You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1489 lines
48KB

  1. /*
  2. * WebP (.webp) image decoder
  3. * Copyright (c) 2013 Aneesh Dogra <aneesh@sugarlabs.org>
  4. * Copyright (c) 2013 Justin Ruggles <justin.ruggles@gmail.com>
  5. *
  6. * This file is part of Libav.
  7. *
  8. * Libav is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * Libav is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with Libav; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * WebP image decoder
  25. *
  26. * @author Aneesh Dogra <aneesh@sugarlabs.org>
  27. * Container and Lossy decoding
  28. *
  29. * @author Justin Ruggles <justin.ruggles@gmail.com>
  30. * Lossless decoder
  31. * Compressed alpha for lossy
  32. *
  33. * Unimplemented:
  34. * - Animation
  35. * - ICC profile
  36. * - Exif and XMP metadata
  37. */
  38. #include "libavutil/imgutils.h"
  39. #define BITSTREAM_READER_LE
  40. #include "avcodec.h"
  41. #include "bitstream.h"
  42. #include "bytestream.h"
  43. #include "internal.h"
  44. #include "thread.h"
  45. #include "vp8.h"
  46. #define VP8X_FLAG_ANIMATION 0x02
  47. #define VP8X_FLAG_XMP_METADATA 0x04
  48. #define VP8X_FLAG_EXIF_METADATA 0x08
  49. #define VP8X_FLAG_ALPHA 0x10
  50. #define VP8X_FLAG_ICC 0x20
  51. #define MAX_PALETTE_SIZE 256
  52. #define MAX_CACHE_BITS 11
  53. #define NUM_CODE_LENGTH_CODES 19
  54. #define HUFFMAN_CODES_PER_META_CODE 5
  55. #define NUM_LITERAL_CODES 256
  56. #define NUM_LENGTH_CODES 24
  57. #define NUM_DISTANCE_CODES 40
  58. #define NUM_SHORT_DISTANCES 120
  59. #define MAX_HUFFMAN_CODE_LENGTH 15
  60. static const uint16_t alphabet_sizes[HUFFMAN_CODES_PER_META_CODE] = {
  61. NUM_LITERAL_CODES + NUM_LENGTH_CODES,
  62. NUM_LITERAL_CODES, NUM_LITERAL_CODES, NUM_LITERAL_CODES,
  63. NUM_DISTANCE_CODES
  64. };
  65. static const uint8_t code_length_code_order[NUM_CODE_LENGTH_CODES] = {
  66. 17, 18, 0, 1, 2, 3, 4, 5, 16, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
  67. };
  68. static const int8_t lz77_distance_offsets[NUM_SHORT_DISTANCES][2] = {
  69. { 0, 1 }, { 1, 0 }, { 1, 1 }, { -1, 1 }, { 0, 2 }, { 2, 0 }, { 1, 2 }, { -1, 2 },
  70. { 2, 1 }, { -2, 1 }, { 2, 2 }, { -2, 2 }, { 0, 3 }, { 3, 0 }, { 1, 3 }, { -1, 3 },
  71. { 3, 1 }, { -3, 1 }, { 2, 3 }, { -2, 3 }, { 3, 2 }, { -3, 2 }, { 0, 4 }, { 4, 0 },
  72. { 1, 4 }, { -1, 4 }, { 4, 1 }, { -4, 1 }, { 3, 3 }, { -3, 3 }, { 2, 4 }, { -2, 4 },
  73. { 4, 2 }, { -4, 2 }, { 0, 5 }, { 3, 4 }, { -3, 4 }, { 4, 3 }, { -4, 3 }, { 5, 0 },
  74. { 1, 5 }, { -1, 5 }, { 5, 1 }, { -5, 1 }, { 2, 5 }, { -2, 5 }, { 5, 2 }, { -5, 2 },
  75. { 4, 4 }, { -4, 4 }, { 3, 5 }, { -3, 5 }, { 5, 3 }, { -5, 3 }, { 0, 6 }, { 6, 0 },
  76. { 1, 6 }, { -1, 6 }, { 6, 1 }, { -6, 1 }, { 2, 6 }, { -2, 6 }, { 6, 2 }, { -6, 2 },
  77. { 4, 5 }, { -4, 5 }, { 5, 4 }, { -5, 4 }, { 3, 6 }, { -3, 6 }, { 6, 3 }, { -6, 3 },
  78. { 0, 7 }, { 7, 0 }, { 1, 7 }, { -1, 7 }, { 5, 5 }, { -5, 5 }, { 7, 1 }, { -7, 1 },
  79. { 4, 6 }, { -4, 6 }, { 6, 4 }, { -6, 4 }, { 2, 7 }, { -2, 7 }, { 7, 2 }, { -7, 2 },
  80. { 3, 7 }, { -3, 7 }, { 7, 3 }, { -7, 3 }, { 5, 6 }, { -5, 6 }, { 6, 5 }, { -6, 5 },
  81. { 8, 0 }, { 4, 7 }, { -4, 7 }, { 7, 4 }, { -7, 4 }, { 8, 1 }, { 8, 2 }, { 6, 6 },
  82. { -6, 6 }, { 8, 3 }, { 5, 7 }, { -5, 7 }, { 7, 5 }, { -7, 5 }, { 8, 4 }, { 6, 7 },
  83. { -6, 7 }, { 7, 6 }, { -7, 6 }, { 8, 5 }, { 7, 7 }, { -7, 7 }, { 8, 6 }, { 8, 7 }
  84. };
  85. enum AlphaCompression {
  86. ALPHA_COMPRESSION_NONE,
  87. ALPHA_COMPRESSION_VP8L,
  88. };
  89. enum AlphaFilter {
  90. ALPHA_FILTER_NONE,
  91. ALPHA_FILTER_HORIZONTAL,
  92. ALPHA_FILTER_VERTICAL,
  93. ALPHA_FILTER_GRADIENT,
  94. };
  95. enum TransformType {
  96. PREDICTOR_TRANSFORM = 0,
  97. COLOR_TRANSFORM = 1,
  98. SUBTRACT_GREEN = 2,
  99. COLOR_INDEXING_TRANSFORM = 3,
  100. };
  101. enum PredictionMode {
  102. PRED_MODE_BLACK,
  103. PRED_MODE_L,
  104. PRED_MODE_T,
  105. PRED_MODE_TR,
  106. PRED_MODE_TL,
  107. PRED_MODE_AVG_T_AVG_L_TR,
  108. PRED_MODE_AVG_L_TL,
  109. PRED_MODE_AVG_L_T,
  110. PRED_MODE_AVG_TL_T,
  111. PRED_MODE_AVG_T_TR,
  112. PRED_MODE_AVG_AVG_L_TL_AVG_T_TR,
  113. PRED_MODE_SELECT,
  114. PRED_MODE_ADD_SUBTRACT_FULL,
  115. PRED_MODE_ADD_SUBTRACT_HALF,
  116. };
  117. enum HuffmanIndex {
  118. HUFF_IDX_GREEN = 0,
  119. HUFF_IDX_RED = 1,
  120. HUFF_IDX_BLUE = 2,
  121. HUFF_IDX_ALPHA = 3,
  122. HUFF_IDX_DIST = 4
  123. };
  124. /* The structure of WebP lossless is an optional series of transformation data,
  125. * followed by the primary image. The primary image also optionally contains
  126. * an entropy group mapping if there are multiple entropy groups. There is a
  127. * basic image type called an "entropy coded image" that is used for all of
  128. * these. The type of each entropy coded image is referred to by the
  129. * specification as its role. */
  130. enum ImageRole {
  131. /* Primary Image: Stores the actual pixels of the image. */
  132. IMAGE_ROLE_ARGB,
  133. /* Entropy Image: Defines which Huffman group to use for different areas of
  134. * the primary image. */
  135. IMAGE_ROLE_ENTROPY,
  136. /* Predictors: Defines which predictor type to use for different areas of
  137. * the primary image. */
  138. IMAGE_ROLE_PREDICTOR,
  139. /* Color Transform Data: Defines the color transformation for different
  140. * areas of the primary image. */
  141. IMAGE_ROLE_COLOR_TRANSFORM,
  142. /* Color Index: Stored as an image of height == 1. */
  143. IMAGE_ROLE_COLOR_INDEXING,
  144. IMAGE_ROLE_NB,
  145. };
  146. typedef struct HuffReader {
  147. VLC vlc; /* Huffman decoder context */
  148. int simple; /* whether to use simple mode */
  149. int nb_symbols; /* number of coded symbols */
  150. uint16_t simple_symbols[2]; /* symbols for simple mode */
  151. } HuffReader;
  152. typedef struct ImageContext {
  153. enum ImageRole role; /* role of this image */
  154. AVFrame *frame; /* AVFrame for data */
  155. int color_cache_bits; /* color cache size, log2 */
  156. uint32_t *color_cache; /* color cache data */
  157. int nb_huffman_groups; /* number of huffman groups */
  158. HuffReader *huffman_groups; /* reader for each huffman group */
  159. int size_reduction; /* relative size compared to primary image, log2 */
  160. int is_alpha_primary;
  161. } ImageContext;
  162. typedef struct WebPContext {
  163. VP8Context v; /* VP8 Context used for lossy decoding */
  164. BitstreamContext bc; /* bitstream reader for main image chunk */
  165. AVFrame *alpha_frame; /* AVFrame for alpha data decompressed from VP8L */
  166. AVCodecContext *avctx; /* parent AVCodecContext */
  167. int initialized; /* set once the VP8 context is initialized */
  168. int has_alpha; /* has a separate alpha chunk */
  169. enum AlphaCompression alpha_compression; /* compression type for alpha chunk */
  170. enum AlphaFilter alpha_filter; /* filtering method for alpha chunk */
  171. uint8_t *alpha_data; /* alpha chunk data */
  172. int alpha_data_size; /* alpha chunk data size */
  173. int width; /* image width */
  174. int height; /* image height */
  175. int lossless; /* indicates lossless or lossy */
  176. int nb_transforms; /* number of transforms */
  177. enum TransformType transforms[4]; /* transformations used in the image, in order */
  178. int reduced_width; /* reduced width for index image, if applicable */
  179. int nb_huffman_groups; /* number of huffman groups in the primary image */
  180. ImageContext image[IMAGE_ROLE_NB]; /* image context for each role */
  181. } WebPContext;
  182. #define GET_PIXEL(frame, x, y) \
  183. ((frame)->data[0] + (y) * frame->linesize[0] + 4 * (x))
  184. #define GET_PIXEL_COMP(frame, x, y, c) \
  185. (*((frame)->data[0] + (y) * frame->linesize[0] + 4 * (x) + c))
  186. static void image_ctx_free(ImageContext *img)
  187. {
  188. int i, j;
  189. av_free(img->color_cache);
  190. if (img->role != IMAGE_ROLE_ARGB && !img->is_alpha_primary)
  191. av_frame_free(&img->frame);
  192. if (img->huffman_groups) {
  193. for (i = 0; i < img->nb_huffman_groups; i++) {
  194. for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; j++)
  195. ff_free_vlc(&img->huffman_groups[i * HUFFMAN_CODES_PER_META_CODE + j].vlc);
  196. }
  197. av_free(img->huffman_groups);
  198. }
  199. memset(img, 0, sizeof(*img));
  200. }
  201. /* Differs from get_vlc2() in the following ways:
  202. * - codes are bit-reversed
  203. * - assumes 8-bit table to make reversal simpler
  204. * - assumes max depth of 2 since the max code length for WebP is 15
  205. */
  206. static av_always_inline int webp_get_vlc(BitstreamContext *bc, VLC_TYPE (*table)[2])
  207. {
  208. int n, nb_bits;
  209. unsigned int index;
  210. int code;
  211. index = bitstream_peek(bc, 8);
  212. index = ff_reverse[index];
  213. code = table[index][0];
  214. n = table[index][1];
  215. if (n < 0) {
  216. bitstream_skip(bc, 8);
  217. nb_bits = -n;
  218. index = bitstream_peek(bc, nb_bits);
  219. index = (ff_reverse[index] >> (8 - nb_bits)) + code;
  220. code = table[index][0];
  221. n = table[index][1];
  222. }
  223. bitstream_skip(bc, n);
  224. return code;
  225. }
  226. static int huff_reader_get_symbol(HuffReader *r, BitstreamContext *bc)
  227. {
  228. if (r->simple) {
  229. if (r->nb_symbols == 1)
  230. return r->simple_symbols[0];
  231. else
  232. return r->simple_symbols[bitstream_read_bit(bc)];
  233. } else
  234. return webp_get_vlc(bc, r->vlc.table);
  235. }
  236. static int huff_reader_build_canonical(HuffReader *r, int *code_lengths,
  237. int alphabet_size)
  238. {
  239. int len = 0, sym, code = 0, ret;
  240. int max_code_length = 0;
  241. uint16_t *codes;
  242. /* special-case 1 symbol since the vlc reader cannot handle it */
  243. for (sym = 0; sym < alphabet_size; sym++) {
  244. if (code_lengths[sym] > 0) {
  245. len++;
  246. code = sym;
  247. if (len > 1)
  248. break;
  249. }
  250. }
  251. if (len == 1) {
  252. r->nb_symbols = 1;
  253. r->simple_symbols[0] = code;
  254. r->simple = 1;
  255. return 0;
  256. }
  257. for (sym = 0; sym < alphabet_size; sym++)
  258. max_code_length = FFMAX(max_code_length, code_lengths[sym]);
  259. if (max_code_length == 0 || max_code_length > MAX_HUFFMAN_CODE_LENGTH)
  260. return AVERROR(EINVAL);
  261. codes = av_malloc(alphabet_size * sizeof(*codes));
  262. if (!codes)
  263. return AVERROR(ENOMEM);
  264. code = 0;
  265. r->nb_symbols = 0;
  266. for (len = 1; len <= max_code_length; len++) {
  267. for (sym = 0; sym < alphabet_size; sym++) {
  268. if (code_lengths[sym] != len)
  269. continue;
  270. codes[sym] = code++;
  271. r->nb_symbols++;
  272. }
  273. code <<= 1;
  274. }
  275. if (!r->nb_symbols) {
  276. av_free(codes);
  277. return AVERROR_INVALIDDATA;
  278. }
  279. ret = init_vlc(&r->vlc, 8, alphabet_size,
  280. code_lengths, sizeof(*code_lengths), sizeof(*code_lengths),
  281. codes, sizeof(*codes), sizeof(*codes), 0);
  282. if (ret < 0) {
  283. av_free(codes);
  284. return ret;
  285. }
  286. r->simple = 0;
  287. av_free(codes);
  288. return 0;
  289. }
  290. static void read_huffman_code_simple(WebPContext *s, HuffReader *hc)
  291. {
  292. hc->nb_symbols = bitstream_read_bit(&s->bc) + 1;
  293. if (bitstream_read_bit(&s->bc))
  294. hc->simple_symbols[0] = bitstream_read(&s->bc, 8);
  295. else
  296. hc->simple_symbols[0] = bitstream_read_bit(&s->bc);
  297. if (hc->nb_symbols == 2)
  298. hc->simple_symbols[1] = bitstream_read(&s->bc, 8);
  299. hc->simple = 1;
  300. }
  301. static int read_huffman_code_normal(WebPContext *s, HuffReader *hc,
  302. int alphabet_size)
  303. {
  304. HuffReader code_len_hc = { { 0 }, 0, 0, { 0 } };
  305. int *code_lengths = NULL;
  306. int code_length_code_lengths[NUM_CODE_LENGTH_CODES] = { 0 };
  307. int i, symbol, max_symbol, prev_code_len, ret;
  308. int num_codes = 4 + bitstream_read(&s->bc, 4);
  309. if (num_codes > NUM_CODE_LENGTH_CODES)
  310. return AVERROR_INVALIDDATA;
  311. for (i = 0; i < num_codes; i++)
  312. code_length_code_lengths[code_length_code_order[i]] = bitstream_read(&s->bc, 3);
  313. ret = huff_reader_build_canonical(&code_len_hc, code_length_code_lengths,
  314. NUM_CODE_LENGTH_CODES);
  315. if (ret < 0)
  316. goto finish;
  317. code_lengths = av_mallocz_array(alphabet_size, sizeof(*code_lengths));
  318. if (!code_lengths) {
  319. ret = AVERROR(ENOMEM);
  320. goto finish;
  321. }
  322. if (bitstream_read_bit(&s->bc)) {
  323. int bits = 2 + 2 * bitstream_read(&s->bc, 3);
  324. max_symbol = 2 + bitstream_read(&s->bc, bits);
  325. if (max_symbol > alphabet_size) {
  326. av_log(s->avctx, AV_LOG_ERROR, "max symbol %d > alphabet size %d\n",
  327. max_symbol, alphabet_size);
  328. ret = AVERROR_INVALIDDATA;
  329. goto finish;
  330. }
  331. } else {
  332. max_symbol = alphabet_size;
  333. }
  334. prev_code_len = 8;
  335. symbol = 0;
  336. while (symbol < alphabet_size) {
  337. int code_len;
  338. if (!max_symbol--)
  339. break;
  340. code_len = huff_reader_get_symbol(&code_len_hc, &s->bc);
  341. if (code_len < 16) {
  342. /* Code length code [0..15] indicates literal code lengths. */
  343. code_lengths[symbol++] = code_len;
  344. if (code_len)
  345. prev_code_len = code_len;
  346. } else {
  347. int repeat = 0, length = 0;
  348. switch (code_len) {
  349. case 16:
  350. /* Code 16 repeats the previous non-zero value [3..6] times,
  351. * i.e., 3 + ReadBits(2) times. If code 16 is used before a
  352. * non-zero value has been emitted, a value of 8 is repeated. */
  353. repeat = 3 + bitstream_read(&s->bc, 2);
  354. length = prev_code_len;
  355. break;
  356. case 17:
  357. /* Code 17 emits a streak of zeros [3..10], i.e.,
  358. * 3 + ReadBits(3) times. */
  359. repeat = 3 + bitstream_read(&s->bc, 3);
  360. break;
  361. case 18:
  362. /* Code 18 emits a streak of zeros of length [11..138], i.e.,
  363. * 11 + ReadBits(7) times. */
  364. repeat = 11 + bitstream_read(&s->bc, 7);
  365. break;
  366. }
  367. if (symbol + repeat > alphabet_size) {
  368. av_log(s->avctx, AV_LOG_ERROR,
  369. "invalid symbol %d + repeat %d > alphabet size %d\n",
  370. symbol, repeat, alphabet_size);
  371. ret = AVERROR_INVALIDDATA;
  372. goto finish;
  373. }
  374. while (repeat-- > 0)
  375. code_lengths[symbol++] = length;
  376. }
  377. }
  378. ret = huff_reader_build_canonical(hc, code_lengths, alphabet_size);
  379. finish:
  380. ff_free_vlc(&code_len_hc.vlc);
  381. av_free(code_lengths);
  382. return ret;
  383. }
  384. static int decode_entropy_coded_image(WebPContext *s, enum ImageRole role,
  385. int w, int h);
  386. #define PARSE_BLOCK_SIZE(w, h) do { \
  387. block_bits = bitstream_read(&s->bc, 3) + 2; \
  388. blocks_w = FFALIGN((w), 1 << block_bits) >> block_bits; \
  389. blocks_h = FFALIGN((h), 1 << block_bits) >> block_bits; \
  390. } while (0)
  391. static int decode_entropy_image(WebPContext *s)
  392. {
  393. ImageContext *img;
  394. int ret, block_bits, width, blocks_w, blocks_h, x, y, max;
  395. width = s->width;
  396. if (s->reduced_width > 0)
  397. width = s->reduced_width;
  398. PARSE_BLOCK_SIZE(width, s->height);
  399. ret = decode_entropy_coded_image(s, IMAGE_ROLE_ENTROPY, blocks_w, blocks_h);
  400. if (ret < 0)
  401. return ret;
  402. img = &s->image[IMAGE_ROLE_ENTROPY];
  403. img->size_reduction = block_bits;
  404. /* the number of huffman groups is determined by the maximum group number
  405. * coded in the entropy image */
  406. max = 0;
  407. for (y = 0; y < img->frame->height; y++) {
  408. for (x = 0; x < img->frame->width; x++) {
  409. int p0 = GET_PIXEL_COMP(img->frame, x, y, 1);
  410. int p1 = GET_PIXEL_COMP(img->frame, x, y, 2);
  411. int p = p0 << 8 | p1;
  412. max = FFMAX(max, p);
  413. }
  414. }
  415. s->nb_huffman_groups = max + 1;
  416. return 0;
  417. }
  418. static int parse_transform_predictor(WebPContext *s)
  419. {
  420. int block_bits, blocks_w, blocks_h, ret;
  421. PARSE_BLOCK_SIZE(s->width, s->height);
  422. ret = decode_entropy_coded_image(s, IMAGE_ROLE_PREDICTOR, blocks_w,
  423. blocks_h);
  424. if (ret < 0)
  425. return ret;
  426. s->image[IMAGE_ROLE_PREDICTOR].size_reduction = block_bits;
  427. return 0;
  428. }
  429. static int parse_transform_color(WebPContext *s)
  430. {
  431. int block_bits, blocks_w, blocks_h, ret;
  432. PARSE_BLOCK_SIZE(s->width, s->height);
  433. ret = decode_entropy_coded_image(s, IMAGE_ROLE_COLOR_TRANSFORM, blocks_w,
  434. blocks_h);
  435. if (ret < 0)
  436. return ret;
  437. s->image[IMAGE_ROLE_COLOR_TRANSFORM].size_reduction = block_bits;
  438. return 0;
  439. }
  440. static int parse_transform_color_indexing(WebPContext *s)
  441. {
  442. ImageContext *img;
  443. int width_bits, index_size, ret, x;
  444. uint8_t *ct;
  445. index_size = bitstream_read(&s->bc, 8) + 1;
  446. if (index_size <= 2)
  447. width_bits = 3;
  448. else if (index_size <= 4)
  449. width_bits = 2;
  450. else if (index_size <= 16)
  451. width_bits = 1;
  452. else
  453. width_bits = 0;
  454. ret = decode_entropy_coded_image(s, IMAGE_ROLE_COLOR_INDEXING,
  455. index_size, 1);
  456. if (ret < 0)
  457. return ret;
  458. img = &s->image[IMAGE_ROLE_COLOR_INDEXING];
  459. img->size_reduction = width_bits;
  460. if (width_bits > 0)
  461. s->reduced_width = (s->width + ((1 << width_bits) - 1)) >> width_bits;
  462. /* color index values are delta-coded */
  463. ct = img->frame->data[0] + 4;
  464. for (x = 4; x < img->frame->width * 4; x++, ct++)
  465. ct[0] += ct[-4];
  466. return 0;
  467. }
  468. static HuffReader *get_huffman_group(WebPContext *s, ImageContext *img,
  469. int x, int y)
  470. {
  471. ImageContext *gimg = &s->image[IMAGE_ROLE_ENTROPY];
  472. int group = 0;
  473. if (gimg->size_reduction > 0) {
  474. int group_x = x >> gimg->size_reduction;
  475. int group_y = y >> gimg->size_reduction;
  476. int g0 = GET_PIXEL_COMP(gimg->frame, group_x, group_y, 1);
  477. int g1 = GET_PIXEL_COMP(gimg->frame, group_x, group_y, 2);
  478. group = g0 << 8 | g1;
  479. }
  480. return &img->huffman_groups[group * HUFFMAN_CODES_PER_META_CODE];
  481. }
  482. static av_always_inline void color_cache_put(ImageContext *img, uint32_t c)
  483. {
  484. uint32_t cache_idx = (0x1E35A7BD * c) >> (32 - img->color_cache_bits);
  485. img->color_cache[cache_idx] = c;
  486. }
  487. static int decode_entropy_coded_image(WebPContext *s, enum ImageRole role,
  488. int w, int h)
  489. {
  490. ImageContext *img;
  491. HuffReader *hg;
  492. int i, j, ret, x, y, width;
  493. img = &s->image[role];
  494. img->role = role;
  495. if (!img->frame) {
  496. img->frame = av_frame_alloc();
  497. if (!img->frame)
  498. return AVERROR(ENOMEM);
  499. }
  500. img->frame->format = AV_PIX_FMT_ARGB;
  501. img->frame->width = w;
  502. img->frame->height = h;
  503. if (role == IMAGE_ROLE_ARGB && !img->is_alpha_primary) {
  504. ThreadFrame pt = { .f = img->frame };
  505. ret = ff_thread_get_buffer(s->avctx, &pt, 0);
  506. } else
  507. ret = av_frame_get_buffer(img->frame, 1);
  508. if (ret < 0)
  509. return ret;
  510. if (bitstream_read_bit(&s->bc)) {
  511. img->color_cache_bits = bitstream_read(&s->bc, 4);
  512. if (img->color_cache_bits < 1 || img->color_cache_bits > 11) {
  513. av_log(s->avctx, AV_LOG_ERROR, "invalid color cache bits: %d\n",
  514. img->color_cache_bits);
  515. return AVERROR_INVALIDDATA;
  516. }
  517. img->color_cache = av_mallocz_array(1 << img->color_cache_bits,
  518. sizeof(*img->color_cache));
  519. if (!img->color_cache)
  520. return AVERROR(ENOMEM);
  521. } else {
  522. img->color_cache_bits = 0;
  523. }
  524. img->nb_huffman_groups = 1;
  525. if (role == IMAGE_ROLE_ARGB && bitstream_read_bit(&s->bc)) {
  526. ret = decode_entropy_image(s);
  527. if (ret < 0)
  528. return ret;
  529. img->nb_huffman_groups = s->nb_huffman_groups;
  530. }
  531. img->huffman_groups = av_mallocz_array(img->nb_huffman_groups *
  532. HUFFMAN_CODES_PER_META_CODE,
  533. sizeof(*img->huffman_groups));
  534. if (!img->huffman_groups)
  535. return AVERROR(ENOMEM);
  536. for (i = 0; i < img->nb_huffman_groups; i++) {
  537. hg = &img->huffman_groups[i * HUFFMAN_CODES_PER_META_CODE];
  538. for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; j++) {
  539. int alphabet_size = alphabet_sizes[j];
  540. if (!j && img->color_cache_bits > 0)
  541. alphabet_size += 1 << img->color_cache_bits;
  542. if (bitstream_read_bit(&s->bc)) {
  543. read_huffman_code_simple(s, &hg[j]);
  544. } else {
  545. ret = read_huffman_code_normal(s, &hg[j], alphabet_size);
  546. if (ret < 0)
  547. return ret;
  548. }
  549. }
  550. }
  551. width = img->frame->width;
  552. if (role == IMAGE_ROLE_ARGB && s->reduced_width > 0)
  553. width = s->reduced_width;
  554. x = 0; y = 0;
  555. while (y < img->frame->height) {
  556. int v;
  557. hg = get_huffman_group(s, img, x, y);
  558. v = huff_reader_get_symbol(&hg[HUFF_IDX_GREEN], &s->bc);
  559. if (v < NUM_LITERAL_CODES) {
  560. /* literal pixel values */
  561. uint8_t *p = GET_PIXEL(img->frame, x, y);
  562. p[2] = v;
  563. p[1] = huff_reader_get_symbol(&hg[HUFF_IDX_RED], &s->bc);
  564. p[3] = huff_reader_get_symbol(&hg[HUFF_IDX_BLUE], &s->bc);
  565. p[0] = huff_reader_get_symbol(&hg[HUFF_IDX_ALPHA], &s->bc);
  566. if (img->color_cache_bits)
  567. color_cache_put(img, AV_RB32(p));
  568. x++;
  569. if (x == width) {
  570. x = 0;
  571. y++;
  572. }
  573. } else if (v < NUM_LITERAL_CODES + NUM_LENGTH_CODES) {
  574. /* LZ77 backwards mapping */
  575. int prefix_code, length, distance, ref_x, ref_y;
  576. /* parse length and distance */
  577. prefix_code = v - NUM_LITERAL_CODES;
  578. if (prefix_code < 4) {
  579. length = prefix_code + 1;
  580. } else {
  581. int extra_bits = (prefix_code - 2) >> 1;
  582. int offset = 2 + (prefix_code & 1) << extra_bits;
  583. length = offset + bitstream_read(&s->bc, extra_bits) + 1;
  584. }
  585. prefix_code = huff_reader_get_symbol(&hg[HUFF_IDX_DIST], &s->bc);
  586. if (prefix_code > 39) {
  587. av_log(s->avctx, AV_LOG_ERROR,
  588. "distance prefix code too large: %d\n", prefix_code);
  589. return AVERROR_INVALIDDATA;
  590. }
  591. if (prefix_code < 4) {
  592. distance = prefix_code + 1;
  593. } else {
  594. int extra_bits = prefix_code - 2 >> 1;
  595. int offset = 2 + (prefix_code & 1) << extra_bits;
  596. distance = offset + bitstream_read(&s->bc, extra_bits) + 1;
  597. }
  598. /* find reference location */
  599. if (distance <= NUM_SHORT_DISTANCES) {
  600. int xi = lz77_distance_offsets[distance - 1][0];
  601. int yi = lz77_distance_offsets[distance - 1][1];
  602. distance = FFMAX(1, xi + yi * width);
  603. } else {
  604. distance -= NUM_SHORT_DISTANCES;
  605. }
  606. ref_x = x;
  607. ref_y = y;
  608. if (distance <= x) {
  609. ref_x -= distance;
  610. distance = 0;
  611. } else {
  612. ref_x = 0;
  613. distance -= x;
  614. }
  615. while (distance >= width) {
  616. ref_y--;
  617. distance -= width;
  618. }
  619. if (distance > 0) {
  620. ref_x = width - distance;
  621. ref_y--;
  622. }
  623. ref_x = FFMAX(0, ref_x);
  624. ref_y = FFMAX(0, ref_y);
  625. /* copy pixels
  626. * source and dest regions can overlap and wrap lines, so just
  627. * copy per-pixel */
  628. for (i = 0; i < length; i++) {
  629. uint8_t *p_ref = GET_PIXEL(img->frame, ref_x, ref_y);
  630. uint8_t *p = GET_PIXEL(img->frame, x, y);
  631. AV_COPY32(p, p_ref);
  632. if (img->color_cache_bits)
  633. color_cache_put(img, AV_RB32(p));
  634. x++;
  635. ref_x++;
  636. if (x == width) {
  637. x = 0;
  638. y++;
  639. }
  640. if (ref_x == width) {
  641. ref_x = 0;
  642. ref_y++;
  643. }
  644. if (y == img->frame->height || ref_y == img->frame->height)
  645. break;
  646. }
  647. } else {
  648. /* read from color cache */
  649. uint8_t *p = GET_PIXEL(img->frame, x, y);
  650. int cache_idx = v - (NUM_LITERAL_CODES + NUM_LENGTH_CODES);
  651. if (!img->color_cache_bits) {
  652. av_log(s->avctx, AV_LOG_ERROR, "color cache not found\n");
  653. return AVERROR_INVALIDDATA;
  654. }
  655. if (cache_idx >= 1 << img->color_cache_bits) {
  656. av_log(s->avctx, AV_LOG_ERROR,
  657. "color cache index out-of-bounds\n");
  658. return AVERROR_INVALIDDATA;
  659. }
  660. AV_WB32(p, img->color_cache[cache_idx]);
  661. x++;
  662. if (x == width) {
  663. x = 0;
  664. y++;
  665. }
  666. }
  667. }
  668. return 0;
  669. }
  670. /* PRED_MODE_BLACK */
  671. static void inv_predict_0(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  672. const uint8_t *p_t, const uint8_t *p_tr)
  673. {
  674. AV_WB32(p, 0xFF000000);
  675. }
  676. /* PRED_MODE_L */
  677. static void inv_predict_1(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  678. const uint8_t *p_t, const uint8_t *p_tr)
  679. {
  680. AV_COPY32(p, p_l);
  681. }
  682. /* PRED_MODE_T */
  683. static void inv_predict_2(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  684. const uint8_t *p_t, const uint8_t *p_tr)
  685. {
  686. AV_COPY32(p, p_t);
  687. }
  688. /* PRED_MODE_TR */
  689. static void inv_predict_3(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  690. const uint8_t *p_t, const uint8_t *p_tr)
  691. {
  692. AV_COPY32(p, p_tr);
  693. }
  694. /* PRED_MODE_TL */
  695. static void inv_predict_4(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  696. const uint8_t *p_t, const uint8_t *p_tr)
  697. {
  698. AV_COPY32(p, p_tl);
  699. }
  700. /* PRED_MODE_AVG_T_AVG_L_TR */
  701. static void inv_predict_5(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  702. const uint8_t *p_t, const uint8_t *p_tr)
  703. {
  704. p[0] = p_t[0] + (p_l[0] + p_tr[0] >> 1) >> 1;
  705. p[1] = p_t[1] + (p_l[1] + p_tr[1] >> 1) >> 1;
  706. p[2] = p_t[2] + (p_l[2] + p_tr[2] >> 1) >> 1;
  707. p[3] = p_t[3] + (p_l[3] + p_tr[3] >> 1) >> 1;
  708. }
  709. /* PRED_MODE_AVG_L_TL */
  710. static void inv_predict_6(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  711. const uint8_t *p_t, const uint8_t *p_tr)
  712. {
  713. p[0] = p_l[0] + p_tl[0] >> 1;
  714. p[1] = p_l[1] + p_tl[1] >> 1;
  715. p[2] = p_l[2] + p_tl[2] >> 1;
  716. p[3] = p_l[3] + p_tl[3] >> 1;
  717. }
  718. /* PRED_MODE_AVG_L_T */
  719. static void inv_predict_7(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  720. const uint8_t *p_t, const uint8_t *p_tr)
  721. {
  722. p[0] = p_l[0] + p_t[0] >> 1;
  723. p[1] = p_l[1] + p_t[1] >> 1;
  724. p[2] = p_l[2] + p_t[2] >> 1;
  725. p[3] = p_l[3] + p_t[3] >> 1;
  726. }
  727. /* PRED_MODE_AVG_TL_T */
  728. static void inv_predict_8(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  729. const uint8_t *p_t, const uint8_t *p_tr)
  730. {
  731. p[0] = p_tl[0] + p_t[0] >> 1;
  732. p[1] = p_tl[1] + p_t[1] >> 1;
  733. p[2] = p_tl[2] + p_t[2] >> 1;
  734. p[3] = p_tl[3] + p_t[3] >> 1;
  735. }
  736. /* PRED_MODE_AVG_T_TR */
  737. static void inv_predict_9(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  738. const uint8_t *p_t, const uint8_t *p_tr)
  739. {
  740. p[0] = p_t[0] + p_tr[0] >> 1;
  741. p[1] = p_t[1] + p_tr[1] >> 1;
  742. p[2] = p_t[2] + p_tr[2] >> 1;
  743. p[3] = p_t[3] + p_tr[3] >> 1;
  744. }
  745. /* PRED_MODE_AVG_AVG_L_TL_AVG_T_TR */
  746. static void inv_predict_10(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  747. const uint8_t *p_t, const uint8_t *p_tr)
  748. {
  749. p[0] = (p_l[0] + p_tl[0] >> 1) + (p_t[0] + p_tr[0] >> 1) >> 1;
  750. p[1] = (p_l[1] + p_tl[1] >> 1) + (p_t[1] + p_tr[1] >> 1) >> 1;
  751. p[2] = (p_l[2] + p_tl[2] >> 1) + (p_t[2] + p_tr[2] >> 1) >> 1;
  752. p[3] = (p_l[3] + p_tl[3] >> 1) + (p_t[3] + p_tr[3] >> 1) >> 1;
  753. }
  754. /* PRED_MODE_SELECT */
  755. static void inv_predict_11(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  756. const uint8_t *p_t, const uint8_t *p_tr)
  757. {
  758. int diff = (FFABS(p_l[0] - p_tl[0]) - FFABS(p_t[0] - p_tl[0])) +
  759. (FFABS(p_l[1] - p_tl[1]) - FFABS(p_t[1] - p_tl[1])) +
  760. (FFABS(p_l[2] - p_tl[2]) - FFABS(p_t[2] - p_tl[2])) +
  761. (FFABS(p_l[3] - p_tl[3]) - FFABS(p_t[3] - p_tl[3]));
  762. if (diff <= 0)
  763. AV_COPY32(p, p_t);
  764. else
  765. AV_COPY32(p, p_l);
  766. }
  767. /* PRED_MODE_ADD_SUBTRACT_FULL */
  768. static void inv_predict_12(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  769. const uint8_t *p_t, const uint8_t *p_tr)
  770. {
  771. p[0] = av_clip_uint8(p_l[0] + p_t[0] - p_tl[0]);
  772. p[1] = av_clip_uint8(p_l[1] + p_t[1] - p_tl[1]);
  773. p[2] = av_clip_uint8(p_l[2] + p_t[2] - p_tl[2]);
  774. p[3] = av_clip_uint8(p_l[3] + p_t[3] - p_tl[3]);
  775. }
  776. static av_always_inline uint8_t clamp_add_subtract_half(int a, int b, int c)
  777. {
  778. int d = a + b >> 1;
  779. return av_clip_uint8(d + (d - c) / 2);
  780. }
  781. /* PRED_MODE_ADD_SUBTRACT_HALF */
  782. static void inv_predict_13(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  783. const uint8_t *p_t, const uint8_t *p_tr)
  784. {
  785. p[0] = clamp_add_subtract_half(p_l[0], p_t[0], p_tl[0]);
  786. p[1] = clamp_add_subtract_half(p_l[1], p_t[1], p_tl[1]);
  787. p[2] = clamp_add_subtract_half(p_l[2], p_t[2], p_tl[2]);
  788. p[3] = clamp_add_subtract_half(p_l[3], p_t[3], p_tl[3]);
  789. }
  790. typedef void (*inv_predict_func)(uint8_t *p, const uint8_t *p_l,
  791. const uint8_t *p_tl, const uint8_t *p_t,
  792. const uint8_t *p_tr);
  793. static const inv_predict_func inverse_predict[14] = {
  794. inv_predict_0, inv_predict_1, inv_predict_2, inv_predict_3,
  795. inv_predict_4, inv_predict_5, inv_predict_6, inv_predict_7,
  796. inv_predict_8, inv_predict_9, inv_predict_10, inv_predict_11,
  797. inv_predict_12, inv_predict_13,
  798. };
  799. static void inverse_prediction(AVFrame *frame, enum PredictionMode m, int x, int y)
  800. {
  801. uint8_t *dec, *p_l, *p_tl, *p_t, *p_tr;
  802. uint8_t p[4];
  803. dec = GET_PIXEL(frame, x, y);
  804. p_l = GET_PIXEL(frame, x - 1, y);
  805. p_tl = GET_PIXEL(frame, x - 1, y - 1);
  806. p_t = GET_PIXEL(frame, x, y - 1);
  807. if (x == frame->width - 1)
  808. p_tr = GET_PIXEL(frame, 0, y);
  809. else
  810. p_tr = GET_PIXEL(frame, x + 1, y - 1);
  811. inverse_predict[m](p, p_l, p_tl, p_t, p_tr);
  812. dec[0] += p[0];
  813. dec[1] += p[1];
  814. dec[2] += p[2];
  815. dec[3] += p[3];
  816. }
  817. static int apply_predictor_transform(WebPContext *s)
  818. {
  819. ImageContext *img = &s->image[IMAGE_ROLE_ARGB];
  820. ImageContext *pimg = &s->image[IMAGE_ROLE_PREDICTOR];
  821. int x, y;
  822. for (y = 0; y < img->frame->height; y++) {
  823. for (x = 0; x < img->frame->width; x++) {
  824. int tx = x >> pimg->size_reduction;
  825. int ty = y >> pimg->size_reduction;
  826. enum PredictionMode m = GET_PIXEL_COMP(pimg->frame, tx, ty, 2);
  827. if (x == 0) {
  828. if (y == 0)
  829. m = PRED_MODE_BLACK;
  830. else
  831. m = PRED_MODE_T;
  832. } else if (y == 0)
  833. m = PRED_MODE_L;
  834. if (m > 13) {
  835. av_log(s->avctx, AV_LOG_ERROR,
  836. "invalid predictor mode: %d\n", m);
  837. return AVERROR_INVALIDDATA;
  838. }
  839. inverse_prediction(img->frame, m, x, y);
  840. }
  841. }
  842. return 0;
  843. }
  844. static av_always_inline uint8_t color_transform_delta(uint8_t color_pred,
  845. uint8_t color)
  846. {
  847. return (int)ff_u8_to_s8(color_pred) * ff_u8_to_s8(color) >> 5;
  848. }
  849. static int apply_color_transform(WebPContext *s)
  850. {
  851. ImageContext *img, *cimg;
  852. int x, y, cx, cy;
  853. uint8_t *p, *cp;
  854. img = &s->image[IMAGE_ROLE_ARGB];
  855. cimg = &s->image[IMAGE_ROLE_COLOR_TRANSFORM];
  856. for (y = 0; y < img->frame->height; y++) {
  857. for (x = 0; x < img->frame->width; x++) {
  858. cx = x >> cimg->size_reduction;
  859. cy = y >> cimg->size_reduction;
  860. cp = GET_PIXEL(cimg->frame, cx, cy);
  861. p = GET_PIXEL(img->frame, x, y);
  862. p[1] += color_transform_delta(cp[3], p[2]);
  863. p[3] += color_transform_delta(cp[2], p[2]) +
  864. color_transform_delta(cp[1], p[1]);
  865. }
  866. }
  867. return 0;
  868. }
  869. static int apply_subtract_green_transform(WebPContext *s)
  870. {
  871. int x, y;
  872. ImageContext *img = &s->image[IMAGE_ROLE_ARGB];
  873. for (y = 0; y < img->frame->height; y++) {
  874. for (x = 0; x < img->frame->width; x++) {
  875. uint8_t *p = GET_PIXEL(img->frame, x, y);
  876. p[1] += p[2];
  877. p[3] += p[2];
  878. }
  879. }
  880. return 0;
  881. }
  882. static int apply_color_indexing_transform(WebPContext *s)
  883. {
  884. ImageContext *img;
  885. ImageContext *pal;
  886. int i, x, y;
  887. uint8_t *p, *pi;
  888. img = &s->image[IMAGE_ROLE_ARGB];
  889. pal = &s->image[IMAGE_ROLE_COLOR_INDEXING];
  890. if (pal->size_reduction > 0) {
  891. BitstreamContext bc_g;
  892. uint8_t *line;
  893. int pixel_bits = 8 >> pal->size_reduction;
  894. line = av_malloc(img->frame->linesize[0]);
  895. if (!line)
  896. return AVERROR(ENOMEM);
  897. for (y = 0; y < img->frame->height; y++) {
  898. p = GET_PIXEL(img->frame, 0, y);
  899. memcpy(line, p, img->frame->linesize[0]);
  900. bitstream_init8(&bc_g, line, img->frame->linesize[0]);
  901. bitstream_skip(&bc_g, 16);
  902. i = 0;
  903. for (x = 0; x < img->frame->width; x++) {
  904. p = GET_PIXEL(img->frame, x, y);
  905. p[2] = bitstream_read(&bc_g, pixel_bits);
  906. i++;
  907. if (i == 1 << pal->size_reduction) {
  908. bitstream_skip(&bc_g, 24);
  909. i = 0;
  910. }
  911. }
  912. }
  913. av_free(line);
  914. }
  915. for (y = 0; y < img->frame->height; y++) {
  916. for (x = 0; x < img->frame->width; x++) {
  917. p = GET_PIXEL(img->frame, x, y);
  918. i = p[2];
  919. if (i >= pal->frame->width) {
  920. av_log(s->avctx, AV_LOG_ERROR, "invalid palette index %d\n", i);
  921. return AVERROR_INVALIDDATA;
  922. }
  923. pi = GET_PIXEL(pal->frame, i, 0);
  924. AV_COPY32(p, pi);
  925. }
  926. }
  927. return 0;
  928. }
  929. static int vp8_lossless_decode_frame(AVCodecContext *avctx, AVFrame *p,
  930. int *got_frame, uint8_t *data_start,
  931. unsigned int data_size, int is_alpha_chunk)
  932. {
  933. WebPContext *s = avctx->priv_data;
  934. int w, h, ret, i, used;
  935. if (!is_alpha_chunk) {
  936. s->lossless = 1;
  937. avctx->pix_fmt = AV_PIX_FMT_ARGB;
  938. }
  939. ret = bitstream_init8(&s->bc, data_start, data_size);
  940. if (ret < 0)
  941. return ret;
  942. if (!is_alpha_chunk) {
  943. if (bitstream_read(&s->bc, 8) != 0x2F) {
  944. av_log(avctx, AV_LOG_ERROR, "Invalid WebP Lossless signature\n");
  945. return AVERROR_INVALIDDATA;
  946. }
  947. w = bitstream_read(&s->bc, 14) + 1;
  948. h = bitstream_read(&s->bc, 14) + 1;
  949. if (s->width && s->width != w) {
  950. av_log(avctx, AV_LOG_WARNING, "Width mismatch. %d != %d\n",
  951. s->width, w);
  952. }
  953. s->width = w;
  954. if (s->height && s->height != h) {
  955. av_log(avctx, AV_LOG_WARNING, "Height mismatch. %d != %d\n",
  956. s->width, w);
  957. }
  958. s->height = h;
  959. ret = ff_set_dimensions(avctx, s->width, s->height);
  960. if (ret < 0)
  961. return ret;
  962. s->has_alpha = bitstream_read_bit(&s->bc);
  963. if (bitstream_read(&s->bc, 3) != 0x0) {
  964. av_log(avctx, AV_LOG_ERROR, "Invalid WebP Lossless version\n");
  965. return AVERROR_INVALIDDATA;
  966. }
  967. } else {
  968. if (!s->width || !s->height)
  969. return AVERROR_BUG;
  970. w = s->width;
  971. h = s->height;
  972. }
  973. /* parse transformations */
  974. s->nb_transforms = 0;
  975. s->reduced_width = 0;
  976. used = 0;
  977. while (bitstream_read_bit(&s->bc)) {
  978. enum TransformType transform = bitstream_read(&s->bc, 2);
  979. s->transforms[s->nb_transforms++] = transform;
  980. if (used & (1 << transform)) {
  981. av_log(avctx, AV_LOG_ERROR, "Transform %d used more than once\n",
  982. transform);
  983. ret = AVERROR_INVALIDDATA;
  984. goto free_and_return;
  985. }
  986. used |= (1 << transform);
  987. switch (transform) {
  988. case PREDICTOR_TRANSFORM:
  989. ret = parse_transform_predictor(s);
  990. break;
  991. case COLOR_TRANSFORM:
  992. ret = parse_transform_color(s);
  993. break;
  994. case COLOR_INDEXING_TRANSFORM:
  995. ret = parse_transform_color_indexing(s);
  996. break;
  997. }
  998. if (ret < 0)
  999. goto free_and_return;
  1000. }
  1001. /* decode primary image */
  1002. s->image[IMAGE_ROLE_ARGB].frame = p;
  1003. if (is_alpha_chunk)
  1004. s->image[IMAGE_ROLE_ARGB].is_alpha_primary = 1;
  1005. ret = decode_entropy_coded_image(s, IMAGE_ROLE_ARGB, w, h);
  1006. if (ret < 0)
  1007. goto free_and_return;
  1008. /* apply transformations */
  1009. for (i = s->nb_transforms - 1; i >= 0; i--) {
  1010. switch (s->transforms[i]) {
  1011. case PREDICTOR_TRANSFORM:
  1012. ret = apply_predictor_transform(s);
  1013. break;
  1014. case COLOR_TRANSFORM:
  1015. ret = apply_color_transform(s);
  1016. break;
  1017. case SUBTRACT_GREEN:
  1018. ret = apply_subtract_green_transform(s);
  1019. break;
  1020. case COLOR_INDEXING_TRANSFORM:
  1021. ret = apply_color_indexing_transform(s);
  1022. break;
  1023. }
  1024. if (ret < 0)
  1025. goto free_and_return;
  1026. }
  1027. *got_frame = 1;
  1028. p->pict_type = AV_PICTURE_TYPE_I;
  1029. p->key_frame = 1;
  1030. ret = data_size;
  1031. free_and_return:
  1032. for (i = 0; i < IMAGE_ROLE_NB; i++)
  1033. image_ctx_free(&s->image[i]);
  1034. return ret;
  1035. }
  1036. static void alpha_inverse_prediction(AVFrame *frame, enum AlphaFilter m)
  1037. {
  1038. int x, y, ls;
  1039. uint8_t *dec;
  1040. ls = frame->linesize[3];
  1041. /* filter first row using horizontal filter */
  1042. dec = frame->data[3] + 1;
  1043. for (x = 1; x < frame->width; x++, dec++)
  1044. *dec += *(dec - 1);
  1045. /* filter first column using vertical filter */
  1046. dec = frame->data[3] + ls;
  1047. for (y = 1; y < frame->height; y++, dec += ls)
  1048. *dec += *(dec - ls);
  1049. /* filter the rest using the specified filter */
  1050. switch (m) {
  1051. case ALPHA_FILTER_HORIZONTAL:
  1052. for (y = 1; y < frame->height; y++) {
  1053. dec = frame->data[3] + y * ls + 1;
  1054. for (x = 1; x < frame->width; x++, dec++)
  1055. *dec += *(dec - 1);
  1056. }
  1057. break;
  1058. case ALPHA_FILTER_VERTICAL:
  1059. for (y = 1; y < frame->height; y++) {
  1060. dec = frame->data[3] + y * ls + 1;
  1061. for (x = 1; x < frame->width; x++, dec++)
  1062. *dec += *(dec - ls);
  1063. }
  1064. break;
  1065. case ALPHA_FILTER_GRADIENT:
  1066. for (y = 1; y < frame->height; y++) {
  1067. dec = frame->data[3] + y * ls + 1;
  1068. for (x = 1; x < frame->width; x++, dec++)
  1069. dec[0] += av_clip_uint8(*(dec - 1) + *(dec - ls) - *(dec - ls - 1));
  1070. }
  1071. break;
  1072. }
  1073. }
  1074. static int vp8_lossy_decode_alpha(AVCodecContext *avctx, AVFrame *p,
  1075. uint8_t *data_start,
  1076. unsigned int data_size)
  1077. {
  1078. WebPContext *s = avctx->priv_data;
  1079. int x, y, ret;
  1080. if (s->alpha_compression == ALPHA_COMPRESSION_NONE) {
  1081. GetByteContext gb;
  1082. bytestream2_init(&gb, data_start, data_size);
  1083. for (y = 0; y < s->height; y++)
  1084. bytestream2_get_buffer(&gb, p->data[3] + p->linesize[3] * y,
  1085. s->width);
  1086. } else if (s->alpha_compression == ALPHA_COMPRESSION_VP8L) {
  1087. uint8_t *ap, *pp;
  1088. int alpha_got_frame = 0;
  1089. s->alpha_frame = av_frame_alloc();
  1090. if (!s->alpha_frame)
  1091. return AVERROR(ENOMEM);
  1092. ret = vp8_lossless_decode_frame(avctx, s->alpha_frame, &alpha_got_frame,
  1093. data_start, data_size, 1);
  1094. if (ret < 0) {
  1095. av_frame_free(&s->alpha_frame);
  1096. return ret;
  1097. }
  1098. if (!alpha_got_frame) {
  1099. av_frame_free(&s->alpha_frame);
  1100. return AVERROR_INVALIDDATA;
  1101. }
  1102. /* copy green component of alpha image to alpha plane of primary image */
  1103. for (y = 0; y < s->height; y++) {
  1104. ap = GET_PIXEL(s->alpha_frame, 0, y) + 2;
  1105. pp = p->data[3] + p->linesize[3] * y;
  1106. for (x = 0; x < s->width; x++) {
  1107. *pp = *ap;
  1108. pp++;
  1109. ap += 4;
  1110. }
  1111. }
  1112. av_frame_free(&s->alpha_frame);
  1113. }
  1114. /* apply alpha filtering */
  1115. if (s->alpha_filter)
  1116. alpha_inverse_prediction(p, s->alpha_filter);
  1117. return 0;
  1118. }
  1119. static enum AVPixelFormat webp_get_format(AVCodecContext *avctx,
  1120. const enum AVPixelFormat *formats)
  1121. {
  1122. WebPContext *s = avctx->priv_data;
  1123. if (s->has_alpha)
  1124. return AV_PIX_FMT_YUVA420P;
  1125. else
  1126. return AV_PIX_FMT_YUV420P;
  1127. }
  1128. static int vp8_lossy_decode_frame(AVCodecContext *avctx, AVFrame *p,
  1129. int *got_frame, uint8_t *data_start,
  1130. unsigned int data_size)
  1131. {
  1132. WebPContext *s = avctx->priv_data;
  1133. AVPacket pkt;
  1134. int ret;
  1135. if (!s->initialized) {
  1136. ff_vp8_decode_init(avctx);
  1137. s->initialized = 1;
  1138. avctx->get_format = webp_get_format;
  1139. }
  1140. s->lossless = 0;
  1141. if (data_size > INT_MAX) {
  1142. av_log(avctx, AV_LOG_ERROR, "unsupported chunk size\n");
  1143. return AVERROR_PATCHWELCOME;
  1144. }
  1145. av_init_packet(&pkt);
  1146. pkt.data = data_start;
  1147. pkt.size = data_size;
  1148. ret = ff_vp8_decode_frame(avctx, p, got_frame, &pkt);
  1149. if (s->has_alpha) {
  1150. ret = vp8_lossy_decode_alpha(avctx, p, s->alpha_data,
  1151. s->alpha_data_size);
  1152. if (ret < 0)
  1153. return ret;
  1154. }
  1155. return ret;
  1156. }
  1157. static int webp_decode_frame(AVCodecContext *avctx, void *data, int *got_frame,
  1158. AVPacket *avpkt)
  1159. {
  1160. AVFrame * const p = data;
  1161. WebPContext *s = avctx->priv_data;
  1162. GetByteContext gb;
  1163. int ret;
  1164. uint32_t chunk_type, chunk_size;
  1165. int vp8x_flags = 0;
  1166. s->avctx = avctx;
  1167. s->width = 0;
  1168. s->height = 0;
  1169. *got_frame = 0;
  1170. s->has_alpha = 0;
  1171. bytestream2_init(&gb, avpkt->data, avpkt->size);
  1172. if (bytestream2_get_bytes_left(&gb) < 12)
  1173. return AVERROR_INVALIDDATA;
  1174. if (bytestream2_get_le32(&gb) != MKTAG('R', 'I', 'F', 'F')) {
  1175. av_log(avctx, AV_LOG_ERROR, "missing RIFF tag\n");
  1176. return AVERROR_INVALIDDATA;
  1177. }
  1178. chunk_size = bytestream2_get_le32(&gb);
  1179. if (bytestream2_get_bytes_left(&gb) < chunk_size)
  1180. return AVERROR_INVALIDDATA;
  1181. if (bytestream2_get_le32(&gb) != MKTAG('W', 'E', 'B', 'P')) {
  1182. av_log(avctx, AV_LOG_ERROR, "missing WEBP tag\n");
  1183. return AVERROR_INVALIDDATA;
  1184. }
  1185. while (bytestream2_get_bytes_left(&gb) > 8) {
  1186. char chunk_str[5] = { 0 };
  1187. chunk_type = bytestream2_get_le32(&gb);
  1188. chunk_size = bytestream2_get_le32(&gb);
  1189. if (chunk_size == UINT32_MAX)
  1190. return AVERROR_INVALIDDATA;
  1191. chunk_size += chunk_size & 1;
  1192. if (bytestream2_get_bytes_left(&gb) < chunk_size)
  1193. return AVERROR_INVALIDDATA;
  1194. switch (chunk_type) {
  1195. case MKTAG('V', 'P', '8', ' '):
  1196. if (!*got_frame) {
  1197. ret = vp8_lossy_decode_frame(avctx, p, got_frame,
  1198. avpkt->data + bytestream2_tell(&gb),
  1199. chunk_size);
  1200. if (ret < 0)
  1201. return ret;
  1202. }
  1203. bytestream2_skip(&gb, chunk_size);
  1204. break;
  1205. case MKTAG('V', 'P', '8', 'L'):
  1206. if (!*got_frame) {
  1207. ret = vp8_lossless_decode_frame(avctx, p, got_frame,
  1208. avpkt->data + bytestream2_tell(&gb),
  1209. chunk_size, 0);
  1210. if (ret < 0)
  1211. return ret;
  1212. }
  1213. bytestream2_skip(&gb, chunk_size);
  1214. break;
  1215. case MKTAG('V', 'P', '8', 'X'):
  1216. vp8x_flags = bytestream2_get_byte(&gb);
  1217. bytestream2_skip(&gb, 3);
  1218. s->width = bytestream2_get_le24(&gb) + 1;
  1219. s->height = bytestream2_get_le24(&gb) + 1;
  1220. ret = av_image_check_size(s->width, s->height, 0, avctx);
  1221. if (ret < 0)
  1222. return ret;
  1223. break;
  1224. case MKTAG('A', 'L', 'P', 'H'): {
  1225. int alpha_header, filter_m, compression;
  1226. if (!(vp8x_flags & VP8X_FLAG_ALPHA)) {
  1227. av_log(avctx, AV_LOG_WARNING,
  1228. "ALPHA chunk present, but alpha bit not set in the "
  1229. "VP8X header\n");
  1230. }
  1231. if (chunk_size == 0) {
  1232. av_log(avctx, AV_LOG_ERROR, "invalid ALPHA chunk size\n");
  1233. return AVERROR_INVALIDDATA;
  1234. }
  1235. alpha_header = bytestream2_get_byte(&gb);
  1236. s->alpha_data = avpkt->data + bytestream2_tell(&gb);
  1237. s->alpha_data_size = chunk_size - 1;
  1238. bytestream2_skip(&gb, s->alpha_data_size);
  1239. filter_m = (alpha_header >> 2) & 0x03;
  1240. compression = alpha_header & 0x03;
  1241. if (compression > ALPHA_COMPRESSION_VP8L) {
  1242. av_log(avctx, AV_LOG_VERBOSE,
  1243. "skipping unsupported ALPHA chunk\n");
  1244. } else {
  1245. s->has_alpha = 1;
  1246. s->alpha_compression = compression;
  1247. s->alpha_filter = filter_m;
  1248. }
  1249. break;
  1250. }
  1251. case MKTAG('I', 'C', 'C', 'P'):
  1252. case MKTAG('A', 'N', 'I', 'M'):
  1253. case MKTAG('A', 'N', 'M', 'F'):
  1254. case MKTAG('E', 'X', 'I', 'F'):
  1255. case MKTAG('X', 'M', 'P', ' '):
  1256. AV_WL32(chunk_str, chunk_type);
  1257. av_log(avctx, AV_LOG_VERBOSE, "skipping unsupported chunk: %s\n",
  1258. chunk_str);
  1259. bytestream2_skip(&gb, chunk_size);
  1260. break;
  1261. default:
  1262. AV_WL32(chunk_str, chunk_type);
  1263. av_log(avctx, AV_LOG_VERBOSE, "skipping unknown chunk: %s\n",
  1264. chunk_str);
  1265. bytestream2_skip(&gb, chunk_size);
  1266. break;
  1267. }
  1268. }
  1269. if (!*got_frame) {
  1270. av_log(avctx, AV_LOG_ERROR, "image data not found\n");
  1271. return AVERROR_INVALIDDATA;
  1272. }
  1273. return avpkt->size;
  1274. }
  1275. static av_cold int webp_decode_close(AVCodecContext *avctx)
  1276. {
  1277. WebPContext *s = avctx->priv_data;
  1278. if (s->initialized)
  1279. return ff_vp8_decode_free(avctx);
  1280. return 0;
  1281. }
  1282. AVCodec ff_webp_decoder = {
  1283. .name = "webp",
  1284. .long_name = NULL_IF_CONFIG_SMALL("WebP image"),
  1285. .type = AVMEDIA_TYPE_VIDEO,
  1286. .id = AV_CODEC_ID_WEBP,
  1287. .priv_data_size = sizeof(WebPContext),
  1288. .decode = webp_decode_frame,
  1289. .close = webp_decode_close,
  1290. .capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS,
  1291. };