You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1595 lines
57KB

  1. /*
  2. * Copyright (c) 2003 The Libav Project
  3. *
  4. * This file is part of Libav.
  5. *
  6. * Libav is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * Libav is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with Libav; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. /*
  21. * How to use this decoder:
  22. * SVQ3 data is transported within Apple Quicktime files. Quicktime files
  23. * have stsd atoms to describe media trak properties. A stsd atom for a
  24. * video trak contains 1 or more ImageDescription atoms. These atoms begin
  25. * with the 4-byte length of the atom followed by the codec fourcc. Some
  26. * decoders need information in this atom to operate correctly. Such
  27. * is the case with SVQ3. In order to get the best use out of this decoder,
  28. * the calling app must make the SVQ3 ImageDescription atom available
  29. * via the AVCodecContext's extradata[_size] field:
  30. *
  31. * AVCodecContext.extradata = pointer to ImageDescription, first characters
  32. * are expected to be 'S', 'V', 'Q', and '3', NOT the 4-byte atom length
  33. * AVCodecContext.extradata_size = size of ImageDescription atom memory
  34. * buffer (which will be the same as the ImageDescription atom size field
  35. * from the QT file, minus 4 bytes since the length is missing)
  36. *
  37. * You will know you have these parameters passed correctly when the decoder
  38. * correctly decodes this file:
  39. * http://samples.libav.org/V-codecs/SVQ3/Vertical400kbit.sorenson3.mov
  40. */
  41. #include <inttypes.h>
  42. #include "libavutil/attributes.h"
  43. #include "bitstream.h"
  44. #include "golomb.h"
  45. #include "internal.h"
  46. #include "avcodec.h"
  47. #include "mpegutils.h"
  48. #include "h264dec.h"
  49. #include "h264data.h"
  50. #include "hpeldsp.h"
  51. #include "mathops.h"
  52. #include "rectangle.h"
  53. #include "tpeldsp.h"
  54. #if CONFIG_ZLIB
  55. #include <zlib.h>
  56. #endif
  57. #include "svq1.h"
  58. /**
  59. * @file
  60. * svq3 decoder.
  61. */
  62. typedef struct SVQ3Frame {
  63. AVFrame *f;
  64. AVBufferRef *motion_val_buf[2];
  65. int16_t (*motion_val[2])[2];
  66. AVBufferRef *mb_type_buf;
  67. uint32_t *mb_type;
  68. AVBufferRef *ref_index_buf[2];
  69. int8_t *ref_index[2];
  70. } SVQ3Frame;
  71. typedef struct SVQ3Context {
  72. AVCodecContext *avctx;
  73. H264DSPContext h264dsp;
  74. H264PredContext hpc;
  75. HpelDSPContext hdsp;
  76. TpelDSPContext tdsp;
  77. VideoDSPContext vdsp;
  78. SVQ3Frame *cur_pic;
  79. SVQ3Frame *next_pic;
  80. SVQ3Frame *last_pic;
  81. BitstreamContext bc;
  82. BitstreamContext bc_slice;
  83. uint8_t *slice_buf;
  84. int slice_size;
  85. int halfpel_flag;
  86. int thirdpel_flag;
  87. int unknown_flag;
  88. uint32_t watermark_key;
  89. int adaptive_quant;
  90. int next_p_frame_damaged;
  91. int h_edge_pos;
  92. int v_edge_pos;
  93. int last_frame_output;
  94. int slice_num;
  95. int qscale;
  96. int cbp;
  97. int frame_num;
  98. int frame_num_offset;
  99. int prev_frame_num_offset;
  100. int prev_frame_num;
  101. enum AVPictureType pict_type;
  102. int low_delay;
  103. int mb_x, mb_y;
  104. int mb_xy;
  105. int mb_width, mb_height;
  106. int mb_stride, mb_num;
  107. int b_stride;
  108. uint32_t *mb2br_xy;
  109. int chroma_pred_mode;
  110. int intra16x16_pred_mode;
  111. int8_t intra4x4_pred_mode_cache[5 * 8];
  112. int8_t (*intra4x4_pred_mode);
  113. unsigned int top_samples_available;
  114. unsigned int topright_samples_available;
  115. unsigned int left_samples_available;
  116. uint8_t *edge_emu_buffer;
  117. DECLARE_ALIGNED(16, int16_t, mv_cache)[2][5 * 8][2];
  118. DECLARE_ALIGNED(8, int8_t, ref_cache)[2][5 * 8];
  119. DECLARE_ALIGNED(16, int16_t, mb)[16 * 48 * 2];
  120. DECLARE_ALIGNED(16, int16_t, mb_luma_dc)[3][16 * 2];
  121. DECLARE_ALIGNED(8, uint8_t, non_zero_count_cache)[15 * 8];
  122. uint32_t dequant4_coeff[QP_MAX_NUM + 1][16];
  123. int block_offset[2 * (16 * 3)];
  124. } SVQ3Context;
  125. #define FULLPEL_MODE 1
  126. #define HALFPEL_MODE 2
  127. #define THIRDPEL_MODE 3
  128. #define PREDICT_MODE 4
  129. /* dual scan (from some older H.264 draft)
  130. * o-->o-->o o
  131. * | /|
  132. * o o o / o
  133. * | / | |/ |
  134. * o o o o
  135. * /
  136. * o-->o-->o-->o
  137. */
  138. static const uint8_t svq3_scan[16] = {
  139. 0 + 0 * 4, 1 + 0 * 4, 2 + 0 * 4, 2 + 1 * 4,
  140. 2 + 2 * 4, 3 + 0 * 4, 3 + 1 * 4, 3 + 2 * 4,
  141. 0 + 1 * 4, 0 + 2 * 4, 1 + 1 * 4, 1 + 2 * 4,
  142. 0 + 3 * 4, 1 + 3 * 4, 2 + 3 * 4, 3 + 3 * 4,
  143. };
  144. static const uint8_t luma_dc_zigzag_scan[16] = {
  145. 0 * 16 + 0 * 64, 1 * 16 + 0 * 64, 2 * 16 + 0 * 64, 0 * 16 + 2 * 64,
  146. 3 * 16 + 0 * 64, 0 * 16 + 1 * 64, 1 * 16 + 1 * 64, 2 * 16 + 1 * 64,
  147. 1 * 16 + 2 * 64, 2 * 16 + 2 * 64, 3 * 16 + 2 * 64, 0 * 16 + 3 * 64,
  148. 3 * 16 + 1 * 64, 1 * 16 + 3 * 64, 2 * 16 + 3 * 64, 3 * 16 + 3 * 64,
  149. };
  150. static const uint8_t svq3_pred_0[25][2] = {
  151. { 0, 0 },
  152. { 1, 0 }, { 0, 1 },
  153. { 0, 2 }, { 1, 1 }, { 2, 0 },
  154. { 3, 0 }, { 2, 1 }, { 1, 2 }, { 0, 3 },
  155. { 0, 4 }, { 1, 3 }, { 2, 2 }, { 3, 1 }, { 4, 0 },
  156. { 4, 1 }, { 3, 2 }, { 2, 3 }, { 1, 4 },
  157. { 2, 4 }, { 3, 3 }, { 4, 2 },
  158. { 4, 3 }, { 3, 4 },
  159. { 4, 4 }
  160. };
  161. static const int8_t svq3_pred_1[6][6][5] = {
  162. { { 2, -1, -1, -1, -1 }, { 2, 1, -1, -1, -1 }, { 1, 2, -1, -1, -1 },
  163. { 2, 1, -1, -1, -1 }, { 1, 2, -1, -1, -1 }, { 1, 2, -1, -1, -1 } },
  164. { { 0, 2, -1, -1, -1 }, { 0, 2, 1, 4, 3 }, { 0, 1, 2, 4, 3 },
  165. { 0, 2, 1, 4, 3 }, { 2, 0, 1, 3, 4 }, { 0, 4, 2, 1, 3 } },
  166. { { 2, 0, -1, -1, -1 }, { 2, 1, 0, 4, 3 }, { 1, 2, 4, 0, 3 },
  167. { 2, 1, 0, 4, 3 }, { 2, 1, 4, 3, 0 }, { 1, 2, 4, 0, 3 } },
  168. { { 2, 0, -1, -1, -1 }, { 2, 0, 1, 4, 3 }, { 1, 2, 0, 4, 3 },
  169. { 2, 1, 0, 4, 3 }, { 2, 1, 3, 4, 0 }, { 2, 4, 1, 0, 3 } },
  170. { { 0, 2, -1, -1, -1 }, { 0, 2, 1, 3, 4 }, { 1, 2, 3, 0, 4 },
  171. { 2, 0, 1, 3, 4 }, { 2, 1, 3, 0, 4 }, { 2, 0, 4, 3, 1 } },
  172. { { 0, 2, -1, -1, -1 }, { 0, 2, 4, 1, 3 }, { 1, 4, 2, 0, 3 },
  173. { 4, 2, 0, 1, 3 }, { 2, 0, 1, 4, 3 }, { 4, 2, 1, 0, 3 } },
  174. };
  175. static const struct {
  176. uint8_t run;
  177. uint8_t level;
  178. } svq3_dct_tables[2][16] = {
  179. { { 0, 0 }, { 0, 1 }, { 1, 1 }, { 2, 1 }, { 0, 2 }, { 3, 1 }, { 4, 1 }, { 5, 1 },
  180. { 0, 3 }, { 1, 2 }, { 2, 2 }, { 6, 1 }, { 7, 1 }, { 8, 1 }, { 9, 1 }, { 0, 4 } },
  181. { { 0, 0 }, { 0, 1 }, { 1, 1 }, { 0, 2 }, { 2, 1 }, { 0, 3 }, { 0, 4 }, { 0, 5 },
  182. { 3, 1 }, { 4, 1 }, { 1, 2 }, { 1, 3 }, { 0, 6 }, { 0, 7 }, { 0, 8 }, { 0, 9 } }
  183. };
  184. static const uint32_t svq3_dequant_coeff[32] = {
  185. 3881, 4351, 4890, 5481, 6154, 6914, 7761, 8718,
  186. 9781, 10987, 12339, 13828, 15523, 17435, 19561, 21873,
  187. 24552, 27656, 30847, 34870, 38807, 43747, 49103, 54683,
  188. 61694, 68745, 77615, 89113, 100253, 109366, 126635, 141533
  189. };
  190. static void svq3_luma_dc_dequant_idct_c(int16_t *output, int16_t *input, int qp)
  191. {
  192. const int qmul = svq3_dequant_coeff[qp];
  193. #define stride 16
  194. int i;
  195. int temp[16];
  196. static const uint8_t x_offset[4] = { 0, 1 * stride, 4 * stride, 5 * stride };
  197. for (i = 0; i < 4; i++) {
  198. const int z0 = 13 * (input[4 * i + 0] + input[4 * i + 2]);
  199. const int z1 = 13 * (input[4 * i + 0] - input[4 * i + 2]);
  200. const int z2 = 7 * input[4 * i + 1] - 17 * input[4 * i + 3];
  201. const int z3 = 17 * input[4 * i + 1] + 7 * input[4 * i + 3];
  202. temp[4 * i + 0] = z0 + z3;
  203. temp[4 * i + 1] = z1 + z2;
  204. temp[4 * i + 2] = z1 - z2;
  205. temp[4 * i + 3] = z0 - z3;
  206. }
  207. for (i = 0; i < 4; i++) {
  208. const int offset = x_offset[i];
  209. const int z0 = 13 * (temp[4 * 0 + i] + temp[4 * 2 + i]);
  210. const int z1 = 13 * (temp[4 * 0 + i] - temp[4 * 2 + i]);
  211. const int z2 = 7 * temp[4 * 1 + i] - 17 * temp[4 * 3 + i];
  212. const int z3 = 17 * temp[4 * 1 + i] + 7 * temp[4 * 3 + i];
  213. output[stride * 0 + offset] = (z0 + z3) * qmul + 0x80000 >> 20;
  214. output[stride * 2 + offset] = (z1 + z2) * qmul + 0x80000 >> 20;
  215. output[stride * 8 + offset] = (z1 - z2) * qmul + 0x80000 >> 20;
  216. output[stride * 10 + offset] = (z0 - z3) * qmul + 0x80000 >> 20;
  217. }
  218. }
  219. #undef stride
  220. static void svq3_add_idct_c(uint8_t *dst, int16_t *block,
  221. int stride, int qp, int dc)
  222. {
  223. const int qmul = svq3_dequant_coeff[qp];
  224. int i;
  225. if (dc) {
  226. dc = 13 * 13 * (dc == 1 ? 1538 * block[0]
  227. : qmul * (block[0] >> 3) / 2);
  228. block[0] = 0;
  229. }
  230. for (i = 0; i < 4; i++) {
  231. const int z0 = 13 * (block[0 + 4 * i] + block[2 + 4 * i]);
  232. const int z1 = 13 * (block[0 + 4 * i] - block[2 + 4 * i]);
  233. const int z2 = 7 * block[1 + 4 * i] - 17 * block[3 + 4 * i];
  234. const int z3 = 17 * block[1 + 4 * i] + 7 * block[3 + 4 * i];
  235. block[0 + 4 * i] = z0 + z3;
  236. block[1 + 4 * i] = z1 + z2;
  237. block[2 + 4 * i] = z1 - z2;
  238. block[3 + 4 * i] = z0 - z3;
  239. }
  240. for (i = 0; i < 4; i++) {
  241. const int z0 = 13 * (block[i + 4 * 0] + block[i + 4 * 2]);
  242. const int z1 = 13 * (block[i + 4 * 0] - block[i + 4 * 2]);
  243. const int z2 = 7 * block[i + 4 * 1] - 17 * block[i + 4 * 3];
  244. const int z3 = 17 * block[i + 4 * 1] + 7 * block[i + 4 * 3];
  245. const int rr = (dc + 0x80000);
  246. dst[i + stride * 0] = av_clip_uint8(dst[i + stride * 0] + ((z0 + z3) * qmul + rr >> 20));
  247. dst[i + stride * 1] = av_clip_uint8(dst[i + stride * 1] + ((z1 + z2) * qmul + rr >> 20));
  248. dst[i + stride * 2] = av_clip_uint8(dst[i + stride * 2] + ((z1 - z2) * qmul + rr >> 20));
  249. dst[i + stride * 3] = av_clip_uint8(dst[i + stride * 3] + ((z0 - z3) * qmul + rr >> 20));
  250. }
  251. memset(block, 0, 16 * sizeof(int16_t));
  252. }
  253. static inline int svq3_decode_block(BitstreamContext *bc, int16_t *block,
  254. int index, const int type)
  255. {
  256. static const uint8_t *const scan_patterns[4] = {
  257. luma_dc_zigzag_scan, ff_zigzag_scan, svq3_scan, ff_h264_chroma_dc_scan
  258. };
  259. int run, level, limit;
  260. unsigned vlc;
  261. const int intra = 3 * type >> 2;
  262. const uint8_t *const scan = scan_patterns[type];
  263. for (limit = (16 >> intra); index < 16; index = limit, limit += 8) {
  264. for (; (vlc = get_interleaved_ue_golomb(bc)) != 0; index++) {
  265. int sign = (vlc & 1) ? 0 : -1;
  266. vlc = vlc + 1 >> 1;
  267. if (type == 3) {
  268. if (vlc < 3) {
  269. run = 0;
  270. level = vlc;
  271. } else if (vlc < 4) {
  272. run = 1;
  273. level = 1;
  274. } else {
  275. run = vlc & 0x3;
  276. level = (vlc + 9 >> 2) - run;
  277. }
  278. } else {
  279. if (vlc < 16) {
  280. run = svq3_dct_tables[intra][vlc].run;
  281. level = svq3_dct_tables[intra][vlc].level;
  282. } else if (intra) {
  283. run = vlc & 0x7;
  284. level = (vlc >> 3) +
  285. ((run == 0) ? 8 : ((run < 2) ? 2 : ((run < 5) ? 0 : -1)));
  286. } else {
  287. run = vlc & 0xF;
  288. level = (vlc >> 4) +
  289. ((run == 0) ? 4 : ((run < 3) ? 2 : ((run < 10) ? 1 : 0)));
  290. }
  291. }
  292. if ((index += run) >= limit)
  293. return -1;
  294. block[scan[index]] = (level ^ sign) - sign;
  295. }
  296. if (type != 2) {
  297. break;
  298. }
  299. }
  300. return 0;
  301. }
  302. static av_always_inline int
  303. svq3_fetch_diagonal_mv(const SVQ3Context *s, const int16_t **C,
  304. int i, int list, int part_width)
  305. {
  306. const int topright_ref = s->ref_cache[list][i - 8 + part_width];
  307. if (topright_ref != PART_NOT_AVAILABLE) {
  308. *C = s->mv_cache[list][i - 8 + part_width];
  309. return topright_ref;
  310. } else {
  311. *C = s->mv_cache[list][i - 8 - 1];
  312. return s->ref_cache[list][i - 8 - 1];
  313. }
  314. }
  315. /**
  316. * Get the predicted MV.
  317. * @param n the block index
  318. * @param part_width the width of the partition (4, 8,16) -> (1, 2, 4)
  319. * @param mx the x component of the predicted motion vector
  320. * @param my the y component of the predicted motion vector
  321. */
  322. static av_always_inline void svq3_pred_motion(const SVQ3Context *s, int n,
  323. int part_width, int list,
  324. int ref, int *const mx, int *const my)
  325. {
  326. const int index8 = scan8[n];
  327. const int top_ref = s->ref_cache[list][index8 - 8];
  328. const int left_ref = s->ref_cache[list][index8 - 1];
  329. const int16_t *const A = s->mv_cache[list][index8 - 1];
  330. const int16_t *const B = s->mv_cache[list][index8 - 8];
  331. const int16_t *C;
  332. int diagonal_ref, match_count;
  333. /* mv_cache
  334. * B . . A T T T T
  335. * U . . L . . , .
  336. * U . . L . . . .
  337. * U . . L . . , .
  338. * . . . L . . . .
  339. */
  340. diagonal_ref = svq3_fetch_diagonal_mv(s, &C, index8, list, part_width);
  341. match_count = (diagonal_ref == ref) + (top_ref == ref) + (left_ref == ref);
  342. if (match_count > 1) { //most common
  343. *mx = mid_pred(A[0], B[0], C[0]);
  344. *my = mid_pred(A[1], B[1], C[1]);
  345. } else if (match_count == 1) {
  346. if (left_ref == ref) {
  347. *mx = A[0];
  348. *my = A[1];
  349. } else if (top_ref == ref) {
  350. *mx = B[0];
  351. *my = B[1];
  352. } else {
  353. *mx = C[0];
  354. *my = C[1];
  355. }
  356. } else {
  357. if (top_ref == PART_NOT_AVAILABLE &&
  358. diagonal_ref == PART_NOT_AVAILABLE &&
  359. left_ref != PART_NOT_AVAILABLE) {
  360. *mx = A[0];
  361. *my = A[1];
  362. } else {
  363. *mx = mid_pred(A[0], B[0], C[0]);
  364. *my = mid_pred(A[1], B[1], C[1]);
  365. }
  366. }
  367. }
  368. static inline void svq3_mc_dir_part(SVQ3Context *s,
  369. int x, int y, int width, int height,
  370. int mx, int my, int dxy,
  371. int thirdpel, int dir, int avg)
  372. {
  373. const SVQ3Frame *pic = (dir == 0) ? s->last_pic : s->next_pic;
  374. uint8_t *src, *dest;
  375. int i, emu = 0;
  376. int blocksize = 2 - (width >> 3); // 16->0, 8->1, 4->2
  377. int linesize = s->cur_pic->f->linesize[0];
  378. int uvlinesize = s->cur_pic->f->linesize[1];
  379. mx += x;
  380. my += y;
  381. if (mx < 0 || mx >= s->h_edge_pos - width - 1 ||
  382. my < 0 || my >= s->v_edge_pos - height - 1) {
  383. emu = 1;
  384. mx = av_clip(mx, -16, s->h_edge_pos - width + 15);
  385. my = av_clip(my, -16, s->v_edge_pos - height + 15);
  386. }
  387. /* form component predictions */
  388. dest = s->cur_pic->f->data[0] + x + y * linesize;
  389. src = pic->f->data[0] + mx + my * linesize;
  390. if (emu) {
  391. s->vdsp.emulated_edge_mc(s->edge_emu_buffer, src,
  392. linesize, linesize,
  393. width + 1, height + 1,
  394. mx, my, s->h_edge_pos, s->v_edge_pos);
  395. src = s->edge_emu_buffer;
  396. }
  397. if (thirdpel)
  398. (avg ? s->tdsp.avg_tpel_pixels_tab
  399. : s->tdsp.put_tpel_pixels_tab)[dxy](dest, src, linesize,
  400. width, height);
  401. else
  402. (avg ? s->hdsp.avg_pixels_tab
  403. : s->hdsp.put_pixels_tab)[blocksize][dxy](dest, src, linesize,
  404. height);
  405. if (!(s->avctx->flags & AV_CODEC_FLAG_GRAY)) {
  406. mx = mx + (mx < (int) x) >> 1;
  407. my = my + (my < (int) y) >> 1;
  408. width = width >> 1;
  409. height = height >> 1;
  410. blocksize++;
  411. for (i = 1; i < 3; i++) {
  412. dest = s->cur_pic->f->data[i] + (x >> 1) + (y >> 1) * uvlinesize;
  413. src = pic->f->data[i] + mx + my * uvlinesize;
  414. if (emu) {
  415. s->vdsp.emulated_edge_mc(s->edge_emu_buffer, src,
  416. uvlinesize, uvlinesize,
  417. width + 1, height + 1,
  418. mx, my, (s->h_edge_pos >> 1),
  419. s->v_edge_pos >> 1);
  420. src = s->edge_emu_buffer;
  421. }
  422. if (thirdpel)
  423. (avg ? s->tdsp.avg_tpel_pixels_tab
  424. : s->tdsp.put_tpel_pixels_tab)[dxy](dest, src,
  425. uvlinesize,
  426. width, height);
  427. else
  428. (avg ? s->hdsp.avg_pixels_tab
  429. : s->hdsp.put_pixels_tab)[blocksize][dxy](dest, src,
  430. uvlinesize,
  431. height);
  432. }
  433. }
  434. }
  435. static inline int svq3_mc_dir(SVQ3Context *s, int size, int mode,
  436. int dir, int avg)
  437. {
  438. int i, j, k, mx, my, dx, dy, x, y;
  439. const int part_width = ((size & 5) == 4) ? 4 : 16 >> (size & 1);
  440. const int part_height = 16 >> ((unsigned)(size + 1) / 3);
  441. const int extra_width = (mode == PREDICT_MODE) ? -16 * 6 : 0;
  442. const int h_edge_pos = 6 * (s->h_edge_pos - part_width) - extra_width;
  443. const int v_edge_pos = 6 * (s->v_edge_pos - part_height) - extra_width;
  444. for (i = 0; i < 16; i += part_height)
  445. for (j = 0; j < 16; j += part_width) {
  446. const int b_xy = (4 * s->mb_x + (j >> 2)) +
  447. (4 * s->mb_y + (i >> 2)) * s->b_stride;
  448. int dxy;
  449. x = 16 * s->mb_x + j;
  450. y = 16 * s->mb_y + i;
  451. k = (j >> 2 & 1) + (i >> 1 & 2) +
  452. (j >> 1 & 4) + (i & 8);
  453. if (mode != PREDICT_MODE) {
  454. svq3_pred_motion(s, k, part_width >> 2, dir, 1, &mx, &my);
  455. } else {
  456. mx = s->next_pic->motion_val[0][b_xy][0] << 1;
  457. my = s->next_pic->motion_val[0][b_xy][1] << 1;
  458. if (dir == 0) {
  459. mx = mx * s->frame_num_offset /
  460. s->prev_frame_num_offset + 1 >> 1;
  461. my = my * s->frame_num_offset /
  462. s->prev_frame_num_offset + 1 >> 1;
  463. } else {
  464. mx = mx * (s->frame_num_offset - s->prev_frame_num_offset) /
  465. s->prev_frame_num_offset + 1 >> 1;
  466. my = my * (s->frame_num_offset - s->prev_frame_num_offset) /
  467. s->prev_frame_num_offset + 1 >> 1;
  468. }
  469. }
  470. /* clip motion vector prediction to frame border */
  471. mx = av_clip(mx, extra_width - 6 * x, h_edge_pos - 6 * x);
  472. my = av_clip(my, extra_width - 6 * y, v_edge_pos - 6 * y);
  473. /* get (optional) motion vector differential */
  474. if (mode == PREDICT_MODE) {
  475. dx = dy = 0;
  476. } else {
  477. dy = get_interleaved_se_golomb(&s->bc_slice);
  478. dx = get_interleaved_se_golomb(&s->bc_slice);
  479. if (dx == INVALID_VLC || dy == INVALID_VLC) {
  480. av_log(s->avctx, AV_LOG_ERROR, "invalid MV vlc\n");
  481. return -1;
  482. }
  483. }
  484. /* compute motion vector */
  485. if (mode == THIRDPEL_MODE) {
  486. int fx, fy;
  487. mx = (mx + 1 >> 1) + dx;
  488. my = (my + 1 >> 1) + dy;
  489. fx = (unsigned)(mx + 0x3000) / 3 - 0x1000;
  490. fy = (unsigned)(my + 0x3000) / 3 - 0x1000;
  491. dxy = (mx - 3 * fx) + 4 * (my - 3 * fy);
  492. svq3_mc_dir_part(s, x, y, part_width, part_height,
  493. fx, fy, dxy, 1, dir, avg);
  494. mx += mx;
  495. my += my;
  496. } else if (mode == HALFPEL_MODE || mode == PREDICT_MODE) {
  497. mx = (unsigned)(mx + 1 + 0x3000) / 3 + dx - 0x1000;
  498. my = (unsigned)(my + 1 + 0x3000) / 3 + dy - 0x1000;
  499. dxy = (mx & 1) + 2 * (my & 1);
  500. svq3_mc_dir_part(s, x, y, part_width, part_height,
  501. mx >> 1, my >> 1, dxy, 0, dir, avg);
  502. mx *= 3;
  503. my *= 3;
  504. } else {
  505. mx = (unsigned)(mx + 3 + 0x6000) / 6 + dx - 0x1000;
  506. my = (unsigned)(my + 3 + 0x6000) / 6 + dy - 0x1000;
  507. svq3_mc_dir_part(s, x, y, part_width, part_height,
  508. mx, my, 0, 0, dir, avg);
  509. mx *= 6;
  510. my *= 6;
  511. }
  512. /* update mv_cache */
  513. if (mode != PREDICT_MODE) {
  514. int32_t mv = pack16to32(mx, my);
  515. if (part_height == 8 && i < 8) {
  516. AV_WN32A(s->mv_cache[dir][scan8[k] + 1 * 8], mv);
  517. if (part_width == 8 && j < 8)
  518. AV_WN32A(s->mv_cache[dir][scan8[k] + 1 + 1 * 8], mv);
  519. }
  520. if (part_width == 8 && j < 8)
  521. AV_WN32A(s->mv_cache[dir][scan8[k] + 1], mv);
  522. if (part_width == 4 || part_height == 4)
  523. AV_WN32A(s->mv_cache[dir][scan8[k]], mv);
  524. }
  525. /* write back motion vectors */
  526. fill_rectangle(s->cur_pic->motion_val[dir][b_xy],
  527. part_width >> 2, part_height >> 2, s->b_stride,
  528. pack16to32(mx, my), 4);
  529. }
  530. return 0;
  531. }
  532. static av_always_inline void hl_decode_mb_idct_luma(SVQ3Context *s,
  533. int mb_type, const int *block_offset,
  534. int linesize, uint8_t *dest_y)
  535. {
  536. int i;
  537. if (!IS_INTRA4x4(mb_type)) {
  538. for (i = 0; i < 16; i++)
  539. if (s->non_zero_count_cache[scan8[i]] || s->mb[i * 16]) {
  540. uint8_t *const ptr = dest_y + block_offset[i];
  541. svq3_add_idct_c(ptr, s->mb + i * 16, linesize,
  542. s->qscale, IS_INTRA(mb_type) ? 1 : 0);
  543. }
  544. }
  545. }
  546. static av_always_inline void hl_decode_mb_predict_luma(SVQ3Context *s,
  547. int mb_type,
  548. const int *block_offset,
  549. int linesize,
  550. uint8_t *dest_y)
  551. {
  552. int i;
  553. int qscale = s->qscale;
  554. if (IS_INTRA4x4(mb_type)) {
  555. for (i = 0; i < 16; i++) {
  556. uint8_t *const ptr = dest_y + block_offset[i];
  557. const int dir = s->intra4x4_pred_mode_cache[scan8[i]];
  558. uint8_t *topright;
  559. int nnz, tr;
  560. if (dir == DIAG_DOWN_LEFT_PRED || dir == VERT_LEFT_PRED) {
  561. const int topright_avail = (s->topright_samples_available << i) & 0x8000;
  562. assert(s->mb_y || linesize <= block_offset[i]);
  563. if (!topright_avail) {
  564. tr = ptr[3 - linesize] * 0x01010101u;
  565. topright = (uint8_t *)&tr;
  566. } else
  567. topright = ptr + 4 - linesize;
  568. } else
  569. topright = NULL;
  570. s->hpc.pred4x4[dir](ptr, topright, linesize);
  571. nnz = s->non_zero_count_cache[scan8[i]];
  572. if (nnz) {
  573. svq3_add_idct_c(ptr, s->mb + i * 16, linesize, qscale, 0);
  574. }
  575. }
  576. } else {
  577. s->hpc.pred16x16[s->intra16x16_pred_mode](dest_y, linesize);
  578. svq3_luma_dc_dequant_idct_c(s->mb, s->mb_luma_dc[0], qscale);
  579. }
  580. }
  581. static void hl_decode_mb(SVQ3Context *s)
  582. {
  583. const int mb_x = s->mb_x;
  584. const int mb_y = s->mb_y;
  585. const int mb_xy = s->mb_xy;
  586. const int mb_type = s->cur_pic->mb_type[mb_xy];
  587. uint8_t *dest_y, *dest_cb, *dest_cr;
  588. int linesize, uvlinesize;
  589. int i, j;
  590. const int *block_offset = &s->block_offset[0];
  591. const int block_h = 16 >> 1;
  592. linesize = s->cur_pic->f->linesize[0];
  593. uvlinesize = s->cur_pic->f->linesize[1];
  594. dest_y = s->cur_pic->f->data[0] + (mb_x + mb_y * linesize) * 16;
  595. dest_cb = s->cur_pic->f->data[1] + mb_x * 8 + mb_y * uvlinesize * block_h;
  596. dest_cr = s->cur_pic->f->data[2] + mb_x * 8 + mb_y * uvlinesize * block_h;
  597. s->vdsp.prefetch(dest_y + (s->mb_x & 3) * 4 * linesize + 64, linesize, 4);
  598. s->vdsp.prefetch(dest_cb + (s->mb_x & 7) * uvlinesize + 64, dest_cr - dest_cb, 2);
  599. if (IS_INTRA(mb_type)) {
  600. s->hpc.pred8x8[s->chroma_pred_mode](dest_cb, uvlinesize);
  601. s->hpc.pred8x8[s->chroma_pred_mode](dest_cr, uvlinesize);
  602. hl_decode_mb_predict_luma(s, mb_type, block_offset, linesize, dest_y);
  603. }
  604. hl_decode_mb_idct_luma(s, mb_type, block_offset, linesize, dest_y);
  605. if (s->cbp & 0x30) {
  606. uint8_t *dest[2] = { dest_cb, dest_cr };
  607. s->h264dsp.h264_chroma_dc_dequant_idct(s->mb + 16 * 16 * 1,
  608. s->dequant4_coeff[4][0]);
  609. s->h264dsp.h264_chroma_dc_dequant_idct(s->mb + 16 * 16 * 2,
  610. s->dequant4_coeff[4][0]);
  611. for (j = 1; j < 3; j++) {
  612. for (i = j * 16; i < j * 16 + 4; i++)
  613. if (s->non_zero_count_cache[scan8[i]] || s->mb[i * 16]) {
  614. uint8_t *const ptr = dest[j - 1] + block_offset[i];
  615. svq3_add_idct_c(ptr, s->mb + i * 16,
  616. uvlinesize, ff_h264_chroma_qp[0][s->qscale + 12] - 12, 2);
  617. }
  618. }
  619. }
  620. }
  621. static int svq3_decode_mb(SVQ3Context *s, unsigned int mb_type)
  622. {
  623. int i, j, k, m, dir, mode;
  624. int cbp = 0;
  625. uint32_t vlc;
  626. int8_t *top, *left;
  627. const int mb_xy = s->mb_xy;
  628. const int b_xy = 4 * s->mb_x + 4 * s->mb_y * s->b_stride;
  629. s->top_samples_available = (s->mb_y == 0) ? 0x33FF : 0xFFFF;
  630. s->left_samples_available = (s->mb_x == 0) ? 0x5F5F : 0xFFFF;
  631. s->topright_samples_available = 0xFFFF;
  632. if (mb_type == 0) { /* SKIP */
  633. if (s->pict_type == AV_PICTURE_TYPE_P ||
  634. s->next_pic->mb_type[mb_xy] == -1) {
  635. svq3_mc_dir_part(s, 16 * s->mb_x, 16 * s->mb_y, 16, 16,
  636. 0, 0, 0, 0, 0, 0);
  637. if (s->pict_type == AV_PICTURE_TYPE_B)
  638. svq3_mc_dir_part(s, 16 * s->mb_x, 16 * s->mb_y, 16, 16,
  639. 0, 0, 0, 0, 1, 1);
  640. mb_type = MB_TYPE_SKIP;
  641. } else {
  642. mb_type = FFMIN(s->next_pic->mb_type[mb_xy], 6);
  643. if (svq3_mc_dir(s, mb_type, PREDICT_MODE, 0, 0) < 0)
  644. return -1;
  645. if (svq3_mc_dir(s, mb_type, PREDICT_MODE, 1, 1) < 0)
  646. return -1;
  647. mb_type = MB_TYPE_16x16;
  648. }
  649. } else if (mb_type < 8) { /* INTER */
  650. if (s->thirdpel_flag && s->halfpel_flag == !bitstream_read_bit(&s->bc_slice))
  651. mode = THIRDPEL_MODE;
  652. else if (s->halfpel_flag &&
  653. s->thirdpel_flag == !bitstream_read_bit(&s->bc_slice))
  654. mode = HALFPEL_MODE;
  655. else
  656. mode = FULLPEL_MODE;
  657. /* fill caches */
  658. /* note ref_cache should contain here:
  659. * ????????
  660. * ???11111
  661. * N??11111
  662. * N??11111
  663. * N??11111
  664. */
  665. for (m = 0; m < 2; m++) {
  666. if (s->mb_x > 0 && s->intra4x4_pred_mode[s->mb2br_xy[mb_xy - 1] + 6] != -1) {
  667. for (i = 0; i < 4; i++)
  668. AV_COPY32(s->mv_cache[m][scan8[0] - 1 + i * 8],
  669. s->cur_pic->motion_val[m][b_xy - 1 + i * s->b_stride]);
  670. } else {
  671. for (i = 0; i < 4; i++)
  672. AV_ZERO32(s->mv_cache[m][scan8[0] - 1 + i * 8]);
  673. }
  674. if (s->mb_y > 0) {
  675. memcpy(s->mv_cache[m][scan8[0] - 1 * 8],
  676. s->cur_pic->motion_val[m][b_xy - s->b_stride],
  677. 4 * 2 * sizeof(int16_t));
  678. memset(&s->ref_cache[m][scan8[0] - 1 * 8],
  679. (s->intra4x4_pred_mode[s->mb2br_xy[mb_xy - s->mb_stride]] == -1) ? PART_NOT_AVAILABLE : 1, 4);
  680. if (s->mb_x < s->mb_width - 1) {
  681. AV_COPY32(s->mv_cache[m][scan8[0] + 4 - 1 * 8],
  682. s->cur_pic->motion_val[m][b_xy - s->b_stride + 4]);
  683. s->ref_cache[m][scan8[0] + 4 - 1 * 8] =
  684. (s->intra4x4_pred_mode[s->mb2br_xy[mb_xy - s->mb_stride + 1] + 6] == -1 ||
  685. s->intra4x4_pred_mode[s->mb2br_xy[mb_xy - s->mb_stride]] == -1) ? PART_NOT_AVAILABLE : 1;
  686. } else
  687. s->ref_cache[m][scan8[0] + 4 - 1 * 8] = PART_NOT_AVAILABLE;
  688. if (s->mb_x > 0) {
  689. AV_COPY32(s->mv_cache[m][scan8[0] - 1 - 1 * 8],
  690. s->cur_pic->motion_val[m][b_xy - s->b_stride - 1]);
  691. s->ref_cache[m][scan8[0] - 1 - 1 * 8] =
  692. (s->intra4x4_pred_mode[s->mb2br_xy[mb_xy - s->mb_stride - 1] + 3] == -1) ? PART_NOT_AVAILABLE : 1;
  693. } else
  694. s->ref_cache[m][scan8[0] - 1 - 1 * 8] = PART_NOT_AVAILABLE;
  695. } else
  696. memset(&s->ref_cache[m][scan8[0] - 1 * 8 - 1],
  697. PART_NOT_AVAILABLE, 8);
  698. if (s->pict_type != AV_PICTURE_TYPE_B)
  699. break;
  700. }
  701. /* decode motion vector(s) and form prediction(s) */
  702. if (s->pict_type == AV_PICTURE_TYPE_P) {
  703. if (svq3_mc_dir(s, mb_type - 1, mode, 0, 0) < 0)
  704. return -1;
  705. } else { /* AV_PICTURE_TYPE_B */
  706. if (mb_type != 2) {
  707. if (svq3_mc_dir(s, 0, mode, 0, 0) < 0)
  708. return -1;
  709. } else {
  710. for (i = 0; i < 4; i++)
  711. memset(s->cur_pic->motion_val[0][b_xy + i * s->b_stride],
  712. 0, 4 * 2 * sizeof(int16_t));
  713. }
  714. if (mb_type != 1) {
  715. if (svq3_mc_dir(s, 0, mode, 1, mb_type == 3) < 0)
  716. return -1;
  717. } else {
  718. for (i = 0; i < 4; i++)
  719. memset(s->cur_pic->motion_val[1][b_xy + i * s->b_stride],
  720. 0, 4 * 2 * sizeof(int16_t));
  721. }
  722. }
  723. mb_type = MB_TYPE_16x16;
  724. } else if (mb_type == 8 || mb_type == 33) { /* INTRA4x4 */
  725. int8_t *i4x4 = s->intra4x4_pred_mode + s->mb2br_xy[s->mb_xy];
  726. int8_t *i4x4_cache = s->intra4x4_pred_mode_cache;
  727. memset(s->intra4x4_pred_mode_cache, -1, 8 * 5 * sizeof(int8_t));
  728. if (mb_type == 8) {
  729. if (s->mb_x > 0) {
  730. for (i = 0; i < 4; i++)
  731. s->intra4x4_pred_mode_cache[scan8[0] - 1 + i * 8] = s->intra4x4_pred_mode[s->mb2br_xy[mb_xy - 1] + 6 - i];
  732. if (s->intra4x4_pred_mode_cache[scan8[0] - 1] == -1)
  733. s->left_samples_available = 0x5F5F;
  734. }
  735. if (s->mb_y > 0) {
  736. s->intra4x4_pred_mode_cache[4 + 8 * 0] = s->intra4x4_pred_mode[s->mb2br_xy[mb_xy - s->mb_stride] + 0];
  737. s->intra4x4_pred_mode_cache[5 + 8 * 0] = s->intra4x4_pred_mode[s->mb2br_xy[mb_xy - s->mb_stride] + 1];
  738. s->intra4x4_pred_mode_cache[6 + 8 * 0] = s->intra4x4_pred_mode[s->mb2br_xy[mb_xy - s->mb_stride] + 2];
  739. s->intra4x4_pred_mode_cache[7 + 8 * 0] = s->intra4x4_pred_mode[s->mb2br_xy[mb_xy - s->mb_stride] + 3];
  740. if (s->intra4x4_pred_mode_cache[4 + 8 * 0] == -1)
  741. s->top_samples_available = 0x33FF;
  742. }
  743. /* decode prediction codes for luma blocks */
  744. for (i = 0; i < 16; i += 2) {
  745. vlc = get_interleaved_ue_golomb(&s->bc_slice);
  746. if (vlc >= 25) {
  747. av_log(s->avctx, AV_LOG_ERROR,
  748. "luma prediction:%"PRIu32"\n", vlc);
  749. return -1;
  750. }
  751. left = &s->intra4x4_pred_mode_cache[scan8[i] - 1];
  752. top = &s->intra4x4_pred_mode_cache[scan8[i] - 8];
  753. left[1] = svq3_pred_1[top[0] + 1][left[0] + 1][svq3_pred_0[vlc][0]];
  754. left[2] = svq3_pred_1[top[1] + 1][left[1] + 1][svq3_pred_0[vlc][1]];
  755. if (left[1] == -1 || left[2] == -1) {
  756. av_log(s->avctx, AV_LOG_ERROR, "weird prediction\n");
  757. return -1;
  758. }
  759. }
  760. } else { /* mb_type == 33, DC_128_PRED block type */
  761. for (i = 0; i < 4; i++)
  762. memset(&s->intra4x4_pred_mode_cache[scan8[0] + 8 * i], DC_PRED, 4);
  763. }
  764. AV_COPY32(i4x4, i4x4_cache + 4 + 8 * 4);
  765. i4x4[4] = i4x4_cache[7 + 8 * 3];
  766. i4x4[5] = i4x4_cache[7 + 8 * 2];
  767. i4x4[6] = i4x4_cache[7 + 8 * 1];
  768. if (mb_type == 8) {
  769. ff_h264_check_intra4x4_pred_mode(s->intra4x4_pred_mode_cache,
  770. s->avctx, s->top_samples_available,
  771. s->left_samples_available);
  772. s->top_samples_available = (s->mb_y == 0) ? 0x33FF : 0xFFFF;
  773. s->left_samples_available = (s->mb_x == 0) ? 0x5F5F : 0xFFFF;
  774. } else {
  775. for (i = 0; i < 4; i++)
  776. memset(&s->intra4x4_pred_mode_cache[scan8[0] + 8 * i], DC_128_PRED, 4);
  777. s->top_samples_available = 0x33FF;
  778. s->left_samples_available = 0x5F5F;
  779. }
  780. mb_type = MB_TYPE_INTRA4x4;
  781. } else { /* INTRA16x16 */
  782. dir = ff_h264_i_mb_type_info[mb_type - 8].pred_mode;
  783. dir = (dir >> 1) ^ 3 * (dir & 1) ^ 1;
  784. if ((s->intra16x16_pred_mode = ff_h264_check_intra_pred_mode(s->avctx, s->top_samples_available,
  785. s->left_samples_available, dir, 0)) < 0) {
  786. av_log(s->avctx, AV_LOG_ERROR, "ff_h264_check_intra_pred_mode < 0\n");
  787. return s->intra16x16_pred_mode;
  788. }
  789. cbp = ff_h264_i_mb_type_info[mb_type - 8].cbp;
  790. mb_type = MB_TYPE_INTRA16x16;
  791. }
  792. if (!IS_INTER(mb_type) && s->pict_type != AV_PICTURE_TYPE_I) {
  793. for (i = 0; i < 4; i++)
  794. memset(s->cur_pic->motion_val[0][b_xy + i * s->b_stride],
  795. 0, 4 * 2 * sizeof(int16_t));
  796. if (s->pict_type == AV_PICTURE_TYPE_B) {
  797. for (i = 0; i < 4; i++)
  798. memset(s->cur_pic->motion_val[1][b_xy + i * s->b_stride],
  799. 0, 4 * 2 * sizeof(int16_t));
  800. }
  801. }
  802. if (!IS_INTRA4x4(mb_type)) {
  803. memset(s->intra4x4_pred_mode + s->mb2br_xy[mb_xy], DC_PRED, 8);
  804. }
  805. if (!IS_SKIP(mb_type) || s->pict_type == AV_PICTURE_TYPE_B) {
  806. memset(s->non_zero_count_cache + 8, 0, 14 * 8 * sizeof(uint8_t));
  807. }
  808. if (!IS_INTRA16x16(mb_type) &&
  809. (!IS_SKIP(mb_type) || s->pict_type == AV_PICTURE_TYPE_B)) {
  810. if ((vlc = get_interleaved_ue_golomb(&s->bc_slice)) >= 48) {
  811. av_log(s->avctx, AV_LOG_ERROR, "cbp_vlc=%"PRIu32"\n", vlc);
  812. return -1;
  813. }
  814. cbp = IS_INTRA(mb_type) ? ff_h264_golomb_to_intra4x4_cbp[vlc]
  815. : ff_h264_golomb_to_inter_cbp[vlc];
  816. }
  817. if (IS_INTRA16x16(mb_type) ||
  818. (s->pict_type != AV_PICTURE_TYPE_I && s->adaptive_quant && cbp)) {
  819. s->qscale += get_interleaved_se_golomb(&s->bc_slice);
  820. if (s->qscale > 31u) {
  821. av_log(s->avctx, AV_LOG_ERROR, "qscale:%d\n", s->qscale);
  822. return -1;
  823. }
  824. }
  825. if (IS_INTRA16x16(mb_type)) {
  826. AV_ZERO128(s->mb_luma_dc[0] + 0);
  827. AV_ZERO128(s->mb_luma_dc[0] + 8);
  828. if (svq3_decode_block(&s->bc_slice, s->mb_luma_dc[0], 0, 1)) {
  829. av_log(s->avctx, AV_LOG_ERROR,
  830. "error while decoding intra luma dc\n");
  831. return -1;
  832. }
  833. }
  834. if (cbp) {
  835. const int index = IS_INTRA16x16(mb_type) ? 1 : 0;
  836. const int type = ((s->qscale < 24 && IS_INTRA4x4(mb_type)) ? 2 : 1);
  837. for (i = 0; i < 4; i++)
  838. if ((cbp & (1 << i))) {
  839. for (j = 0; j < 4; j++) {
  840. k = index ? (1 * (j & 1) + 2 * (i & 1) +
  841. 2 * (j & 2) + 4 * (i & 2))
  842. : (4 * i + j);
  843. s->non_zero_count_cache[scan8[k]] = 1;
  844. if (svq3_decode_block(&s->bc_slice, &s->mb[16 * k], index, type)) {
  845. av_log(s->avctx, AV_LOG_ERROR,
  846. "error while decoding block\n");
  847. return -1;
  848. }
  849. }
  850. }
  851. if ((cbp & 0x30)) {
  852. for (i = 1; i < 3; ++i)
  853. if (svq3_decode_block(&s->bc_slice, &s->mb[16 * 16 * i], 0, 3)) {
  854. av_log(s->avctx, AV_LOG_ERROR,
  855. "error while decoding chroma dc block\n");
  856. return -1;
  857. }
  858. if ((cbp & 0x20)) {
  859. for (i = 1; i < 3; i++) {
  860. for (j = 0; j < 4; j++) {
  861. k = 16 * i + j;
  862. s->non_zero_count_cache[scan8[k]] = 1;
  863. if (svq3_decode_block(&s->bc_slice, &s->mb[16 * k], 1, 1)) {
  864. av_log(s->avctx, AV_LOG_ERROR,
  865. "error while decoding chroma ac block\n");
  866. return -1;
  867. }
  868. }
  869. }
  870. }
  871. }
  872. }
  873. s->cbp = cbp;
  874. s->cur_pic->mb_type[mb_xy] = mb_type;
  875. if (IS_INTRA(mb_type))
  876. s->chroma_pred_mode = ff_h264_check_intra_pred_mode(s->avctx, s->top_samples_available,
  877. s->left_samples_available, DC_PRED8x8, 1);
  878. return 0;
  879. }
  880. static int svq3_decode_slice_header(AVCodecContext *avctx)
  881. {
  882. SVQ3Context *s = avctx->priv_data;
  883. const int mb_xy = s->mb_xy;
  884. int i, header;
  885. unsigned slice_id;
  886. header = bitstream_read(&s->bc, 8);
  887. if (((header & 0x9F) != 1 && (header & 0x9F) != 2) || (header & 0x60) == 0) {
  888. /* TODO: what? */
  889. av_log(avctx, AV_LOG_ERROR, "unsupported slice header (%02X)\n", header);
  890. return -1;
  891. } else {
  892. int slice_bits, slice_bytes, slice_length;
  893. int length = header >> 5 & 3;
  894. slice_length = bitstream_peek(&s->bc, 8 * length);
  895. slice_bits = slice_length * 8;
  896. slice_bytes = slice_length + length - 1;
  897. bitstream_skip(&s->bc, 8);
  898. av_fast_malloc(&s->slice_buf, &s->slice_size, slice_bytes + AV_INPUT_BUFFER_PADDING_SIZE);
  899. if (!s->slice_buf)
  900. return AVERROR(ENOMEM);
  901. if (slice_bytes * 8 > bitstream_bits_left(&s->bc)) {
  902. av_log(avctx, AV_LOG_ERROR, "slice after bitstream end\n");
  903. return AVERROR_INVALIDDATA;
  904. }
  905. memcpy(s->slice_buf, s->bc.buffer + bitstream_tell(&s->bc) / 8, slice_bytes);
  906. if (s->watermark_key) {
  907. uint32_t header = AV_RL32(&s->bc_slice.buffer[1]);
  908. AV_WL32(&s->bc_slice.buffer[1], header ^ s->watermark_key);
  909. }
  910. if (length > 0) {
  911. memcpy(s->slice_buf, &s->slice_buf[slice_length], length - 1);
  912. }
  913. bitstream_skip(&s->bc, slice_bytes * 8);
  914. bitstream_init(&s->bc_slice, s->slice_buf, slice_bits);
  915. }
  916. if ((slice_id = get_interleaved_ue_golomb(&s->bc_slice)) >= 3) {
  917. av_log(s->avctx, AV_LOG_ERROR, "illegal slice type %u \n", slice_id);
  918. return -1;
  919. }
  920. s->pict_type = ff_h264_golomb_to_pict_type[slice_id];
  921. if ((header & 0x9F) == 2) {
  922. i = (s->mb_num < 64) ? 6 : (1 + av_log2(s->mb_num - 1));
  923. bitstream_read(&s->bc_slice, i);
  924. } else {
  925. bitstream_skip(&s->bc_slice, 1);
  926. }
  927. s->slice_num = bitstream_read(&s->bc_slice, 8);
  928. s->qscale = bitstream_read(&s->bc_slice, 5);
  929. s->adaptive_quant = bitstream_read_bit(&s->bc_slice);
  930. /* unknown fields */
  931. bitstream_skip(&s->bc_slice, 1);
  932. if (s->unknown_flag)
  933. bitstream_skip(&s->bc_slice, 1);
  934. bitstream_skip(&s->bc_slice, 1);
  935. bitstream_skip(&s->bc_slice, 2);
  936. while (bitstream_read_bit(&s->bc_slice))
  937. bitstream_skip(&s->bc_slice, 8);
  938. /* reset intra predictors and invalidate motion vector references */
  939. if (s->mb_x > 0) {
  940. memset(s->intra4x4_pred_mode + s->mb2br_xy[mb_xy - 1] + 3,
  941. -1, 4 * sizeof(int8_t));
  942. memset(s->intra4x4_pred_mode + s->mb2br_xy[mb_xy - s->mb_x],
  943. -1, 8 * sizeof(int8_t) * s->mb_x);
  944. }
  945. if (s->mb_y > 0) {
  946. memset(s->intra4x4_pred_mode + s->mb2br_xy[mb_xy - s->mb_stride],
  947. -1, 8 * sizeof(int8_t) * (s->mb_width - s->mb_x));
  948. if (s->mb_x > 0)
  949. s->intra4x4_pred_mode[s->mb2br_xy[mb_xy - s->mb_stride - 1] + 3] = -1;
  950. }
  951. return 0;
  952. }
  953. static void init_dequant4_coeff_table(SVQ3Context *s)
  954. {
  955. int q, x;
  956. const int max_qp = 51;
  957. for (q = 0; q < max_qp + 1; q++) {
  958. int shift = ff_h264_quant_div6[q] + 2;
  959. int idx = ff_h264_quant_rem6[q];
  960. for (x = 0; x < 16; x++)
  961. s->dequant4_coeff[q][(x >> 2) | ((x << 2) & 0xF)] =
  962. ((uint32_t)ff_h264_dequant4_coeff_init[idx][(x & 1) + ((x >> 2) & 1)] * 16) << shift;
  963. }
  964. }
  965. static av_cold int svq3_decode_init(AVCodecContext *avctx)
  966. {
  967. SVQ3Context *s = avctx->priv_data;
  968. int m, x, y;
  969. unsigned char *extradata;
  970. unsigned char *extradata_end;
  971. unsigned int size;
  972. int marker_found = 0;
  973. s->cur_pic = av_mallocz(sizeof(*s->cur_pic));
  974. s->last_pic = av_mallocz(sizeof(*s->last_pic));
  975. s->next_pic = av_mallocz(sizeof(*s->next_pic));
  976. if (!s->next_pic || !s->last_pic || !s->cur_pic) {
  977. av_freep(&s->cur_pic);
  978. av_freep(&s->last_pic);
  979. av_freep(&s->next_pic);
  980. return AVERROR(ENOMEM);
  981. }
  982. s->cur_pic->f = av_frame_alloc();
  983. s->last_pic->f = av_frame_alloc();
  984. s->next_pic->f = av_frame_alloc();
  985. if (!s->cur_pic->f || !s->last_pic->f || !s->next_pic->f)
  986. return AVERROR(ENOMEM);
  987. ff_h264dsp_init(&s->h264dsp, 8, 1);
  988. ff_h264_pred_init(&s->hpc, AV_CODEC_ID_SVQ3, 8, 1);
  989. ff_videodsp_init(&s->vdsp, 8);
  990. ff_hpeldsp_init(&s->hdsp, avctx->flags);
  991. ff_tpeldsp_init(&s->tdsp);
  992. avctx->pix_fmt = AV_PIX_FMT_YUVJ420P;
  993. avctx->color_range = AVCOL_RANGE_JPEG;
  994. s->avctx = avctx;
  995. s->halfpel_flag = 1;
  996. s->thirdpel_flag = 1;
  997. s->unknown_flag = 0;
  998. /* prowl for the "SEQH" marker in the extradata */
  999. extradata = (unsigned char *)avctx->extradata;
  1000. extradata_end = avctx->extradata + avctx->extradata_size;
  1001. if (extradata) {
  1002. for (m = 0; m + 8 < avctx->extradata_size; m++) {
  1003. if (!memcmp(extradata, "SEQH", 4)) {
  1004. marker_found = 1;
  1005. break;
  1006. }
  1007. extradata++;
  1008. }
  1009. }
  1010. /* if a match was found, parse the extra data */
  1011. if (marker_found) {
  1012. BitstreamContext bc;
  1013. int frame_size_code;
  1014. size = AV_RB32(&extradata[4]);
  1015. if (size > extradata_end - extradata - 8)
  1016. return AVERROR_INVALIDDATA;
  1017. bitstream_init8(&bc, extradata + 8, size);
  1018. /* 'frame size code' and optional 'width, height' */
  1019. frame_size_code = bitstream_read(&bc, 3);
  1020. switch (frame_size_code) {
  1021. case 0:
  1022. avctx->width = 160;
  1023. avctx->height = 120;
  1024. break;
  1025. case 1:
  1026. avctx->width = 128;
  1027. avctx->height = 96;
  1028. break;
  1029. case 2:
  1030. avctx->width = 176;
  1031. avctx->height = 144;
  1032. break;
  1033. case 3:
  1034. avctx->width = 352;
  1035. avctx->height = 288;
  1036. break;
  1037. case 4:
  1038. avctx->width = 704;
  1039. avctx->height = 576;
  1040. break;
  1041. case 5:
  1042. avctx->width = 240;
  1043. avctx->height = 180;
  1044. break;
  1045. case 6:
  1046. avctx->width = 320;
  1047. avctx->height = 240;
  1048. break;
  1049. case 7:
  1050. avctx->width = bitstream_read(&bc, 12);
  1051. avctx->height = bitstream_read(&bc, 12);
  1052. break;
  1053. }
  1054. s->halfpel_flag = bitstream_read_bit(&bc);
  1055. s->thirdpel_flag = bitstream_read_bit(&bc);
  1056. /* unknown fields */
  1057. bitstream_skip(&bc, 1);
  1058. bitstream_skip(&bc, 1);
  1059. bitstream_skip(&bc, 1);
  1060. bitstream_skip(&bc, 1);
  1061. s->low_delay = bitstream_read_bit(&bc);
  1062. /* unknown field */
  1063. bitstream_skip(&bc, 1);
  1064. while (bitstream_read_bit(&bc))
  1065. bitstream_skip(&bc, 8);
  1066. s->unknown_flag = bitstream_read_bit(&bc);
  1067. avctx->has_b_frames = !s->low_delay;
  1068. if (s->unknown_flag) {
  1069. #if CONFIG_ZLIB
  1070. unsigned watermark_width = get_interleaved_ue_golomb(&bc);
  1071. unsigned watermark_height = get_interleaved_ue_golomb(&bc);
  1072. int u1 = get_interleaved_ue_golomb(&bc);
  1073. int u2 = bitstream_read(&bc, 8);
  1074. int u3 = bitstream_read(&bc, 2);
  1075. int u4 = get_interleaved_ue_golomb(&bc);
  1076. unsigned long buf_len = watermark_width *
  1077. watermark_height * 4;
  1078. int offset = bitstream_tell(&bc) + 7 >> 3;
  1079. uint8_t *buf;
  1080. if (watermark_height > 0 &&
  1081. (uint64_t)watermark_width * 4 > UINT_MAX / watermark_height)
  1082. return -1;
  1083. buf = av_malloc(buf_len);
  1084. av_log(avctx, AV_LOG_DEBUG, "watermark size: %ux%u\n",
  1085. watermark_width, watermark_height);
  1086. av_log(avctx, AV_LOG_DEBUG,
  1087. "u1: %x u2: %x u3: %x compressed data size: %d offset: %d\n",
  1088. u1, u2, u3, u4, offset);
  1089. if (uncompress(buf, &buf_len, extradata + 8 + offset,
  1090. size - offset) != Z_OK) {
  1091. av_log(avctx, AV_LOG_ERROR,
  1092. "could not uncompress watermark logo\n");
  1093. av_free(buf);
  1094. return -1;
  1095. }
  1096. s->watermark_key = ff_svq1_packet_checksum(buf, buf_len, 0);
  1097. s->watermark_key = s->watermark_key << 16 | s->watermark_key;
  1098. av_log(avctx, AV_LOG_DEBUG,
  1099. "watermark key %#"PRIx32"\n", s->watermark_key);
  1100. av_free(buf);
  1101. #else
  1102. av_log(avctx, AV_LOG_ERROR,
  1103. "this svq3 file contains watermark which need zlib support compiled in\n");
  1104. return -1;
  1105. #endif
  1106. }
  1107. }
  1108. s->mb_width = (avctx->width + 15) / 16;
  1109. s->mb_height = (avctx->height + 15) / 16;
  1110. s->mb_stride = s->mb_width + 1;
  1111. s->mb_num = s->mb_width * s->mb_height;
  1112. s->b_stride = 4 * s->mb_width;
  1113. s->h_edge_pos = s->mb_width * 16;
  1114. s->v_edge_pos = s->mb_height * 16;
  1115. s->intra4x4_pred_mode = av_mallocz(s->mb_stride * 2 * 8);
  1116. if (!s->intra4x4_pred_mode)
  1117. return AVERROR(ENOMEM);
  1118. s->mb2br_xy = av_mallocz(s->mb_stride * (s->mb_height + 1) *
  1119. sizeof(*s->mb2br_xy));
  1120. if (!s->mb2br_xy)
  1121. return AVERROR(ENOMEM);
  1122. for (y = 0; y < s->mb_height; y++)
  1123. for (x = 0; x < s->mb_width; x++) {
  1124. const int mb_xy = x + y * s->mb_stride;
  1125. s->mb2br_xy[mb_xy] = 8 * (mb_xy % (2 * s->mb_stride));
  1126. }
  1127. init_dequant4_coeff_table(s);
  1128. return 0;
  1129. }
  1130. static void free_picture(AVCodecContext *avctx, SVQ3Frame *pic)
  1131. {
  1132. int i;
  1133. for (i = 0; i < 2; i++) {
  1134. av_buffer_unref(&pic->motion_val_buf[i]);
  1135. av_buffer_unref(&pic->ref_index_buf[i]);
  1136. }
  1137. av_buffer_unref(&pic->mb_type_buf);
  1138. av_frame_unref(pic->f);
  1139. }
  1140. static int get_buffer(AVCodecContext *avctx, SVQ3Frame *pic)
  1141. {
  1142. SVQ3Context *s = avctx->priv_data;
  1143. const int big_mb_num = s->mb_stride * (s->mb_height + 1) + 1;
  1144. const int mb_array_size = s->mb_stride * s->mb_height;
  1145. const int b4_stride = s->mb_width * 4 + 1;
  1146. const int b4_array_size = b4_stride * s->mb_height * 4;
  1147. int ret;
  1148. if (!pic->motion_val_buf[0]) {
  1149. int i;
  1150. pic->mb_type_buf = av_buffer_allocz((big_mb_num + s->mb_stride) * sizeof(uint32_t));
  1151. if (!pic->mb_type_buf)
  1152. return AVERROR(ENOMEM);
  1153. pic->mb_type = (uint32_t*)pic->mb_type_buf->data + 2 * s->mb_stride + 1;
  1154. for (i = 0; i < 2; i++) {
  1155. pic->motion_val_buf[i] = av_buffer_allocz(2 * (b4_array_size + 4) * sizeof(int16_t));
  1156. pic->ref_index_buf[i] = av_buffer_allocz(4 * mb_array_size);
  1157. if (!pic->motion_val_buf[i] || !pic->ref_index_buf[i]) {
  1158. ret = AVERROR(ENOMEM);
  1159. goto fail;
  1160. }
  1161. pic->motion_val[i] = (int16_t (*)[2])pic->motion_val_buf[i]->data + 4;
  1162. pic->ref_index[i] = pic->ref_index_buf[i]->data;
  1163. }
  1164. }
  1165. ret = ff_get_buffer(avctx, pic->f,
  1166. (s->pict_type != AV_PICTURE_TYPE_B) ?
  1167. AV_GET_BUFFER_FLAG_REF : 0);
  1168. if (ret < 0)
  1169. goto fail;
  1170. if (!s->edge_emu_buffer) {
  1171. s->edge_emu_buffer = av_mallocz(pic->f->linesize[0] * 17);
  1172. if (!s->edge_emu_buffer)
  1173. return AVERROR(ENOMEM);
  1174. }
  1175. return 0;
  1176. fail:
  1177. free_picture(avctx, pic);
  1178. return ret;
  1179. }
  1180. static int svq3_decode_frame(AVCodecContext *avctx, void *data,
  1181. int *got_frame, AVPacket *avpkt)
  1182. {
  1183. const uint8_t *buf = avpkt->data;
  1184. SVQ3Context *s = avctx->priv_data;
  1185. int buf_size = avpkt->size;
  1186. int ret, m, i;
  1187. /* special case for last picture */
  1188. if (buf_size == 0) {
  1189. if (s->next_pic->f->data[0] && !s->low_delay && !s->last_frame_output) {
  1190. ret = av_frame_ref(data, s->next_pic->f);
  1191. if (ret < 0)
  1192. return ret;
  1193. s->last_frame_output = 1;
  1194. *got_frame = 1;
  1195. }
  1196. return 0;
  1197. }
  1198. ret = bitstream_init8(&s->bc, buf, buf_size);
  1199. if (ret < 0)
  1200. return ret;
  1201. s->mb_x = s->mb_y = s->mb_xy = 0;
  1202. if (svq3_decode_slice_header(avctx))
  1203. return -1;
  1204. if (s->pict_type != AV_PICTURE_TYPE_B)
  1205. FFSWAP(SVQ3Frame*, s->next_pic, s->last_pic);
  1206. av_frame_unref(s->cur_pic->f);
  1207. /* for skipping the frame */
  1208. s->cur_pic->f->pict_type = s->pict_type;
  1209. s->cur_pic->f->key_frame = (s->pict_type == AV_PICTURE_TYPE_I);
  1210. ret = get_buffer(avctx, s->cur_pic);
  1211. if (ret < 0)
  1212. return ret;
  1213. for (i = 0; i < 16; i++) {
  1214. s->block_offset[i] = (4 * ((scan8[i] - scan8[0]) & 7)) + 4 * s->cur_pic->f->linesize[0] * ((scan8[i] - scan8[0]) >> 3);
  1215. s->block_offset[48 + i] = (4 * ((scan8[i] - scan8[0]) & 7)) + 8 * s->cur_pic->f->linesize[0] * ((scan8[i] - scan8[0]) >> 3);
  1216. }
  1217. for (i = 0; i < 16; i++) {
  1218. s->block_offset[16 + i] =
  1219. s->block_offset[32 + i] = (4 * ((scan8[i] - scan8[0]) & 7)) + 4 * s->cur_pic->f->linesize[1] * ((scan8[i] - scan8[0]) >> 3);
  1220. s->block_offset[48 + 16 + i] =
  1221. s->block_offset[48 + 32 + i] = (4 * ((scan8[i] - scan8[0]) & 7)) + 8 * s->cur_pic->f->linesize[1] * ((scan8[i] - scan8[0]) >> 3);
  1222. }
  1223. if (s->pict_type != AV_PICTURE_TYPE_I) {
  1224. if (!s->last_pic->f->data[0]) {
  1225. av_log(avctx, AV_LOG_ERROR, "Missing reference frame.\n");
  1226. ret = get_buffer(avctx, s->last_pic);
  1227. if (ret < 0)
  1228. return ret;
  1229. memset(s->last_pic->f->data[0], 0, avctx->height * s->last_pic->f->linesize[0]);
  1230. memset(s->last_pic->f->data[1], 0x80, (avctx->height / 2) *
  1231. s->last_pic->f->linesize[1]);
  1232. memset(s->last_pic->f->data[2], 0x80, (avctx->height / 2) *
  1233. s->last_pic->f->linesize[2]);
  1234. }
  1235. if (s->pict_type == AV_PICTURE_TYPE_B && !s->next_pic->f->data[0]) {
  1236. av_log(avctx, AV_LOG_ERROR, "Missing reference frame.\n");
  1237. ret = get_buffer(avctx, s->next_pic);
  1238. if (ret < 0)
  1239. return ret;
  1240. memset(s->next_pic->f->data[0], 0, avctx->height * s->next_pic->f->linesize[0]);
  1241. memset(s->next_pic->f->data[1], 0x80, (avctx->height / 2) *
  1242. s->next_pic->f->linesize[1]);
  1243. memset(s->next_pic->f->data[2], 0x80, (avctx->height / 2) *
  1244. s->next_pic->f->linesize[2]);
  1245. }
  1246. }
  1247. if (avctx->debug & FF_DEBUG_PICT_INFO)
  1248. av_log(s->avctx, AV_LOG_DEBUG,
  1249. "%c hpel:%d, tpel:%d aqp:%d qp:%d, slice_num:%02X\n",
  1250. av_get_picture_type_char(s->pict_type),
  1251. s->halfpel_flag, s->thirdpel_flag,
  1252. s->adaptive_quant, s->qscale, s->slice_num);
  1253. if (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type == AV_PICTURE_TYPE_B ||
  1254. avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type != AV_PICTURE_TYPE_I ||
  1255. avctx->skip_frame >= AVDISCARD_ALL)
  1256. return 0;
  1257. if (s->next_p_frame_damaged) {
  1258. if (s->pict_type == AV_PICTURE_TYPE_B)
  1259. return 0;
  1260. else
  1261. s->next_p_frame_damaged = 0;
  1262. }
  1263. if (s->pict_type == AV_PICTURE_TYPE_B) {
  1264. s->frame_num_offset = s->slice_num - s->prev_frame_num;
  1265. if (s->frame_num_offset < 0)
  1266. s->frame_num_offset += 256;
  1267. if (s->frame_num_offset == 0 ||
  1268. s->frame_num_offset >= s->prev_frame_num_offset) {
  1269. av_log(s->avctx, AV_LOG_ERROR, "error in B-frame picture id\n");
  1270. return -1;
  1271. }
  1272. } else {
  1273. s->prev_frame_num = s->frame_num;
  1274. s->frame_num = s->slice_num;
  1275. s->prev_frame_num_offset = s->frame_num - s->prev_frame_num;
  1276. if (s->prev_frame_num_offset < 0)
  1277. s->prev_frame_num_offset += 256;
  1278. }
  1279. for (m = 0; m < 2; m++) {
  1280. int i;
  1281. for (i = 0; i < 4; i++) {
  1282. int j;
  1283. for (j = -1; j < 4; j++)
  1284. s->ref_cache[m][scan8[0] + 8 * i + j] = 1;
  1285. if (i < 3)
  1286. s->ref_cache[m][scan8[0] + 8 * i + j] = PART_NOT_AVAILABLE;
  1287. }
  1288. }
  1289. for (s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  1290. for (s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  1291. unsigned mb_type;
  1292. s->mb_xy = s->mb_x + s->mb_y * s->mb_stride;
  1293. if ((bitstream_bits_left(&s->bc_slice)) <= 7) {
  1294. if (((bitstream_tell(&s->bc_slice) & 7) == 0 ||
  1295. bitstream_peek(&s->bc_slice, bitstream_bits_left(&s->bc_slice) & 7) == 0)) {
  1296. if (svq3_decode_slice_header(avctx))
  1297. return -1;
  1298. }
  1299. /* TODO: support s->mb_skip_run */
  1300. }
  1301. mb_type = get_interleaved_ue_golomb(&s->bc_slice);
  1302. if (s->pict_type == AV_PICTURE_TYPE_I)
  1303. mb_type += 8;
  1304. else if (s->pict_type == AV_PICTURE_TYPE_B && mb_type >= 4)
  1305. mb_type += 4;
  1306. if (mb_type > 33 || svq3_decode_mb(s, mb_type)) {
  1307. av_log(s->avctx, AV_LOG_ERROR,
  1308. "error while decoding MB %d %d\n", s->mb_x, s->mb_y);
  1309. return -1;
  1310. }
  1311. if (mb_type != 0)
  1312. hl_decode_mb(s);
  1313. if (s->pict_type != AV_PICTURE_TYPE_B && !s->low_delay)
  1314. s->cur_pic->mb_type[s->mb_x + s->mb_y * s->mb_stride] =
  1315. (s->pict_type == AV_PICTURE_TYPE_P && mb_type < 8) ? (mb_type - 1) : -1;
  1316. }
  1317. ff_draw_horiz_band(avctx, s->cur_pic->f,
  1318. s->last_pic->f->data[0] ? s->last_pic->f : NULL,
  1319. 16 * s->mb_y, 16, PICT_FRAME, 0,
  1320. s->low_delay);
  1321. }
  1322. if (s->pict_type == AV_PICTURE_TYPE_B || s->low_delay)
  1323. ret = av_frame_ref(data, s->cur_pic->f);
  1324. else if (s->last_pic->f->data[0])
  1325. ret = av_frame_ref(data, s->last_pic->f);
  1326. if (ret < 0)
  1327. return ret;
  1328. /* Do not output the last pic after seeking. */
  1329. if (s->last_pic->f->data[0] || s->low_delay)
  1330. *got_frame = 1;
  1331. if (s->pict_type != AV_PICTURE_TYPE_B) {
  1332. FFSWAP(SVQ3Frame*, s->cur_pic, s->next_pic);
  1333. } else {
  1334. av_frame_unref(s->cur_pic->f);
  1335. }
  1336. return buf_size;
  1337. }
  1338. static av_cold int svq3_decode_end(AVCodecContext *avctx)
  1339. {
  1340. SVQ3Context *s = avctx->priv_data;
  1341. free_picture(avctx, s->cur_pic);
  1342. free_picture(avctx, s->next_pic);
  1343. free_picture(avctx, s->last_pic);
  1344. av_frame_free(&s->cur_pic->f);
  1345. av_frame_free(&s->next_pic->f);
  1346. av_frame_free(&s->last_pic->f);
  1347. av_freep(&s->cur_pic);
  1348. av_freep(&s->next_pic);
  1349. av_freep(&s->last_pic);
  1350. av_freep(&s->slice_buf);
  1351. av_freep(&s->intra4x4_pred_mode);
  1352. av_freep(&s->edge_emu_buffer);
  1353. av_freep(&s->mb2br_xy);
  1354. return 0;
  1355. }
  1356. AVCodec ff_svq3_decoder = {
  1357. .name = "svq3",
  1358. .long_name = NULL_IF_CONFIG_SMALL("Sorenson Vector Quantizer 3 / Sorenson Video 3 / SVQ3"),
  1359. .type = AVMEDIA_TYPE_VIDEO,
  1360. .id = AV_CODEC_ID_SVQ3,
  1361. .priv_data_size = sizeof(SVQ3Context),
  1362. .init = svq3_decode_init,
  1363. .close = svq3_decode_end,
  1364. .decode = svq3_decode_frame,
  1365. .capabilities = AV_CODEC_CAP_DRAW_HORIZ_BAND |
  1366. AV_CODEC_CAP_DR1 |
  1367. AV_CODEC_CAP_DELAY,
  1368. .pix_fmts = (const enum AVPixelFormat[]) { AV_PIX_FMT_YUVJ420P,
  1369. AV_PIX_FMT_NONE},
  1370. };