You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

962 lines
34KB

  1. /*
  2. * VC-1 and WMV3 decoder - DSP functions
  3. * Copyright (c) 2006 Konstantin Shishkov
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * VC-1 and WMV3 decoder
  24. */
  25. #include "libavutil/common.h"
  26. #include "h264chroma.h"
  27. #include "qpeldsp.h"
  28. #include "vc1dsp.h"
  29. #include "startcode.h"
  30. /* Apply overlap transform to horizontal edge */
  31. static void vc1_v_overlap_c(uint8_t *src, int stride)
  32. {
  33. int i;
  34. int a, b, c, d;
  35. int d1, d2;
  36. int rnd = 1;
  37. for (i = 0; i < 8; i++) {
  38. a = src[-2 * stride];
  39. b = src[-stride];
  40. c = src[0];
  41. d = src[stride];
  42. d1 = (a - d + 3 + rnd) >> 3;
  43. d2 = (a - d + b - c + 4 - rnd) >> 3;
  44. src[-2 * stride] = a - d1;
  45. src[-stride] = av_clip_uint8(b - d2);
  46. src[0] = av_clip_uint8(c + d2);
  47. src[stride] = d + d1;
  48. src++;
  49. rnd = !rnd;
  50. }
  51. }
  52. /* Apply overlap transform to vertical edge */
  53. static void vc1_h_overlap_c(uint8_t *src, int stride)
  54. {
  55. int i;
  56. int a, b, c, d;
  57. int d1, d2;
  58. int rnd = 1;
  59. for (i = 0; i < 8; i++) {
  60. a = src[-2];
  61. b = src[-1];
  62. c = src[0];
  63. d = src[1];
  64. d1 = (a - d + 3 + rnd) >> 3;
  65. d2 = (a - d + b - c + 4 - rnd) >> 3;
  66. src[-2] = a - d1;
  67. src[-1] = av_clip_uint8(b - d2);
  68. src[0] = av_clip_uint8(c + d2);
  69. src[1] = d + d1;
  70. src += stride;
  71. rnd = !rnd;
  72. }
  73. }
  74. static void vc1_v_s_overlap_c(int16_t *top, int16_t *bottom)
  75. {
  76. int i;
  77. int a, b, c, d;
  78. int d1, d2;
  79. int rnd1 = 4, rnd2 = 3;
  80. for (i = 0; i < 8; i++) {
  81. a = top[48];
  82. b = top[56];
  83. c = bottom[0];
  84. d = bottom[8];
  85. d1 = a - d;
  86. d2 = a - d + b - c;
  87. top[48] = ((a << 3) - d1 + rnd1) >> 3;
  88. top[56] = ((b << 3) - d2 + rnd2) >> 3;
  89. bottom[0] = ((c << 3) + d2 + rnd1) >> 3;
  90. bottom[8] = ((d << 3) + d1 + rnd2) >> 3;
  91. bottom++;
  92. top++;
  93. rnd2 = 7 - rnd2;
  94. rnd1 = 7 - rnd1;
  95. }
  96. }
  97. static void vc1_h_s_overlap_c(int16_t *left, int16_t *right)
  98. {
  99. int i;
  100. int a, b, c, d;
  101. int d1, d2;
  102. int rnd1 = 4, rnd2 = 3;
  103. for (i = 0; i < 8; i++) {
  104. a = left[6];
  105. b = left[7];
  106. c = right[0];
  107. d = right[1];
  108. d1 = a - d;
  109. d2 = a - d + b - c;
  110. left[6] = ((a << 3) - d1 + rnd1) >> 3;
  111. left[7] = ((b << 3) - d2 + rnd2) >> 3;
  112. right[0] = ((c << 3) + d2 + rnd1) >> 3;
  113. right[1] = ((d << 3) + d1 + rnd2) >> 3;
  114. right += 8;
  115. left += 8;
  116. rnd2 = 7 - rnd2;
  117. rnd1 = 7 - rnd1;
  118. }
  119. }
  120. /**
  121. * VC-1 in-loop deblocking filter for one line
  122. * @param src source block type
  123. * @param stride block stride
  124. * @param pq block quantizer
  125. * @return whether other 3 pairs should be filtered or not
  126. * @see 8.6
  127. */
  128. static av_always_inline int vc1_filter_line(uint8_t *src, int stride, int pq)
  129. {
  130. int a0 = (2 * (src[-2 * stride] - src[1 * stride]) -
  131. 5 * (src[-1 * stride] - src[0 * stride]) + 4) >> 3;
  132. int a0_sign = a0 >> 31; /* Store sign */
  133. a0 = (a0 ^ a0_sign) - a0_sign; /* a0 = FFABS(a0); */
  134. if (a0 < pq) {
  135. int a1 = FFABS((2 * (src[-4 * stride] - src[-1 * stride]) -
  136. 5 * (src[-3 * stride] - src[-2 * stride]) + 4) >> 3);
  137. int a2 = FFABS((2 * (src[ 0 * stride] - src[ 3 * stride]) -
  138. 5 * (src[ 1 * stride] - src[ 2 * stride]) + 4) >> 3);
  139. if (a1 < a0 || a2 < a0) {
  140. int clip = src[-1 * stride] - src[0 * stride];
  141. int clip_sign = clip >> 31;
  142. clip = ((clip ^ clip_sign) - clip_sign) >> 1;
  143. if (clip) {
  144. int a3 = FFMIN(a1, a2);
  145. int d = 5 * (a3 - a0);
  146. int d_sign = (d >> 31);
  147. d = ((d ^ d_sign) - d_sign) >> 3;
  148. d_sign ^= a0_sign;
  149. if (d_sign ^ clip_sign)
  150. d = 0;
  151. else {
  152. d = FFMIN(d, clip);
  153. d = (d ^ d_sign) - d_sign; /* Restore sign */
  154. src[-1 * stride] = av_clip_uint8(src[-1 * stride] - d);
  155. src[ 0 * stride] = av_clip_uint8(src[ 0 * stride] + d);
  156. }
  157. return 1;
  158. }
  159. }
  160. }
  161. return 0;
  162. }
  163. /**
  164. * VC-1 in-loop deblocking filter
  165. * @param src source block type
  166. * @param step distance between horizontally adjacent elements
  167. * @param stride distance between vertically adjacent elements
  168. * @param len edge length to filter (4 or 8 pixels)
  169. * @param pq block quantizer
  170. * @see 8.6
  171. */
  172. static inline void vc1_loop_filter(uint8_t *src, int step, int stride,
  173. int len, int pq)
  174. {
  175. int i;
  176. int filt3;
  177. for (i = 0; i < len; i += 4) {
  178. filt3 = vc1_filter_line(src + 2 * step, stride, pq);
  179. if (filt3) {
  180. vc1_filter_line(src + 0 * step, stride, pq);
  181. vc1_filter_line(src + 1 * step, stride, pq);
  182. vc1_filter_line(src + 3 * step, stride, pq);
  183. }
  184. src += step * 4;
  185. }
  186. }
  187. static void vc1_v_loop_filter4_c(uint8_t *src, int stride, int pq)
  188. {
  189. vc1_loop_filter(src, 1, stride, 4, pq);
  190. }
  191. static void vc1_h_loop_filter4_c(uint8_t *src, int stride, int pq)
  192. {
  193. vc1_loop_filter(src, stride, 1, 4, pq);
  194. }
  195. static void vc1_v_loop_filter8_c(uint8_t *src, int stride, int pq)
  196. {
  197. vc1_loop_filter(src, 1, stride, 8, pq);
  198. }
  199. static void vc1_h_loop_filter8_c(uint8_t *src, int stride, int pq)
  200. {
  201. vc1_loop_filter(src, stride, 1, 8, pq);
  202. }
  203. static void vc1_v_loop_filter16_c(uint8_t *src, int stride, int pq)
  204. {
  205. vc1_loop_filter(src, 1, stride, 16, pq);
  206. }
  207. static void vc1_h_loop_filter16_c(uint8_t *src, int stride, int pq)
  208. {
  209. vc1_loop_filter(src, stride, 1, 16, pq);
  210. }
  211. /* Do inverse transform on 8x8 block */
  212. static void vc1_inv_trans_8x8_dc_c(uint8_t *dest, ptrdiff_t stride, int16_t *block)
  213. {
  214. int i;
  215. int dc = block[0];
  216. dc = (3 * dc + 1) >> 1;
  217. dc = (3 * dc + 16) >> 5;
  218. for (i = 0; i < 8; i++) {
  219. dest[0] = av_clip_uint8(dest[0] + dc);
  220. dest[1] = av_clip_uint8(dest[1] + dc);
  221. dest[2] = av_clip_uint8(dest[2] + dc);
  222. dest[3] = av_clip_uint8(dest[3] + dc);
  223. dest[4] = av_clip_uint8(dest[4] + dc);
  224. dest[5] = av_clip_uint8(dest[5] + dc);
  225. dest[6] = av_clip_uint8(dest[6] + dc);
  226. dest[7] = av_clip_uint8(dest[7] + dc);
  227. dest += stride;
  228. }
  229. }
  230. static void vc1_inv_trans_8x8_c(int16_t block[64])
  231. {
  232. int i;
  233. register int t1, t2, t3, t4, t5, t6, t7, t8;
  234. int16_t *src, *dst, temp[64];
  235. src = block;
  236. dst = temp;
  237. for (i = 0; i < 8; i++) {
  238. t1 = 12 * (src[ 0] + src[32]) + 4;
  239. t2 = 12 * (src[ 0] - src[32]) + 4;
  240. t3 = 16 * src[16] + 6 * src[48];
  241. t4 = 6 * src[16] - 16 * src[48];
  242. t5 = t1 + t3;
  243. t6 = t2 + t4;
  244. t7 = t2 - t4;
  245. t8 = t1 - t3;
  246. t1 = 16 * src[ 8] + 15 * src[24] + 9 * src[40] + 4 * src[56];
  247. t2 = 15 * src[ 8] - 4 * src[24] - 16 * src[40] - 9 * src[56];
  248. t3 = 9 * src[ 8] - 16 * src[24] + 4 * src[40] + 15 * src[56];
  249. t4 = 4 * src[ 8] - 9 * src[24] + 15 * src[40] - 16 * src[56];
  250. dst[0] = (t5 + t1) >> 3;
  251. dst[1] = (t6 + t2) >> 3;
  252. dst[2] = (t7 + t3) >> 3;
  253. dst[3] = (t8 + t4) >> 3;
  254. dst[4] = (t8 - t4) >> 3;
  255. dst[5] = (t7 - t3) >> 3;
  256. dst[6] = (t6 - t2) >> 3;
  257. dst[7] = (t5 - t1) >> 3;
  258. src += 1;
  259. dst += 8;
  260. }
  261. src = temp;
  262. dst = block;
  263. for (i = 0; i < 8; i++) {
  264. t1 = 12 * (src[ 0] + src[32]) + 64;
  265. t2 = 12 * (src[ 0] - src[32]) + 64;
  266. t3 = 16 * src[16] + 6 * src[48];
  267. t4 = 6 * src[16] - 16 * src[48];
  268. t5 = t1 + t3;
  269. t6 = t2 + t4;
  270. t7 = t2 - t4;
  271. t8 = t1 - t3;
  272. t1 = 16 * src[ 8] + 15 * src[24] + 9 * src[40] + 4 * src[56];
  273. t2 = 15 * src[ 8] - 4 * src[24] - 16 * src[40] - 9 * src[56];
  274. t3 = 9 * src[ 8] - 16 * src[24] + 4 * src[40] + 15 * src[56];
  275. t4 = 4 * src[ 8] - 9 * src[24] + 15 * src[40] - 16 * src[56];
  276. dst[ 0] = (t5 + t1) >> 7;
  277. dst[ 8] = (t6 + t2) >> 7;
  278. dst[16] = (t7 + t3) >> 7;
  279. dst[24] = (t8 + t4) >> 7;
  280. dst[32] = (t8 - t4 + 1) >> 7;
  281. dst[40] = (t7 - t3 + 1) >> 7;
  282. dst[48] = (t6 - t2 + 1) >> 7;
  283. dst[56] = (t5 - t1 + 1) >> 7;
  284. src++;
  285. dst++;
  286. }
  287. }
  288. /* Do inverse transform on 8x4 part of block */
  289. static void vc1_inv_trans_8x4_dc_c(uint8_t *dest, ptrdiff_t stride, int16_t *block)
  290. {
  291. int i;
  292. int dc = block[0];
  293. dc = (3 * dc + 1) >> 1;
  294. dc = (17 * dc + 64) >> 7;
  295. for (i = 0; i < 4; i++) {
  296. dest[0] = av_clip_uint8(dest[0] + dc);
  297. dest[1] = av_clip_uint8(dest[1] + dc);
  298. dest[2] = av_clip_uint8(dest[2] + dc);
  299. dest[3] = av_clip_uint8(dest[3] + dc);
  300. dest[4] = av_clip_uint8(dest[4] + dc);
  301. dest[5] = av_clip_uint8(dest[5] + dc);
  302. dest[6] = av_clip_uint8(dest[6] + dc);
  303. dest[7] = av_clip_uint8(dest[7] + dc);
  304. dest += stride;
  305. }
  306. }
  307. static void vc1_inv_trans_8x4_c(uint8_t *dest, ptrdiff_t stride, int16_t *block)
  308. {
  309. int i;
  310. register int t1, t2, t3, t4, t5, t6, t7, t8;
  311. int16_t *src, *dst;
  312. src = block;
  313. dst = block;
  314. for (i = 0; i < 4; i++) {
  315. t1 = 12 * (src[0] + src[4]) + 4;
  316. t2 = 12 * (src[0] - src[4]) + 4;
  317. t3 = 16 * src[2] + 6 * src[6];
  318. t4 = 6 * src[2] - 16 * src[6];
  319. t5 = t1 + t3;
  320. t6 = t2 + t4;
  321. t7 = t2 - t4;
  322. t8 = t1 - t3;
  323. t1 = 16 * src[1] + 15 * src[3] + 9 * src[5] + 4 * src[7];
  324. t2 = 15 * src[1] - 4 * src[3] - 16 * src[5] - 9 * src[7];
  325. t3 = 9 * src[1] - 16 * src[3] + 4 * src[5] + 15 * src[7];
  326. t4 = 4 * src[1] - 9 * src[3] + 15 * src[5] - 16 * src[7];
  327. dst[0] = (t5 + t1) >> 3;
  328. dst[1] = (t6 + t2) >> 3;
  329. dst[2] = (t7 + t3) >> 3;
  330. dst[3] = (t8 + t4) >> 3;
  331. dst[4] = (t8 - t4) >> 3;
  332. dst[5] = (t7 - t3) >> 3;
  333. dst[6] = (t6 - t2) >> 3;
  334. dst[7] = (t5 - t1) >> 3;
  335. src += 8;
  336. dst += 8;
  337. }
  338. src = block;
  339. for (i = 0; i < 8; i++) {
  340. t1 = 17 * (src[ 0] + src[16]) + 64;
  341. t2 = 17 * (src[ 0] - src[16]) + 64;
  342. t3 = 22 * src[ 8] + 10 * src[24];
  343. t4 = 22 * src[24] - 10 * src[ 8];
  344. dest[0 * stride] = av_clip_uint8(dest[0 * stride] + ((t1 + t3) >> 7));
  345. dest[1 * stride] = av_clip_uint8(dest[1 * stride] + ((t2 - t4) >> 7));
  346. dest[2 * stride] = av_clip_uint8(dest[2 * stride] + ((t2 + t4) >> 7));
  347. dest[3 * stride] = av_clip_uint8(dest[3 * stride] + ((t1 - t3) >> 7));
  348. src++;
  349. dest++;
  350. }
  351. }
  352. /* Do inverse transform on 4x8 parts of block */
  353. static void vc1_inv_trans_4x8_dc_c(uint8_t *dest, ptrdiff_t stride, int16_t *block)
  354. {
  355. int i;
  356. int dc = block[0];
  357. dc = (17 * dc + 4) >> 3;
  358. dc = (12 * dc + 64) >> 7;
  359. for (i = 0; i < 8; i++) {
  360. dest[0] = av_clip_uint8(dest[0] + dc);
  361. dest[1] = av_clip_uint8(dest[1] + dc);
  362. dest[2] = av_clip_uint8(dest[2] + dc);
  363. dest[3] = av_clip_uint8(dest[3] + dc);
  364. dest += stride;
  365. }
  366. }
  367. static void vc1_inv_trans_4x8_c(uint8_t *dest, ptrdiff_t stride, int16_t *block)
  368. {
  369. int i;
  370. register int t1, t2, t3, t4, t5, t6, t7, t8;
  371. int16_t *src, *dst;
  372. src = block;
  373. dst = block;
  374. for (i = 0; i < 8; i++) {
  375. t1 = 17 * (src[0] + src[2]) + 4;
  376. t2 = 17 * (src[0] - src[2]) + 4;
  377. t3 = 22 * src[1] + 10 * src[3];
  378. t4 = 22 * src[3] - 10 * src[1];
  379. dst[0] = (t1 + t3) >> 3;
  380. dst[1] = (t2 - t4) >> 3;
  381. dst[2] = (t2 + t4) >> 3;
  382. dst[3] = (t1 - t3) >> 3;
  383. src += 8;
  384. dst += 8;
  385. }
  386. src = block;
  387. for (i = 0; i < 4; i++) {
  388. t1 = 12 * (src[ 0] + src[32]) + 64;
  389. t2 = 12 * (src[ 0] - src[32]) + 64;
  390. t3 = 16 * src[16] + 6 * src[48];
  391. t4 = 6 * src[16] - 16 * src[48];
  392. t5 = t1 + t3;
  393. t6 = t2 + t4;
  394. t7 = t2 - t4;
  395. t8 = t1 - t3;
  396. t1 = 16 * src[ 8] + 15 * src[24] + 9 * src[40] + 4 * src[56];
  397. t2 = 15 * src[ 8] - 4 * src[24] - 16 * src[40] - 9 * src[56];
  398. t3 = 9 * src[ 8] - 16 * src[24] + 4 * src[40] + 15 * src[56];
  399. t4 = 4 * src[ 8] - 9 * src[24] + 15 * src[40] - 16 * src[56];
  400. dest[0 * stride] = av_clip_uint8(dest[0 * stride] + ((t5 + t1) >> 7));
  401. dest[1 * stride] = av_clip_uint8(dest[1 * stride] + ((t6 + t2) >> 7));
  402. dest[2 * stride] = av_clip_uint8(dest[2 * stride] + ((t7 + t3) >> 7));
  403. dest[3 * stride] = av_clip_uint8(dest[3 * stride] + ((t8 + t4) >> 7));
  404. dest[4 * stride] = av_clip_uint8(dest[4 * stride] + ((t8 - t4 + 1) >> 7));
  405. dest[5 * stride] = av_clip_uint8(dest[5 * stride] + ((t7 - t3 + 1) >> 7));
  406. dest[6 * stride] = av_clip_uint8(dest[6 * stride] + ((t6 - t2 + 1) >> 7));
  407. dest[7 * stride] = av_clip_uint8(dest[7 * stride] + ((t5 - t1 + 1) >> 7));
  408. src++;
  409. dest++;
  410. }
  411. }
  412. /* Do inverse transform on 4x4 part of block */
  413. static void vc1_inv_trans_4x4_dc_c(uint8_t *dest, ptrdiff_t stride, int16_t *block)
  414. {
  415. int i;
  416. int dc = block[0];
  417. dc = (17 * dc + 4) >> 3;
  418. dc = (17 * dc + 64) >> 7;
  419. for (i = 0; i < 4; i++) {
  420. dest[0] = av_clip_uint8(dest[0] + dc);
  421. dest[1] = av_clip_uint8(dest[1] + dc);
  422. dest[2] = av_clip_uint8(dest[2] + dc);
  423. dest[3] = av_clip_uint8(dest[3] + dc);
  424. dest += stride;
  425. }
  426. }
  427. static void vc1_inv_trans_4x4_c(uint8_t *dest, ptrdiff_t stride, int16_t *block)
  428. {
  429. int i;
  430. register int t1, t2, t3, t4;
  431. int16_t *src, *dst;
  432. src = block;
  433. dst = block;
  434. for (i = 0; i < 4; i++) {
  435. t1 = 17 * (src[0] + src[2]) + 4;
  436. t2 = 17 * (src[0] - src[2]) + 4;
  437. t3 = 22 * src[1] + 10 * src[3];
  438. t4 = 22 * src[3] - 10 * src[1];
  439. dst[0] = (t1 + t3) >> 3;
  440. dst[1] = (t2 - t4) >> 3;
  441. dst[2] = (t2 + t4) >> 3;
  442. dst[3] = (t1 - t3) >> 3;
  443. src += 8;
  444. dst += 8;
  445. }
  446. src = block;
  447. for (i = 0; i < 4; i++) {
  448. t1 = 17 * (src[0] + src[16]) + 64;
  449. t2 = 17 * (src[0] - src[16]) + 64;
  450. t3 = 22 * src[8] + 10 * src[24];
  451. t4 = 22 * src[24] - 10 * src[8];
  452. dest[0 * stride] = av_clip_uint8(dest[0 * stride] + ((t1 + t3) >> 7));
  453. dest[1 * stride] = av_clip_uint8(dest[1 * stride] + ((t2 - t4) >> 7));
  454. dest[2 * stride] = av_clip_uint8(dest[2 * stride] + ((t2 + t4) >> 7));
  455. dest[3 * stride] = av_clip_uint8(dest[3 * stride] + ((t1 - t3) >> 7));
  456. src++;
  457. dest++;
  458. }
  459. }
  460. /* motion compensation functions */
  461. /* Filter in case of 2 filters */
  462. #define VC1_MSPEL_FILTER_16B(DIR, TYPE) \
  463. static av_always_inline int vc1_mspel_ ## DIR ## _filter_16bits(const TYPE *src, \
  464. int stride, \
  465. int mode) \
  466. { \
  467. switch(mode) { \
  468. case 0: /* no shift - should not occur */ \
  469. return 0; \
  470. case 1: /* 1/4 shift */ \
  471. return -4 * src[-stride] + 53 * src[0] + \
  472. 18 * src[stride] - 3 * src[stride * 2]; \
  473. case 2: /* 1/2 shift */ \
  474. return -1 * src[-stride] + 9 * src[0] + \
  475. 9 * src[stride] - 1 * src[stride * 2]; \
  476. case 3: /* 3/4 shift */ \
  477. return -3 * src[-stride] + 18 * src[0] + \
  478. 53 * src[stride] - 4 * src[stride * 2]; \
  479. } \
  480. return 0; /* should not occur */ \
  481. }
  482. VC1_MSPEL_FILTER_16B(ver, uint8_t)
  483. VC1_MSPEL_FILTER_16B(hor, int16_t)
  484. /* Filter used to interpolate fractional pel values */
  485. static av_always_inline int vc1_mspel_filter(const uint8_t *src, int stride,
  486. int mode, int r)
  487. {
  488. switch (mode) {
  489. case 0: // no shift
  490. return src[0];
  491. case 1: // 1/4 shift
  492. return (-4 * src[-stride] + 53 * src[0] +
  493. 18 * src[stride] - 3 * src[stride * 2] + 32 - r) >> 6;
  494. case 2: // 1/2 shift
  495. return (-1 * src[-stride] + 9 * src[0] +
  496. 9 * src[stride] - 1 * src[stride * 2] + 8 - r) >> 4;
  497. case 3: // 3/4 shift
  498. return (-3 * src[-stride] + 18 * src[0] +
  499. 53 * src[stride] - 4 * src[stride * 2] + 32 - r) >> 6;
  500. }
  501. return 0; // should not occur
  502. }
  503. /* Function used to do motion compensation with bicubic interpolation */
  504. #define VC1_MSPEL_MC(OP, OPNAME) \
  505. static av_always_inline void OPNAME ## vc1_mspel_mc(uint8_t *dst, \
  506. const uint8_t *src, \
  507. int stride, \
  508. int hmode, \
  509. int vmode, \
  510. int rnd) \
  511. { \
  512. int i, j; \
  513. \
  514. if (vmode) { /* Horizontal filter to apply */ \
  515. int r; \
  516. \
  517. if (hmode) { /* Vertical filter to apply, output to tmp */ \
  518. static const int shift_value[] = { 0, 5, 1, 5 }; \
  519. int shift = (shift_value[hmode] + shift_value[vmode]) >> 1; \
  520. int16_t tmp[11 * 8], *tptr = tmp; \
  521. \
  522. r = (1 << (shift - 1)) + rnd - 1; \
  523. \
  524. src -= 1; \
  525. for (j = 0; j < 8; j++) { \
  526. for (i = 0; i < 11; i++) \
  527. tptr[i] = (vc1_mspel_ver_filter_16bits(src + i, stride, vmode) + r) >> shift; \
  528. src += stride; \
  529. tptr += 11; \
  530. } \
  531. \
  532. r = 64 - rnd; \
  533. tptr = tmp + 1; \
  534. for (j = 0; j < 8; j++) { \
  535. for (i = 0; i < 8; i++) \
  536. OP(dst[i], (vc1_mspel_hor_filter_16bits(tptr + i, 1, hmode) + r) >> 7); \
  537. dst += stride; \
  538. tptr += 11; \
  539. } \
  540. \
  541. return; \
  542. } else { /* No horizontal filter, output 8 lines to dst */ \
  543. r = 1 - rnd; \
  544. \
  545. for (j = 0; j < 8; j++) { \
  546. for (i = 0; i < 8; i++) \
  547. OP(dst[i], vc1_mspel_filter(src + i, stride, vmode, r)); \
  548. src += stride; \
  549. dst += stride; \
  550. } \
  551. return; \
  552. } \
  553. } \
  554. \
  555. /* Horizontal mode with no vertical mode */ \
  556. for (j = 0; j < 8; j++) { \
  557. for (i = 0; i < 8; i++) \
  558. OP(dst[i], vc1_mspel_filter(src + i, 1, hmode, rnd)); \
  559. dst += stride; \
  560. src += stride; \
  561. } \
  562. }
  563. #define op_put(a, b) a = av_clip_uint8(b)
  564. #define op_avg(a, b) a = (a + av_clip_uint8(b) + 1) >> 1
  565. VC1_MSPEL_MC(op_put, put_)
  566. VC1_MSPEL_MC(op_avg, avg_)
  567. /* pixel functions - really are entry points to vc1_mspel_mc */
  568. #define PUT_VC1_MSPEL(a, b) \
  569. static void put_vc1_mspel_mc ## a ## b ## _c(uint8_t *dst, \
  570. const uint8_t *src, \
  571. ptrdiff_t stride, int rnd) \
  572. { \
  573. put_vc1_mspel_mc(dst, src, stride, a, b, rnd); \
  574. } \
  575. static void avg_vc1_mspel_mc ## a ## b ## _c(uint8_t *dst, \
  576. const uint8_t *src, \
  577. ptrdiff_t stride, int rnd) \
  578. { \
  579. avg_vc1_mspel_mc(dst, src, stride, a, b, rnd); \
  580. }
  581. PUT_VC1_MSPEL(1, 0)
  582. PUT_VC1_MSPEL(2, 0)
  583. PUT_VC1_MSPEL(3, 0)
  584. PUT_VC1_MSPEL(0, 1)
  585. PUT_VC1_MSPEL(1, 1)
  586. PUT_VC1_MSPEL(2, 1)
  587. PUT_VC1_MSPEL(3, 1)
  588. PUT_VC1_MSPEL(0, 2)
  589. PUT_VC1_MSPEL(1, 2)
  590. PUT_VC1_MSPEL(2, 2)
  591. PUT_VC1_MSPEL(3, 2)
  592. PUT_VC1_MSPEL(0, 3)
  593. PUT_VC1_MSPEL(1, 3)
  594. PUT_VC1_MSPEL(2, 3)
  595. PUT_VC1_MSPEL(3, 3)
  596. static void put_vc1_mspel_mc00_c(uint8_t *dst, const uint8_t *src,
  597. ptrdiff_t stride, int rnd)
  598. {
  599. ff_put_pixels8x8_c(dst, src, stride);
  600. }
  601. static void avg_vc1_mspel_mc00_c(uint8_t *dst, const uint8_t *src,
  602. ptrdiff_t stride, int rnd)
  603. {
  604. ff_avg_pixels8x8_c(dst, src, stride);
  605. }
  606. #define chroma_mc(a) \
  607. ((A * src[a] + B * src[a + 1] + \
  608. C * src[stride + a] + D * src[stride + a + 1] + 32 - 4) >> 6)
  609. static void put_no_rnd_vc1_chroma_mc8_c(uint8_t *dst /* align 8 */,
  610. uint8_t *src /* align 1 */,
  611. ptrdiff_t stride, int h, int x, int y)
  612. {
  613. const int A = (8 - x) * (8 - y);
  614. const int B = (x) * (8 - y);
  615. const int C = (8 - x) * (y);
  616. const int D = (x) * (y);
  617. int i;
  618. assert(x < 8 && y < 8 && x >= 0 && y >= 0);
  619. for (i = 0; i < h; i++) {
  620. dst[0] = chroma_mc(0);
  621. dst[1] = chroma_mc(1);
  622. dst[2] = chroma_mc(2);
  623. dst[3] = chroma_mc(3);
  624. dst[4] = chroma_mc(4);
  625. dst[5] = chroma_mc(5);
  626. dst[6] = chroma_mc(6);
  627. dst[7] = chroma_mc(7);
  628. dst += stride;
  629. src += stride;
  630. }
  631. }
  632. static void put_no_rnd_vc1_chroma_mc4_c(uint8_t *dst, uint8_t *src,
  633. ptrdiff_t stride, int h, int x, int y)
  634. {
  635. const int A = (8 - x) * (8 - y);
  636. const int B = (x) * (8 - y);
  637. const int C = (8 - x) * (y);
  638. const int D = (x) * (y);
  639. int i;
  640. assert(x < 8 && y < 8 && x >= 0 && y >= 0);
  641. for (i = 0; i < h; i++) {
  642. dst[0] = chroma_mc(0);
  643. dst[1] = chroma_mc(1);
  644. dst[2] = chroma_mc(2);
  645. dst[3] = chroma_mc(3);
  646. dst += stride;
  647. src += stride;
  648. }
  649. }
  650. #define avg2(a, b) (((a) + (b) + 1) >> 1)
  651. static void avg_no_rnd_vc1_chroma_mc8_c(uint8_t *dst /* align 8 */,
  652. uint8_t *src /* align 1 */,
  653. ptrdiff_t stride, int h, int x, int y)
  654. {
  655. const int A = (8 - x) * (8 - y);
  656. const int B = (x) * (8 - y);
  657. const int C = (8 - x) * (y);
  658. const int D = (x) * (y);
  659. int i;
  660. assert(x < 8 && y < 8 && x >= 0 && y >= 0);
  661. for (i = 0; i < h; i++) {
  662. dst[0] = avg2(dst[0], chroma_mc(0));
  663. dst[1] = avg2(dst[1], chroma_mc(1));
  664. dst[2] = avg2(dst[2], chroma_mc(2));
  665. dst[3] = avg2(dst[3], chroma_mc(3));
  666. dst[4] = avg2(dst[4], chroma_mc(4));
  667. dst[5] = avg2(dst[5], chroma_mc(5));
  668. dst[6] = avg2(dst[6], chroma_mc(6));
  669. dst[7] = avg2(dst[7], chroma_mc(7));
  670. dst += stride;
  671. src += stride;
  672. }
  673. }
  674. static void avg_no_rnd_vc1_chroma_mc4_c(uint8_t *dst /* align 8 */,
  675. uint8_t *src /* align 1 */,
  676. ptrdiff_t stride, int h, int x, int y)
  677. {
  678. const int A = (8 - x) * (8 - y);
  679. const int B = ( x) * (8 - y);
  680. const int C = (8 - x) * ( y);
  681. const int D = ( x) * ( y);
  682. int i;
  683. assert(x < 8 && y < 8 && x >= 0 && y >= 0);
  684. for (i = 0; i < h; i++) {
  685. dst[0] = avg2(dst[0], chroma_mc(0));
  686. dst[1] = avg2(dst[1], chroma_mc(1));
  687. dst[2] = avg2(dst[2], chroma_mc(2));
  688. dst[3] = avg2(dst[3], chroma_mc(3));
  689. dst += stride;
  690. src += stride;
  691. }
  692. }
  693. #if CONFIG_WMV3IMAGE_DECODER || CONFIG_VC1IMAGE_DECODER
  694. static void sprite_h_c(uint8_t *dst, const uint8_t *src, int offset,
  695. int advance, int count)
  696. {
  697. while (count--) {
  698. int a = src[(offset >> 16)];
  699. int b = src[(offset >> 16) + 1];
  700. *dst++ = a + ((b - a) * (offset & 0xFFFF) >> 16);
  701. offset += advance;
  702. }
  703. }
  704. static av_always_inline void sprite_v_template(uint8_t *dst,
  705. const uint8_t *src1a,
  706. const uint8_t *src1b,
  707. int offset1,
  708. int two_sprites,
  709. const uint8_t *src2a,
  710. const uint8_t *src2b,
  711. int offset2,
  712. int alpha, int scaled,
  713. int width)
  714. {
  715. int a1, b1, a2, b2;
  716. while (width--) {
  717. a1 = *src1a++;
  718. if (scaled) {
  719. b1 = *src1b++;
  720. a1 = a1 + ((b1 - a1) * offset1 >> 16);
  721. }
  722. if (two_sprites) {
  723. a2 = *src2a++;
  724. if (scaled > 1) {
  725. b2 = *src2b++;
  726. a2 = a2 + ((b2 - a2) * offset2 >> 16);
  727. }
  728. a1 = a1 + ((a2 - a1) * alpha >> 16);
  729. }
  730. *dst++ = a1;
  731. }
  732. }
  733. static void sprite_v_single_c(uint8_t *dst, const uint8_t *src1a,
  734. const uint8_t *src1b,
  735. int offset, int width)
  736. {
  737. sprite_v_template(dst, src1a, src1b, offset, 0, NULL, NULL, 0, 0, 1, width);
  738. }
  739. static void sprite_v_double_noscale_c(uint8_t *dst, const uint8_t *src1a,
  740. const uint8_t *src2a,
  741. int alpha, int width)
  742. {
  743. sprite_v_template(dst, src1a, NULL, 0, 1, src2a, NULL, 0, alpha, 0, width);
  744. }
  745. static void sprite_v_double_onescale_c(uint8_t *dst,
  746. const uint8_t *src1a,
  747. const uint8_t *src1b,
  748. int offset1,
  749. const uint8_t *src2a,
  750. int alpha, int width)
  751. {
  752. sprite_v_template(dst, src1a, src1b, offset1, 1, src2a, NULL, 0, alpha, 1,
  753. width);
  754. }
  755. static void sprite_v_double_twoscale_c(uint8_t *dst,
  756. const uint8_t *src1a,
  757. const uint8_t *src1b,
  758. int offset1,
  759. const uint8_t *src2a,
  760. const uint8_t *src2b,
  761. int offset2,
  762. int alpha,
  763. int width)
  764. {
  765. sprite_v_template(dst, src1a, src1b, offset1, 1, src2a, src2b, offset2,
  766. alpha, 2, width);
  767. }
  768. #endif /* CONFIG_WMV3IMAGE_DECODER || CONFIG_VC1IMAGE_DECODER */
  769. av_cold void ff_vc1dsp_init(VC1DSPContext *dsp)
  770. {
  771. dsp->vc1_inv_trans_8x8 = vc1_inv_trans_8x8_c;
  772. dsp->vc1_inv_trans_4x8 = vc1_inv_trans_4x8_c;
  773. dsp->vc1_inv_trans_8x4 = vc1_inv_trans_8x4_c;
  774. dsp->vc1_inv_trans_4x4 = vc1_inv_trans_4x4_c;
  775. dsp->vc1_inv_trans_8x8_dc = vc1_inv_trans_8x8_dc_c;
  776. dsp->vc1_inv_trans_4x8_dc = vc1_inv_trans_4x8_dc_c;
  777. dsp->vc1_inv_trans_8x4_dc = vc1_inv_trans_8x4_dc_c;
  778. dsp->vc1_inv_trans_4x4_dc = vc1_inv_trans_4x4_dc_c;
  779. dsp->vc1_h_overlap = vc1_h_overlap_c;
  780. dsp->vc1_v_overlap = vc1_v_overlap_c;
  781. dsp->vc1_h_s_overlap = vc1_h_s_overlap_c;
  782. dsp->vc1_v_s_overlap = vc1_v_s_overlap_c;
  783. dsp->vc1_v_loop_filter4 = vc1_v_loop_filter4_c;
  784. dsp->vc1_h_loop_filter4 = vc1_h_loop_filter4_c;
  785. dsp->vc1_v_loop_filter8 = vc1_v_loop_filter8_c;
  786. dsp->vc1_h_loop_filter8 = vc1_h_loop_filter8_c;
  787. dsp->vc1_v_loop_filter16 = vc1_v_loop_filter16_c;
  788. dsp->vc1_h_loop_filter16 = vc1_h_loop_filter16_c;
  789. dsp->put_vc1_mspel_pixels_tab[0] = put_vc1_mspel_mc00_c;
  790. dsp->put_vc1_mspel_pixels_tab[1] = put_vc1_mspel_mc10_c;
  791. dsp->put_vc1_mspel_pixels_tab[2] = put_vc1_mspel_mc20_c;
  792. dsp->put_vc1_mspel_pixels_tab[3] = put_vc1_mspel_mc30_c;
  793. dsp->put_vc1_mspel_pixels_tab[4] = put_vc1_mspel_mc01_c;
  794. dsp->put_vc1_mspel_pixels_tab[5] = put_vc1_mspel_mc11_c;
  795. dsp->put_vc1_mspel_pixels_tab[6] = put_vc1_mspel_mc21_c;
  796. dsp->put_vc1_mspel_pixels_tab[7] = put_vc1_mspel_mc31_c;
  797. dsp->put_vc1_mspel_pixels_tab[8] = put_vc1_mspel_mc02_c;
  798. dsp->put_vc1_mspel_pixels_tab[9] = put_vc1_mspel_mc12_c;
  799. dsp->put_vc1_mspel_pixels_tab[10] = put_vc1_mspel_mc22_c;
  800. dsp->put_vc1_mspel_pixels_tab[11] = put_vc1_mspel_mc32_c;
  801. dsp->put_vc1_mspel_pixels_tab[12] = put_vc1_mspel_mc03_c;
  802. dsp->put_vc1_mspel_pixels_tab[13] = put_vc1_mspel_mc13_c;
  803. dsp->put_vc1_mspel_pixels_tab[14] = put_vc1_mspel_mc23_c;
  804. dsp->put_vc1_mspel_pixels_tab[15] = put_vc1_mspel_mc33_c;
  805. dsp->avg_vc1_mspel_pixels_tab[0] = avg_vc1_mspel_mc00_c;
  806. dsp->avg_vc1_mspel_pixels_tab[1] = avg_vc1_mspel_mc10_c;
  807. dsp->avg_vc1_mspel_pixels_tab[2] = avg_vc1_mspel_mc20_c;
  808. dsp->avg_vc1_mspel_pixels_tab[3] = avg_vc1_mspel_mc30_c;
  809. dsp->avg_vc1_mspel_pixels_tab[4] = avg_vc1_mspel_mc01_c;
  810. dsp->avg_vc1_mspel_pixels_tab[5] = avg_vc1_mspel_mc11_c;
  811. dsp->avg_vc1_mspel_pixels_tab[6] = avg_vc1_mspel_mc21_c;
  812. dsp->avg_vc1_mspel_pixels_tab[7] = avg_vc1_mspel_mc31_c;
  813. dsp->avg_vc1_mspel_pixels_tab[8] = avg_vc1_mspel_mc02_c;
  814. dsp->avg_vc1_mspel_pixels_tab[9] = avg_vc1_mspel_mc12_c;
  815. dsp->avg_vc1_mspel_pixels_tab[10] = avg_vc1_mspel_mc22_c;
  816. dsp->avg_vc1_mspel_pixels_tab[11] = avg_vc1_mspel_mc32_c;
  817. dsp->avg_vc1_mspel_pixels_tab[12] = avg_vc1_mspel_mc03_c;
  818. dsp->avg_vc1_mspel_pixels_tab[13] = avg_vc1_mspel_mc13_c;
  819. dsp->avg_vc1_mspel_pixels_tab[14] = avg_vc1_mspel_mc23_c;
  820. dsp->avg_vc1_mspel_pixels_tab[15] = avg_vc1_mspel_mc33_c;
  821. dsp->put_no_rnd_vc1_chroma_pixels_tab[0] = put_no_rnd_vc1_chroma_mc8_c;
  822. dsp->avg_no_rnd_vc1_chroma_pixels_tab[0] = avg_no_rnd_vc1_chroma_mc8_c;
  823. dsp->put_no_rnd_vc1_chroma_pixels_tab[1] = put_no_rnd_vc1_chroma_mc4_c;
  824. dsp->avg_no_rnd_vc1_chroma_pixels_tab[1] = avg_no_rnd_vc1_chroma_mc4_c;
  825. #if CONFIG_WMV3IMAGE_DECODER || CONFIG_VC1IMAGE_DECODER
  826. dsp->sprite_h = sprite_h_c;
  827. dsp->sprite_v_single = sprite_v_single_c;
  828. dsp->sprite_v_double_noscale = sprite_v_double_noscale_c;
  829. dsp->sprite_v_double_onescale = sprite_v_double_onescale_c;
  830. dsp->sprite_v_double_twoscale = sprite_v_double_twoscale_c;
  831. #endif /* CONFIG_WMV3IMAGE_DECODER || CONFIG_VC1IMAGE_DECODER */
  832. dsp->startcode_find_candidate = ff_startcode_find_candidate_c;
  833. if (ARCH_AARCH64)
  834. ff_vc1dsp_init_aarch64(dsp);
  835. if (ARCH_ARM)
  836. ff_vc1dsp_init_arm(dsp);
  837. if (ARCH_PPC)
  838. ff_vc1dsp_init_ppc(dsp);
  839. if (ARCH_X86)
  840. ff_vc1dsp_init_x86(dsp);
  841. }