You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

957 lines
33KB

  1. /*
  2. * WMA compatible decoder
  3. * Copyright (c) 2002 The Libav Project
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * WMA compatible decoder.
  24. * This decoder handles Microsoft Windows Media Audio data, versions 1 & 2.
  25. * WMA v1 is identified by audio format 0x160 in Microsoft media files
  26. * (ASF/AVI/WAV). WMA v2 is identified by audio format 0x161.
  27. *
  28. * To use this decoder, a calling application must supply the extra data
  29. * bytes provided with the WMA data. These are the extra, codec-specific
  30. * bytes at the end of a WAVEFORMATEX data structure. Transmit these bytes
  31. * to the decoder using the extradata[_size] fields in AVCodecContext. There
  32. * should be 4 extra bytes for v1 data and 6 extra bytes for v2 data.
  33. */
  34. #include "libavutil/attributes.h"
  35. #include "avcodec.h"
  36. #include "bitstream.h"
  37. #include "internal.h"
  38. #include "wma.h"
  39. #define EXPVLCBITS 8
  40. #define EXPMAX ((19 + EXPVLCBITS - 1) / EXPVLCBITS)
  41. #define HGAINVLCBITS 9
  42. #define HGAINMAX ((13 + HGAINVLCBITS - 1) / HGAINVLCBITS)
  43. static void wma_lsp_to_curve_init(WMACodecContext *s, int frame_len);
  44. #ifdef TRACE
  45. static void dump_floats(WMACodecContext *s, const char *name,
  46. int prec, const float *tab, int n)
  47. {
  48. int i;
  49. ff_tlog(s->avctx, "%s[%d]:\n", name, n);
  50. for (i = 0; i < n; i++) {
  51. if ((i & 7) == 0)
  52. ff_tlog(s->avctx, "%4d: ", i);
  53. ff_tlog(s->avctx, " %8.*f", prec, tab[i]);
  54. if ((i & 7) == 7)
  55. ff_tlog(s->avctx, "\n");
  56. }
  57. if ((i & 7) != 0)
  58. ff_tlog(s->avctx, "\n");
  59. }
  60. #endif /* TRACE */
  61. static av_cold int wma_decode_init(AVCodecContext *avctx)
  62. {
  63. WMACodecContext *s = avctx->priv_data;
  64. int i, flags2;
  65. uint8_t *extradata;
  66. if (!avctx->block_align) {
  67. av_log(avctx, AV_LOG_ERROR, "block_align is not set\n");
  68. return AVERROR(EINVAL);
  69. }
  70. s->avctx = avctx;
  71. /* extract flag info */
  72. flags2 = 0;
  73. extradata = avctx->extradata;
  74. if (avctx->codec->id == AV_CODEC_ID_WMAV1 && avctx->extradata_size >= 4)
  75. flags2 = AV_RL16(extradata + 2);
  76. else if (avctx->codec->id == AV_CODEC_ID_WMAV2 && avctx->extradata_size >= 6)
  77. flags2 = AV_RL16(extradata + 4);
  78. s->use_exp_vlc = flags2 & 0x0001;
  79. s->use_bit_reservoir = flags2 & 0x0002;
  80. s->use_variable_block_len = flags2 & 0x0004;
  81. if (ff_wma_init(avctx, flags2) < 0)
  82. return -1;
  83. /* init MDCT */
  84. for (i = 0; i < s->nb_block_sizes; i++)
  85. ff_mdct_init(&s->mdct_ctx[i], s->frame_len_bits - i + 1, 1, 1.0 / 32768.0);
  86. if (s->use_noise_coding) {
  87. init_vlc(&s->hgain_vlc, HGAINVLCBITS, sizeof(ff_wma_hgain_huffbits),
  88. ff_wma_hgain_huffbits, 1, 1,
  89. ff_wma_hgain_huffcodes, 2, 2, 0);
  90. }
  91. if (s->use_exp_vlc)
  92. init_vlc(&s->exp_vlc, EXPVLCBITS, sizeof(ff_aac_scalefactor_bits), // FIXME move out of context
  93. ff_aac_scalefactor_bits, 1, 1,
  94. ff_aac_scalefactor_code, 4, 4, 0);
  95. else
  96. wma_lsp_to_curve_init(s, s->frame_len);
  97. avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
  98. return 0;
  99. }
  100. /**
  101. * compute x^-0.25 with an exponent and mantissa table. We use linear
  102. * interpolation to reduce the mantissa table size at a small speed
  103. * expense (linear interpolation approximately doubles the number of
  104. * bits of precision).
  105. */
  106. static inline float pow_m1_4(WMACodecContext *s, float x)
  107. {
  108. union {
  109. float f;
  110. unsigned int v;
  111. } u, t;
  112. unsigned int e, m;
  113. float a, b;
  114. u.f = x;
  115. e = u.v >> 23;
  116. m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
  117. /* build interpolation scale: 1 <= t < 2. */
  118. t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
  119. a = s->lsp_pow_m_table1[m];
  120. b = s->lsp_pow_m_table2[m];
  121. return s->lsp_pow_e_table[e] * (a + b * t.f);
  122. }
  123. static av_cold void wma_lsp_to_curve_init(WMACodecContext *s, int frame_len)
  124. {
  125. float wdel, a, b;
  126. int i, e, m;
  127. wdel = M_PI / frame_len;
  128. for (i = 0; i < frame_len; i++)
  129. s->lsp_cos_table[i] = 2.0f * cos(wdel * i);
  130. /* tables for x^-0.25 computation */
  131. for (i = 0; i < 256; i++) {
  132. e = i - 126;
  133. s->lsp_pow_e_table[i] = pow(2.0, e * -0.25);
  134. }
  135. /* NOTE: these two tables are needed to avoid two operations in
  136. * pow_m1_4 */
  137. b = 1.0;
  138. for (i = (1 << LSP_POW_BITS) - 1; i >= 0; i--) {
  139. m = (1 << LSP_POW_BITS) + i;
  140. a = (float) m * (0.5 / (1 << LSP_POW_BITS));
  141. a = pow(a, -0.25);
  142. s->lsp_pow_m_table1[i] = 2 * a - b;
  143. s->lsp_pow_m_table2[i] = b - a;
  144. b = a;
  145. }
  146. }
  147. /**
  148. * NOTE: We use the same code as Vorbis here
  149. * @todo optimize it further with SSE/3Dnow
  150. */
  151. static void wma_lsp_to_curve(WMACodecContext *s, float *out, float *val_max_ptr,
  152. int n, float *lsp)
  153. {
  154. int i, j;
  155. float p, q, w, v, val_max;
  156. val_max = 0;
  157. for (i = 0; i < n; i++) {
  158. p = 0.5f;
  159. q = 0.5f;
  160. w = s->lsp_cos_table[i];
  161. for (j = 1; j < NB_LSP_COEFS; j += 2) {
  162. q *= w - lsp[j - 1];
  163. p *= w - lsp[j];
  164. }
  165. p *= p * (2.0f - w);
  166. q *= q * (2.0f + w);
  167. v = p + q;
  168. v = pow_m1_4(s, v);
  169. if (v > val_max)
  170. val_max = v;
  171. out[i] = v;
  172. }
  173. *val_max_ptr = val_max;
  174. }
  175. /**
  176. * decode exponents coded with LSP coefficients (same idea as Vorbis)
  177. */
  178. static void decode_exp_lsp(WMACodecContext *s, int ch)
  179. {
  180. float lsp_coefs[NB_LSP_COEFS];
  181. int val, i;
  182. for (i = 0; i < NB_LSP_COEFS; i++) {
  183. if (i == 0 || i >= 8)
  184. val = bitstream_read(&s->bc, 3);
  185. else
  186. val = bitstream_read(&s->bc, 4);
  187. lsp_coefs[i] = ff_wma_lsp_codebook[i][val];
  188. }
  189. wma_lsp_to_curve(s, s->exponents[ch], &s->max_exponent[ch],
  190. s->block_len, lsp_coefs);
  191. }
  192. /** pow(10, i / 16.0) for i in -60..95 */
  193. static const float pow_tab[] = {
  194. 1.7782794100389e-04, 2.0535250264571e-04,
  195. 2.3713737056617e-04, 2.7384196342644e-04,
  196. 3.1622776601684e-04, 3.6517412725484e-04,
  197. 4.2169650342858e-04, 4.8696752516586e-04,
  198. 5.6234132519035e-04, 6.4938163157621e-04,
  199. 7.4989420933246e-04, 8.6596432336006e-04,
  200. 1.0000000000000e-03, 1.1547819846895e-03,
  201. 1.3335214321633e-03, 1.5399265260595e-03,
  202. 1.7782794100389e-03, 2.0535250264571e-03,
  203. 2.3713737056617e-03, 2.7384196342644e-03,
  204. 3.1622776601684e-03, 3.6517412725484e-03,
  205. 4.2169650342858e-03, 4.8696752516586e-03,
  206. 5.6234132519035e-03, 6.4938163157621e-03,
  207. 7.4989420933246e-03, 8.6596432336006e-03,
  208. 1.0000000000000e-02, 1.1547819846895e-02,
  209. 1.3335214321633e-02, 1.5399265260595e-02,
  210. 1.7782794100389e-02, 2.0535250264571e-02,
  211. 2.3713737056617e-02, 2.7384196342644e-02,
  212. 3.1622776601684e-02, 3.6517412725484e-02,
  213. 4.2169650342858e-02, 4.8696752516586e-02,
  214. 5.6234132519035e-02, 6.4938163157621e-02,
  215. 7.4989420933246e-02, 8.6596432336007e-02,
  216. 1.0000000000000e-01, 1.1547819846895e-01,
  217. 1.3335214321633e-01, 1.5399265260595e-01,
  218. 1.7782794100389e-01, 2.0535250264571e-01,
  219. 2.3713737056617e-01, 2.7384196342644e-01,
  220. 3.1622776601684e-01, 3.6517412725484e-01,
  221. 4.2169650342858e-01, 4.8696752516586e-01,
  222. 5.6234132519035e-01, 6.4938163157621e-01,
  223. 7.4989420933246e-01, 8.6596432336007e-01,
  224. 1.0000000000000e+00, 1.1547819846895e+00,
  225. 1.3335214321633e+00, 1.5399265260595e+00,
  226. 1.7782794100389e+00, 2.0535250264571e+00,
  227. 2.3713737056617e+00, 2.7384196342644e+00,
  228. 3.1622776601684e+00, 3.6517412725484e+00,
  229. 4.2169650342858e+00, 4.8696752516586e+00,
  230. 5.6234132519035e+00, 6.4938163157621e+00,
  231. 7.4989420933246e+00, 8.6596432336007e+00,
  232. 1.0000000000000e+01, 1.1547819846895e+01,
  233. 1.3335214321633e+01, 1.5399265260595e+01,
  234. 1.7782794100389e+01, 2.0535250264571e+01,
  235. 2.3713737056617e+01, 2.7384196342644e+01,
  236. 3.1622776601684e+01, 3.6517412725484e+01,
  237. 4.2169650342858e+01, 4.8696752516586e+01,
  238. 5.6234132519035e+01, 6.4938163157621e+01,
  239. 7.4989420933246e+01, 8.6596432336007e+01,
  240. 1.0000000000000e+02, 1.1547819846895e+02,
  241. 1.3335214321633e+02, 1.5399265260595e+02,
  242. 1.7782794100389e+02, 2.0535250264571e+02,
  243. 2.3713737056617e+02, 2.7384196342644e+02,
  244. 3.1622776601684e+02, 3.6517412725484e+02,
  245. 4.2169650342858e+02, 4.8696752516586e+02,
  246. 5.6234132519035e+02, 6.4938163157621e+02,
  247. 7.4989420933246e+02, 8.6596432336007e+02,
  248. 1.0000000000000e+03, 1.1547819846895e+03,
  249. 1.3335214321633e+03, 1.5399265260595e+03,
  250. 1.7782794100389e+03, 2.0535250264571e+03,
  251. 2.3713737056617e+03, 2.7384196342644e+03,
  252. 3.1622776601684e+03, 3.6517412725484e+03,
  253. 4.2169650342858e+03, 4.8696752516586e+03,
  254. 5.6234132519035e+03, 6.4938163157621e+03,
  255. 7.4989420933246e+03, 8.6596432336007e+03,
  256. 1.0000000000000e+04, 1.1547819846895e+04,
  257. 1.3335214321633e+04, 1.5399265260595e+04,
  258. 1.7782794100389e+04, 2.0535250264571e+04,
  259. 2.3713737056617e+04, 2.7384196342644e+04,
  260. 3.1622776601684e+04, 3.6517412725484e+04,
  261. 4.2169650342858e+04, 4.8696752516586e+04,
  262. 5.6234132519035e+04, 6.4938163157621e+04,
  263. 7.4989420933246e+04, 8.6596432336007e+04,
  264. 1.0000000000000e+05, 1.1547819846895e+05,
  265. 1.3335214321633e+05, 1.5399265260595e+05,
  266. 1.7782794100389e+05, 2.0535250264571e+05,
  267. 2.3713737056617e+05, 2.7384196342644e+05,
  268. 3.1622776601684e+05, 3.6517412725484e+05,
  269. 4.2169650342858e+05, 4.8696752516586e+05,
  270. 5.6234132519035e+05, 6.4938163157621e+05,
  271. 7.4989420933246e+05, 8.6596432336007e+05,
  272. };
  273. /**
  274. * decode exponents coded with VLC codes
  275. */
  276. static int decode_exp_vlc(WMACodecContext *s, int ch)
  277. {
  278. int last_exp, n, code;
  279. const uint16_t *ptr;
  280. float v, max_scale;
  281. uint32_t *q, *q_end, iv;
  282. const float *ptab = pow_tab + 60;
  283. const uint32_t *iptab = (const uint32_t *) ptab;
  284. ptr = s->exponent_bands[s->frame_len_bits - s->block_len_bits];
  285. q = (uint32_t *) s->exponents[ch];
  286. q_end = q + s->block_len;
  287. max_scale = 0;
  288. if (s->version == 1) {
  289. last_exp = bitstream_read(&s->bc, 5) + 10;
  290. v = ptab[last_exp];
  291. iv = iptab[last_exp];
  292. max_scale = v;
  293. n = *ptr++;
  294. switch (n & 3) do {
  295. case 0: *q++ = iv;
  296. case 3: *q++ = iv;
  297. case 2: *q++ = iv;
  298. case 1: *q++ = iv;
  299. } while ((n -= 4) > 0);
  300. } else
  301. last_exp = 36;
  302. while (q < q_end) {
  303. code = bitstream_read_vlc(&s->bc, s->exp_vlc.table, EXPVLCBITS, EXPMAX);
  304. if (code < 0) {
  305. av_log(s->avctx, AV_LOG_ERROR, "Exponent vlc invalid\n");
  306. return -1;
  307. }
  308. /* NOTE: this offset is the same as MPEG-4 AAC! */
  309. last_exp += code - 60;
  310. if ((unsigned) last_exp + 60 >= FF_ARRAY_ELEMS(pow_tab)) {
  311. av_log(s->avctx, AV_LOG_ERROR, "Exponent out of range: %d\n",
  312. last_exp);
  313. return -1;
  314. }
  315. v = ptab[last_exp];
  316. iv = iptab[last_exp];
  317. if (v > max_scale)
  318. max_scale = v;
  319. n = *ptr++;
  320. switch (n & 3) do {
  321. case 0: *q++ = iv;
  322. case 3: *q++ = iv;
  323. case 2: *q++ = iv;
  324. case 1: *q++ = iv;
  325. } while ((n -= 4) > 0);
  326. }
  327. s->max_exponent[ch] = max_scale;
  328. return 0;
  329. }
  330. /**
  331. * Apply MDCT window and add into output.
  332. *
  333. * We ensure that when the windows overlap their squared sum
  334. * is always 1 (MDCT reconstruction rule).
  335. */
  336. static void wma_window(WMACodecContext *s, float *out)
  337. {
  338. float *in = s->output;
  339. int block_len, bsize, n;
  340. /* left part */
  341. if (s->block_len_bits <= s->prev_block_len_bits) {
  342. block_len = s->block_len;
  343. bsize = s->frame_len_bits - s->block_len_bits;
  344. s->fdsp.vector_fmul_add(out, in, s->windows[bsize],
  345. out, block_len);
  346. } else {
  347. block_len = 1 << s->prev_block_len_bits;
  348. n = (s->block_len - block_len) / 2;
  349. bsize = s->frame_len_bits - s->prev_block_len_bits;
  350. s->fdsp.vector_fmul_add(out + n, in + n, s->windows[bsize],
  351. out + n, block_len);
  352. memcpy(out + n + block_len, in + n + block_len, n * sizeof(float));
  353. }
  354. out += s->block_len;
  355. in += s->block_len;
  356. /* right part */
  357. if (s->block_len_bits <= s->next_block_len_bits) {
  358. block_len = s->block_len;
  359. bsize = s->frame_len_bits - s->block_len_bits;
  360. s->fdsp.vector_fmul_reverse(out, in, s->windows[bsize], block_len);
  361. } else {
  362. block_len = 1 << s->next_block_len_bits;
  363. n = (s->block_len - block_len) / 2;
  364. bsize = s->frame_len_bits - s->next_block_len_bits;
  365. memcpy(out, in, n * sizeof(float));
  366. s->fdsp.vector_fmul_reverse(out + n, in + n, s->windows[bsize],
  367. block_len);
  368. memset(out + n + block_len, 0, n * sizeof(float));
  369. }
  370. }
  371. /**
  372. * @return 0 if OK. 1 if last block of frame. return -1 if
  373. * unrecoverable error.
  374. */
  375. static int wma_decode_block(WMACodecContext *s)
  376. {
  377. int n, v, a, ch, bsize;
  378. int coef_nb_bits, total_gain;
  379. int nb_coefs[MAX_CHANNELS];
  380. float mdct_norm;
  381. FFTContext *mdct;
  382. #ifdef TRACE
  383. ff_tlog(s->avctx, "***decode_block: %d:%d\n",
  384. s->frame_count - 1, s->block_num);
  385. #endif /* TRACE */
  386. /* compute current block length */
  387. if (s->use_variable_block_len) {
  388. n = av_log2(s->nb_block_sizes - 1) + 1;
  389. if (s->reset_block_lengths) {
  390. s->reset_block_lengths = 0;
  391. v = bitstream_read(&s->bc, n);
  392. if (v >= s->nb_block_sizes) {
  393. av_log(s->avctx, AV_LOG_ERROR,
  394. "prev_block_len_bits %d out of range\n",
  395. s->frame_len_bits - v);
  396. return -1;
  397. }
  398. s->prev_block_len_bits = s->frame_len_bits - v;
  399. v = bitstream_read(&s->bc, n);
  400. if (v >= s->nb_block_sizes) {
  401. av_log(s->avctx, AV_LOG_ERROR,
  402. "block_len_bits %d out of range\n",
  403. s->frame_len_bits - v);
  404. return -1;
  405. }
  406. s->block_len_bits = s->frame_len_bits - v;
  407. } else {
  408. /* update block lengths */
  409. s->prev_block_len_bits = s->block_len_bits;
  410. s->block_len_bits = s->next_block_len_bits;
  411. }
  412. v = bitstream_read(&s->bc, n);
  413. if (v >= s->nb_block_sizes) {
  414. av_log(s->avctx, AV_LOG_ERROR,
  415. "next_block_len_bits %d out of range\n",
  416. s->frame_len_bits - v);
  417. return -1;
  418. }
  419. s->next_block_len_bits = s->frame_len_bits - v;
  420. } else {
  421. /* fixed block len */
  422. s->next_block_len_bits = s->frame_len_bits;
  423. s->prev_block_len_bits = s->frame_len_bits;
  424. s->block_len_bits = s->frame_len_bits;
  425. }
  426. /* now check if the block length is coherent with the frame length */
  427. s->block_len = 1 << s->block_len_bits;
  428. if ((s->block_pos + s->block_len) > s->frame_len) {
  429. av_log(s->avctx, AV_LOG_ERROR, "frame_len overflow\n");
  430. return -1;
  431. }
  432. if (s->avctx->channels == 2)
  433. s->ms_stereo = bitstream_read_bit(&s->bc);
  434. v = 0;
  435. for (ch = 0; ch < s->avctx->channels; ch++) {
  436. a = bitstream_read_bit(&s->bc);
  437. s->channel_coded[ch] = a;
  438. v |= a;
  439. }
  440. bsize = s->frame_len_bits - s->block_len_bits;
  441. /* if no channel coded, no need to go further */
  442. /* XXX: fix potential framing problems */
  443. if (!v)
  444. goto next;
  445. /* read total gain and extract corresponding number of bits for
  446. * coef escape coding */
  447. total_gain = 1;
  448. for (;;) {
  449. a = bitstream_read(&s->bc, 7);
  450. total_gain += a;
  451. if (a != 127)
  452. break;
  453. }
  454. coef_nb_bits = ff_wma_total_gain_to_bits(total_gain);
  455. /* compute number of coefficients */
  456. n = s->coefs_end[bsize] - s->coefs_start;
  457. for (ch = 0; ch < s->avctx->channels; ch++)
  458. nb_coefs[ch] = n;
  459. /* complex coding */
  460. if (s->use_noise_coding) {
  461. for (ch = 0; ch < s->avctx->channels; ch++) {
  462. if (s->channel_coded[ch]) {
  463. int i, n, a;
  464. n = s->exponent_high_sizes[bsize];
  465. for (i = 0; i < n; i++) {
  466. a = bitstream_read_bit(&s->bc);
  467. s->high_band_coded[ch][i] = a;
  468. /* if noise coding, the coefficients are not transmitted */
  469. if (a)
  470. nb_coefs[ch] -= s->exponent_high_bands[bsize][i];
  471. }
  472. }
  473. }
  474. for (ch = 0; ch < s->avctx->channels; ch++) {
  475. if (s->channel_coded[ch]) {
  476. int i, n, val, code;
  477. n = s->exponent_high_sizes[bsize];
  478. val = (int) 0x80000000;
  479. for (i = 0; i < n; i++) {
  480. if (s->high_band_coded[ch][i]) {
  481. if (val == (int) 0x80000000) {
  482. val = bitstream_read(&s->bc, 7) - 19;
  483. } else {
  484. code = bitstream_read_vlc(&s->bc,
  485. s->hgain_vlc.table,
  486. HGAINVLCBITS, HGAINMAX);
  487. if (code < 0) {
  488. av_log(s->avctx, AV_LOG_ERROR,
  489. "hgain vlc invalid\n");
  490. return -1;
  491. }
  492. val += code - 18;
  493. }
  494. s->high_band_values[ch][i] = val;
  495. }
  496. }
  497. }
  498. }
  499. }
  500. /* exponents can be reused in short blocks. */
  501. if ((s->block_len_bits == s->frame_len_bits) || bitstream_read_bit(&s->bc)) {
  502. for (ch = 0; ch < s->avctx->channels; ch++) {
  503. if (s->channel_coded[ch]) {
  504. if (s->use_exp_vlc) {
  505. if (decode_exp_vlc(s, ch) < 0)
  506. return -1;
  507. } else {
  508. decode_exp_lsp(s, ch);
  509. }
  510. s->exponents_bsize[ch] = bsize;
  511. }
  512. }
  513. }
  514. /* parse spectral coefficients : just RLE encoding */
  515. for (ch = 0; ch < s->avctx->channels; ch++) {
  516. if (s->channel_coded[ch]) {
  517. int tindex;
  518. WMACoef *ptr = &s->coefs1[ch][0];
  519. /* special VLC tables are used for ms stereo because
  520. * there is potentially less energy there */
  521. tindex = (ch == 1 && s->ms_stereo);
  522. memset(ptr, 0, s->block_len * sizeof(WMACoef));
  523. ff_wma_run_level_decode(s->avctx, &s->bc, &s->coef_vlc[tindex],
  524. s->level_table[tindex], s->run_table[tindex],
  525. 0, ptr, 0, nb_coefs[ch],
  526. s->block_len, s->frame_len_bits, coef_nb_bits);
  527. }
  528. if (s->version == 1 && s->avctx->channels >= 2)
  529. bitstream_align(&s->bc);
  530. }
  531. /* normalize */
  532. {
  533. int n4 = s->block_len / 2;
  534. mdct_norm = 1.0 / (float) n4;
  535. if (s->version == 1)
  536. mdct_norm *= sqrt(n4);
  537. }
  538. /* finally compute the MDCT coefficients */
  539. for (ch = 0; ch < s->avctx->channels; ch++) {
  540. if (s->channel_coded[ch]) {
  541. WMACoef *coefs1;
  542. float *coefs, *exponents, mult, mult1, noise;
  543. int i, j, n, n1, last_high_band, esize;
  544. float exp_power[HIGH_BAND_MAX_SIZE];
  545. coefs1 = s->coefs1[ch];
  546. exponents = s->exponents[ch];
  547. esize = s->exponents_bsize[ch];
  548. mult = pow(10, total_gain * 0.05) / s->max_exponent[ch];
  549. mult *= mdct_norm;
  550. coefs = s->coefs[ch];
  551. if (s->use_noise_coding) {
  552. mult1 = mult;
  553. /* very low freqs : noise */
  554. for (i = 0; i < s->coefs_start; i++) {
  555. *coefs++ = s->noise_table[s->noise_index] *
  556. exponents[i << bsize >> esize] * mult1;
  557. s->noise_index = (s->noise_index + 1) &
  558. (NOISE_TAB_SIZE - 1);
  559. }
  560. n1 = s->exponent_high_sizes[bsize];
  561. /* compute power of high bands */
  562. exponents = s->exponents[ch] +
  563. (s->high_band_start[bsize] << bsize >> esize);
  564. last_high_band = 0; /* avoid warning */
  565. for (j = 0; j < n1; j++) {
  566. n = s->exponent_high_bands[s->frame_len_bits -
  567. s->block_len_bits][j];
  568. if (s->high_band_coded[ch][j]) {
  569. float e2, v;
  570. e2 = 0;
  571. for (i = 0; i < n; i++) {
  572. v = exponents[i << bsize >> esize];
  573. e2 += v * v;
  574. }
  575. exp_power[j] = e2 / n;
  576. last_high_band = j;
  577. ff_tlog(s->avctx, "%d: power=%f (%d)\n", j, exp_power[j], n);
  578. }
  579. exponents += n << bsize >> esize;
  580. }
  581. /* main freqs and high freqs */
  582. exponents = s->exponents[ch] + (s->coefs_start << bsize >> esize);
  583. for (j = -1; j < n1; j++) {
  584. if (j < 0)
  585. n = s->high_band_start[bsize] - s->coefs_start;
  586. else
  587. n = s->exponent_high_bands[s->frame_len_bits -
  588. s->block_len_bits][j];
  589. if (j >= 0 && s->high_band_coded[ch][j]) {
  590. /* use noise with specified power */
  591. mult1 = sqrt(exp_power[j] / exp_power[last_high_band]);
  592. /* XXX: use a table */
  593. mult1 = mult1 * pow(10, s->high_band_values[ch][j] * 0.05);
  594. mult1 = mult1 / (s->max_exponent[ch] * s->noise_mult);
  595. mult1 *= mdct_norm;
  596. for (i = 0; i < n; i++) {
  597. noise = s->noise_table[s->noise_index];
  598. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  599. *coefs++ = noise * exponents[i << bsize >> esize] * mult1;
  600. }
  601. exponents += n << bsize >> esize;
  602. } else {
  603. /* coded values + small noise */
  604. for (i = 0; i < n; i++) {
  605. noise = s->noise_table[s->noise_index];
  606. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  607. *coefs++ = ((*coefs1++) + noise) *
  608. exponents[i << bsize >> esize] * mult;
  609. }
  610. exponents += n << bsize >> esize;
  611. }
  612. }
  613. /* very high freqs : noise */
  614. n = s->block_len - s->coefs_end[bsize];
  615. mult1 = mult * exponents[((-1 << bsize)) >> esize];
  616. for (i = 0; i < n; i++) {
  617. *coefs++ = s->noise_table[s->noise_index] * mult1;
  618. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  619. }
  620. } else {
  621. /* XXX: optimize more */
  622. for (i = 0; i < s->coefs_start; i++)
  623. *coefs++ = 0.0;
  624. n = nb_coefs[ch];
  625. for (i = 0; i < n; i++)
  626. *coefs++ = coefs1[i] * exponents[i << bsize >> esize] * mult;
  627. n = s->block_len - s->coefs_end[bsize];
  628. for (i = 0; i < n; i++)
  629. *coefs++ = 0.0;
  630. }
  631. }
  632. }
  633. #ifdef TRACE
  634. for (ch = 0; ch < s->avctx->channels; ch++) {
  635. if (s->channel_coded[ch]) {
  636. dump_floats(s, "exponents", 3, s->exponents[ch], s->block_len);
  637. dump_floats(s, "coefs", 1, s->coefs[ch], s->block_len);
  638. }
  639. }
  640. #endif /* TRACE */
  641. if (s->ms_stereo && s->channel_coded[1]) {
  642. /* nominal case for ms stereo: we do it before mdct */
  643. /* no need to optimize this case because it should almost
  644. * never happen */
  645. if (!s->channel_coded[0]) {
  646. ff_tlog(s->avctx, "rare ms-stereo case happened\n");
  647. memset(s->coefs[0], 0, sizeof(float) * s->block_len);
  648. s->channel_coded[0] = 1;
  649. }
  650. s->fdsp.butterflies_float(s->coefs[0], s->coefs[1], s->block_len);
  651. }
  652. next:
  653. mdct = &s->mdct_ctx[bsize];
  654. for (ch = 0; ch < s->avctx->channels; ch++) {
  655. int n4, index;
  656. n4 = s->block_len / 2;
  657. if (s->channel_coded[ch])
  658. mdct->imdct_calc(mdct, s->output, s->coefs[ch]);
  659. else if (!(s->ms_stereo && ch == 1))
  660. memset(s->output, 0, sizeof(s->output));
  661. /* multiply by the window and add in the frame */
  662. index = (s->frame_len / 2) + s->block_pos - n4;
  663. wma_window(s, &s->frame_out[ch][index]);
  664. }
  665. /* update block number */
  666. s->block_num++;
  667. s->block_pos += s->block_len;
  668. if (s->block_pos >= s->frame_len)
  669. return 1;
  670. else
  671. return 0;
  672. }
  673. /* decode a frame of frame_len samples */
  674. static int wma_decode_frame(WMACodecContext *s, float **samples,
  675. int samples_offset)
  676. {
  677. int ret, ch;
  678. #ifdef TRACE
  679. ff_tlog(s->avctx, "***decode_frame: %d size=%d\n",
  680. s->frame_count++, s->frame_len);
  681. #endif /* TRACE */
  682. /* read each block */
  683. s->block_num = 0;
  684. s->block_pos = 0;
  685. for (;;) {
  686. ret = wma_decode_block(s);
  687. if (ret < 0)
  688. return -1;
  689. if (ret)
  690. break;
  691. }
  692. for (ch = 0; ch < s->avctx->channels; ch++) {
  693. /* copy current block to output */
  694. memcpy(samples[ch] + samples_offset, s->frame_out[ch],
  695. s->frame_len * sizeof(*s->frame_out[ch]));
  696. /* prepare for next block */
  697. memmove(&s->frame_out[ch][0], &s->frame_out[ch][s->frame_len],
  698. s->frame_len * sizeof(*s->frame_out[ch]));
  699. #ifdef TRACE
  700. dump_floats(s, "samples", 6, samples[ch] + samples_offset,
  701. s->frame_len);
  702. #endif /* TRACE */
  703. }
  704. return 0;
  705. }
  706. static int wma_decode_superframe(AVCodecContext *avctx, void *data,
  707. int *got_frame_ptr, AVPacket *avpkt)
  708. {
  709. AVFrame *frame = data;
  710. const uint8_t *buf = avpkt->data;
  711. int buf_size = avpkt->size;
  712. WMACodecContext *s = avctx->priv_data;
  713. int nb_frames, bit_offset, i, pos, len, ret;
  714. uint8_t *q;
  715. float **samples;
  716. int samples_offset;
  717. ff_tlog(avctx, "***decode_superframe:\n");
  718. if (buf_size == 0) {
  719. s->last_superframe_len = 0;
  720. return 0;
  721. }
  722. if (buf_size < avctx->block_align) {
  723. av_log(avctx, AV_LOG_ERROR,
  724. "Input packet size too small (%d < %d)\n",
  725. buf_size, avctx->block_align);
  726. return AVERROR_INVALIDDATA;
  727. }
  728. buf_size = avctx->block_align;
  729. bitstream_init8(&s->bc, buf, buf_size);
  730. if (s->use_bit_reservoir) {
  731. /* read super frame header */
  732. bitstream_skip(&s->bc, 4); /* super frame index */
  733. nb_frames = bitstream_read(&s->bc, 4) - (s->last_superframe_len <= 0);
  734. } else
  735. nb_frames = 1;
  736. /* get output buffer */
  737. frame->nb_samples = nb_frames * s->frame_len;
  738. if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) {
  739. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  740. return ret;
  741. }
  742. samples = (float **) frame->extended_data;
  743. samples_offset = 0;
  744. if (s->use_bit_reservoir) {
  745. bit_offset = bitstream_read(&s->bc, s->byte_offset_bits + 3);
  746. if (bit_offset > bitstream_bits_left(&s->bc)) {
  747. av_log(avctx, AV_LOG_ERROR,
  748. "Invalid last frame bit offset %d > buf size %d (%d)\n",
  749. bit_offset, bitstream_bits_left(&s->bc), buf_size);
  750. goto fail;
  751. }
  752. if (s->last_superframe_len > 0) {
  753. /* add bit_offset bits to last frame */
  754. if ((s->last_superframe_len + ((bit_offset + 7) >> 3)) >
  755. MAX_CODED_SUPERFRAME_SIZE)
  756. goto fail;
  757. q = s->last_superframe + s->last_superframe_len;
  758. len = bit_offset;
  759. while (len > 7) {
  760. *q++ = bitstream_read(&s->bc, 8);
  761. len -= 8;
  762. }
  763. if (len > 0)
  764. *q++ = bitstream_read(&s->bc, len) << (8 - len);
  765. memset(q, 0, AV_INPUT_BUFFER_PADDING_SIZE);
  766. /* XXX: bit_offset bits into last frame */
  767. bitstream_init(&s->bc, s->last_superframe,
  768. s->last_superframe_len * 8 + bit_offset);
  769. /* skip unused bits */
  770. if (s->last_bitoffset > 0)
  771. bitstream_skip(&s->bc, s->last_bitoffset);
  772. /* this frame is stored in the last superframe and in the
  773. * current one */
  774. if (wma_decode_frame(s, samples, samples_offset) < 0)
  775. goto fail;
  776. samples_offset += s->frame_len;
  777. nb_frames--;
  778. }
  779. /* read each frame starting from bit_offset */
  780. pos = bit_offset + 4 + 4 + s->byte_offset_bits + 3;
  781. if (pos >= MAX_CODED_SUPERFRAME_SIZE * 8 || pos > buf_size * 8)
  782. return AVERROR_INVALIDDATA;
  783. bitstream_init8(&s->bc, buf + (pos >> 3), buf_size - (pos >> 3));
  784. len = pos & 7;
  785. if (len > 0)
  786. bitstream_skip(&s->bc, len);
  787. s->reset_block_lengths = 1;
  788. for (i = 0; i < nb_frames; i++) {
  789. if (wma_decode_frame(s, samples, samples_offset) < 0)
  790. goto fail;
  791. samples_offset += s->frame_len;
  792. }
  793. /* we copy the end of the frame in the last frame buffer */
  794. pos = bitstream_tell(&s->bc) +
  795. ((bit_offset + 4 + 4 + s->byte_offset_bits + 3) & ~7);
  796. s->last_bitoffset = pos & 7;
  797. pos >>= 3;
  798. len = buf_size - pos;
  799. if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0) {
  800. av_log(s->avctx, AV_LOG_ERROR, "len %d invalid\n", len);
  801. goto fail;
  802. }
  803. s->last_superframe_len = len;
  804. memcpy(s->last_superframe, buf + pos, len);
  805. } else {
  806. /* single frame decode */
  807. if (wma_decode_frame(s, samples, samples_offset) < 0)
  808. goto fail;
  809. samples_offset += s->frame_len;
  810. }
  811. ff_dlog(s->avctx, "%d %d %d %d outbytes:%td eaten:%d\n",
  812. s->frame_len_bits, s->block_len_bits, s->frame_len, s->block_len,
  813. (int8_t *) samples - (int8_t *) data, avctx->block_align);
  814. *got_frame_ptr = 1;
  815. return avctx->block_align;
  816. fail:
  817. /* when error, we reset the bit reservoir */
  818. s->last_superframe_len = 0;
  819. return -1;
  820. }
  821. static av_cold void flush(AVCodecContext *avctx)
  822. {
  823. WMACodecContext *s = avctx->priv_data;
  824. s->last_bitoffset =
  825. s->last_superframe_len = 0;
  826. }
  827. AVCodec ff_wmav1_decoder = {
  828. .name = "wmav1",
  829. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 1"),
  830. .type = AVMEDIA_TYPE_AUDIO,
  831. .id = AV_CODEC_ID_WMAV1,
  832. .priv_data_size = sizeof(WMACodecContext),
  833. .init = wma_decode_init,
  834. .close = ff_wma_end,
  835. .decode = wma_decode_superframe,
  836. .flush = flush,
  837. .capabilities = AV_CODEC_CAP_DR1,
  838. .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
  839. AV_SAMPLE_FMT_NONE },
  840. };
  841. AVCodec ff_wmav2_decoder = {
  842. .name = "wmav2",
  843. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 2"),
  844. .type = AVMEDIA_TYPE_AUDIO,
  845. .id = AV_CODEC_ID_WMAV2,
  846. .priv_data_size = sizeof(WMACodecContext),
  847. .init = wma_decode_init,
  848. .close = ff_wma_end,
  849. .decode = wma_decode_superframe,
  850. .flush = flush,
  851. .capabilities = AV_CODEC_CAP_DR1,
  852. .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
  853. AV_SAMPLE_FMT_NONE },
  854. };