You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

337 lines
9.5KB

  1. ;*****************************************************************************
  2. ;* SIMD-optimized motion compensation estimation
  3. ;*****************************************************************************
  4. ;* Copyright (c) 2000, 2001 Fabrice Bellard
  5. ;* Copyright (c) 2002-2004 Michael Niedermayer <michaelni@gmx.at>
  6. ;*
  7. ;* This file is part of Libav.
  8. ;*
  9. ;* Libav is free software; you can redistribute it and/or
  10. ;* modify it under the terms of the GNU Lesser General Public
  11. ;* License as published by the Free Software Foundation; either
  12. ;* version 2.1 of the License, or (at your option) any later version.
  13. ;*
  14. ;* Libav is distributed in the hope that it will be useful,
  15. ;* but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. ;* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. ;* Lesser General Public License for more details.
  18. ;*
  19. ;* You should have received a copy of the GNU Lesser General Public
  20. ;* License along with Libav; if not, write to the Free Software
  21. ;* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. ;*****************************************************************************
  23. %include "libavutil/x86/x86util.asm"
  24. SECTION .text
  25. %macro DIFF_PIXELS_1 4
  26. movh %1, %3
  27. movh %2, %4
  28. punpcklbw %2, %1
  29. punpcklbw %1, %1
  30. psubw %1, %2
  31. %endmacro
  32. ; %1=uint8_t *pix1, %2=uint8_t *pix2, %3=static offset, %4=stride, %5=stride*3
  33. ; %6=temporary storage location
  34. ; this macro requires $mmsize stack space (aligned) on %6 (except on SSE+x86-64)
  35. %macro DIFF_PIXELS_8 6
  36. DIFF_PIXELS_1 m0, m7, [%1 +%3], [%2 +%3]
  37. DIFF_PIXELS_1 m1, m7, [%1+%4 +%3], [%2+%4 +%3]
  38. DIFF_PIXELS_1 m2, m7, [%1+%4*2+%3], [%2+%4*2+%3]
  39. add %1, %5
  40. add %2, %5
  41. DIFF_PIXELS_1 m3, m7, [%1 +%3], [%2 +%3]
  42. DIFF_PIXELS_1 m4, m7, [%1+%4 +%3], [%2+%4 +%3]
  43. DIFF_PIXELS_1 m5, m7, [%1+%4*2+%3], [%2+%4*2+%3]
  44. DIFF_PIXELS_1 m6, m7, [%1+%5 +%3], [%2+%5 +%3]
  45. %ifdef m8
  46. DIFF_PIXELS_1 m7, m8, [%1+%4*4+%3], [%2+%4*4+%3]
  47. %else
  48. mova [%6], m0
  49. DIFF_PIXELS_1 m7, m0, [%1+%4*4+%3], [%2+%4*4+%3]
  50. mova m0, [%6]
  51. %endif
  52. sub %1, %5
  53. sub %2, %5
  54. %endmacro
  55. %macro HADAMARD8 0
  56. SUMSUB_BADC w, 0, 1, 2, 3
  57. SUMSUB_BADC w, 4, 5, 6, 7
  58. SUMSUB_BADC w, 0, 2, 1, 3
  59. SUMSUB_BADC w, 4, 6, 5, 7
  60. SUMSUB_BADC w, 0, 4, 1, 5
  61. SUMSUB_BADC w, 2, 6, 3, 7
  62. %endmacro
  63. %macro ABS1_SUM 3
  64. ABS1 %1, %2
  65. paddusw %3, %1
  66. %endmacro
  67. %macro ABS2_SUM 6
  68. ABS2 %1, %2, %3, %4
  69. paddusw %5, %1
  70. paddusw %6, %2
  71. %endmacro
  72. %macro ABS_SUM_8x8_64 1
  73. ABS2 m0, m1, m8, m9
  74. ABS2_SUM m2, m3, m8, m9, m0, m1
  75. ABS2_SUM m4, m5, m8, m9, m0, m1
  76. ABS2_SUM m6, m7, m8, m9, m0, m1
  77. paddusw m0, m1
  78. %endmacro
  79. %macro ABS_SUM_8x8_32 1
  80. mova [%1], m7
  81. ABS1 m0, m7
  82. ABS1 m1, m7
  83. ABS1_SUM m2, m7, m0
  84. ABS1_SUM m3, m7, m1
  85. ABS1_SUM m4, m7, m0
  86. ABS1_SUM m5, m7, m1
  87. ABS1_SUM m6, m7, m0
  88. mova m2, [%1]
  89. ABS1_SUM m2, m7, m1
  90. paddusw m0, m1
  91. %endmacro
  92. ; FIXME: HSUM saturates at 64k, while an 8x8 hadamard or dct block can get up to
  93. ; about 100k on extreme inputs. But that's very unlikely to occur in natural video,
  94. ; and it's even more unlikely to not have any alternative mvs/modes with lower cost.
  95. %macro HSUM 3
  96. %if cpuflag(sse2)
  97. movhlps %2, %1
  98. paddusw %1, %2
  99. pshuflw %2, %1, 0xE
  100. paddusw %1, %2
  101. pshuflw %2, %1, 0x1
  102. paddusw %1, %2
  103. movd %3, %1
  104. %elif cpuflag(mmxext)
  105. pshufw %2, %1, 0xE
  106. paddusw %1, %2
  107. pshufw %2, %1, 0x1
  108. paddusw %1, %2
  109. movd %3, %1
  110. %elif cpuflag(mmx)
  111. mova %2, %1
  112. psrlq %1, 32
  113. paddusw %1, %2
  114. mova %2, %1
  115. psrlq %1, 16
  116. paddusw %1, %2
  117. movd %3, %1
  118. %endif
  119. %endmacro
  120. %macro STORE4 5
  121. mova [%1+mmsize*0], %2
  122. mova [%1+mmsize*1], %3
  123. mova [%1+mmsize*2], %4
  124. mova [%1+mmsize*3], %5
  125. %endmacro
  126. %macro LOAD4 5
  127. mova %2, [%1+mmsize*0]
  128. mova %3, [%1+mmsize*1]
  129. mova %4, [%1+mmsize*2]
  130. mova %5, [%1+mmsize*3]
  131. %endmacro
  132. %macro hadamard8_16_wrapper 2
  133. cglobal hadamard8_diff, 4, 4, %1
  134. %ifndef m8
  135. %assign pad %2*mmsize-(4+stack_offset&(mmsize-1))
  136. SUB rsp, pad
  137. %endif
  138. call hadamard8x8_diff %+ SUFFIX
  139. %ifndef m8
  140. ADD rsp, pad
  141. %endif
  142. RET
  143. cglobal hadamard8_diff16, 5, 6, %1
  144. %ifndef m8
  145. %assign pad %2*mmsize-(4+stack_offset&(mmsize-1))
  146. SUB rsp, pad
  147. %endif
  148. call hadamard8x8_diff %+ SUFFIX
  149. mov r5d, eax
  150. add r1, 8
  151. add r2, 8
  152. call hadamard8x8_diff %+ SUFFIX
  153. add r5d, eax
  154. cmp r4d, 16
  155. jne .done
  156. lea r1, [r1+r3*8-8]
  157. lea r2, [r2+r3*8-8]
  158. call hadamard8x8_diff %+ SUFFIX
  159. add r5d, eax
  160. add r1, 8
  161. add r2, 8
  162. call hadamard8x8_diff %+ SUFFIX
  163. add r5d, eax
  164. .done:
  165. mov eax, r5d
  166. %ifndef m8
  167. ADD rsp, pad
  168. %endif
  169. RET
  170. %endmacro
  171. %macro HADAMARD8_DIFF 0-1
  172. %if cpuflag(sse2)
  173. hadamard8x8_diff %+ SUFFIX:
  174. lea r0, [r3*3]
  175. DIFF_PIXELS_8 r1, r2, 0, r3, r0, rsp+gprsize
  176. HADAMARD8
  177. %if ARCH_X86_64
  178. TRANSPOSE8x8W 0, 1, 2, 3, 4, 5, 6, 7, 8
  179. %else
  180. TRANSPOSE8x8W 0, 1, 2, 3, 4, 5, 6, 7, [rsp+gprsize], [rsp+mmsize+gprsize]
  181. %endif
  182. HADAMARD8
  183. ABS_SUM_8x8 rsp+gprsize
  184. HSUM m0, m1, eax
  185. and eax, 0xFFFF
  186. ret
  187. hadamard8_16_wrapper %1, 3
  188. %elif cpuflag(mmx)
  189. ALIGN 16
  190. ; int ff_hadamard8_diff_ ## cpu(MpegEncContext *s, uint8_t *src1,
  191. ; uint8_t *src2, int stride, int h)
  192. ; r0 = void *s = unused, int h = unused (always 8)
  193. ; note how r1, r2 and r3 are not clobbered in this function, so 16x16
  194. ; can simply call this 2x2x (and that's why we access rsp+gprsize
  195. ; everywhere, which is rsp of calling func
  196. hadamard8x8_diff %+ SUFFIX:
  197. lea r0, [r3*3]
  198. ; first 4x8 pixels
  199. DIFF_PIXELS_8 r1, r2, 0, r3, r0, rsp+gprsize+0x60
  200. HADAMARD8
  201. mova [rsp+gprsize+0x60], m7
  202. TRANSPOSE4x4W 0, 1, 2, 3, 7
  203. STORE4 rsp+gprsize, m0, m1, m2, m3
  204. mova m7, [rsp+gprsize+0x60]
  205. TRANSPOSE4x4W 4, 5, 6, 7, 0
  206. STORE4 rsp+gprsize+0x40, m4, m5, m6, m7
  207. ; second 4x8 pixels
  208. DIFF_PIXELS_8 r1, r2, 4, r3, r0, rsp+gprsize+0x60
  209. HADAMARD8
  210. mova [rsp+gprsize+0x60], m7
  211. TRANSPOSE4x4W 0, 1, 2, 3, 7
  212. STORE4 rsp+gprsize+0x20, m0, m1, m2, m3
  213. mova m7, [rsp+gprsize+0x60]
  214. TRANSPOSE4x4W 4, 5, 6, 7, 0
  215. LOAD4 rsp+gprsize+0x40, m0, m1, m2, m3
  216. HADAMARD8
  217. ABS_SUM_8x8_32 rsp+gprsize+0x60
  218. mova [rsp+gprsize+0x60], m0
  219. LOAD4 rsp+gprsize , m0, m1, m2, m3
  220. LOAD4 rsp+gprsize+0x20, m4, m5, m6, m7
  221. HADAMARD8
  222. ABS_SUM_8x8_32 rsp+gprsize
  223. paddusw m0, [rsp+gprsize+0x60]
  224. HSUM m0, m1, eax
  225. and rax, 0xFFFF
  226. ret
  227. hadamard8_16_wrapper 0, 14
  228. %endif
  229. %endmacro
  230. INIT_MMX mmx
  231. HADAMARD8_DIFF
  232. INIT_MMX mmxext
  233. HADAMARD8_DIFF
  234. INIT_XMM sse2
  235. %if ARCH_X86_64
  236. %define ABS_SUM_8x8 ABS_SUM_8x8_64
  237. %else
  238. %define ABS_SUM_8x8 ABS_SUM_8x8_32
  239. %endif
  240. HADAMARD8_DIFF 10
  241. INIT_XMM ssse3
  242. %define ABS_SUM_8x8 ABS_SUM_8x8_64
  243. HADAMARD8_DIFF 9
  244. INIT_XMM sse2
  245. ; int ff_sse16_sse2(MpegEncContext *v, uint8_t *pix1, uint8_t *pix2,
  246. ; int line_size, int h);
  247. cglobal sse16, 5, 5, 8
  248. shr r4d, 1
  249. pxor m0, m0 ; mm0 = 0
  250. pxor m7, m7 ; mm7 holds the sum
  251. .next2lines: ; FIXME why are these unaligned movs? pix1[] is aligned
  252. movu m1, [r1 ] ; mm1 = pix1[0][0-15]
  253. movu m2, [r2 ] ; mm2 = pix2[0][0-15]
  254. movu m3, [r1+r3] ; mm3 = pix1[1][0-15]
  255. movu m4, [r2+r3] ; mm4 = pix2[1][0-15]
  256. ; todo: mm1-mm2, mm3-mm4
  257. ; algo: subtract mm1 from mm2 with saturation and vice versa
  258. ; OR the result to get the absolute difference
  259. mova m5, m1
  260. mova m6, m3
  261. psubusb m1, m2
  262. psubusb m3, m4
  263. psubusb m2, m5
  264. psubusb m4, m6
  265. por m2, m1
  266. por m4, m3
  267. ; now convert to 16-bit vectors so we can square them
  268. mova m1, m2
  269. mova m3, m4
  270. punpckhbw m2, m0
  271. punpckhbw m4, m0
  272. punpcklbw m1, m0 ; mm1 not spread over (mm1,mm2)
  273. punpcklbw m3, m0 ; mm4 not spread over (mm3,mm4)
  274. pmaddwd m2, m2
  275. pmaddwd m4, m4
  276. pmaddwd m1, m1
  277. pmaddwd m3, m3
  278. lea r1, [r1+r3*2] ; pix1 += 2*line_size
  279. lea r2, [r2+r3*2] ; pix2 += 2*line_size
  280. paddd m1, m2
  281. paddd m3, m4
  282. paddd m7, m1
  283. paddd m7, m3
  284. dec r4
  285. jnz .next2lines
  286. mova m1, m7
  287. psrldq m7, 8 ; shift hi qword to lo
  288. paddd m7, m1
  289. mova m1, m7
  290. psrldq m7, 4 ; shift hi dword to lo
  291. paddd m7, m1
  292. movd eax, m7 ; return value
  293. RET