|
- /*
- * Wmapro compatible decoder
- * Copyright (c) 2007 Baptiste Coudurier, Benjamin Larsson, Ulion
- * Copyright (c) 2008 - 2011 Sascha Sommer, Benjamin Larsson
- *
- * This file is part of Libav.
- *
- * Libav is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * Libav is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with Libav; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- */
-
- /**
- * @file
- * @brief wmapro decoder implementation
- * Wmapro is an MDCT based codec comparable to wma standard or AAC.
- * The decoding therefore consists of the following steps:
- * - bitstream decoding
- * - reconstruction of per-channel data
- * - rescaling and inverse quantization
- * - IMDCT
- * - windowing and overlapp-add
- *
- * The compressed wmapro bitstream is split into individual packets.
- * Every such packet contains one or more wma frames.
- * The compressed frames may have a variable length and frames may
- * cross packet boundaries.
- * Common to all wmapro frames is the number of samples that are stored in
- * a frame.
- * The number of samples and a few other decode flags are stored
- * as extradata that has to be passed to the decoder.
- *
- * The wmapro frames themselves are again split into a variable number of
- * subframes. Every subframe contains the data for 2^N time domain samples
- * where N varies between 7 and 12.
- *
- * Example wmapro bitstream (in samples):
- *
- * || packet 0 || packet 1 || packet 2 packets
- * ---------------------------------------------------
- * || frame 0 || frame 1 || frame 2 || frames
- * ---------------------------------------------------
- * || | | || | | | || || subframes of channel 0
- * ---------------------------------------------------
- * || | | || | | | || || subframes of channel 1
- * ---------------------------------------------------
- *
- * The frame layouts for the individual channels of a wma frame does not need
- * to be the same.
- *
- * However, if the offsets and lengths of several subframes of a frame are the
- * same, the subframes of the channels can be grouped.
- * Every group may then use special coding techniques like M/S stereo coding
- * to improve the compression ratio. These channel transformations do not
- * need to be applied to a whole subframe. Instead, they can also work on
- * individual scale factor bands (see below).
- * The coefficients that carry the audio signal in the frequency domain
- * are transmitted as huffman-coded vectors with 4, 2 and 1 elements.
- * In addition to that, the encoder can switch to a runlevel coding scheme
- * by transmitting subframe_length / 128 zero coefficients.
- *
- * Before the audio signal can be converted to the time domain, the
- * coefficients have to be rescaled and inverse quantized.
- * A subframe is therefore split into several scale factor bands that get
- * scaled individually.
- * Scale factors are submitted for every frame but they might be shared
- * between the subframes of a channel. Scale factors are initially DPCM-coded.
- * Once scale factors are shared, the differences are transmitted as runlevel
- * codes.
- * Every subframe length and offset combination in the frame layout shares a
- * common quantization factor that can be adjusted for every channel by a
- * modifier.
- * After the inverse quantization, the coefficients get processed by an IMDCT.
- * The resulting values are then windowed with a sine window and the first half
- * of the values are added to the second half of the output from the previous
- * subframe in order to reconstruct the output samples.
- */
-
- #include <inttypes.h>
-
- #include "libavutil/float_dsp.h"
- #include "libavutil/intfloat.h"
- #include "libavutil/intreadwrite.h"
-
- #include "avcodec.h"
- #include "bitstream.h"
- #include "internal.h"
- #include "put_bits.h"
- #include "wmaprodata.h"
- #include "sinewin.h"
- #include "wma.h"
- #include "wma_common.h"
-
- /** current decoder limitations */
- #define WMAPRO_MAX_CHANNELS 8 ///< max number of handled channels
- #define MAX_SUBFRAMES 32 ///< max number of subframes per channel
- #define MAX_BANDS 29 ///< max number of scale factor bands
- #define MAX_FRAMESIZE 32768 ///< maximum compressed frame size
-
- #define WMAPRO_BLOCK_MIN_BITS 6 ///< log2 of min block size
- #define WMAPRO_BLOCK_MAX_BITS 13 ///< log2 of max block size
- #define WMAPRO_BLOCK_MIN_SIZE (1 << WMAPRO_BLOCK_MIN_BITS) ///< minimum block size
- #define WMAPRO_BLOCK_MAX_SIZE (1 << WMAPRO_BLOCK_MAX_BITS) ///< maximum block size
- #define WMAPRO_BLOCK_SIZES (WMAPRO_BLOCK_MAX_BITS - WMAPRO_BLOCK_MIN_BITS + 1) ///< possible block sizes
-
-
- #define VLCBITS 9
- #define SCALEVLCBITS 8
- #define VEC4MAXDEPTH ((HUFF_VEC4_MAXBITS+VLCBITS-1)/VLCBITS)
- #define VEC2MAXDEPTH ((HUFF_VEC2_MAXBITS+VLCBITS-1)/VLCBITS)
- #define VEC1MAXDEPTH ((HUFF_VEC1_MAXBITS+VLCBITS-1)/VLCBITS)
- #define SCALEMAXDEPTH ((HUFF_SCALE_MAXBITS+SCALEVLCBITS-1)/SCALEVLCBITS)
- #define SCALERLMAXDEPTH ((HUFF_SCALE_RL_MAXBITS+VLCBITS-1)/VLCBITS)
-
- static VLC sf_vlc; ///< scale factor DPCM vlc
- static VLC sf_rl_vlc; ///< scale factor run length vlc
- static VLC vec4_vlc; ///< 4 coefficients per symbol
- static VLC vec2_vlc; ///< 2 coefficients per symbol
- static VLC vec1_vlc; ///< 1 coefficient per symbol
- static VLC coef_vlc[2]; ///< coefficient run length vlc codes
- static float sin64[33]; ///< sine table for decorrelation
-
- /**
- * @brief frame specific decoder context for a single channel
- */
- typedef struct WMAProChannelCtx {
- int16_t prev_block_len; ///< length of the previous block
- uint8_t transmit_coefs;
- uint8_t num_subframes;
- uint16_t subframe_len[MAX_SUBFRAMES]; ///< subframe length in samples
- uint16_t subframe_offset[MAX_SUBFRAMES]; ///< subframe positions in the current frame
- uint8_t cur_subframe; ///< current subframe number
- uint16_t decoded_samples; ///< number of already processed samples
- uint8_t grouped; ///< channel is part of a group
- int quant_step; ///< quantization step for the current subframe
- int8_t reuse_sf; ///< share scale factors between subframes
- int8_t scale_factor_step; ///< scaling step for the current subframe
- int max_scale_factor; ///< maximum scale factor for the current subframe
- int saved_scale_factors[2][MAX_BANDS]; ///< resampled and (previously) transmitted scale factor values
- int8_t scale_factor_idx; ///< index for the transmitted scale factor values (used for resampling)
- int* scale_factors; ///< pointer to the scale factor values used for decoding
- uint8_t table_idx; ///< index in sf_offsets for the scale factor reference block
- float* coeffs; ///< pointer to the subframe decode buffer
- uint16_t num_vec_coeffs; ///< number of vector coded coefficients
- DECLARE_ALIGNED(32, float, out)[WMAPRO_BLOCK_MAX_SIZE + WMAPRO_BLOCK_MAX_SIZE / 2]; ///< output buffer
- } WMAProChannelCtx;
-
- /**
- * @brief channel group for channel transformations
- */
- typedef struct WMAProChannelGrp {
- uint8_t num_channels; ///< number of channels in the group
- int8_t transform; ///< transform on / off
- int8_t transform_band[MAX_BANDS]; ///< controls if the transform is enabled for a certain band
- float decorrelation_matrix[WMAPRO_MAX_CHANNELS*WMAPRO_MAX_CHANNELS];
- float* channel_data[WMAPRO_MAX_CHANNELS]; ///< transformation coefficients
- } WMAProChannelGrp;
-
- /**
- * @brief main decoder context
- */
- typedef struct WMAProDecodeCtx {
- /* generic decoder variables */
- AVCodecContext* avctx; ///< codec context for av_log
- AVFloatDSPContext fdsp;
- uint8_t frame_data[MAX_FRAMESIZE +
- AV_INPUT_BUFFER_PADDING_SIZE];///< compressed frame data
- PutBitContext pb; ///< context for filling the frame_data buffer
- FFTContext mdct_ctx[WMAPRO_BLOCK_SIZES]; ///< MDCT context per block size
- DECLARE_ALIGNED(32, float, tmp)[WMAPRO_BLOCK_MAX_SIZE]; ///< IMDCT output buffer
- float* windows[WMAPRO_BLOCK_SIZES]; ///< windows for the different block sizes
-
- /* frame size dependent frame information (set during initialization) */
- uint32_t decode_flags; ///< used compression features
- uint8_t len_prefix; ///< frame is prefixed with its length
- uint8_t dynamic_range_compression; ///< frame contains DRC data
- uint8_t bits_per_sample; ///< integer audio sample size for the unscaled IMDCT output (used to scale to [-1.0, 1.0])
- uint16_t samples_per_frame; ///< number of samples to output
- uint16_t log2_frame_size;
- int8_t lfe_channel; ///< lfe channel index
- uint8_t max_num_subframes;
- uint8_t subframe_len_bits; ///< number of bits used for the subframe length
- uint8_t max_subframe_len_bit; ///< flag indicating that the subframe is of maximum size when the first subframe length bit is 1
- uint16_t min_samples_per_subframe;
- int8_t num_sfb[WMAPRO_BLOCK_SIZES]; ///< scale factor bands per block size
- int16_t sfb_offsets[WMAPRO_BLOCK_SIZES][MAX_BANDS]; ///< scale factor band offsets (multiples of 4)
- int8_t sf_offsets[WMAPRO_BLOCK_SIZES][WMAPRO_BLOCK_SIZES][MAX_BANDS]; ///< scale factor resample matrix
- int16_t subwoofer_cutoffs[WMAPRO_BLOCK_SIZES]; ///< subwoofer cutoff values
-
- /* packet decode state */
- BitstreamContext pbc; ///< bitstream reader context for the packet
- int next_packet_start; ///< start offset of the next wma packet in the demuxer packet
- uint8_t packet_offset; ///< frame offset in the packet
- uint8_t packet_sequence_number; ///< current packet number
- int num_saved_bits; ///< saved number of bits
- int frame_offset; ///< frame offset in the bit reservoir
- int subframe_offset; ///< subframe offset in the bit reservoir
- uint8_t packet_loss; ///< set in case of bitstream error
- uint8_t packet_done; ///< set when a packet is fully decoded
-
- /* frame decode state */
- uint32_t frame_num; ///< current frame number (not used for decoding)
- BitstreamContext bc; ///< bitstream reader context
- int buf_bit_size; ///< buffer size in bits
- uint8_t drc_gain; ///< gain for the DRC tool
- int8_t skip_frame; ///< skip output step
- int8_t parsed_all_subframes; ///< all subframes decoded?
-
- /* subframe/block decode state */
- int16_t subframe_len; ///< current subframe length
- int8_t channels_for_cur_subframe; ///< number of channels that contain the subframe
- int8_t channel_indexes_for_cur_subframe[WMAPRO_MAX_CHANNELS];
- int8_t num_bands; ///< number of scale factor bands
- int8_t transmit_num_vec_coeffs; ///< number of vector coded coefficients is part of the bitstream
- int16_t* cur_sfb_offsets; ///< sfb offsets for the current block
- uint8_t table_idx; ///< index for the num_sfb, sfb_offsets, sf_offsets and subwoofer_cutoffs tables
- int8_t esc_len; ///< length of escaped coefficients
-
- uint8_t num_chgroups; ///< number of channel groups
- WMAProChannelGrp chgroup[WMAPRO_MAX_CHANNELS]; ///< channel group information
-
- WMAProChannelCtx channel[WMAPRO_MAX_CHANNELS]; ///< per channel data
- } WMAProDecodeCtx;
-
-
- /**
- *@brief helper function to print the most important members of the context
- *@param s context
- */
- static av_cold void dump_context(WMAProDecodeCtx *s)
- {
- #define PRINT(a, b) av_log(s->avctx, AV_LOG_DEBUG, " %s = %d\n", a, b);
- #define PRINT_HEX(a, b) av_log(s->avctx, AV_LOG_DEBUG, " %s = %"PRIx32"\n", a, b);
-
- PRINT("ed sample bit depth", s->bits_per_sample);
- PRINT_HEX("ed decode flags", s->decode_flags);
- PRINT("samples per frame", s->samples_per_frame);
- PRINT("log2 frame size", s->log2_frame_size);
- PRINT("max num subframes", s->max_num_subframes);
- PRINT("len prefix", s->len_prefix);
- PRINT("num channels", s->avctx->channels);
- }
-
- /**
- *@brief Uninitialize the decoder and free all resources.
- *@param avctx codec context
- *@return 0 on success, < 0 otherwise
- */
- static av_cold int decode_end(AVCodecContext *avctx)
- {
- WMAProDecodeCtx *s = avctx->priv_data;
- int i;
-
- for (i = 0; i < WMAPRO_BLOCK_SIZES; i++)
- ff_mdct_end(&s->mdct_ctx[i]);
-
- return 0;
- }
-
- /**
- *@brief Initialize the decoder.
- *@param avctx codec context
- *@return 0 on success, -1 otherwise
- */
- static av_cold int decode_init(AVCodecContext *avctx)
- {
- WMAProDecodeCtx *s = avctx->priv_data;
- uint8_t *edata_ptr = avctx->extradata;
- unsigned int channel_mask;
- int i, bits;
- int log2_max_num_subframes;
- int num_possible_block_sizes;
-
- if (!avctx->block_align) {
- av_log(avctx, AV_LOG_ERROR, "block_align is not set\n");
- return AVERROR(EINVAL);
- }
-
- s->avctx = avctx;
- avpriv_float_dsp_init(&s->fdsp, avctx->flags & AV_CODEC_FLAG_BITEXACT);
-
- init_put_bits(&s->pb, s->frame_data, MAX_FRAMESIZE);
-
- avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
-
- if (avctx->extradata_size >= 18) {
- s->decode_flags = AV_RL16(edata_ptr+14);
- channel_mask = AV_RL32(edata_ptr+2);
- s->bits_per_sample = AV_RL16(edata_ptr);
- /** dump the extradata */
- for (i = 0; i < avctx->extradata_size; i++)
- ff_dlog(avctx, "[%x] ", avctx->extradata[i]);
- ff_dlog(avctx, "\n");
-
- } else {
- avpriv_request_sample(avctx, "Unknown extradata size");
- return AVERROR_PATCHWELCOME;
- }
-
- /** generic init */
- s->log2_frame_size = av_log2(avctx->block_align) + 4;
-
- /** frame info */
- s->skip_frame = 1; /* skip first frame */
- s->packet_loss = 1;
- s->len_prefix = (s->decode_flags & 0x40);
-
- /** get frame len */
- bits = ff_wma_get_frame_len_bits(avctx->sample_rate, 3, s->decode_flags);
- if (bits > WMAPRO_BLOCK_MAX_BITS) {
- avpriv_request_sample(avctx, "14-bit block sizes");
- return AVERROR_PATCHWELCOME;
- }
- s->samples_per_frame = 1 << bits;
-
- /** subframe info */
- log2_max_num_subframes = ((s->decode_flags & 0x38) >> 3);
- s->max_num_subframes = 1 << log2_max_num_subframes;
- if (s->max_num_subframes == 16 || s->max_num_subframes == 4)
- s->max_subframe_len_bit = 1;
- s->subframe_len_bits = av_log2(log2_max_num_subframes) + 1;
-
- num_possible_block_sizes = log2_max_num_subframes + 1;
- s->min_samples_per_subframe = s->samples_per_frame / s->max_num_subframes;
- s->dynamic_range_compression = (s->decode_flags & 0x80);
-
- if (s->max_num_subframes > MAX_SUBFRAMES) {
- av_log(avctx, AV_LOG_ERROR, "invalid number of subframes %"PRId8"\n",
- s->max_num_subframes);
- return AVERROR_INVALIDDATA;
- }
-
- if (s->min_samples_per_subframe < WMAPRO_BLOCK_MIN_SIZE) {
- av_log(avctx, AV_LOG_ERROR, "Invalid minimum block size %"PRId8"\n",
- s->max_num_subframes);
- return AVERROR_INVALIDDATA;
- }
-
- if (s->avctx->sample_rate <= 0) {
- av_log(avctx, AV_LOG_ERROR, "invalid sample rate\n");
- return AVERROR_INVALIDDATA;
- }
-
- if (avctx->channels < 0) {
- av_log(avctx, AV_LOG_ERROR, "invalid number of channels %d\n",
- avctx->channels);
- return AVERROR_INVALIDDATA;
- } else if (avctx->channels > WMAPRO_MAX_CHANNELS) {
- avpriv_request_sample(avctx,
- "More than %d channels", WMAPRO_MAX_CHANNELS);
- return AVERROR_PATCHWELCOME;
- }
-
- /** init previous block len */
- for (i = 0; i < avctx->channels; i++)
- s->channel[i].prev_block_len = s->samples_per_frame;
-
- /** extract lfe channel position */
- s->lfe_channel = -1;
-
- if (channel_mask & 8) {
- unsigned int mask;
- for (mask = 1; mask < 16; mask <<= 1) {
- if (channel_mask & mask)
- ++s->lfe_channel;
- }
- }
-
- INIT_VLC_STATIC(&sf_vlc, SCALEVLCBITS, HUFF_SCALE_SIZE,
- scale_huffbits, 1, 1,
- scale_huffcodes, 2, 2, 616);
-
- INIT_VLC_STATIC(&sf_rl_vlc, VLCBITS, HUFF_SCALE_RL_SIZE,
- scale_rl_huffbits, 1, 1,
- scale_rl_huffcodes, 4, 4, 1406);
-
- INIT_VLC_STATIC(&coef_vlc[0], VLCBITS, HUFF_COEF0_SIZE,
- coef0_huffbits, 1, 1,
- coef0_huffcodes, 4, 4, 2108);
-
- INIT_VLC_STATIC(&coef_vlc[1], VLCBITS, HUFF_COEF1_SIZE,
- coef1_huffbits, 1, 1,
- coef1_huffcodes, 4, 4, 3912);
-
- INIT_VLC_STATIC(&vec4_vlc, VLCBITS, HUFF_VEC4_SIZE,
- vec4_huffbits, 1, 1,
- vec4_huffcodes, 2, 2, 604);
-
- INIT_VLC_STATIC(&vec2_vlc, VLCBITS, HUFF_VEC2_SIZE,
- vec2_huffbits, 1, 1,
- vec2_huffcodes, 2, 2, 562);
-
- INIT_VLC_STATIC(&vec1_vlc, VLCBITS, HUFF_VEC1_SIZE,
- vec1_huffbits, 1, 1,
- vec1_huffcodes, 2, 2, 562);
-
- /** calculate number of scale factor bands and their offsets
- for every possible block size */
- for (i = 0; i < num_possible_block_sizes; i++) {
- int subframe_len = s->samples_per_frame >> i;
- int x;
- int band = 1;
-
- s->sfb_offsets[i][0] = 0;
-
- for (x = 0; x < MAX_BANDS-1 && s->sfb_offsets[i][band - 1] < subframe_len; x++) {
- int offset = (subframe_len * 2 * critical_freq[x])
- / s->avctx->sample_rate + 2;
- offset &= ~3;
- if (offset > s->sfb_offsets[i][band - 1])
- s->sfb_offsets[i][band++] = offset;
- }
- s->sfb_offsets[i][band - 1] = subframe_len;
- s->num_sfb[i] = band - 1;
- }
-
-
- /** Scale factors can be shared between blocks of different size
- as every block has a different scale factor band layout.
- The matrix sf_offsets is needed to find the correct scale factor.
- */
-
- for (i = 0; i < num_possible_block_sizes; i++) {
- int b;
- for (b = 0; b < s->num_sfb[i]; b++) {
- int x;
- int offset = ((s->sfb_offsets[i][b]
- + s->sfb_offsets[i][b + 1] - 1) << i) >> 1;
- for (x = 0; x < num_possible_block_sizes; x++) {
- int v = 0;
- while (s->sfb_offsets[x][v + 1] << x < offset)
- if (++v >= MAX_BANDS)
- return AVERROR_INVALIDDATA;
- s->sf_offsets[i][x][b] = v;
- }
- }
- }
-
- /** init MDCT, FIXME: only init needed sizes */
- for (i = 0; i < WMAPRO_BLOCK_SIZES; i++)
- ff_mdct_init(&s->mdct_ctx[i], WMAPRO_BLOCK_MIN_BITS+1+i, 1,
- 1.0 / (1 << (WMAPRO_BLOCK_MIN_BITS + i - 1))
- / (1 << (s->bits_per_sample - 1)));
-
- /** init MDCT windows: simple sine window */
- for (i = 0; i < WMAPRO_BLOCK_SIZES; i++) {
- const int win_idx = WMAPRO_BLOCK_MAX_BITS - i;
- ff_init_ff_sine_windows(win_idx);
- s->windows[WMAPRO_BLOCK_SIZES - i - 1] = ff_sine_windows[win_idx];
- }
-
- /** calculate subwoofer cutoff values */
- for (i = 0; i < num_possible_block_sizes; i++) {
- int block_size = s->samples_per_frame >> i;
- int cutoff = (440*block_size + 3 * (s->avctx->sample_rate >> 1) - 1)
- / s->avctx->sample_rate;
- s->subwoofer_cutoffs[i] = av_clip(cutoff, 4, block_size);
- }
-
- /** calculate sine values for the decorrelation matrix */
- for (i = 0; i < 33; i++)
- sin64[i] = sin(i*M_PI / 64.0);
-
- if (avctx->debug & FF_DEBUG_BITSTREAM)
- dump_context(s);
-
- avctx->channel_layout = channel_mask;
-
- return 0;
- }
-
- /**
- *@brief Decode the subframe length.
- *@param s context
- *@param offset sample offset in the frame
- *@return decoded subframe length on success, < 0 in case of an error
- */
- static int decode_subframe_length(WMAProDecodeCtx *s, int offset)
- {
- int frame_len_shift = 0;
- int subframe_len;
-
- /** no need to read from the bitstream when only one length is possible */
- if (offset == s->samples_per_frame - s->min_samples_per_subframe)
- return s->min_samples_per_subframe;
-
- /** 1 bit indicates if the subframe is of maximum length */
- if (s->max_subframe_len_bit) {
- if (bitstream_read_bit(&s->bc))
- frame_len_shift = 1 + bitstream_read(&s->bc,
- s->subframe_len_bits - 1);
- } else
- frame_len_shift = bitstream_read(&s->bc, s->subframe_len_bits);
-
- subframe_len = s->samples_per_frame >> frame_len_shift;
-
- /** sanity check the length */
- if (subframe_len < s->min_samples_per_subframe ||
- subframe_len > s->samples_per_frame) {
- av_log(s->avctx, AV_LOG_ERROR, "broken frame: subframe_len %i\n",
- subframe_len);
- return AVERROR_INVALIDDATA;
- }
- return subframe_len;
- }
-
- /**
- *@brief Decode how the data in the frame is split into subframes.
- * Every WMA frame contains the encoded data for a fixed number of
- * samples per channel. The data for every channel might be split
- * into several subframes. This function will reconstruct the list of
- * subframes for every channel.
- *
- * If the subframes are not evenly split, the algorithm estimates the
- * channels with the lowest number of total samples.
- * Afterwards, for each of these channels a bit is read from the
- * bitstream that indicates if the channel contains a subframe with the
- * next subframe size that is going to be read from the bitstream or not.
- * If a channel contains such a subframe, the subframe size gets added to
- * the channel's subframe list.
- * The algorithm repeats these steps until the frame is properly divided
- * between the individual channels.
- *
- *@param s context
- *@return 0 on success, < 0 in case of an error
- */
- static int decode_tilehdr(WMAProDecodeCtx *s)
- {
- uint16_t num_samples[WMAPRO_MAX_CHANNELS] = { 0 };/**< sum of samples for all currently known subframes of a channel */
- uint8_t contains_subframe[WMAPRO_MAX_CHANNELS]; /**< flag indicating if a channel contains the current subframe */
- int channels_for_cur_subframe = s->avctx->channels; /**< number of channels that contain the current subframe */
- int fixed_channel_layout = 0; /**< flag indicating that all channels use the same subframe offsets and sizes */
- int min_channel_len = 0; /**< smallest sum of samples (channels with this length will be processed first) */
- int c;
-
- /* Should never consume more than 3073 bits (256 iterations for the
- * while loop when always the minimum amount of 128 samples is subtracted
- * from missing samples in the 8 channel case).
- * 1 + BLOCK_MAX_SIZE * MAX_CHANNELS / BLOCK_MIN_SIZE * (MAX_CHANNELS + 4)
- */
-
- /** reset tiling information */
- for (c = 0; c < s->avctx->channels; c++)
- s->channel[c].num_subframes = 0;
-
- if (s->max_num_subframes == 1 || bitstream_read_bit(&s->bc))
- fixed_channel_layout = 1;
-
- /** loop until the frame data is split between the subframes */
- do {
- int subframe_len;
-
- /** check which channels contain the subframe */
- for (c = 0; c < s->avctx->channels; c++) {
- if (num_samples[c] == min_channel_len) {
- if (fixed_channel_layout || channels_for_cur_subframe == 1 ||
- (min_channel_len == s->samples_per_frame - s->min_samples_per_subframe))
- contains_subframe[c] = 1;
- else
- contains_subframe[c] = bitstream_read_bit(&s->bc);
- } else
- contains_subframe[c] = 0;
- }
-
- /** get subframe length, subframe_len == 0 is not allowed */
- if ((subframe_len = decode_subframe_length(s, min_channel_len)) <= 0)
- return AVERROR_INVALIDDATA;
-
- /** add subframes to the individual channels and find new min_channel_len */
- min_channel_len += subframe_len;
- for (c = 0; c < s->avctx->channels; c++) {
- WMAProChannelCtx* chan = &s->channel[c];
-
- if (contains_subframe[c]) {
- if (chan->num_subframes >= MAX_SUBFRAMES) {
- av_log(s->avctx, AV_LOG_ERROR,
- "broken frame: num subframes > 31\n");
- return AVERROR_INVALIDDATA;
- }
- chan->subframe_len[chan->num_subframes] = subframe_len;
- num_samples[c] += subframe_len;
- ++chan->num_subframes;
- if (num_samples[c] > s->samples_per_frame) {
- av_log(s->avctx, AV_LOG_ERROR, "broken frame: "
- "channel len > samples_per_frame\n");
- return AVERROR_INVALIDDATA;
- }
- } else if (num_samples[c] <= min_channel_len) {
- if (num_samples[c] < min_channel_len) {
- channels_for_cur_subframe = 0;
- min_channel_len = num_samples[c];
- }
- ++channels_for_cur_subframe;
- }
- }
- } while (min_channel_len < s->samples_per_frame);
-
- for (c = 0; c < s->avctx->channels; c++) {
- int i;
- int offset = 0;
- for (i = 0; i < s->channel[c].num_subframes; i++) {
- ff_dlog(s->avctx, "frame[%"PRIi32"] channel[%i] subframe[%i]"
- " len %"PRIu16"\n", s->frame_num, c, i,
- s->channel[c].subframe_len[i]);
- s->channel[c].subframe_offset[i] = offset;
- offset += s->channel[c].subframe_len[i];
- }
- }
-
- return 0;
- }
-
- /**
- *@brief Calculate a decorrelation matrix from the bitstream parameters.
- *@param s codec context
- *@param chgroup channel group for which the matrix needs to be calculated
- */
- static void decode_decorrelation_matrix(WMAProDecodeCtx *s,
- WMAProChannelGrp *chgroup)
- {
- int i;
- int offset = 0;
- int8_t rotation_offset[WMAPRO_MAX_CHANNELS * WMAPRO_MAX_CHANNELS];
- memset(chgroup->decorrelation_matrix, 0, s->avctx->channels *
- s->avctx->channels * sizeof(*chgroup->decorrelation_matrix));
-
- for (i = 0; i < chgroup->num_channels * (chgroup->num_channels - 1) >> 1; i++)
- rotation_offset[i] = bitstream_read(&s->bc, 6);
-
- for (i = 0; i < chgroup->num_channels; i++)
- chgroup->decorrelation_matrix[chgroup->num_channels * i + i] =
- bitstream_read_bit(&s->bc) ? 1.0 : -1.0;
-
- for (i = 1; i < chgroup->num_channels; i++) {
- int x;
- for (x = 0; x < i; x++) {
- int y;
- for (y = 0; y < i + 1; y++) {
- float v1 = chgroup->decorrelation_matrix[x * chgroup->num_channels + y];
- float v2 = chgroup->decorrelation_matrix[i * chgroup->num_channels + y];
- int n = rotation_offset[offset + x];
- float sinv;
- float cosv;
-
- if (n < 32) {
- sinv = sin64[n];
- cosv = sin64[32 - n];
- } else {
- sinv = sin64[64 - n];
- cosv = -sin64[n - 32];
- }
-
- chgroup->decorrelation_matrix[y + x * chgroup->num_channels] =
- (v1 * sinv) - (v2 * cosv);
- chgroup->decorrelation_matrix[y + i * chgroup->num_channels] =
- (v1 * cosv) + (v2 * sinv);
- }
- }
- offset += i;
- }
- }
-
- /**
- *@brief Decode channel transformation parameters
- *@param s codec context
- *@return 0 in case of success, < 0 in case of bitstream errors
- */
- static int decode_channel_transform(WMAProDecodeCtx* s)
- {
- int i;
- /* should never consume more than 1921 bits for the 8 channel case
- * 1 + MAX_CHANNELS * (MAX_CHANNELS + 2 + 3 * MAX_CHANNELS * MAX_CHANNELS
- * + MAX_CHANNELS + MAX_BANDS + 1)
- */
-
- /** in the one channel case channel transforms are pointless */
- s->num_chgroups = 0;
- if (s->avctx->channels > 1) {
- int remaining_channels = s->channels_for_cur_subframe;
-
- if (bitstream_read_bit(&s->bc)) {
- avpriv_request_sample(s->avctx,
- "Channel transform bit");
- return AVERROR_PATCHWELCOME;
- }
-
- for (s->num_chgroups = 0; remaining_channels &&
- s->num_chgroups < s->channels_for_cur_subframe; s->num_chgroups++) {
- WMAProChannelGrp* chgroup = &s->chgroup[s->num_chgroups];
- float** channel_data = chgroup->channel_data;
- chgroup->num_channels = 0;
- chgroup->transform = 0;
-
- /** decode channel mask */
- if (remaining_channels > 2) {
- for (i = 0; i < s->channels_for_cur_subframe; i++) {
- int channel_idx = s->channel_indexes_for_cur_subframe[i];
- if (!s->channel[channel_idx].grouped
- && bitstream_read_bit(&s->bc)) {
- ++chgroup->num_channels;
- s->channel[channel_idx].grouped = 1;
- *channel_data++ = s->channel[channel_idx].coeffs;
- }
- }
- } else {
- chgroup->num_channels = remaining_channels;
- for (i = 0; i < s->channels_for_cur_subframe; i++) {
- int channel_idx = s->channel_indexes_for_cur_subframe[i];
- if (!s->channel[channel_idx].grouped)
- *channel_data++ = s->channel[channel_idx].coeffs;
- s->channel[channel_idx].grouped = 1;
- }
- }
-
- /** decode transform type */
- if (chgroup->num_channels == 2) {
- if (bitstream_read_bit(&s->bc)) {
- if (bitstream_read_bit(&s->bc)) {
- avpriv_request_sample(s->avctx,
- "Unknown channel transform type");
- return AVERROR_PATCHWELCOME;
- }
- } else {
- chgroup->transform = 1;
- if (s->avctx->channels == 2) {
- chgroup->decorrelation_matrix[0] = 1.0;
- chgroup->decorrelation_matrix[1] = -1.0;
- chgroup->decorrelation_matrix[2] = 1.0;
- chgroup->decorrelation_matrix[3] = 1.0;
- } else {
- /** cos(pi/4) */
- chgroup->decorrelation_matrix[0] = 0.70703125;
- chgroup->decorrelation_matrix[1] = -0.70703125;
- chgroup->decorrelation_matrix[2] = 0.70703125;
- chgroup->decorrelation_matrix[3] = 0.70703125;
- }
- }
- } else if (chgroup->num_channels > 2) {
- if (bitstream_read_bit(&s->bc)) {
- chgroup->transform = 1;
- if (bitstream_read_bit(&s->bc)) {
- decode_decorrelation_matrix(s, chgroup);
- } else {
- /** FIXME: more than 6 coupled channels not supported */
- if (chgroup->num_channels > 6) {
- avpriv_request_sample(s->avctx,
- "Coupled channels > 6");
- } else {
- memcpy(chgroup->decorrelation_matrix,
- default_decorrelation[chgroup->num_channels],
- chgroup->num_channels * chgroup->num_channels *
- sizeof(*chgroup->decorrelation_matrix));
- }
- }
- }
- }
-
- /** decode transform on / off */
- if (chgroup->transform) {
- if (!bitstream_read_bit(&s->bc)) {
- int i;
- /** transform can be enabled for individual bands */
- for (i = 0; i < s->num_bands; i++) {
- chgroup->transform_band[i] = bitstream_read_bit(&s->bc);
- }
- } else {
- memset(chgroup->transform_band, 1, s->num_bands);
- }
- }
- remaining_channels -= chgroup->num_channels;
- }
- }
- return 0;
- }
-
- /**
- *@brief Extract the coefficients from the bitstream.
- *@param s codec context
- *@param c current channel number
- *@return 0 on success, < 0 in case of bitstream errors
- */
- static int decode_coeffs(WMAProDecodeCtx *s, int c)
- {
- /* Integers 0..15 as single-precision floats. The table saves a
- costly int to float conversion, and storing the values as
- integers allows fast sign-flipping. */
- static const uint32_t fval_tab[16] = {
- 0x00000000, 0x3f800000, 0x40000000, 0x40400000,
- 0x40800000, 0x40a00000, 0x40c00000, 0x40e00000,
- 0x41000000, 0x41100000, 0x41200000, 0x41300000,
- 0x41400000, 0x41500000, 0x41600000, 0x41700000,
- };
- int vlctable;
- VLC* vlc;
- WMAProChannelCtx* ci = &s->channel[c];
- int rl_mode = 0;
- int cur_coeff = 0;
- int num_zeros = 0;
- const uint16_t* run;
- const float* level;
-
- ff_dlog(s->avctx, "decode coefficients for channel %i\n", c);
-
- vlctable = bitstream_read_bit(&s->bc);
- vlc = &coef_vlc[vlctable];
-
- if (vlctable) {
- run = coef1_run;
- level = coef1_level;
- } else {
- run = coef0_run;
- level = coef0_level;
- }
-
- /** decode vector coefficients (consumes up to 167 bits per iteration for
- 4 vector coded large values) */
- while ((s->transmit_num_vec_coeffs || !rl_mode) &&
- (cur_coeff + 3 < ci->num_vec_coeffs)) {
- uint32_t vals[4];
- int i;
- unsigned int idx;
-
- idx = bitstream_read_vlc(&s->bc, vec4_vlc.table, VLCBITS, VEC4MAXDEPTH);
-
- if (idx == HUFF_VEC4_SIZE - 1) {
- for (i = 0; i < 4; i += 2) {
- idx = bitstream_read_vlc(&s->bc, vec2_vlc.table, VLCBITS, VEC2MAXDEPTH);
- if (idx == HUFF_VEC2_SIZE - 1) {
- uint32_t v0, v1;
- v0 = bitstream_read_vlc(&s->bc, vec1_vlc.table, VLCBITS, VEC1MAXDEPTH);
- if (v0 == HUFF_VEC1_SIZE - 1)
- v0 += ff_wma_get_large_val(&s->bc);
- v1 = bitstream_read_vlc(&s->bc, vec1_vlc.table, VLCBITS, VEC1MAXDEPTH);
- if (v1 == HUFF_VEC1_SIZE - 1)
- v1 += ff_wma_get_large_val(&s->bc);
- vals[i ] = av_float2int(v0);
- vals[i+1] = av_float2int(v1);
- } else {
- vals[i] = fval_tab[symbol_to_vec2[idx] >> 4 ];
- vals[i+1] = fval_tab[symbol_to_vec2[idx] & 0xF];
- }
- }
- } else {
- vals[0] = fval_tab[ symbol_to_vec4[idx] >> 12 ];
- vals[1] = fval_tab[(symbol_to_vec4[idx] >> 8) & 0xF];
- vals[2] = fval_tab[(symbol_to_vec4[idx] >> 4) & 0xF];
- vals[3] = fval_tab[ symbol_to_vec4[idx] & 0xF];
- }
-
- /** decode sign */
- for (i = 0; i < 4; i++) {
- if (vals[i]) {
- uint32_t sign = bitstream_read_bit(&s->bc) - 1;
- AV_WN32A(&ci->coeffs[cur_coeff], vals[i] ^ sign << 31);
- num_zeros = 0;
- } else {
- ci->coeffs[cur_coeff] = 0;
- /** switch to run level mode when subframe_len / 128 zeros
- were found in a row */
- rl_mode |= (++num_zeros > s->subframe_len >> 8);
- }
- ++cur_coeff;
- }
- }
-
- /** decode run level coded coefficients */
- if (cur_coeff < s->subframe_len) {
- memset(&ci->coeffs[cur_coeff], 0,
- sizeof(*ci->coeffs) * (s->subframe_len - cur_coeff));
- if (ff_wma_run_level_decode(s->avctx, &s->bc, vlc,
- level, run, 1, ci->coeffs,
- cur_coeff, s->subframe_len,
- s->subframe_len, s->esc_len, 0))
- return AVERROR_INVALIDDATA;
- }
-
- return 0;
- }
-
- /**
- *@brief Extract scale factors from the bitstream.
- *@param s codec context
- *@return 0 on success, < 0 in case of bitstream errors
- */
- static int decode_scale_factors(WMAProDecodeCtx* s)
- {
- int i;
-
- /** should never consume more than 5344 bits
- * MAX_CHANNELS * (1 + MAX_BANDS * 23)
- */
-
- for (i = 0; i < s->channels_for_cur_subframe; i++) {
- int c = s->channel_indexes_for_cur_subframe[i];
- int* sf;
- int* sf_end;
- s->channel[c].scale_factors = s->channel[c].saved_scale_factors[!s->channel[c].scale_factor_idx];
- sf_end = s->channel[c].scale_factors + s->num_bands;
-
- /** resample scale factors for the new block size
- * as the scale factors might need to be resampled several times
- * before some new values are transmitted, a backup of the last
- * transmitted scale factors is kept in saved_scale_factors
- */
- if (s->channel[c].reuse_sf) {
- const int8_t* sf_offsets = s->sf_offsets[s->table_idx][s->channel[c].table_idx];
- int b;
- for (b = 0; b < s->num_bands; b++)
- s->channel[c].scale_factors[b] =
- s->channel[c].saved_scale_factors[s->channel[c].scale_factor_idx][*sf_offsets++];
- }
-
- if (!s->channel[c].cur_subframe || bitstream_read_bit(&s->bc)) {
- if (!s->channel[c].reuse_sf) {
- int val;
- /** decode DPCM coded scale factors */
- s->channel[c].scale_factor_step = bitstream_read(&s->bc, 2) + 1;
- val = 45 / s->channel[c].scale_factor_step;
- for (sf = s->channel[c].scale_factors; sf < sf_end; sf++) {
- val += bitstream_read_vlc(&s->bc, sf_vlc.table, SCALEVLCBITS, SCALEMAXDEPTH) - 60;
- *sf = val;
- }
- } else {
- int i;
- /** run level decode differences to the resampled factors */
- for (i = 0; i < s->num_bands; i++) {
- int idx;
- int skip;
- int val;
- int sign;
-
- idx = bitstream_read_vlc(&s->bc, sf_rl_vlc.table, VLCBITS, SCALERLMAXDEPTH);
-
- if (!idx) {
- uint32_t code = bitstream_read(&s->bc, 14);
- val = code >> 6;
- sign = (code & 1) - 1;
- skip = (code & 0x3f) >> 1;
- } else if (idx == 1) {
- break;
- } else {
- skip = scale_rl_run[idx];
- val = scale_rl_level[idx];
- sign = bitstream_read_bit(&s->bc)-1;
- }
-
- i += skip;
- if (i >= s->num_bands) {
- av_log(s->avctx, AV_LOG_ERROR,
- "invalid scale factor coding\n");
- return AVERROR_INVALIDDATA;
- }
- s->channel[c].scale_factors[i] += (val ^ sign) - sign;
- }
- }
- /** swap buffers */
- s->channel[c].scale_factor_idx = !s->channel[c].scale_factor_idx;
- s->channel[c].table_idx = s->table_idx;
- s->channel[c].reuse_sf = 1;
- }
-
- /** calculate new scale factor maximum */
- s->channel[c].max_scale_factor = s->channel[c].scale_factors[0];
- for (sf = s->channel[c].scale_factors + 1; sf < sf_end; sf++) {
- s->channel[c].max_scale_factor =
- FFMAX(s->channel[c].max_scale_factor, *sf);
- }
-
- }
- return 0;
- }
-
- /**
- *@brief Reconstruct the individual channel data.
- *@param s codec context
- */
- static void inverse_channel_transform(WMAProDecodeCtx *s)
- {
- int i;
-
- for (i = 0; i < s->num_chgroups; i++) {
- if (s->chgroup[i].transform) {
- float data[WMAPRO_MAX_CHANNELS];
- const int num_channels = s->chgroup[i].num_channels;
- float** ch_data = s->chgroup[i].channel_data;
- float** ch_end = ch_data + num_channels;
- const int8_t* tb = s->chgroup[i].transform_band;
- int16_t* sfb;
-
- /** multichannel decorrelation */
- for (sfb = s->cur_sfb_offsets;
- sfb < s->cur_sfb_offsets + s->num_bands; sfb++) {
- int y;
- if (*tb++ == 1) {
- /** multiply values with the decorrelation_matrix */
- for (y = sfb[0]; y < FFMIN(sfb[1], s->subframe_len); y++) {
- const float* mat = s->chgroup[i].decorrelation_matrix;
- const float* data_end = data + num_channels;
- float* data_ptr = data;
- float** ch;
-
- for (ch = ch_data; ch < ch_end; ch++)
- *data_ptr++ = (*ch)[y];
-
- for (ch = ch_data; ch < ch_end; ch++) {
- float sum = 0;
- data_ptr = data;
- while (data_ptr < data_end)
- sum += *data_ptr++ * *mat++;
-
- (*ch)[y] = sum;
- }
- }
- } else if (s->avctx->channels == 2) {
- int len = FFMIN(sfb[1], s->subframe_len) - sfb[0];
- s->fdsp.vector_fmul_scalar(ch_data[0] + sfb[0],
- ch_data[0] + sfb[0],
- 181.0 / 128, len);
- s->fdsp.vector_fmul_scalar(ch_data[1] + sfb[0],
- ch_data[1] + sfb[0],
- 181.0 / 128, len);
- }
- }
- }
- }
- }
-
- /**
- *@brief Apply sine window and reconstruct the output buffer.
- *@param s codec context
- */
- static void wmapro_window(WMAProDecodeCtx *s)
- {
- int i;
- for (i = 0; i < s->channels_for_cur_subframe; i++) {
- int c = s->channel_indexes_for_cur_subframe[i];
- float* window;
- int winlen = s->channel[c].prev_block_len;
- float* start = s->channel[c].coeffs - (winlen >> 1);
-
- if (s->subframe_len < winlen) {
- start += (winlen - s->subframe_len) >> 1;
- winlen = s->subframe_len;
- }
-
- window = s->windows[av_log2(winlen) - WMAPRO_BLOCK_MIN_BITS];
-
- winlen >>= 1;
-
- s->fdsp.vector_fmul_window(start, start, start + winlen,
- window, winlen);
-
- s->channel[c].prev_block_len = s->subframe_len;
- }
- }
-
- /**
- *@brief Decode a single subframe (block).
- *@param s codec context
- *@return 0 on success, < 0 when decoding failed
- */
- static int decode_subframe(WMAProDecodeCtx *s)
- {
- int offset = s->samples_per_frame;
- int subframe_len = s->samples_per_frame;
- int i;
- int total_samples = s->samples_per_frame * s->avctx->channels;
- int transmit_coeffs = 0;
- int cur_subwoofer_cutoff;
-
- s->subframe_offset = bitstream_tell(&s->bc);
-
- /** reset channel context and find the next block offset and size
- == the next block of the channel with the smallest number of
- decoded samples
- */
- for (i = 0; i < s->avctx->channels; i++) {
- s->channel[i].grouped = 0;
- if (offset > s->channel[i].decoded_samples) {
- offset = s->channel[i].decoded_samples;
- subframe_len =
- s->channel[i].subframe_len[s->channel[i].cur_subframe];
- }
- }
-
- ff_dlog(s->avctx,
- "processing subframe with offset %i len %i\n", offset, subframe_len);
-
- /** get a list of all channels that contain the estimated block */
- s->channels_for_cur_subframe = 0;
- for (i = 0; i < s->avctx->channels; i++) {
- const int cur_subframe = s->channel[i].cur_subframe;
- /** subtract already processed samples */
- total_samples -= s->channel[i].decoded_samples;
-
- /** and count if there are multiple subframes that match our profile */
- if (offset == s->channel[i].decoded_samples &&
- subframe_len == s->channel[i].subframe_len[cur_subframe]) {
- total_samples -= s->channel[i].subframe_len[cur_subframe];
- s->channel[i].decoded_samples +=
- s->channel[i].subframe_len[cur_subframe];
- s->channel_indexes_for_cur_subframe[s->channels_for_cur_subframe] = i;
- ++s->channels_for_cur_subframe;
- }
- }
-
- /** check if the frame will be complete after processing the
- estimated block */
- if (!total_samples)
- s->parsed_all_subframes = 1;
-
-
- ff_dlog(s->avctx, "subframe is part of %i channels\n",
- s->channels_for_cur_subframe);
-
- /** calculate number of scale factor bands and their offsets */
- s->table_idx = av_log2(s->samples_per_frame/subframe_len);
- s->num_bands = s->num_sfb[s->table_idx];
- s->cur_sfb_offsets = s->sfb_offsets[s->table_idx];
- cur_subwoofer_cutoff = s->subwoofer_cutoffs[s->table_idx];
-
- /** configure the decoder for the current subframe */
- offset += s->samples_per_frame >> 1;
-
- for (i = 0; i < s->channels_for_cur_subframe; i++) {
- int c = s->channel_indexes_for_cur_subframe[i];
-
- s->channel[c].coeffs = &s->channel[c].out[offset];
- }
-
- s->subframe_len = subframe_len;
- s->esc_len = av_log2(s->subframe_len - 1) + 1;
-
- /** skip extended header if any */
- if (bitstream_read_bit(&s->bc)) {
- int num_fill_bits;
- if (!(num_fill_bits = bitstream_read(&s->bc, 2))) {
- int len = bitstream_read(&s->bc, 4);
- num_fill_bits = bitstream_read(&s->bc, len) + 1;
- }
-
- if (num_fill_bits >= 0) {
- if (bitstream_tell(&s->bc) + num_fill_bits > s->num_saved_bits) {
- av_log(s->avctx, AV_LOG_ERROR, "invalid number of fill bits\n");
- return AVERROR_INVALIDDATA;
- }
-
- bitstream_skip(&s->bc, num_fill_bits);
- }
- }
-
- /** no idea for what the following bit is used */
- if (bitstream_read_bit(&s->bc)) {
- avpriv_request_sample(s->avctx, "Reserved bit");
- return AVERROR_PATCHWELCOME;
- }
-
-
- if (decode_channel_transform(s) < 0)
- return AVERROR_INVALIDDATA;
-
-
- for (i = 0; i < s->channels_for_cur_subframe; i++) {
- int c = s->channel_indexes_for_cur_subframe[i];
- if ((s->channel[c].transmit_coefs = bitstream_read_bit(&s->bc)))
- transmit_coeffs = 1;
- }
-
- if (transmit_coeffs) {
- int step;
- int quant_step = 90 * s->bits_per_sample >> 4;
-
- /** decode number of vector coded coefficients */
- if ((s->transmit_num_vec_coeffs = bitstream_read_bit(&s->bc))) {
- int num_bits = av_log2((s->subframe_len + 3)/4) + 1;
- for (i = 0; i < s->channels_for_cur_subframe; i++) {
- int c = s->channel_indexes_for_cur_subframe[i];
- int num_vec_coeffs = bitstream_read(&s->bc, num_bits) << 2;
- if (num_vec_coeffs + offset > FF_ARRAY_ELEMS(s->channel[c].out)) {
- av_log(s->avctx, AV_LOG_ERROR, "num_vec_coeffs %d is too large\n", num_vec_coeffs);
- return AVERROR_INVALIDDATA;
- }
- s->channel[c].num_vec_coeffs = num_vec_coeffs;
- }
- } else {
- for (i = 0; i < s->channels_for_cur_subframe; i++) {
- int c = s->channel_indexes_for_cur_subframe[i];
- s->channel[c].num_vec_coeffs = s->subframe_len;
- }
- }
- /** decode quantization step */
- step = bitstream_read_signed(&s->bc, 6);
- quant_step += step;
- if (step == -32 || step == 31) {
- const int sign = (step == 31) - 1;
- int quant = 0;
- while (bitstream_tell(&s->bc) + 5 < s->num_saved_bits &&
- (step = bitstream_read(&s->bc, 5)) == 31) {
- quant += 31;
- }
- quant_step += ((quant + step) ^ sign) - sign;
- }
- if (quant_step < 0) {
- av_log(s->avctx, AV_LOG_DEBUG, "negative quant step\n");
- }
-
- /** decode quantization step modifiers for every channel */
-
- if (s->channels_for_cur_subframe == 1) {
- s->channel[s->channel_indexes_for_cur_subframe[0]].quant_step = quant_step;
- } else {
- int modifier_len = bitstream_read(&s->bc, 3);
- for (i = 0; i < s->channels_for_cur_subframe; i++) {
- int c = s->channel_indexes_for_cur_subframe[i];
- s->channel[c].quant_step = quant_step;
- if (bitstream_read_bit(&s->bc)) {
- if (modifier_len) {
- s->channel[c].quant_step += bitstream_read(&s->bc, modifier_len) + 1;
- } else
- ++s->channel[c].quant_step;
- }
- }
- }
-
- /** decode scale factors */
- if (decode_scale_factors(s) < 0)
- return AVERROR_INVALIDDATA;
- }
-
- ff_dlog(s->avctx, "BITSTREAM: subframe header length was %i\n",
- bitstream_tell(&s->bc) - s->subframe_offset);
-
- /** parse coefficients */
- for (i = 0; i < s->channels_for_cur_subframe; i++) {
- int c = s->channel_indexes_for_cur_subframe[i];
- if (s->channel[c].transmit_coefs &&
- bitstream_tell(&s->bc) < s->num_saved_bits) {
- decode_coeffs(s, c);
- } else
- memset(s->channel[c].coeffs, 0,
- sizeof(*s->channel[c].coeffs) * subframe_len);
- }
-
- ff_dlog(s->avctx, "BITSTREAM: subframe length was %i\n",
- bitstream_tell(&s->bc) - s->subframe_offset);
-
- if (transmit_coeffs) {
- FFTContext *mdct = &s->mdct_ctx[av_log2(subframe_len) - WMAPRO_BLOCK_MIN_BITS];
- /** reconstruct the per channel data */
- inverse_channel_transform(s);
- for (i = 0; i < s->channels_for_cur_subframe; i++) {
- int c = s->channel_indexes_for_cur_subframe[i];
- const int* sf = s->channel[c].scale_factors;
- int b;
-
- if (c == s->lfe_channel)
- memset(&s->tmp[cur_subwoofer_cutoff], 0, sizeof(*s->tmp) *
- (subframe_len - cur_subwoofer_cutoff));
-
- /** inverse quantization and rescaling */
- for (b = 0; b < s->num_bands; b++) {
- const int end = FFMIN(s->cur_sfb_offsets[b+1], s->subframe_len);
- const int exp = s->channel[c].quant_step -
- (s->channel[c].max_scale_factor - *sf++) *
- s->channel[c].scale_factor_step;
- const float quant = pow(10.0, exp / 20.0);
- int start = s->cur_sfb_offsets[b];
- s->fdsp.vector_fmul_scalar(s->tmp + start,
- s->channel[c].coeffs + start,
- quant, end - start);
- }
-
- /** apply imdct (imdct_half == DCTIV with reverse) */
- mdct->imdct_half(mdct, s->channel[c].coeffs, s->tmp);
- }
- }
-
- /** window and overlapp-add */
- wmapro_window(s);
-
- /** handled one subframe */
- for (i = 0; i < s->channels_for_cur_subframe; i++) {
- int c = s->channel_indexes_for_cur_subframe[i];
- if (s->channel[c].cur_subframe >= s->channel[c].num_subframes) {
- av_log(s->avctx, AV_LOG_ERROR, "broken subframe\n");
- return AVERROR_INVALIDDATA;
- }
- ++s->channel[c].cur_subframe;
- }
-
- return 0;
- }
-
- /**
- *@brief Decode one WMA frame.
- *@param s codec context
- *@return 0 if the trailer bit indicates that this is the last frame,
- * 1 if there are additional frames
- */
- static int decode_frame(WMAProDecodeCtx *s, AVFrame *frame, int *got_frame_ptr)
- {
- AVCodecContext *avctx = s->avctx;
- BitstreamContext *bc = &s->bc;
- int more_frames = 0;
- int len = 0;
- int i, ret;
-
- /** get frame length */
- if (s->len_prefix)
- len = bitstream_read(bc, s->log2_frame_size);
-
- ff_dlog(s->avctx, "decoding frame with length %x\n", len);
-
- /** decode tile information */
- if (decode_tilehdr(s)) {
- s->packet_loss = 1;
- return 0;
- }
-
- /** read postproc transform */
- if (s->avctx->channels > 1 && bitstream_read_bit(bc)) {
- if (bitstream_read_bit(bc)) {
- for (i = 0; i < avctx->channels * avctx->channels; i++)
- bitstream_skip(bc, 4);
- }
- }
-
- /** read drc info */
- if (s->dynamic_range_compression) {
- s->drc_gain = bitstream_read(bc, 8);
- ff_dlog(s->avctx, "drc_gain %i\n", s->drc_gain);
- }
-
- /** no idea what these are for, might be the number of samples
- that need to be skipped at the beginning or end of a stream */
- if (bitstream_read_bit(bc)) {
- int av_unused skip;
-
- /** usually true for the first frame */
- if (bitstream_read_bit(bc)) {
- skip = bitstream_read(bc, av_log2(s->samples_per_frame * 2));
- ff_dlog(s->avctx, "start skip: %i\n", skip);
- }
-
- /** sometimes true for the last frame */
- if (bitstream_read_bit(bc)) {
- skip = bitstream_read(bc, av_log2(s->samples_per_frame * 2));
- ff_dlog(s->avctx, "end skip: %i\n", skip);
- }
-
- }
-
- ff_dlog(s->avctx, "BITSTREAM: frame header length was %i\n",
- bitstream_tell(bc) - s->frame_offset);
-
- /** reset subframe states */
- s->parsed_all_subframes = 0;
- for (i = 0; i < avctx->channels; i++) {
- s->channel[i].decoded_samples = 0;
- s->channel[i].cur_subframe = 0;
- s->channel[i].reuse_sf = 0;
- }
-
- /** decode all subframes */
- while (!s->parsed_all_subframes) {
- if (decode_subframe(s) < 0) {
- s->packet_loss = 1;
- return 0;
- }
- }
-
- /* get output buffer */
- frame->nb_samples = s->samples_per_frame;
- if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) {
- av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
- s->packet_loss = 1;
- return 0;
- }
-
- /** copy samples to the output buffer */
- for (i = 0; i < avctx->channels; i++)
- memcpy(frame->extended_data[i], s->channel[i].out,
- s->samples_per_frame * sizeof(*s->channel[i].out));
-
- for (i = 0; i < avctx->channels; i++) {
- /** reuse second half of the IMDCT output for the next frame */
- memcpy(&s->channel[i].out[0],
- &s->channel[i].out[s->samples_per_frame],
- s->samples_per_frame * sizeof(*s->channel[i].out) >> 1);
- }
-
- if (s->skip_frame) {
- s->skip_frame = 0;
- *got_frame_ptr = 0;
- av_frame_unref(frame);
- } else {
- *got_frame_ptr = 1;
- }
-
- if (s->len_prefix) {
- if (len != (bitstream_tell(bc) - s->frame_offset) + 2) {
- /** FIXME: not sure if this is always an error */
- av_log(s->avctx, AV_LOG_ERROR,
- "frame[%"PRIu32"] would have to skip %i bits\n",
- s->frame_num,
- len - (bitstream_tell(bc) - s->frame_offset) - 1);
- s->packet_loss = 1;
- return 0;
- }
-
- /** skip the rest of the frame data */
- bitstream_skip(bc, len - (bitstream_tell(bc) - s->frame_offset) - 1);
- } else {
- while (bitstream_tell(bc) < s->num_saved_bits && bitstream_read_bit(bc) == 0) {
- }
- }
-
- /** decode trailer bit */
- more_frames = bitstream_read_bit(bc);
-
- ++s->frame_num;
- return more_frames;
- }
-
- /**
- *@brief Calculate remaining input buffer length.
- *@param s codec context
- *@param bc bitstream reader context
- *@return remaining size in bits
- */
- static int remaining_bits(WMAProDecodeCtx *s, BitstreamContext *bc)
- {
- return s->buf_bit_size - bitstream_tell(bc);
- }
-
- /**
- *@brief Fill the bit reservoir with a (partial) frame.
- *@param s codec context
- *@param bc bitstream reader context
- *@param len length of the partial frame
- *@param append decides whether to reset the buffer or not
- */
- static void save_bits(WMAProDecodeCtx *s, BitstreamContext *bc, int len,
- int append)
- {
- int buflen;
-
- /** when the frame data does not need to be concatenated, the input buffer
- is reset and additional bits from the previous frame are copied
- and skipped later so that a fast byte copy is possible */
-
- if (!append) {
- s->frame_offset = bitstream_tell(bc) & 7;
- s->num_saved_bits = s->frame_offset;
- init_put_bits(&s->pb, s->frame_data, MAX_FRAMESIZE);
- }
-
- buflen = (s->num_saved_bits + len + 8) >> 3;
-
- if (len <= 0 || buflen > MAX_FRAMESIZE) {
- avpriv_request_sample(s->avctx, "Too small input buffer");
- s->packet_loss = 1;
- return;
- }
-
- if (len > put_bits_left(&s->pb)) {
- av_log(s->avctx, AV_LOG_ERROR,
- "Cannot append %d bits, only %d bits available.\n",
- len, put_bits_left(&s->pb));
- s->packet_loss = 1;
- return;
- }
-
- s->num_saved_bits += len;
- if (!append) {
- avpriv_copy_bits(&s->pb, bc->buffer + (bitstream_tell(bc) >> 3),
- s->num_saved_bits);
- } else {
- int align = 8 - (bitstream_tell(bc) & 7);
- align = FFMIN(align, len);
- put_bits(&s->pb, align, bitstream_read(bc, align));
- len -= align;
- avpriv_copy_bits(&s->pb, bc->buffer + (bitstream_tell(bc) >> 3), len);
- }
- bitstream_skip(bc, len);
-
- {
- PutBitContext tmp = s->pb;
- flush_put_bits(&tmp);
- }
-
- bitstream_init(&s->bc, s->frame_data, s->num_saved_bits);
- bitstream_skip(&s->bc, s->frame_offset);
- }
-
- /**
- *@brief Decode a single WMA packet.
- *@param avctx codec context
- *@param data the output buffer
- *@param avpkt input packet
- *@return number of bytes that were read from the input buffer
- */
- static int decode_packet(AVCodecContext *avctx, void *data,
- int *got_frame_ptr, AVPacket* avpkt)
- {
- WMAProDecodeCtx *s = avctx->priv_data;
- BitstreamContext *bc = &s->pbc;
- const uint8_t* buf = avpkt->data;
- int buf_size = avpkt->size;
- int num_bits_prev_frame;
- int packet_sequence_number;
-
- *got_frame_ptr = 0;
-
- if (s->packet_done || s->packet_loss) {
- s->packet_done = 0;
-
- /** sanity check for the buffer length */
- if (buf_size < avctx->block_align) {
- av_log(avctx, AV_LOG_ERROR, "Input packet too small (%d < %d)\n",
- buf_size, avctx->block_align);
- return AVERROR_INVALIDDATA;
- }
-
- s->next_packet_start = buf_size - avctx->block_align;
- buf_size = avctx->block_align;
- s->buf_bit_size = buf_size << 3;
-
- /** parse packet header */
- bitstream_init(bc, buf, s->buf_bit_size);
- packet_sequence_number = bitstream_read(bc, 4);
- bitstream_skip(bc, 2);
-
- /** get number of bits that need to be added to the previous frame */
- num_bits_prev_frame = bitstream_read(bc, s->log2_frame_size);
- ff_dlog(avctx, "packet[%d]: nbpf %x\n", avctx->frame_number,
- num_bits_prev_frame);
-
- /** check for packet loss */
- if (!s->packet_loss &&
- ((s->packet_sequence_number + 1) & 0xF) != packet_sequence_number) {
- s->packet_loss = 1;
- av_log(avctx, AV_LOG_ERROR,
- "Packet loss detected! seq %"PRIx8" vs %x\n",
- s->packet_sequence_number, packet_sequence_number);
- }
- s->packet_sequence_number = packet_sequence_number;
-
- if (num_bits_prev_frame > 0) {
- int remaining_packet_bits = s->buf_bit_size - bitstream_tell(bc);
- if (num_bits_prev_frame >= remaining_packet_bits) {
- num_bits_prev_frame = remaining_packet_bits;
- s->packet_done = 1;
- }
-
- /** append the previous frame data to the remaining data from the
- previous packet to create a full frame */
- save_bits(s, bc, num_bits_prev_frame, 1);
- ff_dlog(avctx, "accumulated %x bits of frame data\n",
- s->num_saved_bits - s->frame_offset);
-
- /** decode the cross packet frame if it is valid */
- if (!s->packet_loss)
- decode_frame(s, data, got_frame_ptr);
- } else if (s->num_saved_bits - s->frame_offset) {
- ff_dlog(avctx, "ignoring %x previously saved bits\n",
- s->num_saved_bits - s->frame_offset);
- }
-
- if (s->packet_loss) {
- /** reset number of saved bits so that the decoder
- does not start to decode incomplete frames in the
- s->len_prefix == 0 case */
- s->num_saved_bits = 0;
- s->packet_loss = 0;
- }
-
- } else {
- int frame_size;
- s->buf_bit_size = (avpkt->size - s->next_packet_start) << 3;
- bitstream_init(bc, avpkt->data, s->buf_bit_size);
- bitstream_skip(bc, s->packet_offset);
- if (s->len_prefix && remaining_bits(s, bc) > s->log2_frame_size &&
- (frame_size = bitstream_peek(bc, s->log2_frame_size)) &&
- frame_size <= remaining_bits(s, bc)) {
- save_bits(s, bc, frame_size, 0);
- s->packet_done = !decode_frame(s, data, got_frame_ptr);
- } else if (!s->len_prefix
- && s->num_saved_bits > bitstream_tell(&s->bc)) {
- /** when the frames do not have a length prefix, we don't know
- the compressed length of the individual frames
- however, we know what part of a new packet belongs to the
- previous frame
- therefore we save the incoming packet first, then we append
- the "previous frame" data from the next packet so that
- we get a buffer that only contains full frames */
- s->packet_done = !decode_frame(s, data, got_frame_ptr);
- } else
- s->packet_done = 1;
- }
-
- if (s->packet_done && !s->packet_loss &&
- remaining_bits(s, bc) > 0) {
- /** save the rest of the data so that it can be decoded
- with the next packet */
- save_bits(s, bc, remaining_bits(s, bc), 0);
- }
-
- s->packet_offset = bitstream_tell(bc) & 7;
- if (s->packet_loss)
- return AVERROR_INVALIDDATA;
-
- return bitstream_tell(bc) >> 3;
- }
-
- /**
- *@brief Clear decoder buffers (for seeking).
- *@param avctx codec context
- */
- static void flush(AVCodecContext *avctx)
- {
- WMAProDecodeCtx *s = avctx->priv_data;
- int i;
- /** reset output buffer as a part of it is used during the windowing of a
- new frame */
- for (i = 0; i < avctx->channels; i++)
- memset(s->channel[i].out, 0, s->samples_per_frame *
- sizeof(*s->channel[i].out));
- s->packet_loss = 1;
- }
-
-
- /**
- *@brief wmapro decoder
- */
- AVCodec ff_wmapro_decoder = {
- .name = "wmapro",
- .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 9 Professional"),
- .type = AVMEDIA_TYPE_AUDIO,
- .id = AV_CODEC_ID_WMAPRO,
- .priv_data_size = sizeof(WMAProDecodeCtx),
- .init = decode_init,
- .close = decode_end,
- .decode = decode_packet,
- .capabilities = AV_CODEC_CAP_SUBFRAMES | AV_CODEC_CAP_DR1,
- .flush = flush,
- .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
- AV_SAMPLE_FMT_NONE },
- };
|