You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

915 lines
28KB

  1. /*
  2. * Duck TrueMotion 1.0 Decoder
  3. * Copyright (C) 2003 Alex Beregszaszi & Mike Melanson
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * Duck TrueMotion v1 Video Decoder by
  24. * Alex Beregszaszi and
  25. * Mike Melanson (melanson@pcisys.net)
  26. *
  27. * The TrueMotion v1 decoder presently only decodes 16-bit TM1 data and
  28. * outputs RGB555 (or RGB565) data. 24-bit TM1 data is not supported yet.
  29. */
  30. #include <stdio.h>
  31. #include <stdlib.h>
  32. #include <string.h>
  33. #include "avcodec.h"
  34. #include "internal.h"
  35. #include "libavutil/imgutils.h"
  36. #include "libavutil/internal.h"
  37. #include "libavutil/intreadwrite.h"
  38. #include "libavutil/mem.h"
  39. #include "truemotion1data.h"
  40. typedef struct TrueMotion1Context {
  41. AVCodecContext *avctx;
  42. AVFrame *frame;
  43. const uint8_t *buf;
  44. int size;
  45. const uint8_t *mb_change_bits;
  46. int mb_change_bits_row_size;
  47. const uint8_t *index_stream;
  48. int index_stream_size;
  49. int flags;
  50. int x, y, w, h;
  51. uint32_t y_predictor_table[1024];
  52. uint32_t c_predictor_table[1024];
  53. uint32_t fat_y_predictor_table[1024];
  54. uint32_t fat_c_predictor_table[1024];
  55. int compression;
  56. int block_type;
  57. int block_width;
  58. int block_height;
  59. int16_t ydt[8];
  60. int16_t cdt[8];
  61. int16_t fat_ydt[8];
  62. int16_t fat_cdt[8];
  63. int last_deltaset, last_vectable;
  64. unsigned int *vert_pred;
  65. int vert_pred_size;
  66. } TrueMotion1Context;
  67. #define FLAG_SPRITE 32
  68. #define FLAG_KEYFRAME 16
  69. #define FLAG_INTERFRAME 8
  70. #define FLAG_INTERPOLATED 4
  71. struct frame_header {
  72. uint8_t header_size;
  73. uint8_t compression;
  74. uint8_t deltaset;
  75. uint8_t vectable;
  76. uint16_t ysize;
  77. uint16_t xsize;
  78. uint16_t checksum;
  79. uint8_t version;
  80. uint8_t header_type;
  81. uint8_t flags;
  82. uint8_t control;
  83. uint16_t xoffset;
  84. uint16_t yoffset;
  85. uint16_t width;
  86. uint16_t height;
  87. };
  88. #define ALGO_NOP 0
  89. #define ALGO_RGB16V 1
  90. #define ALGO_RGB16H 2
  91. #define ALGO_RGB24H 3
  92. /* these are the various block sizes that can occupy a 4x4 block */
  93. #define BLOCK_2x2 0
  94. #define BLOCK_2x4 1
  95. #define BLOCK_4x2 2
  96. #define BLOCK_4x4 3
  97. typedef struct comp_types {
  98. int algorithm;
  99. int block_width; // vres
  100. int block_height; // hres
  101. int block_type;
  102. } comp_types;
  103. /* { valid for metatype }, algorithm, num of deltas, vert res, horiz res */
  104. static const comp_types compression_types[17] = {
  105. { ALGO_NOP, 0, 0, 0 },
  106. { ALGO_RGB16V, 4, 4, BLOCK_4x4 },
  107. { ALGO_RGB16H, 4, 4, BLOCK_4x4 },
  108. { ALGO_RGB16V, 4, 2, BLOCK_4x2 },
  109. { ALGO_RGB16H, 4, 2, BLOCK_4x2 },
  110. { ALGO_RGB16V, 2, 4, BLOCK_2x4 },
  111. { ALGO_RGB16H, 2, 4, BLOCK_2x4 },
  112. { ALGO_RGB16V, 2, 2, BLOCK_2x2 },
  113. { ALGO_RGB16H, 2, 2, BLOCK_2x2 },
  114. { ALGO_NOP, 4, 4, BLOCK_4x4 },
  115. { ALGO_RGB24H, 4, 4, BLOCK_4x4 },
  116. { ALGO_NOP, 4, 2, BLOCK_4x2 },
  117. { ALGO_RGB24H, 4, 2, BLOCK_4x2 },
  118. { ALGO_NOP, 2, 4, BLOCK_2x4 },
  119. { ALGO_RGB24H, 2, 4, BLOCK_2x4 },
  120. { ALGO_NOP, 2, 2, BLOCK_2x2 },
  121. { ALGO_RGB24H, 2, 2, BLOCK_2x2 }
  122. };
  123. static void select_delta_tables(TrueMotion1Context *s, int delta_table_index)
  124. {
  125. int i;
  126. if (delta_table_index > 3)
  127. return;
  128. memcpy(s->ydt, ydts[delta_table_index], 8 * sizeof(int16_t));
  129. memcpy(s->cdt, cdts[delta_table_index], 8 * sizeof(int16_t));
  130. memcpy(s->fat_ydt, fat_ydts[delta_table_index], 8 * sizeof(int16_t));
  131. memcpy(s->fat_cdt, fat_cdts[delta_table_index], 8 * sizeof(int16_t));
  132. /* Y skinny deltas need to be halved for some reason; maybe the
  133. * skinny Y deltas should be modified */
  134. for (i = 0; i < 8; i++)
  135. {
  136. /* drop the lsb before dividing by 2-- net effect: round down
  137. * when dividing a negative number (e.g., -3/2 = -2, not -1) */
  138. s->ydt[i] &= 0xFFFE;
  139. s->ydt[i] /= 2;
  140. }
  141. }
  142. #if HAVE_BIGENDIAN
  143. static int make_ydt15_entry(int p2, int p1, int16_t *ydt)
  144. #else
  145. static int make_ydt15_entry(int p1, int p2, int16_t *ydt)
  146. #endif
  147. {
  148. int lo, hi;
  149. lo = ydt[p1];
  150. lo += (lo << 5) + (lo << 10);
  151. hi = ydt[p2];
  152. hi += (hi << 5) + (hi << 10);
  153. return (lo + (hi << 16)) << 1;
  154. }
  155. static int make_cdt15_entry(int p1, int p2, int16_t *cdt)
  156. {
  157. int r, b, lo;
  158. b = cdt[p2];
  159. r = cdt[p1] << 10;
  160. lo = b + r;
  161. return (lo + (lo << 16)) << 1;
  162. }
  163. #if HAVE_BIGENDIAN
  164. static int make_ydt16_entry(int p2, int p1, int16_t *ydt)
  165. #else
  166. static int make_ydt16_entry(int p1, int p2, int16_t *ydt)
  167. #endif
  168. {
  169. int lo, hi;
  170. lo = ydt[p1];
  171. lo += (lo << 6) + (lo << 11);
  172. hi = ydt[p2];
  173. hi += (hi << 6) + (hi << 11);
  174. return (lo + (hi << 16)) << 1;
  175. }
  176. static int make_cdt16_entry(int p1, int p2, int16_t *cdt)
  177. {
  178. int r, b, lo;
  179. b = cdt[p2];
  180. r = cdt[p1] << 11;
  181. lo = b + r;
  182. return (lo + (lo << 16)) << 1;
  183. }
  184. static int make_ydt24_entry(int p1, int p2, int16_t *ydt)
  185. {
  186. int lo, hi;
  187. lo = ydt[p1];
  188. hi = ydt[p2];
  189. return (lo + (hi << 8) + (hi << 16)) << 1;
  190. }
  191. static int make_cdt24_entry(int p1, int p2, int16_t *cdt)
  192. {
  193. int r, b;
  194. b = cdt[p2];
  195. r = cdt[p1]<<16;
  196. return (b+r) << 1;
  197. }
  198. static void gen_vector_table15(TrueMotion1Context *s, const uint8_t *sel_vector_table)
  199. {
  200. int len, i, j;
  201. unsigned char delta_pair;
  202. for (i = 0; i < 1024; i += 4)
  203. {
  204. len = *sel_vector_table++ / 2;
  205. for (j = 0; j < len; j++)
  206. {
  207. delta_pair = *sel_vector_table++;
  208. s->y_predictor_table[i+j] = 0xfffffffe &
  209. make_ydt15_entry(delta_pair >> 4, delta_pair & 0xf, s->ydt);
  210. s->c_predictor_table[i+j] = 0xfffffffe &
  211. make_cdt15_entry(delta_pair >> 4, delta_pair & 0xf, s->cdt);
  212. }
  213. s->y_predictor_table[i+(j-1)] |= 1;
  214. s->c_predictor_table[i+(j-1)] |= 1;
  215. }
  216. }
  217. static void gen_vector_table16(TrueMotion1Context *s, const uint8_t *sel_vector_table)
  218. {
  219. int len, i, j;
  220. unsigned char delta_pair;
  221. for (i = 0; i < 1024; i += 4)
  222. {
  223. len = *sel_vector_table++ / 2;
  224. for (j = 0; j < len; j++)
  225. {
  226. delta_pair = *sel_vector_table++;
  227. s->y_predictor_table[i+j] = 0xfffffffe &
  228. make_ydt16_entry(delta_pair >> 4, delta_pair & 0xf, s->ydt);
  229. s->c_predictor_table[i+j] = 0xfffffffe &
  230. make_cdt16_entry(delta_pair >> 4, delta_pair & 0xf, s->cdt);
  231. }
  232. s->y_predictor_table[i+(j-1)] |= 1;
  233. s->c_predictor_table[i+(j-1)] |= 1;
  234. }
  235. }
  236. static void gen_vector_table24(TrueMotion1Context *s, const uint8_t *sel_vector_table)
  237. {
  238. int len, i, j;
  239. unsigned char delta_pair;
  240. for (i = 0; i < 1024; i += 4)
  241. {
  242. len = *sel_vector_table++ / 2;
  243. for (j = 0; j < len; j++)
  244. {
  245. delta_pair = *sel_vector_table++;
  246. s->y_predictor_table[i+j] = 0xfffffffe &
  247. make_ydt24_entry(delta_pair >> 4, delta_pair & 0xf, s->ydt);
  248. s->c_predictor_table[i+j] = 0xfffffffe &
  249. make_cdt24_entry(delta_pair >> 4, delta_pair & 0xf, s->cdt);
  250. s->fat_y_predictor_table[i+j] = 0xfffffffe &
  251. make_ydt24_entry(delta_pair >> 4, delta_pair & 0xf, s->fat_ydt);
  252. s->fat_c_predictor_table[i+j] = 0xfffffffe &
  253. make_cdt24_entry(delta_pair >> 4, delta_pair & 0xf, s->fat_cdt);
  254. }
  255. s->y_predictor_table[i+(j-1)] |= 1;
  256. s->c_predictor_table[i+(j-1)] |= 1;
  257. s->fat_y_predictor_table[i+(j-1)] |= 1;
  258. s->fat_c_predictor_table[i+(j-1)] |= 1;
  259. }
  260. }
  261. /* Returns the number of bytes consumed from the bytestream. Returns -1 if
  262. * there was an error while decoding the header */
  263. static int truemotion1_decode_header(TrueMotion1Context *s)
  264. {
  265. int i, ret;
  266. int width_shift = 0;
  267. int new_pix_fmt;
  268. struct frame_header header;
  269. uint8_t header_buffer[128] = { 0 }; /* logical maximum size of the header */
  270. const uint8_t *sel_vector_table;
  271. header.header_size = ((s->buf[0] >> 5) | (s->buf[0] << 3)) & 0x7f;
  272. if (s->buf[0] < 0x10)
  273. {
  274. av_log(s->avctx, AV_LOG_ERROR, "invalid header size (%d)\n", s->buf[0]);
  275. return AVERROR_INVALIDDATA;
  276. }
  277. if (header.header_size + 1 > s->size) {
  278. av_log(s->avctx, AV_LOG_ERROR, "Input packet too small.\n");
  279. return AVERROR_INVALIDDATA;
  280. }
  281. /* unscramble the header bytes with a XOR operation */
  282. for (i = 1; i < header.header_size; i++)
  283. header_buffer[i - 1] = s->buf[i] ^ s->buf[i + 1];
  284. header.compression = header_buffer[0];
  285. header.deltaset = header_buffer[1];
  286. header.vectable = header_buffer[2];
  287. header.ysize = AV_RL16(&header_buffer[3]);
  288. header.xsize = AV_RL16(&header_buffer[5]);
  289. header.checksum = AV_RL16(&header_buffer[7]);
  290. header.version = header_buffer[9];
  291. header.header_type = header_buffer[10];
  292. header.flags = header_buffer[11];
  293. header.control = header_buffer[12];
  294. /* Version 2 */
  295. if (header.version >= 2)
  296. {
  297. if (header.header_type > 3)
  298. {
  299. av_log(s->avctx, AV_LOG_ERROR, "invalid header type (%d)\n", header.header_type);
  300. return AVERROR_INVALIDDATA;
  301. } else if ((header.header_type == 2) || (header.header_type == 3)) {
  302. s->flags = header.flags;
  303. if (!(s->flags & FLAG_INTERFRAME))
  304. s->flags |= FLAG_KEYFRAME;
  305. } else
  306. s->flags = FLAG_KEYFRAME;
  307. } else /* Version 1 */
  308. s->flags = FLAG_KEYFRAME;
  309. if (s->flags & FLAG_SPRITE) {
  310. avpriv_request_sample(s->avctx, "Frame with sprite");
  311. /* FIXME header.width, height, xoffset and yoffset aren't initialized */
  312. return AVERROR_PATCHWELCOME;
  313. } else {
  314. s->w = header.xsize;
  315. s->h = header.ysize;
  316. if (header.header_type < 2) {
  317. if ((s->w < 213) && (s->h >= 176))
  318. {
  319. s->flags |= FLAG_INTERPOLATED;
  320. avpriv_request_sample(s->avctx, "Interpolated frame");
  321. }
  322. }
  323. }
  324. if (header.compression >= 17) {
  325. av_log(s->avctx, AV_LOG_ERROR, "invalid compression type (%d)\n", header.compression);
  326. return AVERROR_INVALIDDATA;
  327. }
  328. if ((header.deltaset != s->last_deltaset) ||
  329. (header.vectable != s->last_vectable))
  330. select_delta_tables(s, header.deltaset);
  331. if ((header.compression & 1) && header.header_type)
  332. sel_vector_table = pc_tbl2;
  333. else {
  334. if (header.vectable > 0 && header.vectable < 4)
  335. sel_vector_table = tables[header.vectable - 1];
  336. else {
  337. av_log(s->avctx, AV_LOG_ERROR, "invalid vector table id (%d)\n", header.vectable);
  338. return AVERROR_INVALIDDATA;
  339. }
  340. }
  341. if (compression_types[header.compression].algorithm == ALGO_RGB24H) {
  342. new_pix_fmt = AV_PIX_FMT_RGB32;
  343. width_shift = 1;
  344. } else
  345. new_pix_fmt = AV_PIX_FMT_RGB555; // RGB565 is supported as well
  346. s->w >>= width_shift;
  347. if (s->w != s->avctx->width || s->h != s->avctx->height ||
  348. new_pix_fmt != s->avctx->pix_fmt) {
  349. av_frame_unref(s->frame);
  350. s->avctx->sample_aspect_ratio = (AVRational){ 1 << width_shift, 1 };
  351. s->avctx->pix_fmt = new_pix_fmt;
  352. if ((ret = ff_set_dimensions(s->avctx, s->w, s->h)) < 0)
  353. return ret;
  354. ff_set_sar(s->avctx, s->avctx->sample_aspect_ratio);
  355. av_fast_malloc(&s->vert_pred, &s->vert_pred_size, s->avctx->width * sizeof(unsigned int));
  356. }
  357. /* There is 1 change bit per 4 pixels, so each change byte represents
  358. * 32 pixels; divide width by 4 to obtain the number of change bits and
  359. * then round up to the nearest byte. */
  360. s->mb_change_bits_row_size = ((s->avctx->width >> (2 - width_shift)) + 7) >> 3;
  361. if ((header.deltaset != s->last_deltaset) || (header.vectable != s->last_vectable))
  362. {
  363. if (compression_types[header.compression].algorithm == ALGO_RGB24H)
  364. gen_vector_table24(s, sel_vector_table);
  365. else
  366. if (s->avctx->pix_fmt == AV_PIX_FMT_RGB555)
  367. gen_vector_table15(s, sel_vector_table);
  368. else
  369. gen_vector_table16(s, sel_vector_table);
  370. }
  371. /* set up pointers to the other key data chunks */
  372. s->mb_change_bits = s->buf + header.header_size;
  373. if (s->flags & FLAG_KEYFRAME) {
  374. /* no change bits specified for a keyframe; only index bytes */
  375. s->index_stream = s->mb_change_bits;
  376. } else {
  377. /* one change bit per 4x4 block */
  378. s->index_stream = s->mb_change_bits +
  379. (s->mb_change_bits_row_size * (s->avctx->height >> 2));
  380. }
  381. s->index_stream_size = s->size - (s->index_stream - s->buf);
  382. s->last_deltaset = header.deltaset;
  383. s->last_vectable = header.vectable;
  384. s->compression = header.compression;
  385. s->block_width = compression_types[header.compression].block_width;
  386. s->block_height = compression_types[header.compression].block_height;
  387. s->block_type = compression_types[header.compression].block_type;
  388. if (s->avctx->debug & FF_DEBUG_PICT_INFO)
  389. av_log(s->avctx, AV_LOG_INFO, "tables: %d / %d c:%d %dx%d t:%d %s%s%s%s\n",
  390. s->last_deltaset, s->last_vectable, s->compression, s->block_width,
  391. s->block_height, s->block_type,
  392. s->flags & FLAG_KEYFRAME ? " KEY" : "",
  393. s->flags & FLAG_INTERFRAME ? " INTER" : "",
  394. s->flags & FLAG_SPRITE ? " SPRITE" : "",
  395. s->flags & FLAG_INTERPOLATED ? " INTERPOL" : "");
  396. return header.header_size;
  397. }
  398. static av_cold int truemotion1_decode_init(AVCodecContext *avctx)
  399. {
  400. TrueMotion1Context *s = avctx->priv_data;
  401. s->avctx = avctx;
  402. // FIXME: it may change ?
  403. // if (avctx->bits_per_sample == 24)
  404. // avctx->pix_fmt = AV_PIX_FMT_RGB24;
  405. // else
  406. // avctx->pix_fmt = AV_PIX_FMT_RGB555;
  407. s->frame = av_frame_alloc();
  408. if (!s->frame)
  409. return AVERROR(ENOMEM);
  410. /* there is a vertical predictor for each pixel in a line; each vertical
  411. * predictor is 0 to start with */
  412. av_fast_malloc(&s->vert_pred, &s->vert_pred_size, s->avctx->width * sizeof(unsigned int));
  413. return 0;
  414. }
  415. /*
  416. Block decoding order:
  417. dxi: Y-Y
  418. dxic: Y-C-Y
  419. dxic2: Y-C-Y-C
  420. hres,vres,i,i%vres (0 < i < 4)
  421. 2x2 0: 0 dxic2
  422. 2x2 1: 1 dxi
  423. 2x2 2: 0 dxic2
  424. 2x2 3: 1 dxi
  425. 2x4 0: 0 dxic2
  426. 2x4 1: 1 dxi
  427. 2x4 2: 2 dxi
  428. 2x4 3: 3 dxi
  429. 4x2 0: 0 dxic
  430. 4x2 1: 1 dxi
  431. 4x2 2: 0 dxic
  432. 4x2 3: 1 dxi
  433. 4x4 0: 0 dxic
  434. 4x4 1: 1 dxi
  435. 4x4 2: 2 dxi
  436. 4x4 3: 3 dxi
  437. */
  438. #define GET_NEXT_INDEX() \
  439. {\
  440. if (index_stream_index >= s->index_stream_size) { \
  441. av_log(s->avctx, AV_LOG_INFO, " help! truemotion1 decoder went out of bounds\n"); \
  442. return; \
  443. } \
  444. index = s->index_stream[index_stream_index++] * 4; \
  445. }
  446. #define INC_INDEX \
  447. do { \
  448. if (index >= 1023) { \
  449. av_log(s->avctx, AV_LOG_ERROR, "Invalid index value.\n"); \
  450. return; \
  451. } \
  452. index++; \
  453. } while (0)
  454. #define APPLY_C_PREDICTOR() \
  455. predictor_pair = s->c_predictor_table[index]; \
  456. horiz_pred += (predictor_pair >> 1); \
  457. if (predictor_pair & 1) { \
  458. GET_NEXT_INDEX() \
  459. if (!index) { \
  460. GET_NEXT_INDEX() \
  461. predictor_pair = s->c_predictor_table[index]; \
  462. horiz_pred += ((predictor_pair >> 1) * 5); \
  463. if (predictor_pair & 1) \
  464. GET_NEXT_INDEX() \
  465. else \
  466. INC_INDEX; \
  467. } \
  468. } else \
  469. INC_INDEX;
  470. #define APPLY_C_PREDICTOR_24() \
  471. predictor_pair = s->c_predictor_table[index]; \
  472. horiz_pred += (predictor_pair >> 1); \
  473. if (predictor_pair & 1) { \
  474. GET_NEXT_INDEX() \
  475. if (!index) { \
  476. GET_NEXT_INDEX() \
  477. predictor_pair = s->fat_c_predictor_table[index]; \
  478. horiz_pred += (predictor_pair >> 1); \
  479. if (predictor_pair & 1) \
  480. GET_NEXT_INDEX() \
  481. else \
  482. INC_INDEX; \
  483. } \
  484. } else \
  485. INC_INDEX;
  486. #define APPLY_Y_PREDICTOR() \
  487. predictor_pair = s->y_predictor_table[index]; \
  488. horiz_pred += (predictor_pair >> 1); \
  489. if (predictor_pair & 1) { \
  490. GET_NEXT_INDEX() \
  491. if (!index) { \
  492. GET_NEXT_INDEX() \
  493. predictor_pair = s->y_predictor_table[index]; \
  494. horiz_pred += ((predictor_pair >> 1) * 5); \
  495. if (predictor_pair & 1) \
  496. GET_NEXT_INDEX() \
  497. else \
  498. INC_INDEX; \
  499. } \
  500. } else \
  501. INC_INDEX;
  502. #define APPLY_Y_PREDICTOR_24() \
  503. predictor_pair = s->y_predictor_table[index]; \
  504. horiz_pred += (predictor_pair >> 1); \
  505. if (predictor_pair & 1) { \
  506. GET_NEXT_INDEX() \
  507. if (!index) { \
  508. GET_NEXT_INDEX() \
  509. predictor_pair = s->fat_y_predictor_table[index]; \
  510. horiz_pred += (predictor_pair >> 1); \
  511. if (predictor_pair & 1) \
  512. GET_NEXT_INDEX() \
  513. else \
  514. INC_INDEX; \
  515. } \
  516. } else \
  517. INC_INDEX;
  518. #define OUTPUT_PIXEL_PAIR() \
  519. *current_pixel_pair = *vert_pred + horiz_pred; \
  520. *vert_pred++ = *current_pixel_pair++;
  521. static void truemotion1_decode_16bit(TrueMotion1Context *s)
  522. {
  523. int y;
  524. int pixels_left; /* remaining pixels on this line */
  525. unsigned int predictor_pair;
  526. unsigned int horiz_pred;
  527. unsigned int *vert_pred;
  528. unsigned int *current_pixel_pair;
  529. unsigned char *current_line = s->frame->data[0];
  530. int keyframe = s->flags & FLAG_KEYFRAME;
  531. /* these variables are for managing the stream of macroblock change bits */
  532. const unsigned char *mb_change_bits = s->mb_change_bits;
  533. unsigned char mb_change_byte;
  534. unsigned char mb_change_byte_mask;
  535. int mb_change_index;
  536. /* these variables are for managing the main index stream */
  537. int index_stream_index = 0; /* yes, the index into the index stream */
  538. int index;
  539. /* clean out the line buffer */
  540. memset(s->vert_pred, 0, s->avctx->width * sizeof(unsigned int));
  541. GET_NEXT_INDEX();
  542. for (y = 0; y < s->avctx->height; y++) {
  543. /* re-init variables for the next line iteration */
  544. horiz_pred = 0;
  545. current_pixel_pair = (unsigned int *)current_line;
  546. vert_pred = s->vert_pred;
  547. mb_change_index = 0;
  548. mb_change_byte = mb_change_bits[mb_change_index++];
  549. mb_change_byte_mask = 0x01;
  550. pixels_left = s->avctx->width;
  551. while (pixels_left > 0) {
  552. if (keyframe || ((mb_change_byte & mb_change_byte_mask) == 0)) {
  553. switch (y & 3) {
  554. case 0:
  555. /* if macroblock width is 2, apply C-Y-C-Y; else
  556. * apply C-Y-Y */
  557. if (s->block_width == 2) {
  558. APPLY_C_PREDICTOR();
  559. APPLY_Y_PREDICTOR();
  560. OUTPUT_PIXEL_PAIR();
  561. APPLY_C_PREDICTOR();
  562. APPLY_Y_PREDICTOR();
  563. OUTPUT_PIXEL_PAIR();
  564. } else {
  565. APPLY_C_PREDICTOR();
  566. APPLY_Y_PREDICTOR();
  567. OUTPUT_PIXEL_PAIR();
  568. APPLY_Y_PREDICTOR();
  569. OUTPUT_PIXEL_PAIR();
  570. }
  571. break;
  572. case 1:
  573. case 3:
  574. /* always apply 2 Y predictors on these iterations */
  575. APPLY_Y_PREDICTOR();
  576. OUTPUT_PIXEL_PAIR();
  577. APPLY_Y_PREDICTOR();
  578. OUTPUT_PIXEL_PAIR();
  579. break;
  580. case 2:
  581. /* this iteration might be C-Y-C-Y, Y-Y, or C-Y-Y
  582. * depending on the macroblock type */
  583. if (s->block_type == BLOCK_2x2) {
  584. APPLY_C_PREDICTOR();
  585. APPLY_Y_PREDICTOR();
  586. OUTPUT_PIXEL_PAIR();
  587. APPLY_C_PREDICTOR();
  588. APPLY_Y_PREDICTOR();
  589. OUTPUT_PIXEL_PAIR();
  590. } else if (s->block_type == BLOCK_4x2) {
  591. APPLY_C_PREDICTOR();
  592. APPLY_Y_PREDICTOR();
  593. OUTPUT_PIXEL_PAIR();
  594. APPLY_Y_PREDICTOR();
  595. OUTPUT_PIXEL_PAIR();
  596. } else {
  597. APPLY_Y_PREDICTOR();
  598. OUTPUT_PIXEL_PAIR();
  599. APPLY_Y_PREDICTOR();
  600. OUTPUT_PIXEL_PAIR();
  601. }
  602. break;
  603. }
  604. } else {
  605. /* skip (copy) four pixels, but reassign the horizontal
  606. * predictor */
  607. *vert_pred++ = *current_pixel_pair++;
  608. horiz_pred = *current_pixel_pair - *vert_pred;
  609. *vert_pred++ = *current_pixel_pair++;
  610. }
  611. if (!keyframe) {
  612. mb_change_byte_mask <<= 1;
  613. /* next byte */
  614. if (!mb_change_byte_mask) {
  615. mb_change_byte = mb_change_bits[mb_change_index++];
  616. mb_change_byte_mask = 0x01;
  617. }
  618. }
  619. pixels_left -= 4;
  620. }
  621. /* next change row */
  622. if (((y + 1) & 3) == 0)
  623. mb_change_bits += s->mb_change_bits_row_size;
  624. current_line += s->frame->linesize[0];
  625. }
  626. }
  627. static void truemotion1_decode_24bit(TrueMotion1Context *s)
  628. {
  629. int y;
  630. int pixels_left; /* remaining pixels on this line */
  631. unsigned int predictor_pair;
  632. unsigned int horiz_pred;
  633. unsigned int *vert_pred;
  634. unsigned int *current_pixel_pair;
  635. unsigned char *current_line = s->frame->data[0];
  636. int keyframe = s->flags & FLAG_KEYFRAME;
  637. /* these variables are for managing the stream of macroblock change bits */
  638. const unsigned char *mb_change_bits = s->mb_change_bits;
  639. unsigned char mb_change_byte;
  640. unsigned char mb_change_byte_mask;
  641. int mb_change_index;
  642. /* these variables are for managing the main index stream */
  643. int index_stream_index = 0; /* yes, the index into the index stream */
  644. int index;
  645. /* clean out the line buffer */
  646. memset(s->vert_pred, 0, s->avctx->width * sizeof(unsigned int));
  647. GET_NEXT_INDEX();
  648. for (y = 0; y < s->avctx->height; y++) {
  649. /* re-init variables for the next line iteration */
  650. horiz_pred = 0;
  651. current_pixel_pair = (unsigned int *)current_line;
  652. vert_pred = s->vert_pred;
  653. mb_change_index = 0;
  654. mb_change_byte = mb_change_bits[mb_change_index++];
  655. mb_change_byte_mask = 0x01;
  656. pixels_left = s->avctx->width;
  657. while (pixels_left > 0) {
  658. if (keyframe || ((mb_change_byte & mb_change_byte_mask) == 0)) {
  659. switch (y & 3) {
  660. case 0:
  661. /* if macroblock width is 2, apply C-Y-C-Y; else
  662. * apply C-Y-Y */
  663. if (s->block_width == 2) {
  664. APPLY_C_PREDICTOR_24();
  665. APPLY_Y_PREDICTOR_24();
  666. OUTPUT_PIXEL_PAIR();
  667. APPLY_C_PREDICTOR_24();
  668. APPLY_Y_PREDICTOR_24();
  669. OUTPUT_PIXEL_PAIR();
  670. } else {
  671. APPLY_C_PREDICTOR_24();
  672. APPLY_Y_PREDICTOR_24();
  673. OUTPUT_PIXEL_PAIR();
  674. APPLY_Y_PREDICTOR_24();
  675. OUTPUT_PIXEL_PAIR();
  676. }
  677. break;
  678. case 1:
  679. case 3:
  680. /* always apply 2 Y predictors on these iterations */
  681. APPLY_Y_PREDICTOR_24();
  682. OUTPUT_PIXEL_PAIR();
  683. APPLY_Y_PREDICTOR_24();
  684. OUTPUT_PIXEL_PAIR();
  685. break;
  686. case 2:
  687. /* this iteration might be C-Y-C-Y, Y-Y, or C-Y-Y
  688. * depending on the macroblock type */
  689. if (s->block_type == BLOCK_2x2) {
  690. APPLY_C_PREDICTOR_24();
  691. APPLY_Y_PREDICTOR_24();
  692. OUTPUT_PIXEL_PAIR();
  693. APPLY_C_PREDICTOR_24();
  694. APPLY_Y_PREDICTOR_24();
  695. OUTPUT_PIXEL_PAIR();
  696. } else if (s->block_type == BLOCK_4x2) {
  697. APPLY_C_PREDICTOR_24();
  698. APPLY_Y_PREDICTOR_24();
  699. OUTPUT_PIXEL_PAIR();
  700. APPLY_Y_PREDICTOR_24();
  701. OUTPUT_PIXEL_PAIR();
  702. } else {
  703. APPLY_Y_PREDICTOR_24();
  704. OUTPUT_PIXEL_PAIR();
  705. APPLY_Y_PREDICTOR_24();
  706. OUTPUT_PIXEL_PAIR();
  707. }
  708. break;
  709. }
  710. } else {
  711. /* skip (copy) four pixels, but reassign the horizontal
  712. * predictor */
  713. *vert_pred++ = *current_pixel_pair++;
  714. horiz_pred = *current_pixel_pair - *vert_pred;
  715. *vert_pred++ = *current_pixel_pair++;
  716. }
  717. if (!keyframe) {
  718. mb_change_byte_mask <<= 1;
  719. /* next byte */
  720. if (!mb_change_byte_mask) {
  721. mb_change_byte = mb_change_bits[mb_change_index++];
  722. mb_change_byte_mask = 0x01;
  723. }
  724. }
  725. pixels_left -= 2;
  726. }
  727. /* next change row */
  728. if (((y + 1) & 3) == 0)
  729. mb_change_bits += s->mb_change_bits_row_size;
  730. current_line += s->frame->linesize[0];
  731. }
  732. }
  733. static int truemotion1_decode_frame(AVCodecContext *avctx,
  734. void *data, int *got_frame,
  735. AVPacket *avpkt)
  736. {
  737. const uint8_t *buf = avpkt->data;
  738. int ret, buf_size = avpkt->size;
  739. TrueMotion1Context *s = avctx->priv_data;
  740. s->buf = buf;
  741. s->size = buf_size;
  742. if ((ret = truemotion1_decode_header(s)) < 0)
  743. return ret;
  744. if ((ret = ff_reget_buffer(avctx, s->frame)) < 0) {
  745. av_log(s->avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  746. return ret;
  747. }
  748. if (compression_types[s->compression].algorithm == ALGO_RGB24H) {
  749. truemotion1_decode_24bit(s);
  750. } else if (compression_types[s->compression].algorithm != ALGO_NOP) {
  751. truemotion1_decode_16bit(s);
  752. }
  753. if ((ret = av_frame_ref(data, s->frame)) < 0)
  754. return ret;
  755. *got_frame = 1;
  756. /* report that the buffer was completely consumed */
  757. return buf_size;
  758. }
  759. static av_cold int truemotion1_decode_end(AVCodecContext *avctx)
  760. {
  761. TrueMotion1Context *s = avctx->priv_data;
  762. av_frame_free(&s->frame);
  763. av_free(s->vert_pred);
  764. return 0;
  765. }
  766. AVCodec ff_truemotion1_decoder = {
  767. .name = "truemotion1",
  768. .long_name = NULL_IF_CONFIG_SMALL("Duck TrueMotion 1.0"),
  769. .type = AVMEDIA_TYPE_VIDEO,
  770. .id = AV_CODEC_ID_TRUEMOTION1,
  771. .priv_data_size = sizeof(TrueMotion1Context),
  772. .init = truemotion1_decode_init,
  773. .close = truemotion1_decode_end,
  774. .decode = truemotion1_decode_frame,
  775. .capabilities = AV_CODEC_CAP_DR1,
  776. };