You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1079 lines
25KB

  1. ;******************************************************************************
  2. ;* FFT transform with SSE/3DNow optimizations
  3. ;* Copyright (c) 2008 Loren Merritt
  4. ;* Copyright (c) 2011 Vitor Sessak
  5. ;*
  6. ;* This algorithm (though not any of the implementation details) is
  7. ;* based on libdjbfft by D. J. Bernstein.
  8. ;*
  9. ;* This file is part of Libav.
  10. ;*
  11. ;* Libav is free software; you can redistribute it and/or
  12. ;* modify it under the terms of the GNU Lesser General Public
  13. ;* License as published by the Free Software Foundation; either
  14. ;* version 2.1 of the License, or (at your option) any later version.
  15. ;*
  16. ;* Libav is distributed in the hope that it will be useful,
  17. ;* but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. ;* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. ;* Lesser General Public License for more details.
  20. ;*
  21. ;* You should have received a copy of the GNU Lesser General Public
  22. ;* License along with Libav; if not, write to the Free Software
  23. ;* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  24. ;******************************************************************************
  25. ; These functions are not individually interchangeable with the C versions.
  26. ; While C takes arrays of FFTComplex, SSE/3DNow leave intermediate results
  27. ; in blocks as conventient to the vector size.
  28. ; i.e. {4x real, 4x imaginary, 4x real, ...} (or 2x respectively)
  29. %include "libavutil/x86/x86util.asm"
  30. %if ARCH_X86_64
  31. %define pointer resq
  32. %else
  33. %define pointer resd
  34. %endif
  35. struc FFTContext
  36. .nbits: resd 1
  37. .reverse: resd 1
  38. .revtab: pointer 1
  39. .tmpbuf: pointer 1
  40. .mdctsize: resd 1
  41. .mdctbits: resd 1
  42. .tcos: pointer 1
  43. .tsin: pointer 1
  44. .fftperm: pointer 1
  45. .fftcalc: pointer 1
  46. .imdctcalc:pointer 1
  47. .imdcthalf:pointer 1
  48. endstruc
  49. SECTION_RODATA 32
  50. %define M_SQRT1_2 0.70710678118654752440
  51. %define M_COS_PI_1_8 0.923879532511287
  52. %define M_COS_PI_3_8 0.38268343236509
  53. ps_cos16_1: dd 1.0, M_COS_PI_1_8, M_SQRT1_2, M_COS_PI_3_8, 1.0, M_COS_PI_1_8, M_SQRT1_2, M_COS_PI_3_8
  54. ps_cos16_2: dd 0, M_COS_PI_3_8, M_SQRT1_2, M_COS_PI_1_8, 0, -M_COS_PI_3_8, -M_SQRT1_2, -M_COS_PI_1_8
  55. ps_root2: times 8 dd M_SQRT1_2
  56. ps_root2mppm: dd -M_SQRT1_2, M_SQRT1_2, M_SQRT1_2, -M_SQRT1_2, -M_SQRT1_2, M_SQRT1_2, M_SQRT1_2, -M_SQRT1_2
  57. ps_p1p1m1p1: dd 0, 0, 1<<31, 0, 0, 0, 1<<31, 0
  58. perm1: dd 0x00, 0x02, 0x03, 0x01, 0x03, 0x00, 0x02, 0x01
  59. perm2: dd 0x00, 0x01, 0x02, 0x03, 0x01, 0x00, 0x02, 0x03
  60. ps_p1p1m1p1root2: dd 1.0, 1.0, -1.0, 1.0, M_SQRT1_2, M_SQRT1_2, M_SQRT1_2, M_SQRT1_2
  61. ps_m1m1p1m1p1m1m1m1: dd 1<<31, 1<<31, 0, 1<<31, 0, 1<<31, 1<<31, 1<<31
  62. ps_m1m1m1m1: times 4 dd 1<<31
  63. ps_m1p1: dd 1<<31, 0
  64. %assign i 16
  65. %rep 13
  66. cextern cos_ %+ i
  67. %assign i i<<1
  68. %endrep
  69. %if ARCH_X86_64
  70. %define pointer dq
  71. %else
  72. %define pointer dd
  73. %endif
  74. %macro IF0 1+
  75. %endmacro
  76. %macro IF1 1+
  77. %1
  78. %endmacro
  79. SECTION .text
  80. %macro T2_3DNOW 4 ; z0, z1, mem0, mem1
  81. mova %1, %3
  82. mova %2, %1
  83. pfadd %1, %4
  84. pfsub %2, %4
  85. %endmacro
  86. %macro T4_3DNOW 6 ; z0, z1, z2, z3, tmp0, tmp1
  87. mova %5, %3
  88. pfsub %3, %4
  89. pfadd %5, %4 ; {t6,t5}
  90. pxor %3, [ps_m1p1] ; {t8,t7}
  91. mova %6, %1
  92. movd [r0+12], %3
  93. punpckhdq %3, [r0+8]
  94. pfadd %1, %5 ; {r0,i0}
  95. pfsub %6, %5 ; {r2,i2}
  96. mova %4, %2
  97. pfadd %2, %3 ; {r1,i1}
  98. pfsub %4, %3 ; {r3,i3}
  99. SWAP %3, %6
  100. %endmacro
  101. ; in: %1 = {r0,i0,r2,i2,r4,i4,r6,i6}
  102. ; %2 = {r1,i1,r3,i3,r5,i5,r7,i7}
  103. ; %3, %4, %5 tmp
  104. ; out: %1 = {r0,r1,r2,r3,i0,i1,i2,i3}
  105. ; %2 = {r4,r5,r6,r7,i4,i5,i6,i7}
  106. %macro T8_AVX 5
  107. vsubps %5, %1, %2 ; v = %1 - %2
  108. vaddps %3, %1, %2 ; w = %1 + %2
  109. vmulps %2, %5, [ps_p1p1m1p1root2] ; v *= vals1
  110. vpermilps %2, %2, [perm1]
  111. vblendps %1, %2, %3, 0x33 ; q = {w1,w2,v4,v2,w5,w6,v7,v6}
  112. vshufps %5, %3, %2, 0x4e ; r = {w3,w4,v1,v3,w7,w8,v8,v5}
  113. vsubps %4, %5, %1 ; s = r - q
  114. vaddps %1, %5, %1 ; u = r + q
  115. vpermilps %1, %1, [perm2] ; k = {u1,u2,u3,u4,u6,u5,u7,u8}
  116. vshufps %5, %4, %1, 0xbb
  117. vshufps %3, %4, %1, 0xee
  118. vperm2f128 %3, %3, %5, 0x13
  119. vxorps %4, %4, [ps_m1m1p1m1p1m1m1m1] ; s *= {1,1,-1,-1,1,-1,-1,-1}
  120. vshufps %2, %1, %4, 0xdd
  121. vshufps %1, %1, %4, 0x88
  122. vperm2f128 %4, %2, %1, 0x02 ; v = {k1,k3,s1,s3,k2,k4,s2,s4}
  123. vperm2f128 %1, %1, %2, 0x13 ; w = {k6,k8,s6,s8,k5,k7,s5,s7}
  124. vsubps %5, %1, %3
  125. vblendps %1, %5, %1, 0x55 ; w -= {0,s7,0,k7,0,s8,0,k8}
  126. vsubps %2, %4, %1 ; %2 = v - w
  127. vaddps %1, %4, %1 ; %1 = v + w
  128. %endmacro
  129. ; In SSE mode do one fft4 transforms
  130. ; in: %1={r0,i0,r2,i2} %2={r1,i1,r3,i3}
  131. ; out: %1={r0,r1,r2,r3} %2={i0,i1,i2,i3}
  132. ;
  133. ; In AVX mode do two fft4 transforms
  134. ; in: %1={r0,i0,r2,i2,r4,i4,r6,i6} %2={r1,i1,r3,i3,r5,i5,r7,i7}
  135. ; out: %1={r0,r1,r2,r3,r4,r5,r6,r7} %2={i0,i1,i2,i3,i4,i5,i6,i7}
  136. %macro T4_SSE 3
  137. subps %3, %1, %2 ; {t3,t4,-t8,t7}
  138. addps %1, %1, %2 ; {t1,t2,t6,t5}
  139. xorps %3, %3, [ps_p1p1m1p1]
  140. shufps %2, %1, %3, 0xbe ; {t6,t5,t7,t8}
  141. shufps %1, %1, %3, 0x44 ; {t1,t2,t3,t4}
  142. subps %3, %1, %2 ; {r2,i2,r3,i3}
  143. addps %1, %1, %2 ; {r0,i0,r1,i1}
  144. shufps %2, %1, %3, 0xdd ; {i0,i1,i2,i3}
  145. shufps %1, %1, %3, 0x88 ; {r0,r1,r2,r3}
  146. %endmacro
  147. ; In SSE mode do one FFT8
  148. ; in: %1={r0,r1,r2,r3} %2={i0,i1,i2,i3} %3={r4,i4,r6,i6} %4={r5,i5,r7,i7}
  149. ; out: %1={r0,r1,r2,r3} %2={i0,i1,i2,i3} %1={r4,r5,r6,r7} %2={i4,i5,i6,i7}
  150. ;
  151. ; In AVX mode do two FFT8
  152. ; in: %1={r0,i0,r2,i2,r8, i8, r10,i10} %2={r1,i1,r3,i3,r9, i9, r11,i11}
  153. ; %3={r4,i4,r6,i6,r12,i12,r14,i14} %4={r5,i5,r7,i7,r13,i13,r15,i15}
  154. ; out: %1={r0,r1,r2,r3,r8, r9, r10,r11} %2={i0,i1,i2,i3,i8, i9, i10,i11}
  155. ; %3={r4,r5,r6,r7,r12,r13,r14,r15} %4={i4,i5,i6,i7,i12,i13,i14,i15}
  156. %macro T8_SSE 6
  157. addps %6, %3, %4 ; {t1,t2,t3,t4}
  158. subps %3, %3, %4 ; {r5,i5,r7,i7}
  159. shufps %4, %3, %3, 0xb1 ; {i5,r5,i7,r7}
  160. mulps %3, %3, [ps_root2mppm] ; {-r5,i5,r7,-i7}
  161. mulps %4, %4, [ps_root2]
  162. addps %3, %3, %4 ; {t8,t7,ta,t9}
  163. shufps %4, %6, %3, 0x9c ; {t1,t4,t7,ta}
  164. shufps %6, %6, %3, 0x36 ; {t3,t2,t9,t8}
  165. subps %3, %6, %4 ; {t6,t5,tc,tb}
  166. addps %6, %6, %4 ; {t1,t2,t9,ta}
  167. shufps %5, %6, %3, 0x8d ; {t2,ta,t6,tc}
  168. shufps %6, %6, %3, 0xd8 ; {t1,t9,t5,tb}
  169. subps %3, %1, %6 ; {r4,r5,r6,r7}
  170. addps %1, %1, %6 ; {r0,r1,r2,r3}
  171. subps %4, %2, %5 ; {i4,i5,i6,i7}
  172. addps %2, %2, %5 ; {i0,i1,i2,i3}
  173. %endmacro
  174. %macro INTERL 5
  175. %if cpuflag(avx)
  176. vunpckhps %3, %2, %1
  177. vunpcklps %2, %2, %1
  178. vextractf128 %4(%5), %2, 0
  179. vextractf128 %4 %+ H(%5), %3, 0
  180. vextractf128 %4(%5 + 1), %2, 1
  181. vextractf128 %4 %+ H(%5 + 1), %3, 1
  182. %elif cpuflag(sse)
  183. mova %3, %2
  184. unpcklps %2, %1
  185. unpckhps %3, %1
  186. mova %4(%5), %2
  187. mova %4(%5+1), %3
  188. %endif
  189. %endmacro
  190. ; scheduled for cpu-bound sizes
  191. %macro PASS_SMALL 3 ; (to load m4-m7), wre, wim
  192. IF%1 mova m4, Z(4)
  193. IF%1 mova m5, Z(5)
  194. mova m0, %2 ; wre
  195. mova m1, %3 ; wim
  196. mulps m2, m4, m0 ; r2*wre
  197. IF%1 mova m6, Z2(6)
  198. mulps m3, m5, m1 ; i2*wim
  199. IF%1 mova m7, Z2(7)
  200. mulps m4, m4, m1 ; r2*wim
  201. mulps m5, m5, m0 ; i2*wre
  202. addps m2, m2, m3 ; r2*wre + i2*wim
  203. mulps m3, m1, m7 ; i3*wim
  204. subps m5, m5, m4 ; i2*wre - r2*wim
  205. mulps m1, m1, m6 ; r3*wim
  206. mulps m4, m0, m6 ; r3*wre
  207. mulps m0, m0, m7 ; i3*wre
  208. subps m4, m4, m3 ; r3*wre - i3*wim
  209. mova m3, Z(0)
  210. addps m0, m0, m1 ; i3*wre + r3*wim
  211. subps m1, m4, m2 ; t3
  212. addps m4, m4, m2 ; t5
  213. subps m3, m3, m4 ; r2
  214. addps m4, m4, Z(0) ; r0
  215. mova m6, Z(2)
  216. mova Z(4), m3
  217. mova Z(0), m4
  218. subps m3, m5, m0 ; t4
  219. subps m4, m6, m3 ; r3
  220. addps m3, m3, m6 ; r1
  221. mova Z2(6), m4
  222. mova Z(2), m3
  223. mova m2, Z(3)
  224. addps m3, m5, m0 ; t6
  225. subps m2, m2, m1 ; i3
  226. mova m7, Z(1)
  227. addps m1, m1, Z(3) ; i1
  228. mova Z2(7), m2
  229. mova Z(3), m1
  230. subps m4, m7, m3 ; i2
  231. addps m3, m3, m7 ; i0
  232. mova Z(5), m4
  233. mova Z(1), m3
  234. %endmacro
  235. ; scheduled to avoid store->load aliasing
  236. %macro PASS_BIG 1 ; (!interleave)
  237. mova m4, Z(4) ; r2
  238. mova m5, Z(5) ; i2
  239. mova m0, [wq] ; wre
  240. mova m1, [wq+o1q] ; wim
  241. mulps m2, m4, m0 ; r2*wre
  242. mova m6, Z2(6) ; r3
  243. mulps m3, m5, m1 ; i2*wim
  244. mova m7, Z2(7) ; i3
  245. mulps m4, m4, m1 ; r2*wim
  246. mulps m5, m5, m0 ; i2*wre
  247. addps m2, m2, m3 ; r2*wre + i2*wim
  248. mulps m3, m1, m7 ; i3*wim
  249. mulps m1, m1, m6 ; r3*wim
  250. subps m5, m5, m4 ; i2*wre - r2*wim
  251. mulps m4, m0, m6 ; r3*wre
  252. mulps m0, m0, m7 ; i3*wre
  253. subps m4, m4, m3 ; r3*wre - i3*wim
  254. mova m3, Z(0)
  255. addps m0, m0, m1 ; i3*wre + r3*wim
  256. subps m1, m4, m2 ; t3
  257. addps m4, m4, m2 ; t5
  258. subps m3, m3, m4 ; r2
  259. addps m4, m4, Z(0) ; r0
  260. mova m6, Z(2)
  261. mova Z(4), m3
  262. mova Z(0), m4
  263. subps m3, m5, m0 ; t4
  264. subps m4, m6, m3 ; r3
  265. addps m3, m3, m6 ; r1
  266. IF%1 mova Z2(6), m4
  267. IF%1 mova Z(2), m3
  268. mova m2, Z(3)
  269. addps m5, m5, m0 ; t6
  270. subps m2, m2, m1 ; i3
  271. mova m7, Z(1)
  272. addps m1, m1, Z(3) ; i1
  273. IF%1 mova Z2(7), m2
  274. IF%1 mova Z(3), m1
  275. subps m6, m7, m5 ; i2
  276. addps m5, m5, m7 ; i0
  277. IF%1 mova Z(5), m6
  278. IF%1 mova Z(1), m5
  279. %if %1==0
  280. INTERL m1, m3, m7, Z, 2
  281. INTERL m2, m4, m0, Z2, 6
  282. mova m1, Z(0)
  283. mova m2, Z(4)
  284. INTERL m5, m1, m3, Z, 0
  285. INTERL m6, m2, m7, Z, 4
  286. %endif
  287. %endmacro
  288. %macro PUNPCK 3
  289. mova %3, %1
  290. punpckldq %1, %2
  291. punpckhdq %3, %2
  292. %endmacro
  293. %define Z(x) [r0+mmsize*x]
  294. %define Z2(x) [r0+mmsize*x]
  295. %define ZH(x) [r0+mmsize*x+mmsize/2]
  296. INIT_YMM avx
  297. align 16
  298. fft8_avx:
  299. mova m0, Z(0)
  300. mova m1, Z(1)
  301. T8_AVX m0, m1, m2, m3, m4
  302. mova Z(0), m0
  303. mova Z(1), m1
  304. ret
  305. align 16
  306. fft16_avx:
  307. mova m2, Z(2)
  308. mova m3, Z(3)
  309. T4_SSE m2, m3, m7
  310. mova m0, Z(0)
  311. mova m1, Z(1)
  312. T8_AVX m0, m1, m4, m5, m7
  313. mova m4, [ps_cos16_1]
  314. mova m5, [ps_cos16_2]
  315. vmulps m6, m2, m4
  316. vmulps m7, m3, m5
  317. vaddps m7, m7, m6
  318. vmulps m2, m2, m5
  319. vmulps m3, m3, m4
  320. vsubps m3, m3, m2
  321. vblendps m2, m7, m3, 0xf0
  322. vperm2f128 m3, m7, m3, 0x21
  323. vaddps m4, m2, m3
  324. vsubps m2, m3, m2
  325. vperm2f128 m2, m2, m2, 0x01
  326. vsubps m3, m1, m2
  327. vaddps m1, m1, m2
  328. vsubps m5, m0, m4
  329. vaddps m0, m0, m4
  330. vextractf128 Z(0), m0, 0
  331. vextractf128 ZH(0), m1, 0
  332. vextractf128 Z(1), m0, 1
  333. vextractf128 ZH(1), m1, 1
  334. vextractf128 Z(2), m5, 0
  335. vextractf128 ZH(2), m3, 0
  336. vextractf128 Z(3), m5, 1
  337. vextractf128 ZH(3), m3, 1
  338. ret
  339. align 16
  340. fft32_avx:
  341. call fft16_avx
  342. mova m0, Z(4)
  343. mova m1, Z(5)
  344. T4_SSE m0, m1, m4
  345. mova m2, Z(6)
  346. mova m3, Z(7)
  347. T8_SSE m0, m1, m2, m3, m4, m6
  348. ; m0={r0,r1,r2,r3,r8, r9, r10,r11} m1={i0,i1,i2,i3,i8, i9, i10,i11}
  349. ; m2={r4,r5,r6,r7,r12,r13,r14,r15} m3={i4,i5,i6,i7,i12,i13,i14,i15}
  350. vperm2f128 m4, m0, m2, 0x20
  351. vperm2f128 m5, m1, m3, 0x20
  352. vperm2f128 m6, m0, m2, 0x31
  353. vperm2f128 m7, m1, m3, 0x31
  354. PASS_SMALL 0, [cos_32], [cos_32+32]
  355. ret
  356. fft32_interleave_avx:
  357. call fft32_avx
  358. mov r2d, 32
  359. .deint_loop:
  360. mova m2, Z(0)
  361. mova m3, Z(1)
  362. vunpcklps m0, m2, m3
  363. vunpckhps m1, m2, m3
  364. vextractf128 Z(0), m0, 0
  365. vextractf128 ZH(0), m1, 0
  366. vextractf128 Z(1), m0, 1
  367. vextractf128 ZH(1), m1, 1
  368. add r0, mmsize*2
  369. sub r2d, mmsize/4
  370. jg .deint_loop
  371. ret
  372. INIT_XMM sse
  373. align 16
  374. fft4_avx:
  375. fft4_sse:
  376. mova m0, Z(0)
  377. mova m1, Z(1)
  378. T4_SSE m0, m1, m2
  379. mova Z(0), m0
  380. mova Z(1), m1
  381. ret
  382. align 16
  383. fft8_sse:
  384. mova m0, Z(0)
  385. mova m1, Z(1)
  386. T4_SSE m0, m1, m2
  387. mova m2, Z(2)
  388. mova m3, Z(3)
  389. T8_SSE m0, m1, m2, m3, m4, m5
  390. mova Z(0), m0
  391. mova Z(1), m1
  392. mova Z(2), m2
  393. mova Z(3), m3
  394. ret
  395. align 16
  396. fft16_sse:
  397. mova m0, Z(0)
  398. mova m1, Z(1)
  399. T4_SSE m0, m1, m2
  400. mova m2, Z(2)
  401. mova m3, Z(3)
  402. T8_SSE m0, m1, m2, m3, m4, m5
  403. mova m4, Z(4)
  404. mova m5, Z(5)
  405. mova Z(0), m0
  406. mova Z(1), m1
  407. mova Z(2), m2
  408. mova Z(3), m3
  409. T4_SSE m4, m5, m6
  410. mova m6, Z2(6)
  411. mova m7, Z2(7)
  412. T4_SSE m6, m7, m0
  413. PASS_SMALL 0, [cos_16], [cos_16+16]
  414. ret
  415. %macro FFT48_3DNOW 0
  416. align 16
  417. fft4 %+ SUFFIX:
  418. T2_3DNOW m0, m1, Z(0), Z(1)
  419. mova m2, Z(2)
  420. mova m3, Z(3)
  421. T4_3DNOW m0, m1, m2, m3, m4, m5
  422. PUNPCK m0, m1, m4
  423. PUNPCK m2, m3, m5
  424. mova Z(0), m0
  425. mova Z(1), m4
  426. mova Z(2), m2
  427. mova Z(3), m5
  428. ret
  429. align 16
  430. fft8 %+ SUFFIX:
  431. T2_3DNOW m0, m1, Z(0), Z(1)
  432. mova m2, Z(2)
  433. mova m3, Z(3)
  434. T4_3DNOW m0, m1, m2, m3, m4, m5
  435. mova Z(0), m0
  436. mova Z(2), m2
  437. T2_3DNOW m4, m5, Z(4), Z(5)
  438. T2_3DNOW m6, m7, Z2(6), Z2(7)
  439. PSWAPD m0, m5
  440. PSWAPD m2, m7
  441. pxor m0, [ps_m1p1]
  442. pxor m2, [ps_m1p1]
  443. pfsub m5, m0
  444. pfadd m7, m2
  445. pfmul m5, [ps_root2]
  446. pfmul m7, [ps_root2]
  447. T4_3DNOW m1, m3, m5, m7, m0, m2
  448. mova Z(5), m5
  449. mova Z2(7), m7
  450. mova m0, Z(0)
  451. mova m2, Z(2)
  452. T4_3DNOW m0, m2, m4, m6, m5, m7
  453. PUNPCK m0, m1, m5
  454. PUNPCK m2, m3, m7
  455. mova Z(0), m0
  456. mova Z(1), m5
  457. mova Z(2), m2
  458. mova Z(3), m7
  459. PUNPCK m4, Z(5), m5
  460. PUNPCK m6, Z2(7), m7
  461. mova Z(4), m4
  462. mova Z(5), m5
  463. mova Z2(6), m6
  464. mova Z2(7), m7
  465. ret
  466. %endmacro
  467. %if ARCH_X86_32
  468. INIT_MMX 3dnowext
  469. FFT48_3DNOW
  470. INIT_MMX 3dnow
  471. FFT48_3DNOW
  472. %endif
  473. %define Z(x) [zcq + o1q*(x&6) + mmsize*(x&1)]
  474. %define Z2(x) [zcq + o3q + mmsize*(x&1)]
  475. %define ZH(x) [zcq + o1q*(x&6) + mmsize*(x&1) + mmsize/2]
  476. %define Z2H(x) [zcq + o3q + mmsize*(x&1) + mmsize/2]
  477. %macro DECL_PASS 2+ ; name, payload
  478. align 16
  479. %1:
  480. DEFINE_ARGS zc, w, n, o1, o3
  481. lea o3q, [nq*3]
  482. lea o1q, [nq*8]
  483. shl o3q, 4
  484. .loop:
  485. %2
  486. add zcq, mmsize*2
  487. add wq, mmsize
  488. sub nd, mmsize/8
  489. jg .loop
  490. rep ret
  491. %endmacro
  492. %macro FFT_DISPATCH 2; clobbers 5 GPRs, 8 XMMs
  493. lea r2, [dispatch_tab%1]
  494. mov r2, [r2 + (%2q-2)*gprsize]
  495. %ifdef PIC
  496. lea r3, [$$]
  497. add r2, r3
  498. %endif
  499. call r2
  500. %endmacro ; FFT_DISPATCH
  501. INIT_YMM avx
  502. DECL_PASS pass_avx, PASS_BIG 1
  503. DECL_PASS pass_interleave_avx, PASS_BIG 0
  504. cglobal fft_calc, 2,5,8
  505. mov r3d, [r0 + FFTContext.nbits]
  506. mov r0, r1
  507. mov r1, r3
  508. FFT_DISPATCH _interleave %+ SUFFIX, r1
  509. REP_RET
  510. INIT_XMM sse
  511. DECL_PASS pass_sse, PASS_BIG 1
  512. DECL_PASS pass_interleave_sse, PASS_BIG 0
  513. %macro FFT_CALC_FUNC 0
  514. cglobal fft_calc, 2,5,8
  515. mov r3d, [r0 + FFTContext.nbits]
  516. PUSH r1
  517. PUSH r3
  518. mov r0, r1
  519. mov r1, r3
  520. FFT_DISPATCH _interleave %+ SUFFIX, r1
  521. POP rcx
  522. POP r4
  523. cmp rcx, 3+(mmsize/16)
  524. jg .end
  525. mov r2, -1
  526. add rcx, 3
  527. shl r2, cl
  528. sub r4, r2
  529. .loop:
  530. %if mmsize == 8
  531. PSWAPD m0, [r4 + r2 + 4]
  532. mova [r4 + r2 + 4], m0
  533. %else
  534. movaps xmm0, [r4 + r2]
  535. movaps xmm1, xmm0
  536. unpcklps xmm0, [r4 + r2 + 16]
  537. unpckhps xmm1, [r4 + r2 + 16]
  538. movaps [r4 + r2], xmm0
  539. movaps [r4 + r2 + 16], xmm1
  540. %endif
  541. add r2, mmsize*2
  542. jl .loop
  543. .end:
  544. %if cpuflag(3dnow)
  545. femms
  546. RET
  547. %else
  548. REP_RET
  549. %endif
  550. %endmacro
  551. %if ARCH_X86_32
  552. INIT_MMX 3dnow
  553. FFT_CALC_FUNC
  554. INIT_MMX 3dnowext
  555. FFT_CALC_FUNC
  556. %endif
  557. INIT_XMM sse
  558. FFT_CALC_FUNC
  559. cglobal fft_permute, 2,7,1
  560. mov r4, [r0 + FFTContext.revtab]
  561. mov r5, [r0 + FFTContext.tmpbuf]
  562. mov ecx, [r0 + FFTContext.nbits]
  563. mov r2, 1
  564. shl r2, cl
  565. xor r0, r0
  566. %if ARCH_X86_32
  567. mov r1, r1m
  568. %endif
  569. .loop:
  570. movaps xmm0, [r1 + 8*r0]
  571. movzx r6, word [r4 + 2*r0]
  572. movzx r3, word [r4 + 2*r0 + 2]
  573. movlps [r5 + 8*r6], xmm0
  574. movhps [r5 + 8*r3], xmm0
  575. add r0, 2
  576. cmp r0, r2
  577. jl .loop
  578. shl r2, 3
  579. add r1, r2
  580. add r5, r2
  581. neg r2
  582. ; nbits >= 2 (FFT4) and sizeof(FFTComplex)=8 => at least 32B
  583. .loopcopy:
  584. movaps xmm0, [r5 + r2]
  585. movaps xmm1, [r5 + r2 + 16]
  586. movaps [r1 + r2], xmm0
  587. movaps [r1 + r2 + 16], xmm1
  588. add r2, 32
  589. jl .loopcopy
  590. REP_RET
  591. %if ARCH_X86_32
  592. INIT_MMX 3dnow
  593. %define mulps pfmul
  594. %define addps pfadd
  595. %define subps pfsub
  596. %define unpcklps punpckldq
  597. %define unpckhps punpckhdq
  598. DECL_PASS pass_3dnow, PASS_SMALL 1, [wq], [wq+o1q]
  599. DECL_PASS pass_interleave_3dnow, PASS_BIG 0
  600. %define pass_3dnowext pass_3dnow
  601. %define pass_interleave_3dnowext pass_interleave_3dnow
  602. %endif
  603. %ifdef PIC
  604. %define SECTION_REL - $$
  605. %else
  606. %define SECTION_REL
  607. %endif
  608. %macro DECL_FFT 1-2 ; nbits, suffix
  609. %ifidn %0, 1
  610. %xdefine fullsuffix SUFFIX
  611. %else
  612. %xdefine fullsuffix %2 %+ SUFFIX
  613. %endif
  614. %xdefine list_of_fft fft4 %+ SUFFIX SECTION_REL, fft8 %+ SUFFIX SECTION_REL
  615. %if %1>=5
  616. %xdefine list_of_fft list_of_fft, fft16 %+ SUFFIX SECTION_REL
  617. %endif
  618. %if %1>=6
  619. %xdefine list_of_fft list_of_fft, fft32 %+ fullsuffix SECTION_REL
  620. %endif
  621. %assign n 1<<%1
  622. %rep 17-%1
  623. %assign n2 n/2
  624. %assign n4 n/4
  625. %xdefine list_of_fft list_of_fft, fft %+ n %+ fullsuffix SECTION_REL
  626. align 16
  627. fft %+ n %+ fullsuffix:
  628. call fft %+ n2 %+ SUFFIX
  629. add r0, n*4 - (n&(-2<<%1))
  630. call fft %+ n4 %+ SUFFIX
  631. add r0, n*2 - (n2&(-2<<%1))
  632. call fft %+ n4 %+ SUFFIX
  633. sub r0, n*6 + (n2&(-2<<%1))
  634. lea r1, [cos_ %+ n]
  635. mov r2d, n4/2
  636. jmp pass %+ fullsuffix
  637. %assign n n*2
  638. %endrep
  639. %undef n
  640. align 8
  641. dispatch_tab %+ fullsuffix: pointer list_of_fft
  642. %endmacro ; DECL_FFT
  643. INIT_YMM avx
  644. DECL_FFT 6
  645. DECL_FFT 6, _interleave
  646. INIT_XMM sse
  647. DECL_FFT 5
  648. DECL_FFT 5, _interleave
  649. %if ARCH_X86_32
  650. INIT_MMX 3dnow
  651. DECL_FFT 4
  652. DECL_FFT 4, _interleave
  653. INIT_MMX 3dnowext
  654. DECL_FFT 4
  655. DECL_FFT 4, _interleave
  656. %endif
  657. %if CONFIG_MDCT
  658. %macro IMDCT_CALC_FUNC 0
  659. cglobal imdct_calc, 3,5,3
  660. mov r3d, [r0 + FFTContext.mdctsize]
  661. mov r4, [r0 + FFTContext.imdcthalf]
  662. add r1, r3
  663. PUSH r3
  664. PUSH r1
  665. %if ARCH_X86_32
  666. push r2
  667. push r1
  668. push r0
  669. %else
  670. sub rsp, 8+32*WIN64 ; allocate win64 shadow space
  671. %endif
  672. call r4
  673. %if ARCH_X86_32
  674. add esp, 12
  675. %else
  676. add rsp, 8+32*WIN64
  677. %endif
  678. POP r1
  679. POP r3
  680. lea r0, [r1 + 2*r3]
  681. mov r2, r3
  682. sub r3, mmsize
  683. neg r2
  684. mova m2, [ps_m1m1m1m1]
  685. .loop:
  686. %if mmsize == 8
  687. PSWAPD m0, [r1 + r3]
  688. PSWAPD m1, [r0 + r2]
  689. pxor m0, m2
  690. %else
  691. mova m0, [r1 + r3]
  692. mova m1, [r0 + r2]
  693. shufps m0, m0, 0x1b
  694. shufps m1, m1, 0x1b
  695. xorps m0, m2
  696. %endif
  697. mova [r0 + r3], m1
  698. mova [r1 + r2], m0
  699. sub r3, mmsize
  700. add r2, mmsize
  701. jl .loop
  702. %if cpuflag(3dnow)
  703. femms
  704. RET
  705. %else
  706. REP_RET
  707. %endif
  708. %endmacro
  709. %if ARCH_X86_32
  710. INIT_MMX 3dnow
  711. IMDCT_CALC_FUNC
  712. INIT_MMX 3dnowext
  713. IMDCT_CALC_FUNC
  714. %endif
  715. INIT_XMM sse
  716. IMDCT_CALC_FUNC
  717. INIT_XMM sse
  718. %undef mulps
  719. %undef addps
  720. %undef subps
  721. %undef unpcklps
  722. %undef unpckhps
  723. %macro PREROTATER 5 ;-2*k, 2*k, input+n4, tcos+n8, tsin+n8
  724. %if mmsize == 8 ; j*2+2-n4, n4-2-j*2, input+n4, tcos+n8, tsin+n8
  725. PSWAPD m0, [%3+%2*4]
  726. movq m2, [%3+%1*4-8]
  727. movq m3, m0
  728. punpckldq m0, m2
  729. punpckhdq m2, m3
  730. movd m1, [%4+%1*2-4] ; tcos[j]
  731. movd m3, [%4+%2*2] ; tcos[n4-j-1]
  732. punpckldq m1, [%5+%1*2-4] ; tsin[j]
  733. punpckldq m3, [%5+%2*2] ; tsin[n4-j-1]
  734. mova m4, m0
  735. PSWAPD m5, m1
  736. pfmul m0, m1
  737. pfmul m4, m5
  738. mova m6, m2
  739. PSWAPD m5, m3
  740. pfmul m2, m3
  741. pfmul m6, m5
  742. %if cpuflag(3dnowext)
  743. pfpnacc m0, m4
  744. pfpnacc m2, m6
  745. %else
  746. SBUTTERFLY dq, 0, 4, 1
  747. SBUTTERFLY dq, 2, 6, 3
  748. pxor m4, m7
  749. pxor m6, m7
  750. pfadd m0, m4
  751. pfadd m2, m6
  752. %endif
  753. %else
  754. movaps xmm0, [%3+%2*4]
  755. movaps xmm1, [%3+%1*4-0x10]
  756. movaps xmm2, xmm0
  757. shufps xmm0, xmm1, 0x88
  758. shufps xmm1, xmm2, 0x77
  759. movlps xmm4, [%4+%2*2]
  760. movlps xmm5, [%5+%2*2+0x0]
  761. movhps xmm4, [%4+%1*2-0x8]
  762. movhps xmm5, [%5+%1*2-0x8]
  763. movaps xmm2, xmm0
  764. movaps xmm3, xmm1
  765. mulps xmm0, xmm5
  766. mulps xmm1, xmm4
  767. mulps xmm2, xmm4
  768. mulps xmm3, xmm5
  769. subps xmm1, xmm0
  770. addps xmm2, xmm3
  771. movaps xmm0, xmm1
  772. unpcklps xmm1, xmm2
  773. unpckhps xmm0, xmm2
  774. %endif
  775. %endmacro
  776. %macro CMUL 6 ;j, xmm0, xmm1, 3, 4, 5
  777. %if cpuflag(sse)
  778. mulps m6, %3, [%5+%1]
  779. mulps m7, %2, [%5+%1]
  780. mulps %2, %2, [%6+%1]
  781. mulps %3, %3, [%6+%1]
  782. subps %2, %2, m6
  783. addps %3, %3, m7
  784. %elif cpuflag(3dnow)
  785. mova m6, [%1+%2*2]
  786. mova %3, [%1+%2*2+8]
  787. mova %4, m6
  788. mova m7, %3
  789. pfmul m6, [%5+%2]
  790. pfmul %3, [%6+%2]
  791. pfmul %4, [%6+%2]
  792. pfmul m7, [%5+%2]
  793. pfsub %3, m6
  794. pfadd %4, m7
  795. %endif
  796. %endmacro
  797. %macro POSROTATESHUF 5 ;j, k, z+n8, tcos+n8, tsin+n8
  798. .post:
  799. %if cpuflag(avx)
  800. vmovaps ymm1, [%3+%1*2]
  801. vmovaps ymm0, [%3+%1*2+0x20]
  802. vmovaps ymm3, [%3+%2*2]
  803. vmovaps ymm2, [%3+%2*2+0x20]
  804. CMUL %1, ymm0, ymm1, %3, %4, %5
  805. CMUL %2, ymm2, ymm3, %3, %4, %5
  806. vshufps ymm1, ymm1, ymm1, 0x1b
  807. vshufps ymm3, ymm3, ymm3, 0x1b
  808. vperm2f128 ymm1, ymm1, ymm1, 0x01
  809. vperm2f128 ymm3, ymm3, ymm3, 0x01
  810. vunpcklps ymm6, ymm2, ymm1
  811. vunpckhps ymm4, ymm2, ymm1
  812. vunpcklps ymm7, ymm0, ymm3
  813. vunpckhps ymm5, ymm0, ymm3
  814. vextractf128 [%3+%1*2], ymm7, 0
  815. vextractf128 [%3+%1*2+0x10], ymm5, 0
  816. vextractf128 [%3+%1*2+0x20], ymm7, 1
  817. vextractf128 [%3+%1*2+0x30], ymm5, 1
  818. vextractf128 [%3+%2*2], ymm6, 0
  819. vextractf128 [%3+%2*2+0x10], ymm4, 0
  820. vextractf128 [%3+%2*2+0x20], ymm6, 1
  821. vextractf128 [%3+%2*2+0x30], ymm4, 1
  822. sub %2, 0x20
  823. add %1, 0x20
  824. jl .post
  825. %elif cpuflag(sse)
  826. movaps xmm1, [%3+%1*2]
  827. movaps xmm0, [%3+%1*2+0x10]
  828. CMUL %1, xmm0, xmm1, %3, %4, %5
  829. movaps xmm5, [%3+%2*2]
  830. movaps xmm4, [%3+%2*2+0x10]
  831. CMUL %2, xmm4, xmm5, %3, %4, %5
  832. shufps xmm1, xmm1, 0x1b
  833. shufps xmm5, xmm5, 0x1b
  834. movaps xmm6, xmm4
  835. unpckhps xmm4, xmm1
  836. unpcklps xmm6, xmm1
  837. movaps xmm2, xmm0
  838. unpcklps xmm0, xmm5
  839. unpckhps xmm2, xmm5
  840. movaps [%3+%2*2], xmm6
  841. movaps [%3+%2*2+0x10], xmm4
  842. movaps [%3+%1*2], xmm0
  843. movaps [%3+%1*2+0x10], xmm2
  844. sub %2, 0x10
  845. add %1, 0x10
  846. jl .post
  847. %elif cpuflag(3dnow)
  848. CMUL %3, %1, m0, m1, %4, %5
  849. CMUL %3, %2, m2, m3, %4, %5
  850. movd [%3+%1*2+ 0], m0
  851. movd [%3+%2*2+12], m1
  852. movd [%3+%2*2+ 0], m2
  853. movd [%3+%1*2+12], m3
  854. psrlq m0, 32
  855. psrlq m1, 32
  856. psrlq m2, 32
  857. psrlq m3, 32
  858. movd [%3+%1*2+ 8], m0
  859. movd [%3+%2*2+ 4], m1
  860. movd [%3+%2*2+ 8], m2
  861. movd [%3+%1*2+ 4], m3
  862. sub %2, 8
  863. add %1, 8
  864. jl .post
  865. %endif
  866. %endmacro
  867. %macro DECL_IMDCT 0
  868. cglobal imdct_half, 3,12,8; FFTContext *s, FFTSample *output, const FFTSample *input
  869. %if ARCH_X86_64
  870. %define rrevtab r7
  871. %define rtcos r8
  872. %define rtsin r9
  873. %else
  874. %define rrevtab r6
  875. %define rtsin r6
  876. %define rtcos r5
  877. %endif
  878. mov r3d, [r0+FFTContext.mdctsize]
  879. add r2, r3
  880. shr r3, 1
  881. mov rtcos, [r0+FFTContext.tcos]
  882. mov rtsin, [r0+FFTContext.tsin]
  883. add rtcos, r3
  884. add rtsin, r3
  885. %if ARCH_X86_64 == 0
  886. push rtcos
  887. push rtsin
  888. %endif
  889. shr r3, 1
  890. mov rrevtab, [r0+FFTContext.revtab]
  891. add rrevtab, r3
  892. %if ARCH_X86_64 == 0
  893. push rrevtab
  894. %endif
  895. %if mmsize == 8
  896. sub r3, 2
  897. %else
  898. sub r3, 4
  899. %endif
  900. %if ARCH_X86_64 || mmsize == 8
  901. xor r4, r4
  902. sub r4, r3
  903. %endif
  904. %if notcpuflag(3dnowext) && mmsize == 8
  905. movd m7, [ps_m1m1m1m1]
  906. %endif
  907. .pre:
  908. %if ARCH_X86_64 == 0
  909. ;unspill
  910. %if mmsize != 8
  911. xor r4, r4
  912. sub r4, r3
  913. %endif
  914. mov rtcos, [esp+8]
  915. mov rtsin, [esp+4]
  916. %endif
  917. PREROTATER r4, r3, r2, rtcos, rtsin
  918. %if mmsize == 8
  919. mov r6, [esp] ; rrevtab = ptr+n8
  920. movzx r5, word [rrevtab+r4-2] ; rrevtab[j]
  921. movzx r6, word [rrevtab+r3] ; rrevtab[n4-j-1]
  922. mova [r1+r5*8], m0
  923. mova [r1+r6*8], m2
  924. add r4, 2
  925. sub r3, 2
  926. %else
  927. %if ARCH_X86_64
  928. movzx r5, word [rrevtab+r4-4]
  929. movzx r6, word [rrevtab+r4-2]
  930. movzx r10, word [rrevtab+r3]
  931. movzx r11, word [rrevtab+r3+2]
  932. movlps [r1+r5 *8], xmm0
  933. movhps [r1+r6 *8], xmm0
  934. movlps [r1+r10*8], xmm1
  935. movhps [r1+r11*8], xmm1
  936. add r4, 4
  937. %else
  938. mov r6, [esp]
  939. movzx r5, word [r6+r4-4]
  940. movzx r4, word [r6+r4-2]
  941. movlps [r1+r5*8], xmm0
  942. movhps [r1+r4*8], xmm0
  943. movzx r5, word [r6+r3]
  944. movzx r4, word [r6+r3+2]
  945. movlps [r1+r5*8], xmm1
  946. movhps [r1+r4*8], xmm1
  947. %endif
  948. sub r3, 4
  949. %endif
  950. jns .pre
  951. mov r5, r0
  952. mov r6, r1
  953. mov r0, r1
  954. mov r1d, [r5+FFTContext.nbits]
  955. FFT_DISPATCH SUFFIX, r1
  956. mov r0d, [r5+FFTContext.mdctsize]
  957. add r6, r0
  958. shr r0, 1
  959. %if ARCH_X86_64 == 0
  960. %define rtcos r2
  961. %define rtsin r3
  962. mov rtcos, [esp+8]
  963. mov rtsin, [esp+4]
  964. %endif
  965. neg r0
  966. mov r1, -mmsize
  967. sub r1, r0
  968. POSROTATESHUF r0, r1, r6, rtcos, rtsin
  969. %if ARCH_X86_64 == 0
  970. add esp, 12
  971. %endif
  972. %if mmsize == 8
  973. femms
  974. %endif
  975. RET
  976. %endmacro
  977. DECL_IMDCT
  978. %if ARCH_X86_32
  979. INIT_MMX 3dnow
  980. DECL_IMDCT
  981. INIT_MMX 3dnowext
  982. DECL_IMDCT
  983. %endif
  984. INIT_YMM avx
  985. DECL_IMDCT
  986. %endif ; CONFIG_MDCT