elem;
  1279. EbmlList *index_list;
  1280. MatroskaIndex *index;
  1281. int index_scale = 1;
  1282. int i, j;
  1283. for (i = 0; i < seekhead_list->nb_elem; i++)
  1284. if (seekhead[i].id == MATROSKA_ID_CUES)
  1285. break;
  1286. assert(i <= seekhead_list->nb_elem);
  1287. matroska_parse_seekhead_entry(matroska, i);
  1288. index_list = &matroska->index;
  1289. index = index_list->elem;
  1290. if (index_list->nb_elem &&
  1291. index[0].time > 1E14 / matroska->time_scale) {
  1292. av_log(matroska->ctx, AV_LOG_WARNING, "Working around broken index.\n");
  1293. index_scale = matroska->time_scale;
  1294. }
  1295. for (i = 0; i < index_list->nb_elem; i++) {
  1296. EbmlList *pos_list = &index[i].pos;
  1297. MatroskaIndexPos *pos = pos_list->elem;
  1298. for (j = 0; j < pos_list->nb_elem; j++) {
  1299. MatroskaTrack *track = matroska_find_track_by_num(matroska,
  1300. pos[j].track);
  1301. if (track && track->stream)
  1302. av_add_index_entry(track->stream,
  1303. pos[j].pos + matroska->segment_start,
  1304. index[i].time / index_scale, 0, 0,
  1305. AVINDEX_KEYFRAME);
  1306. }
  1307. }
  1308. }
  1309. static int matroska_aac_profile(char *codec_id)
  1310. {
  1311. static const char *const aac_profiles[] = { "MAIN", "LC", "SSR" };
  1312. int profile;
  1313. for (profile = 0; profile < FF_ARRAY_ELEMS(aac_profiles); profile++)
  1314. if (strstr(codec_id, aac_profiles[profile]))
  1315. break;
  1316. return profile + 1;
  1317. }
  1318. static int matroska_aac_sri(int samplerate)
  1319. {
  1320. int sri;
  1321. for (sri = 0; sri < FF_ARRAY_ELEMS(avpriv_mpeg4audio_sample_rates); sri++)
  1322. if (avpriv_mpeg4audio_sample_rates[sri] == samplerate)
  1323. break;
  1324. return sri;
  1325. }
  1326. static int matroska_parse_flac(AVFormatContext *s,
  1327. MatroskaTrack *track,
  1328. int *offset)
  1329. {
  1330. AVStream *st = track->stream;
  1331. uint8_t *p = track->codec_priv.data;
  1332. int size = track->codec_priv.size;
  1333. if (size < 8 + FLAC_STREAMINFO_SIZE || p[4] & 0x7f) {
  1334. av_log(s, AV_LOG_WARNING, "Invalid FLAC private data\n");
  1335. track->codec_priv.size = 0;
  1336. return 0;
  1337. }
  1338. *offset = 8;
  1339. track->codec_priv.size = 8 + FLAC_STREAMINFO_SIZE;
  1340. p += track->codec_priv.size;
  1341. size -= track->codec_priv.size;
  1342. /* parse the remaining metadata blocks if present */
  1343. while (size >= 4) {
  1344. int block_last, block_type, block_size;
  1345. flac_parse_block_header(p, &block_last, &block_type, &block_size);
  1346. p += 4;
  1347. size -= 4;
  1348. if (block_size > size)
  1349. return 0;
  1350. /* check for the channel mask */
  1351. if (block_type == FLAC_METADATA_TYPE_VORBIS_COMMENT) {
  1352. AVDictionary *dict = NULL;
  1353. AVDictionaryEntry *chmask;
  1354. ff_vorbis_comment(s, &dict, p, block_size, 0);
  1355. chmask = av_dict_get(dict, "WAVEFORMATEXTENSIBLE_CHANNEL_MASK", NULL, 0);
  1356. if (chmask) {
  1357. uint64_t mask = strtol(chmask->value, NULL, 0);
  1358. if (!mask || mask & ~0x3ffffULL) {
  1359. av_log(s, AV_LOG_WARNING,
  1360. "Invalid value of WAVEFORMATEXTENSIBLE_CHANNEL_MASK\n");
  1361. } else
  1362. st->codecpar->channel_layout = mask;
  1363. }
  1364. av_dict_free(&dict);
  1365. }
  1366. p += block_size;
  1367. size -= block_size;
  1368. }
  1369. return 0;
  1370. }
  1371. static int mkv_field_order(int64_t field_order)
  1372. {
  1373. switch (field_order) {
  1374. case MATROSKA_VIDEO_FIELDORDER_PROGRESSIVE:
  1375. return AV_FIELD_PROGRESSIVE;
  1376. case MATROSKA_VIDEO_FIELDORDER_UNDETERMINED:
  1377. return AV_FIELD_UNKNOWN;
  1378. case MATROSKA_VIDEO_FIELDORDER_TT:
  1379. return AV_FIELD_TT;
  1380. case MATROSKA_VIDEO_FIELDORDER_BB:
  1381. return AV_FIELD_BB;
  1382. case MATROSKA_VIDEO_FIELDORDER_BT:
  1383. return AV_FIELD_BT;
  1384. case MATROSKA_VIDEO_FIELDORDER_TB:
  1385. return AV_FIELD_TB;
  1386. default:
  1387. return AV_FIELD_UNKNOWN;
  1388. }
  1389. }
  1390. static void mkv_stereo_mode_display_mul(int stereo_mode,
  1391. int *h_width, int *h_height)
  1392. {
  1393. switch (stereo_mode) {
  1394. case MATROSKA_VIDEO_STEREOMODE_TYPE_MONO:
  1395. case MATROSKA_VIDEO_STEREOMODE_TYPE_CHECKERBOARD_RL:
  1396. case MATROSKA_VIDEO_STEREOMODE_TYPE_CHECKERBOARD_LR:
  1397. case MATROSKA_VIDEO_STEREOMODE_TYPE_BOTH_EYES_BLOCK_RL:
  1398. case MATROSKA_VIDEO_STEREOMODE_TYPE_BOTH_EYES_BLOCK_LR:
  1399. break;
  1400. case MATROSKA_VIDEO_STEREOMODE_TYPE_RIGHT_LEFT:
  1401. case MATROSKA_VIDEO_STEREOMODE_TYPE_LEFT_RIGHT:
  1402. case MATROSKA_VIDEO_STEREOMODE_TYPE_COL_INTERLEAVED_RL:
  1403. case MATROSKA_VIDEO_STEREOMODE_TYPE_COL_INTERLEAVED_LR:
  1404. *h_width = 2;
  1405. break;
  1406. case MATROSKA_VIDEO_STEREOMODE_TYPE_BOTTOM_TOP:
  1407. case MATROSKA_VIDEO_STEREOMODE_TYPE_TOP_BOTTOM:
  1408. case MATROSKA_VIDEO_STEREOMODE_TYPE_ROW_INTERLEAVED_RL:
  1409. case MATROSKA_VIDEO_STEREOMODE_TYPE_ROW_INTERLEAVED_LR:
  1410. *h_height = 2;
  1411. break;
  1412. }
  1413. }
  1414. static int mkv_parse_video_projection(AVStream *st, const MatroskaTrack *track)
  1415. {
  1416. AVSphericalMapping *spherical;
  1417. enum AVSphericalProjection projection;
  1418. size_t spherical_size;
  1419. uint32_t l = 0, t = 0, r = 0, b = 0;
  1420. uint32_t padding = 0;
  1421. int ret;
  1422. GetByteContext gb;
  1423. bytestream2_init(&gb, track->video.projection.private.data,
  1424. track->video.projection.private.size);
  1425. if (bytestream2_get_byte(&gb) != 0) {
  1426. av_log(NULL, AV_LOG_WARNING, "Unknown spherical metadata\n");
  1427. return 0;
  1428. }
  1429. bytestream2_skip(&gb, 3); // flags
  1430. switch (track->video.projection.type) {
  1431. case MATROSKA_VIDEO_PROJECTION_TYPE_EQUIRECTANGULAR:
  1432. if (track->video.projection.private.size == 20) {
  1433. t = bytestream2_get_be32(&gb);
  1434. b = bytestream2_get_be32(&gb);
  1435. l = bytestream2_get_be32(&gb);
  1436. r = bytestream2_get_be32(&gb);
  1437. if (b >= UINT_MAX - t || r >= UINT_MAX - l) {
  1438. av_log(NULL, AV_LOG_ERROR,
  1439. "Invalid bounding rectangle coordinates "
  1440. "%"PRIu32",%"PRIu32",%"PRIu32",%"PRIu32"\n", l, t, r, b);
  1441. return AVERROR_INVALIDDATA;
  1442. }
  1443. } else if (track->video.projection.private.size != 0) {
  1444. av_log(NULL, AV_LOG_ERROR, "Unknown spherical metadata\n");
  1445. return AVERROR_INVALIDDATA;
  1446. }
  1447. if (l || t || r || b)
  1448. projection = AV_SPHERICAL_EQUIRECTANGULAR_TILE;
  1449. else
  1450. projection = AV_SPHERICAL_EQUIRECTANGULAR;
  1451. break;
  1452. case MATROSKA_VIDEO_PROJECTION_TYPE_CUBEMAP:
  1453. if (track->video.projection.private.size < 4) {
  1454. av_log(NULL, AV_LOG_ERROR, "Missing projection private properties\n");
  1455. return AVERROR_INVALIDDATA;
  1456. } else if (track->video.projection.private.size == 12) {
  1457. uint32_t layout = bytestream2_get_be32(&gb);
  1458. if (layout) {
  1459. av_log(NULL, AV_LOG_WARNING,
  1460. "Unknown spherical cubemap layout %"PRIu32"\n", layout);
  1461. return 0;
  1462. }
  1463. projection = AV_SPHERICAL_CUBEMAP;
  1464. padding = bytestream2_get_be32(&gb);
  1465. } else {
  1466. av_log(NULL, AV_LOG_ERROR, "Unknown spherical metadata\n");
  1467. return AVERROR_INVALIDDATA;
  1468. }
  1469. break;
  1470. default:
  1471. av_log(NULL, AV_LOG_WARNING,
  1472. "Unknown spherical metadata type %"PRIu64"\n",
  1473. track->video.projection.type);
  1474. return 0;
  1475. }
  1476. spherical = av_spherical_alloc(&spherical_size);
  1477. if (!spherical)
  1478. return AVERROR(ENOMEM);
  1479. spherical->projection = projection;
  1480. spherical->yaw = (int32_t) (track->video.projection.yaw * (1 << 16));
  1481. spherical->pitch = (int32_t) (track->video.projection.pitch * (1 << 16));
  1482. spherical->roll = (int32_t) (track->video.projection.roll * (1 << 16));
  1483. spherical->padding = padding;
  1484. spherical->bound_left = l;
  1485. spherical->bound_top = t;
  1486. spherical->bound_right = r;
  1487. spherical->bound_bottom = b;
  1488. ret = av_stream_add_side_data(st, AV_PKT_DATA_SPHERICAL, (uint8_t *)spherical,
  1489. spherical_size);
  1490. if (ret < 0) {
  1491. av_free(spherical);
  1492. return ret;
  1493. }
  1494. return 0;
  1495. }
  1496. static int matroska_parse_tracks(AVFormatContext *s)
  1497. {
  1498. MatroskaDemuxContext *matroska = s->priv_data;
  1499. MatroskaTrack *tracks = matroska->tracks.elem;
  1500. AVStream *st;
  1501. int i, j, ret;
  1502. for (i = 0; i < matroska->tracks.nb_elem; i++) {
  1503. MatroskaTrack *track = &tracks[i];
  1504. enum AVCodecID codec_id = AV_CODEC_ID_NONE;
  1505. EbmlList *encodings_list = &track->encodings;
  1506. MatroskaTrackEncoding *encodings = encodings_list->elem;
  1507. uint8_t *extradata = NULL;
  1508. int extradata_size = 0;
  1509. int extradata_offset = 0;
  1510. AVIOContext b;
  1511. /* Apply some sanity checks. */
  1512. if (track->type != MATROSKA_TRACK_TYPE_VIDEO &&
  1513. track->type != MATROSKA_TRACK_TYPE_AUDIO &&
  1514. track->type != MATROSKA_TRACK_TYPE_SUBTITLE) {
  1515. av_log(matroska->ctx, AV_LOG_INFO,
  1516. "Unknown or unsupported track type %"PRIu64"\n",
  1517. track->type);
  1518. continue;
  1519. }
  1520. if (!track->codec_id)
  1521. continue;
  1522. if (track->type == MATROSKA_TRACK_TYPE_VIDEO) {
  1523. if (!track->default_duration && track->video.frame_rate > 0)
  1524. track->default_duration = 1000000000 / track->video.frame_rate;
  1525. if (!track->video.display_width)
  1526. track->video.display_width = track->video.pixel_width;
  1527. if (!track->video.display_height)
  1528. track->video.display_height = track->video.pixel_height;
  1529. } else if (track->type == MATROSKA_TRACK_TYPE_AUDIO) {
  1530. if (!track->audio.out_samplerate)
  1531. track->audio.out_samplerate = track->audio.samplerate;
  1532. }
  1533. if (encodings_list->nb_elem > 1) {
  1534. av_log(matroska->ctx, AV_LOG_ERROR,
  1535. "Multiple combined encodings not supported");
  1536. } else if (encodings_list->nb_elem == 1) {
  1537. if (encodings[0].type ||
  1538. (
  1539. #if CONFIG_ZLIB
  1540. encodings[0].compression.algo != MATROSKA_TRACK_ENCODING_COMP_ZLIB &&
  1541. #endif
  1542. #if CONFIG_BZLIB
  1543. encodings[0].compression.algo != MATROSKA_TRACK_ENCODING_COMP_BZLIB &&
  1544. #endif
  1545. #if CONFIG_LZO
  1546. encodings[0].compression.algo != MATROSKA_TRACK_ENCODING_COMP_LZO &&
  1547. #endif
  1548. encodings[0].compression.algo != MATROSKA_TRACK_ENCODING_COMP_HEADERSTRIP)) {
  1549. encodings[0].scope = 0;
  1550. av_log(matroska->ctx, AV_LOG_ERROR,
  1551. "Unsupported encoding type");
  1552. } else if (track->codec_priv.size && encodings[0].scope & 2) {
  1553. uint8_t *codec_priv = track->codec_priv.data;
  1554. int ret = matroska_decode_buffer(&track->codec_priv.data,
  1555. &track->codec_priv.size,
  1556. track);
  1557. if (ret < 0) {
  1558. track->codec_priv.data = NULL;
  1559. track->codec_priv.size = 0;
  1560. av_log(matroska->ctx, AV_LOG_ERROR,
  1561. "Failed to decode codec private data\n");
  1562. }
  1563. if (codec_priv != track->codec_priv.data)
  1564. av_free(codec_priv);
  1565. }
  1566. }
  1567. for (j = 0; ff_mkv_codec_tags[j].id != AV_CODEC_ID_NONE; j++) {
  1568. if (!strncmp(ff_mkv_codec_tags[j].str, track->codec_id,
  1569. strlen(ff_mkv_codec_tags[j].str))) {
  1570. codec_id = ff_mkv_codec_tags[j].id;
  1571. break;
  1572. }
  1573. }
  1574. st = track->stream = avformat_new_stream(s, NULL);
  1575. if (!st)
  1576. return AVERROR(ENOMEM);
  1577. if (!strcmp(track->codec_id, "V_MS/VFW/FOURCC") &&
  1578. track->codec_priv.size >= 40 &&
  1579. track->codec_priv.data) {
  1580. track->ms_compat = 1;
  1581. track->video.fourcc = AV_RL32(track->codec_priv.data + 16);
  1582. codec_id = ff_codec_get_id(ff_codec_bmp_tags,
  1583. track->video.fourcc);
  1584. extradata_offset = 40;
  1585. } else if (!strcmp(track->codec_id, "A_MS/ACM") &&
  1586. track->codec_priv.size >= 14 &&
  1587. track->codec_priv.data) {
  1588. int ret;
  1589. ffio_init_context(&b, track->codec_priv.data,
  1590. track->codec_priv.size,
  1591. 0, NULL, NULL, NULL, NULL);
  1592. ret = ff_get_wav_header(s, &b, st->codecpar, track->codec_priv.size);
  1593. if (ret < 0)
  1594. return ret;
  1595. codec_id = st->codecpar->codec_id;
  1596. extradata_offset = FFMIN(track->codec_priv.size, 18);
  1597. } else if (!strcmp(track->codec_id, "V_QUICKTIME") &&
  1598. (track->codec_priv.size >= 86) &&
  1599. (track->codec_priv.data)) {
  1600. if (track->codec_priv.size == AV_RB32(track->codec_priv.data)) {
  1601. track->video.fourcc = AV_RL32(track->codec_priv.data + 4);
  1602. codec_id = ff_codec_get_id(ff_codec_movvideo_tags,
  1603. track->video.fourcc);
  1604. }
  1605. if (codec_id == AV_CODEC_ID_NONE) {
  1606. track->video.fourcc = AV_RL32(track->codec_priv.data);
  1607. codec_id = ff_codec_get_id(ff_codec_movvideo_tags,
  1608. track->video.fourcc);
  1609. }
  1610. if (codec_id == AV_CODEC_ID_NONE) {
  1611. char buf[32];
  1612. av_get_codec_tag_string(buf, sizeof(buf), track->video.fourcc);
  1613. av_log(matroska->ctx, AV_LOG_ERROR,
  1614. "mov FourCC not found %s.\n", buf);
  1615. }
  1616. } else if (codec_id == AV_CODEC_ID_PCM_S16BE) {
  1617. switch (track->audio.bitdepth) {
  1618. case 8:
  1619. codec_id = AV_CODEC_ID_PCM_U8;
  1620. break;
  1621. case 24:
  1622. codec_id = AV_CODEC_ID_PCM_S24BE;
  1623. break;
  1624. case 32:
  1625. codec_id = AV_CODEC_ID_PCM_S32BE;
  1626. break;
  1627. }
  1628. } else if (codec_id == AV_CODEC_ID_PCM_S16LE) {
  1629. switch (track->audio.bitdepth) {
  1630. case 8:
  1631. codec_id = AV_CODEC_ID_PCM_U8;
  1632. break;
  1633. case 24:
  1634. codec_id = AV_CODEC_ID_PCM_S24LE;
  1635. break;
  1636. case 32:
  1637. codec_id = AV_CODEC_ID_PCM_S32LE;
  1638. break;
  1639. }
  1640. } else if (codec_id == AV_CODEC_ID_PCM_F32LE &&
  1641. track->audio.bitdepth == 64) {
  1642. codec_id = AV_CODEC_ID_PCM_F64LE;
  1643. } else if (codec_id == AV_CODEC_ID_AAC && !track->codec_priv.size) {
  1644. int profile = matroska_aac_profile(track->codec_id);
  1645. int sri = matroska_aac_sri(track->audio.samplerate);
  1646. extradata = av_mallocz(5 + AV_INPUT_BUFFER_PADDING_SIZE);
  1647. if (!extradata)
  1648. return AVERROR(ENOMEM);
  1649. extradata[0] = (profile << 3) | ((sri & 0x0E) >> 1);
  1650. extradata[1] = ((sri & 0x01) << 7) | (track->audio.channels << 3);
  1651. if (strstr(track->codec_id, "SBR")) {
  1652. sri = matroska_aac_sri(track->audio.out_samplerate);
  1653. extradata[2] = 0x56;
  1654. extradata[3] = 0xE5;
  1655. extradata[4] = 0x80 | (sri << 3);
  1656. extradata_size = 5;
  1657. } else
  1658. extradata_size = 2;
  1659. } else if (codec_id == AV_CODEC_ID_ALAC && track->codec_priv.size) {
  1660. /* Only ALAC's magic cookie is stored in Matroska's track headers.
  1661. * Create the "atom size", "tag", and "tag version" fields the
  1662. * decoder expects manually. */
  1663. extradata_size = 12 + track->codec_priv.size;
  1664. extradata = av_mallocz(extradata_size +
  1665. AV_INPUT_BUFFER_PADDING_SIZE);
  1666. if (!extradata)
  1667. return AVERROR(ENOMEM);
  1668. AV_WB32(extradata, extradata_size);
  1669. memcpy(&extradata[4], "alac", 4);
  1670. AV_WB32(&extradata[8], 0);
  1671. memcpy(&extradata[12], track->codec_priv.data,
  1672. track->codec_priv.size);
  1673. } else if (codec_id == AV_CODEC_ID_TTA) {
  1674. extradata_size = 30;
  1675. extradata = av_mallocz(extradata_size);
  1676. if (!extradata)
  1677. return AVERROR(ENOMEM);
  1678. ffio_init_context(&b, extradata, extradata_size, 1,
  1679. NULL, NULL, NULL, NULL);
  1680. avio_write(&b, "TTA1", 4);
  1681. avio_wl16(&b, 1);
  1682. avio_wl16(&b, track->audio.channels);
  1683. avio_wl16(&b, track->audio.bitdepth);
  1684. avio_wl32(&b, track->audio.out_samplerate);
  1685. avio_wl32(&b, matroska->ctx->duration *
  1686. track->audio.out_samplerate);
  1687. } else if (codec_id == AV_CODEC_ID_RV10 ||
  1688. codec_id == AV_CODEC_ID_RV20 ||
  1689. codec_id == AV_CODEC_ID_RV30 ||
  1690. codec_id == AV_CODEC_ID_RV40) {
  1691. extradata_offset = 26;
  1692. } else if (codec_id == AV_CODEC_ID_RA_144) {
  1693. track->audio.out_samplerate = 8000;
  1694. track->audio.channels = 1;
  1695. } else if (codec_id == AV_CODEC_ID_RA_288 ||
  1696. codec_id == AV_CODEC_ID_COOK ||
  1697. codec_id == AV_CODEC_ID_ATRAC3 ||
  1698. codec_id == AV_CODEC_ID_SIPR) {
  1699. int flavor;
  1700. ffio_init_context(&b, track->codec_priv.data,
  1701. track->codec_priv.size,
  1702. 0, NULL, NULL, NULL, NULL);
  1703. avio_skip(&b, 22);
  1704. flavor = avio_rb16(&b);
  1705. track->audio.coded_framesize = avio_rb32(&b);
  1706. avio_skip(&b, 12);
  1707. track->audio.sub_packet_h = avio_rb16(&b);
  1708. track->audio.frame_size = avio_rb16(&b);
  1709. track->audio.sub_packet_size = avio_rb16(&b);
  1710. if (flavor <= 0 ||
  1711. track->audio.coded_framesize <= 0 ||
  1712. track->audio.sub_packet_h <= 0 ||
  1713. track->audio.frame_size <= 0 ||
  1714. track->audio.sub_packet_size <= 0)
  1715. return AVERROR_INVALIDDATA;
  1716. track->audio.buf = av_malloc(track->audio.frame_size *
  1717. track->audio.sub_packet_h);
  1718. if (!track->audio.buf)
  1719. return AVERROR(ENOMEM);
  1720. if (codec_id == AV_CODEC_ID_RA_288) {
  1721. st->codecpar->block_align = track->audio.coded_framesize;
  1722. track->codec_priv.size = 0;
  1723. } else {
  1724. if (codec_id == AV_CODEC_ID_SIPR && flavor < 4) {
  1725. static const int sipr_bit_rate[4] = { 6504, 8496, 5000, 16000 };
  1726. track->audio.sub_packet_size = ff_sipr_subpk_size[flavor];
  1727. st->codecpar->bit_rate = sipr_bit_rate[flavor];
  1728. }
  1729. st->codecpar->block_align = track->audio.sub_packet_size;
  1730. extradata_offset = 78;
  1731. }
  1732. } else if (codec_id == AV_CODEC_ID_FLAC && track->codec_priv.size) {
  1733. ret = matroska_parse_flac(s, track, &extradata_offset);
  1734. if (ret < 0)
  1735. return ret;
  1736. }
  1737. track->codec_priv.size -= extradata_offset;
  1738. if (codec_id == AV_CODEC_ID_NONE)
  1739. av_log(matroska->ctx, AV_LOG_INFO,
  1740. "Unknown/unsupported AVCodecID %s.\n", track->codec_id);
  1741. if (track->time_scale < 0.01)
  1742. track->time_scale = 1.0;
  1743. avpriv_set_pts_info(st, 64, matroska->time_scale * track->time_scale,
  1744. 1000 * 1000 * 1000); /* 64 bit pts in ns */
  1745. if (track->type == MATROSKA_TRACK_TYPE_AUDIO &&
  1746. track->audio.out_samplerate) {
  1747. st->codecpar->initial_padding = av_rescale_q(track->codec_delay,
  1748. (AVRational){ 1, 1000000000 },
  1749. (AVRational){ 1, track->audio.out_samplerate });
  1750. }
  1751. /* convert the delay from ns to the track timebase */
  1752. track->codec_delay = av_rescale_q(track->codec_delay,
  1753. (AVRational){ 1, 1000000000 },
  1754. st->time_base);
  1755. st->codecpar->codec_id = codec_id;
  1756. st->start_time = 0;
  1757. if (strcmp(track->language, "und"))
  1758. av_dict_set(&st->metadata, "language", track->language, 0);
  1759. av_dict_set(&st->metadata, "title", track->name, 0);
  1760. if (track->flag_default)
  1761. st->disposition |= AV_DISPOSITION_DEFAULT;
  1762. if (track->flag_forced)
  1763. st->disposition |= AV_DISPOSITION_FORCED;
  1764. if (!st->codecpar->extradata) {
  1765. if (extradata) {
  1766. st->codecpar->extradata = extradata;
  1767. st->codecpar->extradata_size = extradata_size;
  1768. } else if (track->codec_priv.data && track->codec_priv.size > 0) {
  1769. st->codecpar->extradata = av_mallocz(track->codec_priv.size +
  1770. AV_INPUT_BUFFER_PADDING_SIZE);
  1771. if (!st->codecpar->extradata)
  1772. return AVERROR(ENOMEM);
  1773. st->codecpar->extradata_size = track->codec_priv.size;
  1774. memcpy(st->codecpar->extradata,
  1775. track->codec_priv.data + extradata_offset,
  1776. track->codec_priv.size);
  1777. }
  1778. }
  1779. if (track->type == MATROSKA_TRACK_TYPE_VIDEO) {
  1780. int display_width_mul = 1;
  1781. int display_height_mul = 1;
  1782. st->codecpar->codec_type = AVMEDIA_TYPE_VIDEO;
  1783. st->codecpar->codec_tag = track->video.fourcc;
  1784. st->codecpar->width = track->video.pixel_width;
  1785. st->codecpar->height = track->video.pixel_height;
  1786. if (track->video.interlaced == MATROSKA_VIDEO_INTERLACE_FLAG_INTERLACED)
  1787. st->codecpar->field_order = mkv_field_order(track->video.field_order);
  1788. if (track->video.stereo_mode && track->video.stereo_mode < MATROSKA_VIDEO_STEREOMODE_TYPE_NB)
  1789. mkv_stereo_mode_display_mul(track->video.stereo_mode, &display_width_mul, &display_height_mul);
  1790. av_reduce(&st->sample_aspect_ratio.num,
  1791. &st->sample_aspect_ratio.den,
  1792. st->codecpar->height * track->video.display_width * display_width_mul,
  1793. st->codecpar->width * track->video.display_height * display_height_mul,
  1794. 255);
  1795. if (st->codecpar->codec_id != AV_CODEC_ID_H264 &&
  1796. st->codecpar->codec_id != AV_CODEC_ID_HEVC)
  1797. st->need_parsing = AVSTREAM_PARSE_HEADERS;
  1798. if (track->default_duration) {
  1799. av_reduce(&st->avg_frame_rate.num, &st->avg_frame_rate.den,
  1800. 1000000000, track->default_duration, 30000);
  1801. }
  1802. // add stream level stereo3d side data if it is a supported format
  1803. if (track->video.stereo_mode < MATROSKA_VIDEO_STEREOMODE_TYPE_NB &&
  1804. track->video.stereo_mode != 10 && track->video.stereo_mode != 12) {
  1805. int ret = ff_mkv_stereo3d_conv(st, track->video.stereo_mode);
  1806. if (ret < 0)
  1807. return ret;
  1808. }
  1809. ret = mkv_parse_video_projection(st, track);
  1810. if (ret < 0)
  1811. return ret;
  1812. } else if (track->type == MATROSKA_TRACK_TYPE_AUDIO) {
  1813. st->codecpar->codec_type = AVMEDIA_TYPE_AUDIO;
  1814. st->codecpar->sample_rate = track->audio.out_samplerate;
  1815. st->codecpar->channels = track->audio.channels;
  1816. if (st->codecpar->codec_id != AV_CODEC_ID_AAC)
  1817. st->need_parsing = AVSTREAM_PARSE_HEADERS;
  1818. if (st->codecpar->codec_id == AV_CODEC_ID_MP3)
  1819. st->need_parsing = AVSTREAM_PARSE_FULL;
  1820. } else if (track->type == MATROSKA_TRACK_TYPE_SUBTITLE) {
  1821. st->codecpar->codec_type = AVMEDIA_TYPE_SUBTITLE;
  1822. if (st->codecpar->codec_id == AV_CODEC_ID_SSA)
  1823. matroska->contains_ssa = 1;
  1824. }
  1825. }
  1826. return 0;
  1827. }
  1828. static int matroska_read_header(AVFormatContext *s)
  1829. {
  1830. MatroskaDemuxContext *matroska = s->priv_data;
  1831. EbmlList *attachments_list = &matroska->attachments;
  1832. EbmlList *chapters_list = &matroska->chapters;
  1833. MatroskaAttachment *attachments;
  1834. MatroskaChapter *chapters;
  1835. uint64_t max_start = 0;
  1836. int64_t pos;
  1837. Ebml ebml = { 0 };
  1838. int i, j, res;
  1839. matroska->ctx = s;
  1840. /* First read the EBML header. */
  1841. if (ebml_parse(matroska, ebml_syntax, &ebml) || !ebml.doctype) {
  1842. av_log(matroska->ctx, AV_LOG_ERROR, "EBML header parsing failed\n");
  1843. ebml_free(ebml_syntax, &ebml);
  1844. return AVERROR_INVALIDDATA;
  1845. }
  1846. if (ebml.version > EBML_VERSION ||
  1847. ebml.max_size > sizeof(uint64_t) ||
  1848. ebml.id_length > sizeof(uint32_t) ||
  1849. ebml.doctype_version > 3) {
  1850. avpriv_report_missing_feature(matroska->ctx,
  1851. "EBML version %"PRIu64", doctype %s, doc version %"PRIu64,
  1852. ebml.version, ebml.doctype, ebml.doctype_version);
  1853. ebml_free(ebml_syntax, &ebml);
  1854. return AVERROR_PATCHWELCOME;
  1855. }
  1856. for (i = 0; i < FF_ARRAY_ELEMS(matroska_doctypes); i++)
  1857. if (!strcmp(ebml.doctype, matroska_doctypes[i]))
  1858. break;
  1859. if (i >= FF_ARRAY_ELEMS(matroska_doctypes)) {
  1860. av_log(s, AV_LOG_WARNING, "Unknown EBML doctype '%s'\n", ebml.doctype);
  1861. if (matroska->ctx->error_recognition & AV_EF_EXPLODE) {
  1862. ebml_free(ebml_syntax, &ebml);
  1863. return AVERROR_INVALIDDATA;
  1864. }
  1865. }
  1866. ebml_free(ebml_syntax, &ebml);
  1867. /* The next thing is a segment. */
  1868. pos = avio_tell(matroska->ctx->pb);
  1869. res = ebml_parse(matroska, matroska_segments, matroska);
  1870. // try resyncing until we find a EBML_STOP type element.
  1871. while (res != 1) {
  1872. res = matroska_resync(matroska, pos);
  1873. if (res < 0)
  1874. return res;
  1875. pos = avio_tell(matroska->ctx->pb);
  1876. res = ebml_parse(matroska, matroska_segment, matroska);
  1877. }
  1878. matroska_execute_seekhead(matroska);
  1879. if (!matroska->time_scale)
  1880. matroska->time_scale = 1000000;
  1881. if (matroska->duration)
  1882. matroska->ctx->duration = matroska->duration * matroska->time_scale *
  1883. 1000 / AV_TIME_BASE;
  1884. av_dict_set(&s->metadata, "title", matroska->title, 0);
  1885. res = matroska_parse_tracks(s);
  1886. if (res < 0)
  1887. return res;
  1888. attachments = attachments_list->elem;
  1889. for (j = 0; j < attachments_list->nb_elem; j++) {
  1890. if (!(attachments[j].filename && attachments[j].mime &&
  1891. attachments[j].bin.data && attachments[j].bin.size > 0)) {
  1892. av_log(matroska->ctx, AV_LOG_ERROR, "incomplete attachment\n");
  1893. } else {
  1894. AVStream *st = avformat_new_stream(s, NULL);
  1895. if (!st)
  1896. break;
  1897. av_dict_set(&st->metadata, "filename", attachments[j].filename, 0);
  1898. av_dict_set(&st->metadata, "mimetype", attachments[j].mime, 0);
  1899. st->codecpar->codec_id = AV_CODEC_ID_NONE;
  1900. for (i = 0; ff_mkv_image_mime_tags[i].id != AV_CODEC_ID_NONE; i++) {
  1901. if (!strncmp(ff_mkv_image_mime_tags[i].str, attachments[j].mime,
  1902. strlen(ff_mkv_image_mime_tags[i].str))) {
  1903. st->codecpar->codec_id = ff_mkv_image_mime_tags[i].id;
  1904. break;
  1905. }
  1906. }
  1907. attachments[j].stream = st;
  1908. if (st->codecpar->codec_id != AV_CODEC_ID_NONE) {
  1909. st->disposition |= AV_DISPOSITION_ATTACHED_PIC;
  1910. st->codecpar->codec_type = AVMEDIA_TYPE_VIDEO;
  1911. av_init_packet(&st->attached_pic);
  1912. if ((res = av_new_packet(&st->attached_pic, attachments[j].bin.size)) < 0)
  1913. return res;
  1914. memcpy(st->attached_pic.data, attachments[j].bin.data, attachments[j].bin.size);
  1915. st->attached_pic.stream_index = st->index;
  1916. st->attached_pic.flags |= AV_PKT_FLAG_KEY;
  1917. } else {
  1918. st->codecpar->codec_type = AVMEDIA_TYPE_ATTACHMENT;
  1919. st->codecpar->extradata = av_malloc(attachments[j].bin.size);
  1920. if (!st->codecpar->extradata)
  1921. break;
  1922. st->codecpar->extradata_size = attachments[j].bin.size;
  1923. memcpy(st->codecpar->extradata, attachments[j].bin.data,
  1924. attachments[j].bin.size);
  1925. for (i = 0; ff_mkv_mime_tags[i].id != AV_CODEC_ID_NONE; i++) {
  1926. if (!strncmp(ff_mkv_mime_tags[i].str, attachments[j].mime,
  1927. strlen(ff_mkv_mime_tags[i].str))) {
  1928. st->codecpar->codec_id = ff_mkv_mime_tags[i].id;
  1929. break;
  1930. }
  1931. }
  1932. }
  1933. }
  1934. }
  1935. chapters = chapters_list->elem;
  1936. for (i = 0; i < chapters_list->nb_elem; i++)
  1937. if (chapters[i].start != AV_NOPTS_VALUE && chapters[i].uid &&
  1938. (max_start == 0 || chapters[i].start > max_start)) {
  1939. chapters[i].chapter =
  1940. avpriv_new_chapter(s, chapters[i].uid,
  1941. (AVRational) { 1, 1000000000 },
  1942. chapters[i].start, chapters[i].end,
  1943. chapters[i].title);
  1944. av_dict_set(&chapters[i].chapter->metadata,
  1945. "title", chapters[i].title, 0);
  1946. max_start = chapters[i].start;
  1947. }
  1948. matroska_convert_tags(s);
  1949. return 0;
  1950. }
  1951. /*
  1952. * Put one packet in an application-supplied AVPacket struct.
  1953. * Returns 0 on success or -1 on failure.
  1954. */
  1955. static int matroska_deliver_packet(MatroskaDemuxContext *matroska,
  1956. AVPacket *pkt)
  1957. {
  1958. if (matroska->num_packets > 0) {
  1959. memcpy(pkt, matroska->packets[0], sizeof(AVPacket));
  1960. av_free(matroska->packets[0]);
  1961. if (matroska->num_packets > 1) {
  1962. void *newpackets;
  1963. memmove(&matroska->packets[0], &matroska->packets[1],
  1964. (matroska->num_packets - 1) * sizeof(AVPacket *));
  1965. newpackets = av_realloc(matroska->packets,
  1966. (matroska->num_packets - 1) *
  1967. sizeof(AVPacket *));
  1968. if (newpackets)
  1969. matroska->packets = newpackets;
  1970. } else {
  1971. av_freep(&matroska->packets);
  1972. matroska->prev_pkt = NULL;
  1973. }
  1974. matroska->num_packets--;
  1975. return 0;
  1976. }
  1977. return -1;
  1978. }
  1979. /*
  1980. * Free all packets in our internal queue.
  1981. */
  1982. static void matroska_clear_queue(MatroskaDemuxContext *matroska)
  1983. {
  1984. matroska->prev_pkt = NULL;
  1985. if (matroska->packets) {
  1986. int n;
  1987. for (n = 0; n < matroska->num_packets; n++) {
  1988. av_packet_unref(matroska->packets[n]);
  1989. av_free(matroska->packets[n]);
  1990. }
  1991. av_freep(&matroska->packets);
  1992. matroska->num_packets = 0;
  1993. }
  1994. }
  1995. static int matroska_parse_laces(MatroskaDemuxContext *matroska, uint8_t **buf,
  1996. int *buf_size, int type,
  1997. uint32_t **lace_buf, int *laces)
  1998. {
  1999. int res = 0, n, size = *buf_size;
  2000. uint8_t *data = *buf;
  2001. uint32_t *lace_size;
  2002. if (!type) {
  2003. *laces = 1;
  2004. *lace_buf = av_mallocz(sizeof(int));
  2005. if (!*lace_buf)
  2006. return AVERROR(ENOMEM);
  2007. *lace_buf[0] = size;
  2008. return 0;
  2009. }
  2010. assert(size > 0);
  2011. *laces = *data + 1;
  2012. data += 1;
  2013. size -= 1;
  2014. lace_size = av_mallocz(*laces * sizeof(int));
  2015. if (!lace_size)
  2016. return AVERROR(ENOMEM);
  2017. switch (type) {
  2018. case 0x1: /* Xiph lacing */
  2019. {
  2020. uint8_t temp;
  2021. uint32_t total = 0;
  2022. for (n = 0; res == 0 && n < *laces - 1; n++) {
  2023. while (1) {
  2024. if (size == 0) {
  2025. res = AVERROR_EOF;
  2026. break;
  2027. }
  2028. temp = *data;
  2029. lace_size[n] += temp;
  2030. data += 1;
  2031. size -= 1;
  2032. if (temp != 0xff)
  2033. break;
  2034. }
  2035. total += lace_size[n];
  2036. }
  2037. if (size <= total) {
  2038. res = AVERROR_INVALIDDATA;
  2039. break;
  2040. }
  2041. lace_size[n] = size - total;
  2042. break;
  2043. }
  2044. case 0x2: /* fixed-size lacing */
  2045. if (size % (*laces)) {
  2046. res = AVERROR_INVALIDDATA;
  2047. break;
  2048. }
  2049. for (n = 0; n < *laces; n++)
  2050. lace_size[n] = size / *laces;
  2051. break;
  2052. case 0x3: /* EBML lacing */
  2053. {
  2054. uint64_t num;
  2055. uint64_t total;
  2056. n = matroska_ebmlnum_uint(matroska, data, size, &num);
  2057. if (n < 0) {
  2058. av_log(matroska->ctx, AV_LOG_INFO,
  2059. "EBML block data error\n");
  2060. res = n;
  2061. break;
  2062. }
  2063. data += n;
  2064. size -= n;
  2065. total = lace_size[0] = num;
  2066. for (n = 1; res == 0 && n < *laces - 1; n++) {
  2067. int64_t snum;
  2068. int r;
  2069. r = matroska_ebmlnum_sint(matroska, data, size, &snum);
  2070. if (r < 0) {
  2071. av_log(matroska->ctx, AV_LOG_INFO,
  2072. "EBML block data error\n");
  2073. res = r;
  2074. break;
  2075. }
  2076. data += r;
  2077. size -= r;
  2078. lace_size[n] = lace_size[n - 1] + snum;
  2079. total += lace_size[n];
  2080. }
  2081. if (size <= total) {
  2082. res = AVERROR_INVALIDDATA;
  2083. break;
  2084. }
  2085. lace_size[*laces - 1] = size - total;
  2086. break;
  2087. }
  2088. }
  2089. *buf = data;
  2090. *lace_buf = lace_size;
  2091. *buf_size = size;
  2092. return res;
  2093. }
  2094. static int matroska_parse_rm_audio(MatroskaDemuxContext *matroska,
  2095. MatroskaTrack *track, AVStream *st,
  2096. uint8_t *data, int size, uint64_t timecode,
  2097. uint64_t duration, int64_t pos)
  2098. {
  2099. int a = st->codecpar->block_align;
  2100. int sps = track->audio.sub_packet_size;
  2101. int cfs = track->audio.coded_framesize;
  2102. int h = track->audio.sub_packet_h;
  2103. int y = track->audio.sub_packet_cnt;
  2104. int w = track->audio.frame_size;
  2105. int x;
  2106. if (!track->audio.pkt_cnt) {
  2107. if (track->audio.sub_packet_cnt == 0)
  2108. track->audio.buf_timecode = timecode;
  2109. if (st->codecpar->codec_id == AV_CODEC_ID_RA_288) {
  2110. if (size < cfs * h / 2) {
  2111. av_log(matroska->ctx, AV_LOG_ERROR,
  2112. "Corrupt int4 RM-style audio packet size\n");
  2113. return AVERROR_INVALIDDATA;
  2114. }
  2115. for (x = 0; x < h / 2; x++)
  2116. memcpy(track->audio.buf + x * 2 * w + y * cfs,
  2117. data + x * cfs, cfs);
  2118. } else if (st->codecpar->codec_id == AV_CODEC_ID_SIPR) {
  2119. if (size < w) {
  2120. av_log(matroska->ctx, AV_LOG_ERROR,
  2121. "Corrupt sipr RM-style audio packet size\n");
  2122. return AVERROR_INVALIDDATA;
  2123. }
  2124. memcpy(track->audio.buf + y * w, data, w);
  2125. } else {
  2126. if (size < sps * w / sps) {
  2127. av_log(matroska->ctx, AV_LOG_ERROR,
  2128. "Corrupt generic RM-style audio packet size\n");
  2129. return AVERROR_INVALIDDATA;
  2130. }
  2131. for (x = 0; x < w / sps; x++)
  2132. memcpy(track->audio.buf +
  2133. sps * (h * x + ((h + 1) / 2) * (y & 1) + (y >> 1)),
  2134. data + x * sps, sps);
  2135. }
  2136. if (++track->audio.sub_packet_cnt >= h) {
  2137. if (st->codecpar->codec_id == AV_CODEC_ID_SIPR)
  2138. ff_rm_reorder_sipr_data(track->audio.buf, h, w);
  2139. track->audio.sub_packet_cnt = 0;
  2140. track->audio.pkt_cnt = h * w / a;
  2141. }
  2142. }
  2143. while (track->audio.pkt_cnt) {
  2144. int ret;
  2145. AVPacket *pkt = av_mallocz(sizeof(AVPacket));
  2146. if (!pkt)
  2147. return AVERROR(ENOMEM);
  2148. ret = av_new_packet(pkt, a);
  2149. if (ret < 0) {
  2150. av_free(pkt);
  2151. return ret;
  2152. }
  2153. memcpy(pkt->data,
  2154. track->audio.buf + a * (h * w / a - track->audio.pkt_cnt--),
  2155. a);
  2156. pkt->pts = track->audio.buf_timecode;
  2157. track->audio.buf_timecode = AV_NOPTS_VALUE;
  2158. pkt->pos = pos;
  2159. pkt->stream_index = st->index;
  2160. dynarray_add(&matroska->packets, &matroska->num_packets, pkt);
  2161. }
  2162. return 0;
  2163. }
  2164. /* reconstruct full wavpack blocks from mangled matroska ones */
  2165. static int matroska_parse_wavpack(MatroskaTrack *track, uint8_t *src,
  2166. uint8_t **pdst, int *size)
  2167. {
  2168. uint8_t *dst = NULL;
  2169. int dstlen = 0;
  2170. int srclen = *size;
  2171. uint32_t samples;
  2172. uint16_t ver;
  2173. int ret, offset = 0;
  2174. if (srclen < 12 || track->stream->codecpar->extradata_size < 2)
  2175. return AVERROR_INVALIDDATA;
  2176. ver = AV_RL16(track->stream->codecpar->extradata);
  2177. samples = AV_RL32(src);
  2178. src += 4;
  2179. srclen -= 4;
  2180. while (srclen >= 8) {
  2181. int multiblock;
  2182. uint32_t blocksize;
  2183. uint8_t *tmp;
  2184. uint32_t flags = AV_RL32(src);
  2185. uint32_t crc = AV_RL32(src + 4);
  2186. src += 8;
  2187. srclen -= 8;
  2188. multiblock = (flags & 0x1800) != 0x1800;
  2189. if (multiblock) {
  2190. if (srclen < 4) {
  2191. ret = AVERROR_INVALIDDATA;
  2192. goto fail;
  2193. }
  2194. blocksize = AV_RL32(src);
  2195. src += 4;
  2196. srclen -= 4;
  2197. } else
  2198. blocksize = srclen;
  2199. if (blocksize > srclen) {
  2200. ret = AVERROR_INVALIDDATA;
  2201. goto fail;
  2202. }
  2203. tmp = av_realloc(dst, dstlen + blocksize + 32);
  2204. if (!tmp) {
  2205. ret = AVERROR(ENOMEM);
  2206. goto fail;
  2207. }
  2208. dst = tmp;
  2209. dstlen += blocksize + 32;
  2210. AV_WL32(dst + offset, MKTAG('w', 'v', 'p', 'k')); // tag
  2211. AV_WL32(dst + offset + 4, blocksize + 24); // blocksize - 8
  2212. AV_WL16(dst + offset + 8, ver); // version
  2213. AV_WL16(dst + offset + 10, 0); // track/index_no
  2214. AV_WL32(dst + offset + 12, 0); // total samples
  2215. AV_WL32(dst + offset + 16, 0); // block index
  2216. AV_WL32(dst + offset + 20, samples); // number of samples
  2217. AV_WL32(dst + offset + 24, flags); // flags
  2218. AV_WL32(dst + offset + 28, crc); // crc
  2219. memcpy(dst + offset + 32, src, blocksize); // block data
  2220. src += blocksize;
  2221. srclen -= blocksize;
  2222. offset += blocksize + 32;
  2223. }
  2224. *pdst = dst;
  2225. *size = dstlen;
  2226. return 0;
  2227. fail:
  2228. av_freep(&dst);
  2229. return ret;
  2230. }
  2231. static int matroska_parse_frame(MatroskaDemuxContext *matroska,
  2232. MatroskaTrack *track, AVStream *st,
  2233. uint8_t *data, int pkt_size,
  2234. uint64_t timecode, uint64_t duration,
  2235. int64_t pos, int is_keyframe)
  2236. {
  2237. MatroskaTrackEncoding *encodings = track->encodings.elem;
  2238. uint8_t *pkt_data = data;
  2239. int offset = 0, res;
  2240. AVPacket *pkt;
  2241. if (encodings && encodings->scope & 1) {
  2242. res = matroska_decode_buffer(&pkt_data, &pkt_size, track);
  2243. if (res < 0)
  2244. return res;
  2245. }
  2246. if (st->codecpar->codec_id == AV_CODEC_ID_WAVPACK) {
  2247. uint8_t *wv_data;
  2248. res = matroska_parse_wavpack(track, pkt_data, &wv_data, &pkt_size);
  2249. if (res < 0) {
  2250. av_log(matroska->ctx, AV_LOG_ERROR,
  2251. "Error parsing a wavpack block.\n");
  2252. goto fail;
  2253. }
  2254. if (pkt_data != data)
  2255. av_freep(&pkt_data);
  2256. pkt_data = wv_data;
  2257. }
  2258. if (st->codecpar->codec_id == AV_CODEC_ID_PRORES)
  2259. offset = 8;
  2260. pkt = av_mallocz(sizeof(AVPacket));
  2261. if (!pkt) {
  2262. av_freep(&pkt_data);
  2263. return AVERROR(ENOMEM);
  2264. }
  2265. /* XXX: prevent data copy... */
  2266. if (av_new_packet(pkt, pkt_size + offset) < 0) {
  2267. av_free(pkt);
  2268. av_freep(&pkt_data);
  2269. return AVERROR(ENOMEM);
  2270. }
  2271. if (st->codecpar->codec_id == AV_CODEC_ID_PRORES) {
  2272. uint8_t *buf = pkt->data;
  2273. bytestream_put_be32(&buf, pkt_size);
  2274. bytestream_put_be32(&buf, MKBETAG('i', 'c', 'p', 'f'));
  2275. }
  2276. memcpy(pkt->data + offset, pkt_data, pkt_size);
  2277. if (pkt_data != data)
  2278. av_free(pkt_data);
  2279. pkt->flags = is_keyframe;
  2280. pkt->stream_index = st->index;
  2281. if (track->ms_compat)
  2282. pkt->dts = timecode;
  2283. else
  2284. pkt->pts = timecode;
  2285. pkt->pos = pos;
  2286. if (track->type != MATROSKA_TRACK_TYPE_SUBTITLE || st->codecpar->codec_id == AV_CODEC_ID_SRT)
  2287. pkt->duration = duration;
  2288. #if FF_API_CONVERGENCE_DURATION
  2289. FF_DISABLE_DEPRECATION_WARNINGS
  2290. if (st->codecpar->codec_id == AV_CODEC_ID_SRT)
  2291. pkt->convergence_duration = duration;
  2292. FF_ENABLE_DEPRECATION_WARNINGS
  2293. #endif
  2294. if (st->codecpar->codec_id == AV_CODEC_ID_SSA)
  2295. matroska_fix_ass_packet(matroska, pkt, duration);
  2296. if (matroska->prev_pkt &&
  2297. timecode != AV_NOPTS_VALUE &&
  2298. matroska->prev_pkt->pts == timecode &&
  2299. matroska->prev_pkt->stream_index == st->index &&
  2300. st->codecpar->codec_id == AV_CODEC_ID_SSA)
  2301. matroska_merge_packets(matroska->prev_pkt, pkt);
  2302. else {
  2303. dynarray_add(&matroska->packets, &matroska->num_packets, pkt);
  2304. matroska->prev_pkt = pkt;
  2305. }
  2306. return 0;
  2307. fail:
  2308. if (pkt_data != data)
  2309. av_freep(&pkt_data);
  2310. return res;
  2311. }
  2312. static int matroska_parse_block(MatroskaDemuxContext *matroska, uint8_t *data,
  2313. int size, int64_t pos, uint64_t cluster_time,
  2314. uint64_t block_duration, int is_keyframe,
  2315. int64_t cluster_pos)
  2316. {
  2317. uint64_t timecode = AV_NOPTS_VALUE;
  2318. MatroskaTrack *track;
  2319. int res = 0;
  2320. AVStream *st;
  2321. int16_t block_time;
  2322. uint32_t *lace_size = NULL;
  2323. int n, flags, laces = 0;
  2324. uint64_t num, duration;
  2325. if ((n = matroska_ebmlnum_uint(matroska, data, size, &num)) < 0) {
  2326. av_log(matroska->ctx, AV_LOG_ERROR, "EBML block data error\n");
  2327. return n;
  2328. }
  2329. data += n;
  2330. size -= n;
  2331. track = matroska_find_track_by_num(matroska, num);
  2332. if (!track || !track->stream) {
  2333. av_log(matroska->ctx, AV_LOG_INFO,
  2334. "Invalid stream %"PRIu64" or size %u\n", num, size);
  2335. return AVERROR_INVALIDDATA;
  2336. } else if (size <= 3)
  2337. return 0;
  2338. st = track->stream;
  2339. if (st->discard >= AVDISCARD_ALL)
  2340. return res;
  2341. block_time = AV_RB16(data);
  2342. data += 2;
  2343. flags = *data++;
  2344. size -= 3;
  2345. if (is_keyframe == -1)
  2346. is_keyframe = flags & 0x80 ? AV_PKT_FLAG_KEY : 0;
  2347. if (cluster_time != (uint64_t) -1 &&
  2348. (block_time >= 0 || cluster_time >= -block_time)) {
  2349. timecode = cluster_time + block_time - track->codec_delay;
  2350. if (track->type == MATROSKA_TRACK_TYPE_SUBTITLE &&
  2351. timecode < track->end_timecode)
  2352. is_keyframe = 0; /* overlapping subtitles are not key frame */
  2353. if (is_keyframe)
  2354. av_add_index_entry(st, cluster_pos, timecode, 0, 0,
  2355. AVINDEX_KEYFRAME);
  2356. }
  2357. if (matroska->skip_to_keyframe &&
  2358. track->type != MATROSKA_TRACK_TYPE_SUBTITLE) {
  2359. if (!is_keyframe || timecode < matroska->skip_to_timecode)
  2360. return res;
  2361. matroska->skip_to_keyframe = 0;
  2362. }
  2363. res = matroska_parse_laces(matroska, &data, &size, (flags & 0x06) >> 1,
  2364. &lace_size, &laces);
  2365. if (res)
  2366. goto end;
  2367. if (block_duration != AV_NOPTS_VALUE) {
  2368. duration = block_duration / laces;
  2369. if (block_duration != duration * laces) {
  2370. av_log(matroska->ctx, AV_LOG_WARNING,
  2371. "Incorrect block_duration, possibly corrupted container");
  2372. }
  2373. } else {
  2374. duration = track->default_duration / matroska->time_scale;
  2375. block_duration = duration * laces;
  2376. }
  2377. if (timecode != AV_NOPTS_VALUE)
  2378. track->end_timecode =
  2379. FFMAX(track->end_timecode, timecode + block_duration);
  2380. for (n = 0; n < laces; n++) {
  2381. if ((st->codecpar->codec_id == AV_CODEC_ID_RA_288 ||
  2382. st->codecpar->codec_id == AV_CODEC_ID_COOK ||
  2383. st->codecpar->codec_id == AV_CODEC_ID_SIPR ||
  2384. st->codecpar->codec_id == AV_CODEC_ID_ATRAC3) &&
  2385. st->codecpar->block_align && track->audio.sub_packet_size) {
  2386. res = matroska_parse_rm_audio(matroska, track, st, data,
  2387. lace_size[n],
  2388. timecode, duration, pos);
  2389. if (res)
  2390. goto end;
  2391. } else {
  2392. res = matroska_parse_frame(matroska, track, st, data, lace_size[n],
  2393. timecode, duration, pos,
  2394. !n ? is_keyframe : 0);
  2395. if (res)
  2396. goto end;
  2397. }
  2398. if (timecode != AV_NOPTS_VALUE)
  2399. timecode = duration ? timecode + duration : AV_NOPTS_VALUE;
  2400. data += lace_size[n];
  2401. }
  2402. end:
  2403. av_free(lace_size);
  2404. return res;
  2405. }
  2406. static int matroska_parse_cluster_incremental(MatroskaDemuxContext *matroska)
  2407. {
  2408. EbmlList *blocks_list;
  2409. MatroskaBlock *blocks;
  2410. int i, res;
  2411. res = ebml_parse(matroska,
  2412. matroska_cluster_incremental_parsing,
  2413. &matroska->current_cluster);
  2414. if (res == 1) {
  2415. /* New Cluster */
  2416. if (matroska->current_cluster_pos)
  2417. ebml_level_end(matroska);
  2418. ebml_free(matroska_cluster, &matroska->current_cluster);
  2419. memset(&matroska->current_cluster, 0, sizeof(MatroskaCluster));
  2420. matroska->current_cluster_num_blocks = 0;
  2421. matroska->current_cluster_pos = avio_tell(matroska->ctx->pb);
  2422. matroska->prev_pkt = NULL;
  2423. /* sizeof the ID which was already read */
  2424. if (matroska->current_id)
  2425. matroska->current_cluster_pos -= 4;
  2426. res = ebml_parse(matroska,
  2427. matroska_clusters_incremental,
  2428. &matroska->current_cluster);
  2429. /* Try parsing the block again. */
  2430. if (res == 1)
  2431. res = ebml_parse(matroska,
  2432. matroska_cluster_incremental_parsing,
  2433. &matroska->current_cluster);
  2434. }
  2435. if (!res &&
  2436. matroska->current_cluster_num_blocks <
  2437. matroska->current_cluster.blocks.nb_elem) {
  2438. blocks_list = &matroska->current_cluster.blocks;
  2439. blocks = blocks_list->elem;
  2440. matroska->current_cluster_num_blocks = blocks_list->nb_elem;
  2441. i = blocks_list->nb_elem - 1;
  2442. if (blocks[i].bin.size > 0 && blocks[i].bin.data) {
  2443. int is_keyframe = blocks[i].non_simple ? !blocks[i].reference : -1;
  2444. if (!blocks[i].non_simple)
  2445. blocks[i].duration = AV_NOPTS_VALUE;
  2446. res = matroska_parse_block(matroska, blocks[i].bin.data,
  2447. blocks[i].bin.size, blocks[i].bin.pos,
  2448. matroska->current_cluster.timecode,
  2449. blocks[i].duration, is_keyframe,
  2450. matroska->current_cluster_pos);
  2451. }
  2452. }
  2453. if (res < 0)
  2454. matroska->done = 1;
  2455. return res;
  2456. }
  2457. static int matroska_parse_cluster(MatroskaDemuxContext *matroska)
  2458. {
  2459. MatroskaCluster cluster = { 0 };
  2460. EbmlList *blocks_list;
  2461. MatroskaBlock *blocks;
  2462. int i, res;
  2463. int64_t pos;
  2464. if (!matroska->contains_ssa)
  2465. return matroska_parse_cluster_incremental(matroska);
  2466. pos = avio_tell(matroska->ctx->pb);
  2467. matroska->prev_pkt = NULL;
  2468. if (matroska->current_id)
  2469. pos -= 4; /* sizeof the ID which was already read */
  2470. res = ebml_parse(matroska, matroska_clusters, &cluster);
  2471. blocks_list = &cluster.blocks;
  2472. blocks = blocks_list->elem;
  2473. for (i = 0; i < blocks_list->nb_elem && !res; i++)
  2474. if (blocks[i].bin.size > 0 && blocks[i].bin.data) {
  2475. int is_keyframe = blocks[i].non_simple ? !blocks[i].reference : -1;
  2476. if (!blocks[i].non_simple)
  2477. blocks[i].duration = AV_NOPTS_VALUE;
  2478. res = matroska_parse_block(matroska, blocks[i].bin.data,
  2479. blocks[i].bin.size, blocks[i].bin.pos,
  2480. cluster.timecode, blocks[i].duration,
  2481. is_keyframe, pos);
  2482. }
  2483. ebml_free(matroska_cluster, &cluster);
  2484. return res;
  2485. }
  2486. static int matroska_read_packet(AVFormatContext *s, AVPacket *pkt)
  2487. {
  2488. MatroskaDemuxContext *matroska = s->priv_data;
  2489. int ret = 0;
  2490. while (!ret && matroska_deliver_packet(matroska, pkt)) {
  2491. int64_t pos = avio_tell(matroska->ctx->pb);
  2492. if (matroska->done)
  2493. return AVERROR_EOF;
  2494. if (matroska_parse_cluster(matroska) < 0)
  2495. ret = matroska_resync(matroska, pos);
  2496. }
  2497. if (ret == AVERROR_INVALIDDATA && pkt->data) {
  2498. pkt->flags |= AV_PKT_FLAG_CORRUPT;
  2499. return 0;
  2500. }
  2501. return ret;
  2502. }
  2503. static int matroska_read_seek(AVFormatContext *s, int stream_index,
  2504. int64_t timestamp, int flags)
  2505. {
  2506. MatroskaDemuxContext *matroska = s->priv_data;
  2507. MatroskaTrack *tracks = NULL;
  2508. AVStream *st = s->streams[stream_index];
  2509. int i, index, index_sub, index_min;
  2510. /* Parse the CUES now since we need the index data to seek. */
  2511. if (matroska->cues_parsing_deferred) {
  2512. matroska_parse_cues(matroska);
  2513. matroska->cues_parsing_deferred = 0;
  2514. }
  2515. if (!st->nb_index_entries)
  2516. return 0;
  2517. timestamp = FFMAX(timestamp, st->index_entries[0].timestamp);
  2518. if ((index = av_index_search_timestamp(st, timestamp, flags)) < 0) {
  2519. avio_seek(s->pb, st->index_entries[st->nb_index_entries - 1].pos,
  2520. SEEK_SET);
  2521. matroska->current_id = 0;
  2522. while ((index = av_index_search_timestamp(st, timestamp, flags)) < 0) {
  2523. matroska_clear_queue(matroska);
  2524. if (matroska_parse_cluster(matroska) < 0)
  2525. break;
  2526. }
  2527. }
  2528. matroska_clear_queue(matroska);
  2529. if (index < 0)
  2530. return 0;
  2531. index_min = index;
  2532. tracks = matroska->tracks.elem;
  2533. for (i = 0; i < matroska->tracks.nb_elem; i++) {
  2534. tracks[i].audio.pkt_cnt = 0;
  2535. tracks[i].audio.sub_packet_cnt = 0;
  2536. tracks[i].audio.buf_timecode = AV_NOPTS_VALUE;
  2537. tracks[i].end_timecode = 0;
  2538. if (tracks[i].type == MATROSKA_TRACK_TYPE_SUBTITLE &&
  2539. tracks[i].stream->discard != AVDISCARD_ALL) {
  2540. index_sub = av_index_search_timestamp(
  2541. tracks[i].stream, st->index_entries[index].timestamp,
  2542. AVSEEK_FLAG_BACKWARD);
  2543. if (index_sub >= 0 &&
  2544. st->index_entries[index_sub].pos < st->index_entries[index_min].pos &&
  2545. st->index_entries[index].timestamp -
  2546. st->index_entries[index_sub].timestamp < 30000000000 / matroska->time_scale)
  2547. index_min = index_sub;
  2548. }
  2549. }
  2550. avio_seek(s->pb, st->index_entries[index_min].pos, SEEK_SET);
  2551. matroska->current_id = 0;
  2552. matroska->skip_to_keyframe = !(flags & AVSEEK_FLAG_ANY);
  2553. matroska->skip_to_timecode = st->index_entries[index].timestamp;
  2554. matroska->done = 0;
  2555. ff_update_cur_dts(s, st, st->index_entries[index].timestamp);
  2556. return 0;
  2557. }
  2558. static int matroska_read_close(AVFormatContext *s)
  2559. {
  2560. MatroskaDemuxContext *matroska = s->priv_data;
  2561. MatroskaTrack *tracks = matroska->tracks.elem;
  2562. int n;
  2563. matroska_clear_queue(matroska);
  2564. for (n = 0; n < matroska->tracks.nb_elem; n++)
  2565. if (tracks[n].type == MATROSKA_TRACK_TYPE_AUDIO)
  2566. av_free(tracks[n].audio.buf);
  2567. ebml_free(matroska_cluster, &matroska->current_cluster);
  2568. ebml_free(matroska_segment, matroska);
  2569. return 0;
  2570. }
  2571. AVInputFormat ff_matroska_demuxer = {
  2572. .name = "matroska,webm",
  2573. .long_name = NULL_IF_CONFIG_SMALL("Matroska / WebM"),
  2574. .extensions = "mkv,mk3d,mka,mks",
  2575. .priv_data_size = sizeof(MatroskaDemuxContext),
  2576. .read_probe = matroska_probe,
  2577. .read_header = matroska_read_header,
  2578. .read_packet = matroska_read_packet,
  2579. .read_close = matroska_read_close,
  2580. .read_seek = matroska_read_seek,
  2581. .mime_type = "audio/webm,audio/x-matroska,video/webm,video/x-matroska"
  2582. };