|
- /*
- * TwinVQ decoder
- * Copyright (c) 2009 Vitor Sessak
- *
- * This file is part of Libav.
- *
- * Libav is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * Libav is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with Libav; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- */
-
- #include <math.h>
- #include <stdint.h>
-
- #include "libavutil/channel_layout.h"
- #include "libavutil/float_dsp.h"
- #include "avcodec.h"
- #include "fft.h"
- #include "internal.h"
- #include "lsp.h"
- #include "sinewin.h"
- #include "twinvq.h"
-
- /**
- * Evaluate a single LPC amplitude spectrum envelope coefficient from the line
- * spectrum pairs.
- *
- * @param lsp a vector of the cosine of the LSP values
- * @param cos_val cos(PI*i/N) where i is the index of the LPC amplitude
- * @param order the order of the LSP (and the size of the *lsp buffer). Must
- * be a multiple of four.
- * @return the LPC value
- *
- * @todo reuse code from Vorbis decoder: vorbis_floor0_decode
- */
- static float eval_lpc_spectrum(const float *lsp, float cos_val, int order)
- {
- int j;
- float p = 0.5f;
- float q = 0.5f;
- float two_cos_w = 2.0f * cos_val;
-
- for (j = 0; j + 1 < order; j += 2 * 2) {
- // Unroll the loop once since order is a multiple of four
- q *= lsp[j] - two_cos_w;
- p *= lsp[j + 1] - two_cos_w;
-
- q *= lsp[j + 2] - two_cos_w;
- p *= lsp[j + 3] - two_cos_w;
- }
-
- p *= p * (2.0f - two_cos_w);
- q *= q * (2.0f + two_cos_w);
-
- return 0.5 / (p + q);
- }
-
- /**
- * Evaluate the LPC amplitude spectrum envelope from the line spectrum pairs.
- */
- static void eval_lpcenv(TwinVQContext *tctx, const float *cos_vals, float *lpc)
- {
- int i;
- const TwinVQModeTab *mtab = tctx->mtab;
- int size_s = mtab->size / mtab->fmode[TWINVQ_FT_SHORT].sub;
-
- for (i = 0; i < size_s / 2; i++) {
- float cos_i = tctx->cos_tabs[0][i];
- lpc[i] = eval_lpc_spectrum(cos_vals, cos_i, mtab->n_lsp);
- lpc[size_s - i - 1] = eval_lpc_spectrum(cos_vals, -cos_i, mtab->n_lsp);
- }
- }
-
- static void interpolate(float *out, float v1, float v2, int size)
- {
- int i;
- float step = (v1 - v2) / (size + 1);
-
- for (i = 0; i < size; i++) {
- v2 += step;
- out[i] = v2;
- }
- }
-
- static inline float get_cos(int idx, int part, const float *cos_tab, int size)
- {
- return part ? -cos_tab[size - idx - 1]
- : cos_tab[idx];
- }
-
- /**
- * Evaluate the LPC amplitude spectrum envelope from the line spectrum pairs.
- * Probably for speed reasons, the coefficients are evaluated as
- * siiiibiiiisiiiibiiiisiiiibiiiisiiiibiiiis ...
- * where s is an evaluated value, i is a value interpolated from the others
- * and b might be either calculated or interpolated, depending on an
- * unexplained condition.
- *
- * @param step the size of a block "siiiibiiii"
- * @param in the cosine of the LSP data
- * @param part is 0 for 0...PI (positive cosine values) and 1 for PI...2PI
- * (negative cosine values)
- * @param size the size of the whole output
- */
- static inline void eval_lpcenv_or_interp(TwinVQContext *tctx,
- enum TwinVQFrameType ftype,
- float *out, const float *in,
- int size, int step, int part)
- {
- int i;
- const TwinVQModeTab *mtab = tctx->mtab;
- const float *cos_tab = tctx->cos_tabs[ftype];
-
- // Fill the 's'
- for (i = 0; i < size; i += step)
- out[i] =
- eval_lpc_spectrum(in,
- get_cos(i, part, cos_tab, size),
- mtab->n_lsp);
-
- // Fill the 'iiiibiiii'
- for (i = step; i <= size - 2 * step; i += step) {
- if (out[i + step] + out[i - step] > 1.95 * out[i] ||
- out[i + step] >= out[i - step]) {
- interpolate(out + i - step + 1, out[i], out[i - step], step - 1);
- } else {
- out[i - step / 2] =
- eval_lpc_spectrum(in,
- get_cos(i - step / 2, part, cos_tab, size),
- mtab->n_lsp);
- interpolate(out + i - step + 1, out[i - step / 2],
- out[i - step], step / 2 - 1);
- interpolate(out + i - step / 2 + 1, out[i],
- out[i - step / 2], step / 2 - 1);
- }
- }
-
- interpolate(out + size - 2 * step + 1, out[size - step],
- out[size - 2 * step], step - 1);
- }
-
- static void eval_lpcenv_2parts(TwinVQContext *tctx, enum TwinVQFrameType ftype,
- const float *buf, float *lpc,
- int size, int step)
- {
- eval_lpcenv_or_interp(tctx, ftype, lpc, buf, size / 2, step, 0);
- eval_lpcenv_or_interp(tctx, ftype, lpc + size / 2, buf, size / 2,
- 2 * step, 1);
-
- interpolate(lpc + size / 2 - step + 1, lpc[size / 2],
- lpc[size / 2 - step], step);
-
- twinvq_memset_float(lpc + size - 2 * step + 1, lpc[size - 2 * step],
- 2 * step - 1);
- }
-
- /**
- * Inverse quantization. Read CB coefficients for cb1 and cb2 from the
- * bitstream, sum the corresponding vectors and write the result to *out
- * after permutation.
- */
- static void dequant(TwinVQContext *tctx, const uint8_t *cb_bits, float *out,
- enum TwinVQFrameType ftype,
- const int16_t *cb0, const int16_t *cb1, int cb_len)
- {
- int pos = 0;
- int i, j;
-
- for (i = 0; i < tctx->n_div[ftype]; i++) {
- int tmp0, tmp1;
- int sign0 = 1;
- int sign1 = 1;
- const int16_t *tab0, *tab1;
- int length = tctx->length[ftype][i >= tctx->length_change[ftype]];
- int bitstream_second_part = (i >= tctx->bits_main_spec_change[ftype]);
-
- int bits = tctx->bits_main_spec[0][ftype][bitstream_second_part];
- tmp0 = *cb_bits++;
- if (bits == 7) {
- if (tmp0 & 0x40)
- sign0 = -1;
- tmp0 &= 0x3F;
- }
-
- bits = tctx->bits_main_spec[1][ftype][bitstream_second_part];
- tmp1 = *cb_bits++;
- if (bits == 7) {
- if (tmp1 & 0x40)
- sign1 = -1;
- tmp1 &= 0x3F;
- }
-
- tab0 = cb0 + tmp0 * cb_len;
- tab1 = cb1 + tmp1 * cb_len;
-
- for (j = 0; j < length; j++)
- out[tctx->permut[ftype][pos + j]] = sign0 * tab0[j] +
- sign1 * tab1[j];
-
- pos += length;
- }
- }
-
- static void dec_gain(TwinVQContext *tctx,
- enum TwinVQFrameType ftype, float *out)
- {
- const TwinVQModeTab *mtab = tctx->mtab;
- const TwinVQFrameData *bits = &tctx->bits[tctx->cur_frame];
- int i, j;
- int sub = mtab->fmode[ftype].sub;
- float step = TWINVQ_AMP_MAX / ((1 << TWINVQ_GAIN_BITS) - 1);
- float sub_step = TWINVQ_SUB_AMP_MAX / ((1 << TWINVQ_SUB_GAIN_BITS) - 1);
-
- if (ftype == TWINVQ_FT_LONG) {
- for (i = 0; i < tctx->avctx->channels; i++)
- out[i] = (1.0 / (1 << 13)) *
- twinvq_mulawinv(step * 0.5 + step * bits->gain_bits[i],
- TWINVQ_AMP_MAX, TWINVQ_MULAW_MU);
- } else {
- for (i = 0; i < tctx->avctx->channels; i++) {
- float val = (1.0 / (1 << 23)) *
- twinvq_mulawinv(step * 0.5 + step * bits->gain_bits[i],
- TWINVQ_AMP_MAX, TWINVQ_MULAW_MU);
-
- for (j = 0; j < sub; j++)
- out[i * sub + j] =
- val * twinvq_mulawinv(sub_step * 0.5 +
- sub_step * bits->sub_gain_bits[i * sub + j],
- TWINVQ_SUB_AMP_MAX, TWINVQ_MULAW_MU);
- }
- }
- }
-
- /**
- * Rearrange the LSP coefficients so that they have a minimum distance of
- * min_dist. This function does it exactly as described in section of 3.2.4
- * of the G.729 specification (but interestingly is different from what the
- * reference decoder actually does).
- */
- static void rearrange_lsp(int order, float *lsp, float min_dist)
- {
- int i;
- float min_dist2 = min_dist * 0.5;
- for (i = 1; i < order; i++)
- if (lsp[i] - lsp[i - 1] < min_dist) {
- float avg = (lsp[i] + lsp[i - 1]) * 0.5;
-
- lsp[i - 1] = avg - min_dist2;
- lsp[i] = avg + min_dist2;
- }
- }
-
- static void decode_lsp(TwinVQContext *tctx, int lpc_idx1, uint8_t *lpc_idx2,
- int lpc_hist_idx, float *lsp, float *hist)
- {
- const TwinVQModeTab *mtab = tctx->mtab;
- int i, j;
-
- const float *cb = mtab->lspcodebook;
- const float *cb2 = cb + (1 << mtab->lsp_bit1) * mtab->n_lsp;
- const float *cb3 = cb2 + (1 << mtab->lsp_bit2) * mtab->n_lsp;
-
- const int8_t funny_rounding[4] = {
- -2,
- mtab->lsp_split == 4 ? -2 : 1,
- mtab->lsp_split == 4 ? -2 : 1,
- 0
- };
-
- j = 0;
- for (i = 0; i < mtab->lsp_split; i++) {
- int chunk_end = ((i + 1) * mtab->n_lsp + funny_rounding[i]) /
- mtab->lsp_split;
- for (; j < chunk_end; j++)
- lsp[j] = cb[lpc_idx1 * mtab->n_lsp + j] +
- cb2[lpc_idx2[i] * mtab->n_lsp + j];
- }
-
- rearrange_lsp(mtab->n_lsp, lsp, 0.0001);
-
- for (i = 0; i < mtab->n_lsp; i++) {
- float tmp1 = 1.0 - cb3[lpc_hist_idx * mtab->n_lsp + i];
- float tmp2 = hist[i] * cb3[lpc_hist_idx * mtab->n_lsp + i];
- hist[i] = lsp[i];
- lsp[i] = lsp[i] * tmp1 + tmp2;
- }
-
- rearrange_lsp(mtab->n_lsp, lsp, 0.0001);
- rearrange_lsp(mtab->n_lsp, lsp, 0.000095);
- ff_sort_nearly_sorted_floats(lsp, mtab->n_lsp);
- }
-
- static void dec_lpc_spectrum_inv(TwinVQContext *tctx, float *lsp,
- enum TwinVQFrameType ftype, float *lpc)
- {
- int i;
- int size = tctx->mtab->size / tctx->mtab->fmode[ftype].sub;
-
- for (i = 0; i < tctx->mtab->n_lsp; i++)
- lsp[i] = 2 * cos(lsp[i]);
-
- switch (ftype) {
- case TWINVQ_FT_LONG:
- eval_lpcenv_2parts(tctx, ftype, lsp, lpc, size, 8);
- break;
- case TWINVQ_FT_MEDIUM:
- eval_lpcenv_2parts(tctx, ftype, lsp, lpc, size, 2);
- break;
- case TWINVQ_FT_SHORT:
- eval_lpcenv(tctx, lsp, lpc);
- break;
- }
- }
-
- static const uint8_t wtype_to_wsize[] = { 0, 0, 2, 2, 2, 1, 0, 1, 1 };
-
- static void imdct_and_window(TwinVQContext *tctx, enum TwinVQFrameType ftype,
- int wtype, float *in, float *prev, int ch)
- {
- FFTContext *mdct = &tctx->mdct_ctx[ftype];
- const TwinVQModeTab *mtab = tctx->mtab;
- int bsize = mtab->size / mtab->fmode[ftype].sub;
- int size = mtab->size;
- float *buf1 = tctx->tmp_buf;
- int j, first_wsize, wsize; // Window size
- float *out = tctx->curr_frame + 2 * ch * mtab->size;
- float *out2 = out;
- float *prev_buf;
- int types_sizes[] = {
- mtab->size / mtab->fmode[TWINVQ_FT_LONG].sub,
- mtab->size / mtab->fmode[TWINVQ_FT_MEDIUM].sub,
- mtab->size / (mtab->fmode[TWINVQ_FT_SHORT].sub * 2),
- };
-
- wsize = types_sizes[wtype_to_wsize[wtype]];
- first_wsize = wsize;
- prev_buf = prev + (size - bsize) / 2;
-
- for (j = 0; j < mtab->fmode[ftype].sub; j++) {
- int sub_wtype = ftype == TWINVQ_FT_MEDIUM ? 8 : wtype;
-
- if (!j && wtype == 4)
- sub_wtype = 4;
- else if (j == mtab->fmode[ftype].sub - 1 && wtype == 7)
- sub_wtype = 7;
-
- wsize = types_sizes[wtype_to_wsize[sub_wtype]];
-
- mdct->imdct_half(mdct, buf1 + bsize * j, in + bsize * j);
-
- tctx->fdsp.vector_fmul_window(out2, prev_buf + (bsize - wsize) / 2,
- buf1 + bsize * j,
- ff_sine_windows[av_log2(wsize)],
- wsize / 2);
- out2 += wsize;
-
- memcpy(out2, buf1 + bsize * j + wsize / 2,
- (bsize - wsize / 2) * sizeof(float));
-
- out2 += ftype == TWINVQ_FT_MEDIUM ? (bsize - wsize) / 2 : bsize - wsize;
-
- prev_buf = buf1 + bsize * j + bsize / 2;
- }
-
- tctx->last_block_pos[ch] = (size + first_wsize) / 2;
- }
-
- static void imdct_output(TwinVQContext *tctx, enum TwinVQFrameType ftype,
- int wtype, float **out, int offset)
- {
- const TwinVQModeTab *mtab = tctx->mtab;
- float *prev_buf = tctx->prev_frame + tctx->last_block_pos[0];
- int size1, size2, i;
- float *out1, *out2;
-
- for (i = 0; i < tctx->avctx->channels; i++)
- imdct_and_window(tctx, ftype, wtype,
- tctx->spectrum + i * mtab->size,
- prev_buf + 2 * i * mtab->size,
- i);
-
- if (!out)
- return;
-
- size2 = tctx->last_block_pos[0];
- size1 = mtab->size - size2;
-
- out1 = &out[0][0] + offset;
- memcpy(out1, prev_buf, size1 * sizeof(*out1));
- memcpy(out1 + size1, tctx->curr_frame, size2 * sizeof(*out1));
-
- if (tctx->avctx->channels == 2) {
- out2 = &out[1][0] + offset;
- memcpy(out2, &prev_buf[2 * mtab->size],
- size1 * sizeof(*out2));
- memcpy(out2 + size1, &tctx->curr_frame[2 * mtab->size],
- size2 * sizeof(*out2));
- tctx->fdsp.butterflies_float(out1, out2, mtab->size);
- }
- }
-
- static void read_and_decode_spectrum(TwinVQContext *tctx, float *out,
- enum TwinVQFrameType ftype)
- {
- const TwinVQModeTab *mtab = tctx->mtab;
- TwinVQFrameData *bits = &tctx->bits[tctx->cur_frame];
- int channels = tctx->avctx->channels;
- int sub = mtab->fmode[ftype].sub;
- int block_size = mtab->size / sub;
- float gain[TWINVQ_CHANNELS_MAX * TWINVQ_SUBBLOCKS_MAX];
- float ppc_shape[TWINVQ_PPC_SHAPE_LEN_MAX * TWINVQ_CHANNELS_MAX * 4];
-
- int i, j;
-
- dequant(tctx, bits->main_coeffs, out, ftype,
- mtab->fmode[ftype].cb0, mtab->fmode[ftype].cb1,
- mtab->fmode[ftype].cb_len_read);
-
- dec_gain(tctx, ftype, gain);
-
- if (ftype == TWINVQ_FT_LONG) {
- int cb_len_p = (tctx->n_div[3] + mtab->ppc_shape_len * channels - 1) /
- tctx->n_div[3];
- dequant(tctx, bits->ppc_coeffs, ppc_shape,
- TWINVQ_FT_PPC, mtab->ppc_shape_cb,
- mtab->ppc_shape_cb + cb_len_p * TWINVQ_PPC_SHAPE_CB_SIZE,
- cb_len_p);
- }
-
- for (i = 0; i < channels; i++) {
- float *chunk = out + mtab->size * i;
- float lsp[TWINVQ_LSP_COEFS_MAX];
-
- for (j = 0; j < sub; j++) {
- tctx->dec_bark_env(tctx, bits->bark1[i][j],
- bits->bark_use_hist[i][j], i,
- tctx->tmp_buf, gain[sub * i + j], ftype);
-
- tctx->fdsp.vector_fmul(chunk + block_size * j,
- chunk + block_size * j,
- tctx->tmp_buf, block_size);
- }
-
- if (ftype == TWINVQ_FT_LONG)
- tctx->decode_ppc(tctx, bits->p_coef[i], bits->g_coef[i],
- ppc_shape + i * mtab->ppc_shape_len, chunk);
-
- decode_lsp(tctx, bits->lpc_idx1[i], bits->lpc_idx2[i],
- bits->lpc_hist_idx[i], lsp, tctx->lsp_hist[i]);
-
- dec_lpc_spectrum_inv(tctx, lsp, ftype, tctx->tmp_buf);
-
- for (j = 0; j < mtab->fmode[ftype].sub; j++) {
- tctx->fdsp.vector_fmul(chunk, chunk, tctx->tmp_buf, block_size);
- chunk += block_size;
- }
- }
- }
-
- const enum TwinVQFrameType ff_twinvq_wtype_to_ftype_table[] = {
- TWINVQ_FT_LONG, TWINVQ_FT_LONG, TWINVQ_FT_SHORT, TWINVQ_FT_LONG,
- TWINVQ_FT_MEDIUM, TWINVQ_FT_LONG, TWINVQ_FT_LONG, TWINVQ_FT_MEDIUM,
- TWINVQ_FT_MEDIUM
- };
-
- int ff_twinvq_decode_frame(AVCodecContext *avctx, void *data,
- int *got_frame_ptr, AVPacket *avpkt)
- {
- AVFrame *frame = data;
- const uint8_t *buf = avpkt->data;
- int buf_size = avpkt->size;
- TwinVQContext *tctx = avctx->priv_data;
- const TwinVQModeTab *mtab = tctx->mtab;
- float **out = NULL;
- int ret;
-
- /* get output buffer */
- if (tctx->discarded_packets >= 2) {
- frame->nb_samples = mtab->size * tctx->frames_per_packet;
- if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) {
- av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
- return ret;
- }
- out = (float **)frame->extended_data;
- }
-
- if (buf_size < avctx->block_align) {
- av_log(avctx, AV_LOG_ERROR,
- "Frame too small (%d bytes). Truncated file?\n", buf_size);
- return AVERROR(EINVAL);
- }
-
- if ((ret = tctx->read_bitstream(avctx, tctx, buf, buf_size)) < 0)
- return ret;
-
- for (tctx->cur_frame = 0; tctx->cur_frame < tctx->frames_per_packet;
- tctx->cur_frame++) {
- read_and_decode_spectrum(tctx, tctx->spectrum,
- tctx->bits[tctx->cur_frame].ftype);
-
- imdct_output(tctx, tctx->bits[tctx->cur_frame].ftype,
- tctx->bits[tctx->cur_frame].window_type, out,
- tctx->cur_frame * mtab->size);
-
- FFSWAP(float *, tctx->curr_frame, tctx->prev_frame);
- }
-
- if (tctx->discarded_packets < 2) {
- tctx->discarded_packets++;
- *got_frame_ptr = 0;
- return buf_size;
- }
-
- *got_frame_ptr = 1;
-
- // VQF can deliver packets 1 byte greater than block align
- if (buf_size == avctx->block_align + 1)
- return buf_size;
- return avctx->block_align;
- }
-
- /**
- * Init IMDCT and windowing tables
- */
- static av_cold int init_mdct_win(TwinVQContext *tctx)
- {
- int i, j, ret;
- const TwinVQModeTab *mtab = tctx->mtab;
- int size_s = mtab->size / mtab->fmode[TWINVQ_FT_SHORT].sub;
- int size_m = mtab->size / mtab->fmode[TWINVQ_FT_MEDIUM].sub;
- int channels = tctx->avctx->channels;
- float norm = channels == 1 ? 2.0 : 1.0;
-
- for (i = 0; i < 3; i++) {
- int bsize = tctx->mtab->size / tctx->mtab->fmode[i].sub;
- if ((ret = ff_mdct_init(&tctx->mdct_ctx[i], av_log2(bsize) + 1, 1,
- -sqrt(norm / bsize) / (1 << 15))))
- return ret;
- }
-
- FF_ALLOC_OR_GOTO(tctx->avctx, tctx->tmp_buf,
- mtab->size * sizeof(*tctx->tmp_buf), alloc_fail);
-
- FF_ALLOC_OR_GOTO(tctx->avctx, tctx->spectrum,
- 2 * mtab->size * channels * sizeof(*tctx->spectrum),
- alloc_fail);
- FF_ALLOC_OR_GOTO(tctx->avctx, tctx->curr_frame,
- 2 * mtab->size * channels * sizeof(*tctx->curr_frame),
- alloc_fail);
- FF_ALLOC_OR_GOTO(tctx->avctx, tctx->prev_frame,
- 2 * mtab->size * channels * sizeof(*tctx->prev_frame),
- alloc_fail);
-
- for (i = 0; i < 3; i++) {
- int m = 4 * mtab->size / mtab->fmode[i].sub;
- double freq = 2 * M_PI / m;
- FF_ALLOC_OR_GOTO(tctx->avctx, tctx->cos_tabs[i],
- (m / 4) * sizeof(*tctx->cos_tabs[i]), alloc_fail);
-
- for (j = 0; j <= m / 8; j++)
- tctx->cos_tabs[i][j] = cos((2 * j + 1) * freq);
- for (j = 1; j < m / 8; j++)
- tctx->cos_tabs[i][m / 4 - j] = tctx->cos_tabs[i][j];
- }
-
- ff_init_ff_sine_windows(av_log2(size_m));
- ff_init_ff_sine_windows(av_log2(size_s / 2));
- ff_init_ff_sine_windows(av_log2(mtab->size));
-
- return 0;
-
- alloc_fail:
- return AVERROR(ENOMEM);
- }
-
- /**
- * Interpret the data as if it were a num_blocks x line_len[0] matrix and for
- * each line do a cyclic permutation, i.e.
- * abcdefghijklm -> defghijklmabc
- * where the amount to be shifted is evaluated depending on the column.
- */
- static void permutate_in_line(int16_t *tab, int num_vect, int num_blocks,
- int block_size,
- const uint8_t line_len[2], int length_div,
- enum TwinVQFrameType ftype)
- {
- int i, j;
-
- for (i = 0; i < line_len[0]; i++) {
- int shift;
-
- if (num_blocks == 1 ||
- (ftype == TWINVQ_FT_LONG && num_vect % num_blocks) ||
- (ftype != TWINVQ_FT_LONG && num_vect & 1) ||
- i == line_len[1]) {
- shift = 0;
- } else if (ftype == TWINVQ_FT_LONG) {
- shift = i;
- } else
- shift = i * i;
-
- for (j = 0; j < num_vect && (j + num_vect * i < block_size * num_blocks); j++)
- tab[i * num_vect + j] = i * num_vect + (j + shift) % num_vect;
- }
- }
-
- /**
- * Interpret the input data as in the following table:
- *
- * @verbatim
- *
- * abcdefgh
- * ijklmnop
- * qrstuvw
- * x123456
- *
- * @endverbatim
- *
- * and transpose it, giving the output
- * aiqxbjr1cks2dlt3emu4fvn5gow6hp
- */
- static void transpose_perm(int16_t *out, int16_t *in, int num_vect,
- const uint8_t line_len[2], int length_div)
- {
- int i, j;
- int cont = 0;
-
- for (i = 0; i < num_vect; i++)
- for (j = 0; j < line_len[i >= length_div]; j++)
- out[cont++] = in[j * num_vect + i];
- }
-
- static void linear_perm(int16_t *out, int16_t *in, int n_blocks, int size)
- {
- int block_size = size / n_blocks;
- int i;
-
- for (i = 0; i < size; i++)
- out[i] = block_size * (in[i] % n_blocks) + in[i] / n_blocks;
- }
-
- static av_cold void construct_perm_table(TwinVQContext *tctx,
- enum TwinVQFrameType ftype)
- {
- int block_size, size;
- const TwinVQModeTab *mtab = tctx->mtab;
- int16_t *tmp_perm = (int16_t *)tctx->tmp_buf;
-
- if (ftype == TWINVQ_FT_PPC) {
- size = tctx->avctx->channels;
- block_size = mtab->ppc_shape_len;
- } else {
- size = tctx->avctx->channels * mtab->fmode[ftype].sub;
- block_size = mtab->size / mtab->fmode[ftype].sub;
- }
-
- permutate_in_line(tmp_perm, tctx->n_div[ftype], size,
- block_size, tctx->length[ftype],
- tctx->length_change[ftype], ftype);
-
- transpose_perm(tctx->permut[ftype], tmp_perm, tctx->n_div[ftype],
- tctx->length[ftype], tctx->length_change[ftype]);
-
- linear_perm(tctx->permut[ftype], tctx->permut[ftype], size,
- size * block_size);
- }
-
- static av_cold void init_bitstream_params(TwinVQContext *tctx)
- {
- const TwinVQModeTab *mtab = tctx->mtab;
- int n_ch = tctx->avctx->channels;
- int total_fr_bits = tctx->avctx->bit_rate * mtab->size /
- tctx->avctx->sample_rate;
-
- int lsp_bits_per_block = n_ch * (mtab->lsp_bit0 + mtab->lsp_bit1 +
- mtab->lsp_split * mtab->lsp_bit2);
-
- int ppc_bits = n_ch * (mtab->pgain_bit + mtab->ppc_shape_bit +
- mtab->ppc_period_bit);
-
- int bsize_no_main_cb[3], bse_bits[3], i;
- enum TwinVQFrameType frametype;
-
- for (i = 0; i < 3; i++)
- // +1 for history usage switch
- bse_bits[i] = n_ch *
- (mtab->fmode[i].bark_n_coef *
- mtab->fmode[i].bark_n_bit + 1);
-
- bsize_no_main_cb[2] = bse_bits[2] + lsp_bits_per_block + ppc_bits +
- TWINVQ_WINDOW_TYPE_BITS + n_ch * TWINVQ_GAIN_BITS;
-
- for (i = 0; i < 2; i++)
- bsize_no_main_cb[i] =
- lsp_bits_per_block + n_ch * TWINVQ_GAIN_BITS +
- TWINVQ_WINDOW_TYPE_BITS +
- mtab->fmode[i].sub * (bse_bits[i] + n_ch * TWINVQ_SUB_GAIN_BITS);
-
- if (tctx->codec == TWINVQ_CODEC_METASOUND && !tctx->is_6kbps) {
- bsize_no_main_cb[1] += 2;
- bsize_no_main_cb[2] += 2;
- }
-
- // The remaining bits are all used for the main spectrum coefficients
- for (i = 0; i < 4; i++) {
- int bit_size, vect_size;
- int rounded_up, rounded_down, num_rounded_down, num_rounded_up;
- if (i == 3) {
- bit_size = n_ch * mtab->ppc_shape_bit;
- vect_size = n_ch * mtab->ppc_shape_len;
- } else {
- bit_size = total_fr_bits - bsize_no_main_cb[i];
- vect_size = n_ch * mtab->size;
- }
-
- tctx->n_div[i] = (bit_size + 13) / 14;
-
- rounded_up = (bit_size + tctx->n_div[i] - 1) /
- tctx->n_div[i];
- rounded_down = (bit_size) / tctx->n_div[i];
- num_rounded_down = rounded_up * tctx->n_div[i] - bit_size;
- num_rounded_up = tctx->n_div[i] - num_rounded_down;
- tctx->bits_main_spec[0][i][0] = (rounded_up + 1) / 2;
- tctx->bits_main_spec[1][i][0] = rounded_up / 2;
- tctx->bits_main_spec[0][i][1] = (rounded_down + 1) / 2;
- tctx->bits_main_spec[1][i][1] = rounded_down / 2;
- tctx->bits_main_spec_change[i] = num_rounded_up;
-
- rounded_up = (vect_size + tctx->n_div[i] - 1) /
- tctx->n_div[i];
- rounded_down = (vect_size) / tctx->n_div[i];
- num_rounded_down = rounded_up * tctx->n_div[i] - vect_size;
- num_rounded_up = tctx->n_div[i] - num_rounded_down;
- tctx->length[i][0] = rounded_up;
- tctx->length[i][1] = rounded_down;
- tctx->length_change[i] = num_rounded_up;
- }
-
- for (frametype = TWINVQ_FT_SHORT; frametype <= TWINVQ_FT_PPC; frametype++)
- construct_perm_table(tctx, frametype);
- }
-
- av_cold int ff_twinvq_decode_close(AVCodecContext *avctx)
- {
- TwinVQContext *tctx = avctx->priv_data;
- int i;
-
- for (i = 0; i < 3; i++) {
- ff_mdct_end(&tctx->mdct_ctx[i]);
- av_free(tctx->cos_tabs[i]);
- }
-
- av_free(tctx->curr_frame);
- av_free(tctx->spectrum);
- av_free(tctx->prev_frame);
- av_free(tctx->tmp_buf);
-
- return 0;
- }
-
- av_cold int ff_twinvq_decode_init(AVCodecContext *avctx)
- {
- int ret;
- TwinVQContext *tctx = avctx->priv_data;
-
- tctx->avctx = avctx;
- avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
-
- if (!avctx->block_align) {
- avctx->block_align = tctx->frame_size + 7 >> 3;
- } else if (avctx->block_align * 8 < tctx->frame_size) {
- av_log(avctx, AV_LOG_ERROR, "Block align is %d bits, expected %d\n",
- avctx->block_align * 8, tctx->frame_size);
- return AVERROR_INVALIDDATA;
- }
- tctx->frames_per_packet = avctx->block_align * 8 / tctx->frame_size;
- if (tctx->frames_per_packet > TWINVQ_MAX_FRAMES_PER_PACKET) {
- av_log(avctx, AV_LOG_ERROR, "Too many frames per packet (%d)\n",
- tctx->frames_per_packet);
- return AVERROR_INVALIDDATA;
- }
-
- avpriv_float_dsp_init(&tctx->fdsp, avctx->flags & AV_CODEC_FLAG_BITEXACT);
- if ((ret = init_mdct_win(tctx))) {
- av_log(avctx, AV_LOG_ERROR, "Error initializing MDCT\n");
- ff_twinvq_decode_close(avctx);
- return ret;
- }
- init_bitstream_params(tctx);
-
- twinvq_memset_float(tctx->bark_hist[0][0], 0.1,
- FF_ARRAY_ELEMS(tctx->bark_hist));
-
- return 0;
- }
|