You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

476 lines
16KB

  1. /*
  2. * WMA compatible codec
  3. * Copyright (c) 2002-2007 The Libav Project
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include "libavutil/attributes.h"
  22. #include "avcodec.h"
  23. #include "bitstream.h"
  24. #include "internal.h"
  25. #include "sinewin.h"
  26. #include "wma.h"
  27. #include "wma_common.h"
  28. #include "wma_freqs.h"
  29. #include "wmadata.h"
  30. /* XXX: use same run/length optimization as mpeg decoders */
  31. // FIXME maybe split decode / encode or pass flag
  32. static av_cold int init_coef_vlc(VLC *vlc, uint16_t **prun_table,
  33. float **plevel_table, uint16_t **pint_table,
  34. const CoefVLCTable *vlc_table)
  35. {
  36. int n = vlc_table->n;
  37. const uint8_t *table_bits = vlc_table->huffbits;
  38. const uint32_t *table_codes = vlc_table->huffcodes;
  39. const uint16_t *levels_table = vlc_table->levels;
  40. uint16_t *run_table, *level_table, *int_table;
  41. float *flevel_table;
  42. int i, l, j, k, level;
  43. init_vlc(vlc, VLCBITS, n, table_bits, 1, 1, table_codes, 4, 4, 0);
  44. run_table = av_malloc(n * sizeof(uint16_t));
  45. level_table = av_malloc(n * sizeof(uint16_t));
  46. flevel_table = av_malloc(n * sizeof(*flevel_table));
  47. int_table = av_malloc(n * sizeof(uint16_t));
  48. if (!run_table || !level_table || !flevel_table || !int_table) {
  49. av_freep(&run_table);
  50. av_freep(&level_table);
  51. av_freep(&flevel_table);
  52. av_freep(&int_table);
  53. return AVERROR(ENOMEM);
  54. }
  55. i = 2;
  56. level = 1;
  57. k = 0;
  58. while (i < n) {
  59. int_table[k] = i;
  60. l = levels_table[k++];
  61. for (j = 0; j < l; j++) {
  62. run_table[i] = j;
  63. level_table[i] = level;
  64. flevel_table[i] = level;
  65. i++;
  66. }
  67. level++;
  68. }
  69. *prun_table = run_table;
  70. *plevel_table = flevel_table;
  71. *pint_table = int_table;
  72. av_free(level_table);
  73. return 0;
  74. }
  75. av_cold int ff_wma_init(AVCodecContext *avctx, int flags2)
  76. {
  77. WMACodecContext *s = avctx->priv_data;
  78. int i, ret;
  79. float bps1, high_freq;
  80. volatile float bps;
  81. int sample_rate1;
  82. int coef_vlc_table;
  83. if (avctx->sample_rate <= 0 || avctx->sample_rate > 50000 ||
  84. avctx->channels <= 0 || avctx->channels > 2 ||
  85. avctx->bit_rate <= 0)
  86. return -1;
  87. avpriv_float_dsp_init(&s->fdsp, avctx->flags & AV_CODEC_FLAG_BITEXACT);
  88. if (avctx->codec->id == AV_CODEC_ID_WMAV1)
  89. s->version = 1;
  90. else
  91. s->version = 2;
  92. /* compute MDCT block size */
  93. s->frame_len_bits = ff_wma_get_frame_len_bits(avctx->sample_rate,
  94. s->version, 0);
  95. s->next_block_len_bits = s->frame_len_bits;
  96. s->prev_block_len_bits = s->frame_len_bits;
  97. s->block_len_bits = s->frame_len_bits;
  98. s->frame_len = 1 << s->frame_len_bits;
  99. if (s->use_variable_block_len) {
  100. int nb_max, nb;
  101. nb = ((flags2 >> 3) & 3) + 1;
  102. if ((avctx->bit_rate / avctx->channels) >= 32000)
  103. nb += 2;
  104. nb_max = s->frame_len_bits - BLOCK_MIN_BITS;
  105. if (nb > nb_max)
  106. nb = nb_max;
  107. s->nb_block_sizes = nb + 1;
  108. } else
  109. s->nb_block_sizes = 1;
  110. /* init rate dependent parameters */
  111. s->use_noise_coding = 1;
  112. high_freq = avctx->sample_rate * 0.5;
  113. /* if version 2, then the rates are normalized */
  114. sample_rate1 = avctx->sample_rate;
  115. if (s->version == 2) {
  116. if (sample_rate1 >= 44100)
  117. sample_rate1 = 44100;
  118. else if (sample_rate1 >= 22050)
  119. sample_rate1 = 22050;
  120. else if (sample_rate1 >= 16000)
  121. sample_rate1 = 16000;
  122. else if (sample_rate1 >= 11025)
  123. sample_rate1 = 11025;
  124. else if (sample_rate1 >= 8000)
  125. sample_rate1 = 8000;
  126. }
  127. bps = (float) avctx->bit_rate /
  128. (float) (avctx->channels * avctx->sample_rate);
  129. s->byte_offset_bits = av_log2((int) (bps * s->frame_len / 8.0 + 0.5)) + 2;
  130. /* compute high frequency value and choose if noise coding should
  131. * be activated */
  132. bps1 = bps;
  133. if (avctx->channels == 2)
  134. bps1 = bps * 1.6;
  135. if (sample_rate1 == 44100) {
  136. if (bps1 >= 0.61)
  137. s->use_noise_coding = 0;
  138. else
  139. high_freq = high_freq * 0.4;
  140. } else if (sample_rate1 == 22050) {
  141. if (bps1 >= 1.16)
  142. s->use_noise_coding = 0;
  143. else if (bps1 >= 0.72)
  144. high_freq = high_freq * 0.7;
  145. else
  146. high_freq = high_freq * 0.6;
  147. } else if (sample_rate1 == 16000) {
  148. if (bps > 0.5)
  149. high_freq = high_freq * 0.5;
  150. else
  151. high_freq = high_freq * 0.3;
  152. } else if (sample_rate1 == 11025)
  153. high_freq = high_freq * 0.7;
  154. else if (sample_rate1 == 8000) {
  155. if (bps <= 0.625)
  156. high_freq = high_freq * 0.5;
  157. else if (bps > 0.75)
  158. s->use_noise_coding = 0;
  159. else
  160. high_freq = high_freq * 0.65;
  161. } else {
  162. if (bps >= 0.8)
  163. high_freq = high_freq * 0.75;
  164. else if (bps >= 0.6)
  165. high_freq = high_freq * 0.6;
  166. else
  167. high_freq = high_freq * 0.5;
  168. }
  169. ff_dlog(s->avctx, "flags2=0x%x\n", flags2);
  170. ff_dlog(s->avctx, "version=%d channels=%d sample_rate=%d bitrate=%d block_align=%d\n",
  171. s->version, avctx->channels, avctx->sample_rate, avctx->bit_rate,
  172. avctx->block_align);
  173. ff_dlog(s->avctx, "bps=%f bps1=%f high_freq=%f bitoffset=%d\n",
  174. bps, bps1, high_freq, s->byte_offset_bits);
  175. ff_dlog(s->avctx, "use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
  176. s->use_noise_coding, s->use_exp_vlc, s->nb_block_sizes);
  177. /* compute the scale factor band sizes for each MDCT block size */
  178. {
  179. int a, b, pos, lpos, k, block_len, i, j, n;
  180. const uint8_t *table;
  181. if (s->version == 1)
  182. s->coefs_start = 3;
  183. else
  184. s->coefs_start = 0;
  185. for (k = 0; k < s->nb_block_sizes; k++) {
  186. block_len = s->frame_len >> k;
  187. if (s->version == 1) {
  188. lpos = 0;
  189. for (i = 0; i < 25; i++) {
  190. a = ff_wma_critical_freqs[i];
  191. b = avctx->sample_rate;
  192. pos = ((block_len * 2 * a) + (b >> 1)) / b;
  193. if (pos > block_len)
  194. pos = block_len;
  195. s->exponent_bands[0][i] = pos - lpos;
  196. if (pos >= block_len) {
  197. i++;
  198. break;
  199. }
  200. lpos = pos;
  201. }
  202. s->exponent_sizes[0] = i;
  203. } else {
  204. /* hardcoded tables */
  205. table = NULL;
  206. a = s->frame_len_bits - BLOCK_MIN_BITS - k;
  207. if (a < 3) {
  208. if (avctx->sample_rate >= 44100)
  209. table = exponent_band_44100[a];
  210. else if (avctx->sample_rate >= 32000)
  211. table = exponent_band_32000[a];
  212. else if (avctx->sample_rate >= 22050)
  213. table = exponent_band_22050[a];
  214. }
  215. if (table) {
  216. n = *table++;
  217. for (i = 0; i < n; i++)
  218. s->exponent_bands[k][i] = table[i];
  219. s->exponent_sizes[k] = n;
  220. } else {
  221. j = 0;
  222. lpos = 0;
  223. for (i = 0; i < 25; i++) {
  224. a = ff_wma_critical_freqs[i];
  225. b = avctx->sample_rate;
  226. pos = ((block_len * 2 * a) + (b << 1)) / (4 * b);
  227. pos <<= 2;
  228. if (pos > block_len)
  229. pos = block_len;
  230. if (pos > lpos)
  231. s->exponent_bands[k][j++] = pos - lpos;
  232. if (pos >= block_len)
  233. break;
  234. lpos = pos;
  235. }
  236. s->exponent_sizes[k] = j;
  237. }
  238. }
  239. /* max number of coefs */
  240. s->coefs_end[k] = (s->frame_len - ((s->frame_len * 9) / 100)) >> k;
  241. /* high freq computation */
  242. s->high_band_start[k] = (int) ((block_len * 2 * high_freq) /
  243. avctx->sample_rate + 0.5);
  244. n = s->exponent_sizes[k];
  245. j = 0;
  246. pos = 0;
  247. for (i = 0; i < n; i++) {
  248. int start, end;
  249. start = pos;
  250. pos += s->exponent_bands[k][i];
  251. end = pos;
  252. if (start < s->high_band_start[k])
  253. start = s->high_band_start[k];
  254. if (end > s->coefs_end[k])
  255. end = s->coefs_end[k];
  256. if (end > start)
  257. s->exponent_high_bands[k][j++] = end - start;
  258. }
  259. s->exponent_high_sizes[k] = j;
  260. }
  261. }
  262. #ifdef TRACE
  263. {
  264. int i, j;
  265. for (i = 0; i < s->nb_block_sizes; i++) {
  266. ff_tlog(s->avctx, "%5d: n=%2d:",
  267. s->frame_len >> i,
  268. s->exponent_sizes[i]);
  269. for (j = 0; j < s->exponent_sizes[i]; j++)
  270. ff_tlog(s->avctx, " %d", s->exponent_bands[i][j]);
  271. ff_tlog(s->avctx, "\n");
  272. }
  273. }
  274. #endif /* TRACE */
  275. /* init MDCT windows : simple sine window */
  276. for (i = 0; i < s->nb_block_sizes; i++) {
  277. ff_init_ff_sine_windows(s->frame_len_bits - i);
  278. s->windows[i] = ff_sine_windows[s->frame_len_bits - i];
  279. }
  280. s->reset_block_lengths = 1;
  281. if (s->use_noise_coding) {
  282. /* init the noise generator */
  283. if (s->use_exp_vlc)
  284. s->noise_mult = 0.02;
  285. else
  286. s->noise_mult = 0.04;
  287. #ifdef TRACE
  288. for (i = 0; i < NOISE_TAB_SIZE; i++)
  289. s->noise_table[i] = 1.0 * s->noise_mult;
  290. #else
  291. {
  292. unsigned int seed;
  293. float norm;
  294. seed = 1;
  295. norm = (1.0 / (float) (1LL << 31)) * sqrt(3) * s->noise_mult;
  296. for (i = 0; i < NOISE_TAB_SIZE; i++) {
  297. seed = seed * 314159 + 1;
  298. s->noise_table[i] = (float) ((int) seed) * norm;
  299. }
  300. }
  301. #endif /* TRACE */
  302. }
  303. /* choose the VLC tables for the coefficients */
  304. coef_vlc_table = 2;
  305. if (avctx->sample_rate >= 32000) {
  306. if (bps1 < 0.72)
  307. coef_vlc_table = 0;
  308. else if (bps1 < 1.16)
  309. coef_vlc_table = 1;
  310. }
  311. s->coef_vlcs[0] = &coef_vlcs[coef_vlc_table * 2];
  312. s->coef_vlcs[1] = &coef_vlcs[coef_vlc_table * 2 + 1];
  313. ret = init_coef_vlc(&s->coef_vlc[0], &s->run_table[0], &s->level_table[0],
  314. &s->int_table[0], s->coef_vlcs[0]);
  315. if (ret < 0)
  316. return ret;
  317. return init_coef_vlc(&s->coef_vlc[1], &s->run_table[1], &s->level_table[1],
  318. &s->int_table[1], s->coef_vlcs[1]);
  319. }
  320. int ff_wma_total_gain_to_bits(int total_gain)
  321. {
  322. if (total_gain < 15)
  323. return 13;
  324. else if (total_gain < 32)
  325. return 12;
  326. else if (total_gain < 40)
  327. return 11;
  328. else if (total_gain < 45)
  329. return 10;
  330. else
  331. return 9;
  332. }
  333. int ff_wma_end(AVCodecContext *avctx)
  334. {
  335. WMACodecContext *s = avctx->priv_data;
  336. int i;
  337. for (i = 0; i < s->nb_block_sizes; i++)
  338. ff_mdct_end(&s->mdct_ctx[i]);
  339. if (s->use_exp_vlc)
  340. ff_free_vlc(&s->exp_vlc);
  341. if (s->use_noise_coding)
  342. ff_free_vlc(&s->hgain_vlc);
  343. for (i = 0; i < 2; i++) {
  344. ff_free_vlc(&s->coef_vlc[i]);
  345. av_free(s->run_table[i]);
  346. av_free(s->level_table[i]);
  347. av_free(s->int_table[i]);
  348. }
  349. return 0;
  350. }
  351. /**
  352. * Decode an uncompressed coefficient.
  353. * @param bc BitstreamContext
  354. * @return the decoded coefficient
  355. */
  356. unsigned int ff_wma_get_large_val(BitstreamContext *bc)
  357. {
  358. /** consumes up to 34 bits */
  359. int n_bits = 8;
  360. /** decode length */
  361. if (bitstream_read_bit(bc)) {
  362. n_bits += 8;
  363. if (bitstream_read_bit(bc)) {
  364. n_bits += 8;
  365. if (bitstream_read_bit(bc))
  366. n_bits += 7;
  367. }
  368. }
  369. return bitstream_read(bc, n_bits);
  370. }
  371. /**
  372. * Decode run level compressed coefficients.
  373. * @param avctx codec context
  374. * @param bc bitstream reader context
  375. * @param vlc VLC table for bitstream_read_vlc
  376. * @param level_table level codes
  377. * @param run_table run codes
  378. * @param version 0 for wma1,2 1 for wmapro
  379. * @param ptr output buffer
  380. * @param offset offset in the output buffer
  381. * @param num_coefs number of input coefficients
  382. * @param block_len input buffer length (2^n)
  383. * @param frame_len_bits number of bits for escaped run codes
  384. * @param coef_nb_bits number of bits for escaped level codes
  385. * @return 0 on success, -1 otherwise
  386. */
  387. int ff_wma_run_level_decode(AVCodecContext *avctx, BitstreamContext *bc,
  388. VLC *vlc, const float *level_table,
  389. const uint16_t *run_table, int version,
  390. WMACoef *ptr, int offset, int num_coefs,
  391. int block_len, int frame_len_bits,
  392. int coef_nb_bits)
  393. {
  394. int code, level, sign;
  395. const uint32_t *ilvl = (const uint32_t *) level_table;
  396. uint32_t *iptr = (uint32_t *) ptr;
  397. const unsigned int coef_mask = block_len - 1;
  398. for (; offset < num_coefs; offset++) {
  399. code = bitstream_read_vlc(bc, vlc->table, VLCBITS, VLCMAX);
  400. if (code > 1) {
  401. /** normal code */
  402. offset += run_table[code];
  403. sign = bitstream_read_bit(bc) - 1;
  404. iptr[offset & coef_mask] = ilvl[code] ^ sign << 31;
  405. } else if (code == 1) {
  406. /** EOB */
  407. break;
  408. } else {
  409. /** escape */
  410. if (!version) {
  411. level = bitstream_read(bc, coef_nb_bits);
  412. /** NOTE: this is rather suboptimal. reading
  413. * block_len_bits would be better */
  414. offset += bitstream_read(bc, frame_len_bits);
  415. } else {
  416. level = ff_wma_get_large_val(bc);
  417. /** escape decode */
  418. if (bitstream_read_bit(bc)) {
  419. if (bitstream_read_bit(bc)) {
  420. if (bitstream_read_bit(bc)) {
  421. av_log(avctx, AV_LOG_ERROR,
  422. "broken escape sequence\n");
  423. return -1;
  424. } else
  425. offset += bitstream_read(bc, frame_len_bits) + 4;
  426. } else
  427. offset += bitstream_read(bc, 2) + 1;
  428. }
  429. }
  430. sign = bitstream_read_bit(bc) - 1;
  431. ptr[offset & coef_mask] = (level ^ sign) - sign;
  432. }
  433. }
  434. /** NOTE: EOB can be omitted */
  435. if (offset > num_coefs) {
  436. av_log(avctx, AV_LOG_ERROR, "overflow in spectral RLE, ignoring\n");
  437. return -1;
  438. }
  439. return 0;
  440. }