You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

716 lines
23KB

  1. /*
  2. * Copyright (C) 2006 Aurelien Jacobs <aurel@gnuage.org>
  3. *
  4. * This file is part of Libav.
  5. *
  6. * Libav is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * Libav is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with Libav; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. /**
  21. * @file
  22. * VP5 and VP6 compatible video decoder (common features)
  23. */
  24. #include "avcodec.h"
  25. #include "bytestream.h"
  26. #include "internal.h"
  27. #include "h264chroma.h"
  28. #include "vp56.h"
  29. #include "vp56data.h"
  30. void ff_vp56_init_dequant(VP56Context *s, int quantizer)
  31. {
  32. s->quantizer = quantizer;
  33. s->dequant_dc = ff_vp56_dc_dequant[quantizer] << 2;
  34. s->dequant_ac = ff_vp56_ac_dequant[quantizer] << 2;
  35. }
  36. static int vp56_get_vectors_predictors(VP56Context *s, int row, int col,
  37. VP56Frame ref_frame)
  38. {
  39. int nb_pred = 0;
  40. VP56mv vect[2] = {{0,0}, {0,0}};
  41. int pos, offset;
  42. VP56mv mvp;
  43. for (pos=0; pos<12; pos++) {
  44. mvp.x = col + ff_vp56_candidate_predictor_pos[pos][0];
  45. mvp.y = row + ff_vp56_candidate_predictor_pos[pos][1];
  46. if (mvp.x < 0 || mvp.x >= s->mb_width ||
  47. mvp.y < 0 || mvp.y >= s->mb_height)
  48. continue;
  49. offset = mvp.x + s->mb_width*mvp.y;
  50. if (ff_vp56_reference_frame[s->macroblocks[offset].type] != ref_frame)
  51. continue;
  52. if ((s->macroblocks[offset].mv.x == vect[0].x &&
  53. s->macroblocks[offset].mv.y == vect[0].y) ||
  54. (s->macroblocks[offset].mv.x == 0 &&
  55. s->macroblocks[offset].mv.y == 0))
  56. continue;
  57. vect[nb_pred++] = s->macroblocks[offset].mv;
  58. if (nb_pred > 1) {
  59. nb_pred = -1;
  60. break;
  61. }
  62. s->vector_candidate_pos = pos;
  63. }
  64. s->vector_candidate[0] = vect[0];
  65. s->vector_candidate[1] = vect[1];
  66. return nb_pred+1;
  67. }
  68. static void vp56_parse_mb_type_models(VP56Context *s)
  69. {
  70. VP56RangeCoder *c = &s->c;
  71. VP56Model *model = s->modelp;
  72. int i, ctx, type;
  73. for (ctx=0; ctx<3; ctx++) {
  74. if (vp56_rac_get_prob(c, 174)) {
  75. int idx = vp56_rac_gets(c, 4);
  76. memcpy(model->mb_types_stats[ctx],
  77. ff_vp56_pre_def_mb_type_stats[idx][ctx],
  78. sizeof(model->mb_types_stats[ctx]));
  79. }
  80. if (vp56_rac_get_prob(c, 254)) {
  81. for (type=0; type<10; type++) {
  82. for(i=0; i<2; i++) {
  83. if (vp56_rac_get_prob(c, 205)) {
  84. int delta, sign = vp56_rac_get(c);
  85. delta = vp56_rac_get_tree(c, ff_vp56_pmbtm_tree,
  86. ff_vp56_mb_type_model_model);
  87. if (!delta)
  88. delta = 4 * vp56_rac_gets(c, 7);
  89. model->mb_types_stats[ctx][type][i] += (delta ^ -sign) + sign;
  90. }
  91. }
  92. }
  93. }
  94. }
  95. /* compute MB type probability tables based on previous MB type */
  96. for (ctx=0; ctx<3; ctx++) {
  97. int p[10];
  98. for (type=0; type<10; type++)
  99. p[type] = 100 * model->mb_types_stats[ctx][type][1];
  100. for (type=0; type<10; type++) {
  101. int p02, p34, p0234, p17, p56, p89, p5689, p156789;
  102. /* conservative MB type probability */
  103. model->mb_type[ctx][type][0] = 255 - (255 * model->mb_types_stats[ctx][type][0]) / (1 + model->mb_types_stats[ctx][type][0] + model->mb_types_stats[ctx][type][1]);
  104. p[type] = 0; /* same MB type => weight is null */
  105. /* binary tree parsing probabilities */
  106. p02 = p[0] + p[2];
  107. p34 = p[3] + p[4];
  108. p0234 = p02 + p34;
  109. p17 = p[1] + p[7];
  110. p56 = p[5] + p[6];
  111. p89 = p[8] + p[9];
  112. p5689 = p56 + p89;
  113. p156789 = p17 + p5689;
  114. model->mb_type[ctx][type][1] = 1 + 255 * p0234/(1+p0234+p156789);
  115. model->mb_type[ctx][type][2] = 1 + 255 * p02 / (1+p0234);
  116. model->mb_type[ctx][type][3] = 1 + 255 * p17 / (1+p156789);
  117. model->mb_type[ctx][type][4] = 1 + 255 * p[0] / (1+p02);
  118. model->mb_type[ctx][type][5] = 1 + 255 * p[3] / (1+p34);
  119. model->mb_type[ctx][type][6] = 1 + 255 * p[1] / (1+p17);
  120. model->mb_type[ctx][type][7] = 1 + 255 * p56 / (1+p5689);
  121. model->mb_type[ctx][type][8] = 1 + 255 * p[5] / (1+p56);
  122. model->mb_type[ctx][type][9] = 1 + 255 * p[8] / (1+p89);
  123. /* restore initial value */
  124. p[type] = 100 * model->mb_types_stats[ctx][type][1];
  125. }
  126. }
  127. }
  128. static VP56mb vp56_parse_mb_type(VP56Context *s,
  129. VP56mb prev_type, int ctx)
  130. {
  131. uint8_t *mb_type_model = s->modelp->mb_type[ctx][prev_type];
  132. VP56RangeCoder *c = &s->c;
  133. if (vp56_rac_get_prob(c, mb_type_model[0]))
  134. return prev_type;
  135. else
  136. return vp56_rac_get_tree(c, ff_vp56_pmbt_tree, mb_type_model);
  137. }
  138. static void vp56_decode_4mv(VP56Context *s, int row, int col)
  139. {
  140. VP56mv mv = {0,0};
  141. int type[4];
  142. int b;
  143. /* parse each block type */
  144. for (b=0; b<4; b++) {
  145. type[b] = vp56_rac_gets(&s->c, 2);
  146. if (type[b])
  147. type[b]++; /* only returns 0, 2, 3 or 4 (all INTER_PF) */
  148. }
  149. /* get vectors */
  150. for (b=0; b<4; b++) {
  151. switch (type[b]) {
  152. case VP56_MB_INTER_NOVEC_PF:
  153. s->mv[b] = (VP56mv) {0,0};
  154. break;
  155. case VP56_MB_INTER_DELTA_PF:
  156. s->parse_vector_adjustment(s, &s->mv[b]);
  157. break;
  158. case VP56_MB_INTER_V1_PF:
  159. s->mv[b] = s->vector_candidate[0];
  160. break;
  161. case VP56_MB_INTER_V2_PF:
  162. s->mv[b] = s->vector_candidate[1];
  163. break;
  164. }
  165. mv.x += s->mv[b].x;
  166. mv.y += s->mv[b].y;
  167. }
  168. /* this is the one selected for the whole MB for prediction */
  169. s->macroblocks[row * s->mb_width + col].mv = s->mv[3];
  170. /* chroma vectors are average luma vectors */
  171. if (s->avctx->codec->id == AV_CODEC_ID_VP5) {
  172. s->mv[4].x = s->mv[5].x = RSHIFT(mv.x,2);
  173. s->mv[4].y = s->mv[5].y = RSHIFT(mv.y,2);
  174. } else {
  175. s->mv[4] = s->mv[5] = (VP56mv) {mv.x/4, mv.y/4};
  176. }
  177. }
  178. static VP56mb vp56_decode_mv(VP56Context *s, int row, int col)
  179. {
  180. VP56mv *mv, vect = {0,0};
  181. int ctx, b;
  182. ctx = vp56_get_vectors_predictors(s, row, col, VP56_FRAME_PREVIOUS);
  183. s->mb_type = vp56_parse_mb_type(s, s->mb_type, ctx);
  184. s->macroblocks[row * s->mb_width + col].type = s->mb_type;
  185. switch (s->mb_type) {
  186. case VP56_MB_INTER_V1_PF:
  187. mv = &s->vector_candidate[0];
  188. break;
  189. case VP56_MB_INTER_V2_PF:
  190. mv = &s->vector_candidate[1];
  191. break;
  192. case VP56_MB_INTER_V1_GF:
  193. vp56_get_vectors_predictors(s, row, col, VP56_FRAME_GOLDEN);
  194. mv = &s->vector_candidate[0];
  195. break;
  196. case VP56_MB_INTER_V2_GF:
  197. vp56_get_vectors_predictors(s, row, col, VP56_FRAME_GOLDEN);
  198. mv = &s->vector_candidate[1];
  199. break;
  200. case VP56_MB_INTER_DELTA_PF:
  201. s->parse_vector_adjustment(s, &vect);
  202. mv = &vect;
  203. break;
  204. case VP56_MB_INTER_DELTA_GF:
  205. vp56_get_vectors_predictors(s, row, col, VP56_FRAME_GOLDEN);
  206. s->parse_vector_adjustment(s, &vect);
  207. mv = &vect;
  208. break;
  209. case VP56_MB_INTER_4V:
  210. vp56_decode_4mv(s, row, col);
  211. return s->mb_type;
  212. default:
  213. mv = &vect;
  214. break;
  215. }
  216. s->macroblocks[row*s->mb_width + col].mv = *mv;
  217. /* same vector for all blocks */
  218. for (b=0; b<6; b++)
  219. s->mv[b] = *mv;
  220. return s->mb_type;
  221. }
  222. static void vp56_add_predictors_dc(VP56Context *s, VP56Frame ref_frame)
  223. {
  224. int idx = s->idct_scantable[0];
  225. int b;
  226. for (b=0; b<6; b++) {
  227. VP56RefDc *ab = &s->above_blocks[s->above_block_idx[b]];
  228. VP56RefDc *lb = &s->left_block[ff_vp56_b6to4[b]];
  229. int count = 0;
  230. int dc = 0;
  231. int i;
  232. if (ref_frame == lb->ref_frame) {
  233. dc += lb->dc_coeff;
  234. count++;
  235. }
  236. if (ref_frame == ab->ref_frame) {
  237. dc += ab->dc_coeff;
  238. count++;
  239. }
  240. if (s->avctx->codec->id == AV_CODEC_ID_VP5)
  241. for (i=0; i<2; i++)
  242. if (count < 2 && ref_frame == ab[-1+2*i].ref_frame) {
  243. dc += ab[-1+2*i].dc_coeff;
  244. count++;
  245. }
  246. if (count == 0)
  247. dc = s->prev_dc[ff_vp56_b2p[b]][ref_frame];
  248. else if (count == 2)
  249. dc /= 2;
  250. s->block_coeff[b][idx] += dc;
  251. s->prev_dc[ff_vp56_b2p[b]][ref_frame] = s->block_coeff[b][idx];
  252. ab->dc_coeff = s->block_coeff[b][idx];
  253. ab->ref_frame = ref_frame;
  254. lb->dc_coeff = s->block_coeff[b][idx];
  255. lb->ref_frame = ref_frame;
  256. s->block_coeff[b][idx] *= s->dequant_dc;
  257. }
  258. }
  259. static void vp56_deblock_filter(VP56Context *s, uint8_t *yuv,
  260. ptrdiff_t stride, int dx, int dy)
  261. {
  262. int t = ff_vp56_filter_threshold[s->quantizer];
  263. if (dx) s->vp56dsp.edge_filter_hor(yuv + 10-dx , stride, t);
  264. if (dy) s->vp56dsp.edge_filter_ver(yuv + stride*(10-dy), stride, t);
  265. }
  266. static void vp56_mc(VP56Context *s, int b, int plane, uint8_t *src,
  267. ptrdiff_t stride, int x, int y)
  268. {
  269. uint8_t *dst = s->frames[VP56_FRAME_CURRENT]->data[plane] + s->block_offset[b];
  270. uint8_t *src_block;
  271. int src_offset;
  272. int overlap_offset = 0;
  273. int mask = s->vp56_coord_div[b] - 1;
  274. int deblock_filtering = s->deblock_filtering;
  275. int dx;
  276. int dy;
  277. if (s->avctx->skip_loop_filter >= AVDISCARD_ALL ||
  278. (s->avctx->skip_loop_filter >= AVDISCARD_NONKEY
  279. && !s->frames[VP56_FRAME_CURRENT]->key_frame))
  280. deblock_filtering = 0;
  281. dx = s->mv[b].x / s->vp56_coord_div[b];
  282. dy = s->mv[b].y / s->vp56_coord_div[b];
  283. if (b >= 4) {
  284. x /= 2;
  285. y /= 2;
  286. }
  287. x += dx - 2;
  288. y += dy - 2;
  289. if (x<0 || x+12>=s->plane_width[plane] ||
  290. y<0 || y+12>=s->plane_height[plane]) {
  291. s->vdsp.emulated_edge_mc(s->edge_emu_buffer,
  292. src + s->block_offset[b] + (dy-2)*stride + (dx-2),
  293. stride, stride,
  294. 12, 12, x, y,
  295. s->plane_width[plane],
  296. s->plane_height[plane]);
  297. src_block = s->edge_emu_buffer;
  298. src_offset = 2 + 2*stride;
  299. } else if (deblock_filtering) {
  300. /* only need a 12x12 block, but there is no such dsp function, */
  301. /* so copy a 16x12 block */
  302. s->hdsp.put_pixels_tab[0][0](s->edge_emu_buffer,
  303. src + s->block_offset[b] + (dy-2)*stride + (dx-2),
  304. stride, 12);
  305. src_block = s->edge_emu_buffer;
  306. src_offset = 2 + 2*stride;
  307. } else {
  308. src_block = src;
  309. src_offset = s->block_offset[b] + dy*stride + dx;
  310. }
  311. if (deblock_filtering)
  312. vp56_deblock_filter(s, src_block, stride, dx&7, dy&7);
  313. if (s->mv[b].x & mask)
  314. overlap_offset += (s->mv[b].x > 0) ? 1 : -1;
  315. if (s->mv[b].y & mask)
  316. overlap_offset += (s->mv[b].y > 0) ? stride : -stride;
  317. if (overlap_offset) {
  318. if (s->filter)
  319. s->filter(s, dst, src_block, src_offset, src_offset+overlap_offset,
  320. stride, s->mv[b], mask, s->filter_selection, b<4);
  321. else
  322. s->vp3dsp.put_no_rnd_pixels_l2(dst, src_block+src_offset,
  323. src_block+src_offset+overlap_offset,
  324. stride, 8);
  325. } else {
  326. s->hdsp.put_pixels_tab[1][0](dst, src_block+src_offset, stride, 8);
  327. }
  328. }
  329. static void vp56_decode_mb(VP56Context *s, int row, int col, int is_alpha)
  330. {
  331. AVFrame *frame_current, *frame_ref;
  332. VP56mb mb_type;
  333. VP56Frame ref_frame;
  334. int b, ab, b_max, plane, off;
  335. if (s->frames[VP56_FRAME_CURRENT]->key_frame)
  336. mb_type = VP56_MB_INTRA;
  337. else
  338. mb_type = vp56_decode_mv(s, row, col);
  339. ref_frame = ff_vp56_reference_frame[mb_type];
  340. s->parse_coeff(s);
  341. vp56_add_predictors_dc(s, ref_frame);
  342. frame_current = s->frames[VP56_FRAME_CURRENT];
  343. frame_ref = s->frames[ref_frame];
  344. if (mb_type != VP56_MB_INTRA && !frame_ref->data[0])
  345. return;
  346. ab = 6*is_alpha;
  347. b_max = 6 - 2*is_alpha;
  348. switch (mb_type) {
  349. case VP56_MB_INTRA:
  350. for (b=0; b<b_max; b++) {
  351. plane = ff_vp56_b2p[b+ab];
  352. s->vp3dsp.idct_put(frame_current->data[plane] + s->block_offset[b],
  353. s->stride[plane], s->block_coeff[b]);
  354. }
  355. break;
  356. case VP56_MB_INTER_NOVEC_PF:
  357. case VP56_MB_INTER_NOVEC_GF:
  358. for (b=0; b<b_max; b++) {
  359. plane = ff_vp56_b2p[b+ab];
  360. off = s->block_offset[b];
  361. s->hdsp.put_pixels_tab[1][0](frame_current->data[plane] + off,
  362. frame_ref->data[plane] + off,
  363. s->stride[plane], 8);
  364. s->vp3dsp.idct_add(frame_current->data[plane] + off,
  365. s->stride[plane], s->block_coeff[b]);
  366. }
  367. break;
  368. case VP56_MB_INTER_DELTA_PF:
  369. case VP56_MB_INTER_V1_PF:
  370. case VP56_MB_INTER_V2_PF:
  371. case VP56_MB_INTER_DELTA_GF:
  372. case VP56_MB_INTER_4V:
  373. case VP56_MB_INTER_V1_GF:
  374. case VP56_MB_INTER_V2_GF:
  375. for (b=0; b<b_max; b++) {
  376. int x_off = b==1 || b==3 ? 8 : 0;
  377. int y_off = b==2 || b==3 ? 8 : 0;
  378. plane = ff_vp56_b2p[b+ab];
  379. vp56_mc(s, b, plane, frame_ref->data[plane], s->stride[plane],
  380. 16*col+x_off, 16*row+y_off);
  381. s->vp3dsp.idct_add(frame_current->data[plane] + s->block_offset[b],
  382. s->stride[plane], s->block_coeff[b]);
  383. }
  384. break;
  385. }
  386. if (is_alpha) {
  387. s->block_coeff[4][0] = 0;
  388. s->block_coeff[5][0] = 0;
  389. }
  390. }
  391. static int vp56_size_changed(AVCodecContext *avctx)
  392. {
  393. VP56Context *s = avctx->priv_data;
  394. int stride = s->frames[VP56_FRAME_CURRENT]->linesize[0];
  395. int i;
  396. s->plane_width[0] = s->plane_width[3] = avctx->coded_width;
  397. s->plane_width[1] = s->plane_width[2] = avctx->coded_width/2;
  398. s->plane_height[0] = s->plane_height[3] = avctx->coded_height;
  399. s->plane_height[1] = s->plane_height[2] = avctx->coded_height/2;
  400. for (i=0; i<4; i++)
  401. s->stride[i] = s->flip * s->frames[VP56_FRAME_CURRENT]->linesize[i];
  402. s->mb_width = (avctx->coded_width +15) / 16;
  403. s->mb_height = (avctx->coded_height+15) / 16;
  404. if (s->mb_width > 1000 || s->mb_height > 1000) {
  405. ff_set_dimensions(avctx, 0, 0);
  406. av_log(avctx, AV_LOG_ERROR, "picture too big\n");
  407. return AVERROR_INVALIDDATA;
  408. }
  409. s->above_blocks = av_realloc(s->above_blocks,
  410. (4*s->mb_width+6) * sizeof(*s->above_blocks));
  411. s->macroblocks = av_realloc(s->macroblocks,
  412. s->mb_width*s->mb_height*sizeof(*s->macroblocks));
  413. av_free(s->edge_emu_buffer_alloc);
  414. s->edge_emu_buffer_alloc = av_malloc(16*stride);
  415. s->edge_emu_buffer = s->edge_emu_buffer_alloc;
  416. if (s->flip < 0)
  417. s->edge_emu_buffer += 15 * stride;
  418. return 0;
  419. }
  420. int ff_vp56_decode_frame(AVCodecContext *avctx, void *data, int *got_frame,
  421. AVPacket *avpkt)
  422. {
  423. const uint8_t *buf = avpkt->data;
  424. VP56Context *s = avctx->priv_data;
  425. AVFrame *const p = s->frames[VP56_FRAME_CURRENT];
  426. int remaining_buf_size = avpkt->size;
  427. int is_alpha, av_uninit(alpha_offset);
  428. int res;
  429. if (s->has_alpha) {
  430. if (remaining_buf_size < 3)
  431. return AVERROR_INVALIDDATA;
  432. alpha_offset = bytestream_get_be24(&buf);
  433. remaining_buf_size -= 3;
  434. if (remaining_buf_size < alpha_offset)
  435. return AVERROR_INVALIDDATA;
  436. }
  437. for (is_alpha=0; is_alpha < 1+s->has_alpha; is_alpha++) {
  438. int mb_row, mb_col, mb_row_flip, mb_offset = 0;
  439. int block, y, uv;
  440. ptrdiff_t stride_y, stride_uv;
  441. int golden_frame = 0;
  442. s->modelp = &s->models[is_alpha];
  443. res = s->parse_header(s, buf, remaining_buf_size, &golden_frame);
  444. if (res < 0) {
  445. int i;
  446. for (i = 0; i < 4; i++)
  447. av_frame_unref(s->frames[i]);
  448. return res;
  449. }
  450. if (res == VP56_SIZE_CHANGE) {
  451. int i;
  452. for (i = 0; i < 4; i++)
  453. av_frame_unref(s->frames[i]);
  454. if (is_alpha) {
  455. ff_set_dimensions(avctx, 0, 0);
  456. return AVERROR_INVALIDDATA;
  457. }
  458. }
  459. if (!is_alpha) {
  460. int ret = ff_get_buffer(avctx, p, AV_GET_BUFFER_FLAG_REF);
  461. if (ret < 0) {
  462. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  463. return ret;
  464. }
  465. if (res == VP56_SIZE_CHANGE)
  466. if (vp56_size_changed(avctx)) {
  467. av_frame_unref(p);
  468. return AVERROR_INVALIDDATA;
  469. }
  470. }
  471. if (p->key_frame) {
  472. p->pict_type = AV_PICTURE_TYPE_I;
  473. s->default_models_init(s);
  474. for (block=0; block<s->mb_height*s->mb_width; block++)
  475. s->macroblocks[block].type = VP56_MB_INTRA;
  476. } else {
  477. p->pict_type = AV_PICTURE_TYPE_P;
  478. vp56_parse_mb_type_models(s);
  479. s->parse_vector_models(s);
  480. s->mb_type = VP56_MB_INTER_NOVEC_PF;
  481. }
  482. if (s->parse_coeff_models(s))
  483. goto next;
  484. memset(s->prev_dc, 0, sizeof(s->prev_dc));
  485. s->prev_dc[1][VP56_FRAME_CURRENT] = 128;
  486. s->prev_dc[2][VP56_FRAME_CURRENT] = 128;
  487. for (block=0; block < 4*s->mb_width+6; block++) {
  488. s->above_blocks[block].ref_frame = VP56_FRAME_NONE;
  489. s->above_blocks[block].dc_coeff = 0;
  490. s->above_blocks[block].not_null_dc = 0;
  491. }
  492. s->above_blocks[2*s->mb_width + 2].ref_frame = VP56_FRAME_CURRENT;
  493. s->above_blocks[3*s->mb_width + 4].ref_frame = VP56_FRAME_CURRENT;
  494. stride_y = p->linesize[0];
  495. stride_uv = p->linesize[1];
  496. if (s->flip < 0)
  497. mb_offset = 7;
  498. /* main macroblocks loop */
  499. for (mb_row=0; mb_row<s->mb_height; mb_row++) {
  500. if (s->flip < 0)
  501. mb_row_flip = s->mb_height - mb_row - 1;
  502. else
  503. mb_row_flip = mb_row;
  504. for (block=0; block<4; block++) {
  505. s->left_block[block].ref_frame = VP56_FRAME_NONE;
  506. s->left_block[block].dc_coeff = 0;
  507. s->left_block[block].not_null_dc = 0;
  508. }
  509. memset(s->coeff_ctx, 0, sizeof(s->coeff_ctx));
  510. memset(s->coeff_ctx_last, 24, sizeof(s->coeff_ctx_last));
  511. s->above_block_idx[0] = 1;
  512. s->above_block_idx[1] = 2;
  513. s->above_block_idx[2] = 1;
  514. s->above_block_idx[3] = 2;
  515. s->above_block_idx[4] = 2*s->mb_width + 2 + 1;
  516. s->above_block_idx[5] = 3*s->mb_width + 4 + 1;
  517. s->block_offset[s->frbi] = (mb_row_flip*16 + mb_offset) * stride_y;
  518. s->block_offset[s->srbi] = s->block_offset[s->frbi] + 8*stride_y;
  519. s->block_offset[1] = s->block_offset[0] + 8;
  520. s->block_offset[3] = s->block_offset[2] + 8;
  521. s->block_offset[4] = (mb_row_flip*8 + mb_offset) * stride_uv;
  522. s->block_offset[5] = s->block_offset[4];
  523. for (mb_col=0; mb_col<s->mb_width; mb_col++) {
  524. vp56_decode_mb(s, mb_row, mb_col, is_alpha);
  525. for (y=0; y<4; y++) {
  526. s->above_block_idx[y] += 2;
  527. s->block_offset[y] += 16;
  528. }
  529. for (uv=4; uv<6; uv++) {
  530. s->above_block_idx[uv] += 1;
  531. s->block_offset[uv] += 8;
  532. }
  533. }
  534. }
  535. next:
  536. if (p->key_frame || golden_frame) {
  537. av_frame_unref(s->frames[VP56_FRAME_GOLDEN]);
  538. if ((res = av_frame_ref(s->frames[VP56_FRAME_GOLDEN], p)) < 0)
  539. return res;
  540. }
  541. if (s->has_alpha) {
  542. FFSWAP(AVFrame *, s->frames[VP56_FRAME_GOLDEN],
  543. s->frames[VP56_FRAME_GOLDEN2]);
  544. buf += alpha_offset;
  545. remaining_buf_size -= alpha_offset;
  546. }
  547. }
  548. av_frame_unref(s->frames[VP56_FRAME_PREVIOUS]);
  549. FFSWAP(AVFrame *, s->frames[VP56_FRAME_CURRENT],
  550. s->frames[VP56_FRAME_PREVIOUS]);
  551. if ((res = av_frame_ref(data, p)) < 0)
  552. return res;
  553. *got_frame = 1;
  554. return avpkt->size;
  555. }
  556. av_cold int ff_vp56_init(AVCodecContext *avctx, int flip, int has_alpha)
  557. {
  558. VP56Context *s = avctx->priv_data;
  559. int i;
  560. s->avctx = avctx;
  561. avctx->pix_fmt = has_alpha ? AV_PIX_FMT_YUVA420P : AV_PIX_FMT_YUV420P;
  562. ff_h264chroma_init(&s->h264chroma, 8);
  563. ff_hpeldsp_init(&s->hdsp, avctx->flags);
  564. ff_videodsp_init(&s->vdsp, 8);
  565. ff_vp3dsp_init(&s->vp3dsp, avctx->flags);
  566. for (i = 0; i < 64; i++) {
  567. #define TRANSPOSE(x) (x >> 3) | ((x & 7) << 3)
  568. s->idct_scantable[i] = TRANSPOSE(ff_zigzag_direct[i]);
  569. #undef TRANSPOSE
  570. }
  571. for (i = 0; i < FF_ARRAY_ELEMS(s->frames); i++) {
  572. s->frames[i] = av_frame_alloc();
  573. if (!s->frames[i]) {
  574. ff_vp56_free(avctx);
  575. return AVERROR(ENOMEM);
  576. }
  577. }
  578. s->edge_emu_buffer_alloc = NULL;
  579. s->above_blocks = NULL;
  580. s->macroblocks = NULL;
  581. s->quantizer = -1;
  582. s->deblock_filtering = 1;
  583. s->filter = NULL;
  584. s->has_alpha = has_alpha;
  585. if (flip) {
  586. s->flip = -1;
  587. s->frbi = 2;
  588. s->srbi = 0;
  589. } else {
  590. s->flip = 1;
  591. s->frbi = 0;
  592. s->srbi = 2;
  593. }
  594. return 0;
  595. }
  596. av_cold int ff_vp56_free(AVCodecContext *avctx)
  597. {
  598. VP56Context *s = avctx->priv_data;
  599. int i;
  600. av_freep(&s->above_blocks);
  601. av_freep(&s->macroblocks);
  602. av_freep(&s->edge_emu_buffer_alloc);
  603. for (i = 0; i < FF_ARRAY_ELEMS(s->frames); i++)
  604. av_frame_free(&s->frames[i]);
  605. return 0;
  606. }