You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

284 lines
9.2KB

  1. /*
  2. * SIPR decoder for the 16k mode
  3. *
  4. * Copyright (c) 2008 Vladimir Voroshilov
  5. * Copyright (c) 2009 Vitor Sessak
  6. *
  7. * This file is part of Libav.
  8. *
  9. * Libav is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * Libav is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with Libav; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. #include <math.h>
  24. #include "sipr.h"
  25. #include "libavutil/attributes.h"
  26. #include "libavutil/common.h"
  27. #include "libavutil/float_dsp.h"
  28. #include "libavutil/mathematics.h"
  29. #include "lsp.h"
  30. #include "celp_filters.h"
  31. #include "acelp_vectors.h"
  32. #include "acelp_pitch_delay.h"
  33. #include "acelp_filters.h"
  34. #include "celp_filters.h"
  35. #include "sipr16kdata.h"
  36. /**
  37. * Convert an lsf vector into an lsp vector.
  38. *
  39. * @param lsf input lsf vector
  40. * @param lsp output lsp vector
  41. */
  42. static void lsf2lsp(const float *lsf, double *lsp)
  43. {
  44. int i;
  45. for (i = 0; i < LP_FILTER_ORDER_16k; i++)
  46. lsp[i] = cosf(lsf[i]);
  47. }
  48. static void dequant(float *out, const int *idx, const float * const cbs[])
  49. {
  50. int i;
  51. for (i = 0; i < 4; i++)
  52. memcpy(out + 3*i, cbs[i] + 3*idx[i], 3*sizeof(float));
  53. memcpy(out + 12, cbs[4] + 4*idx[4], 4*sizeof(float));
  54. }
  55. static void lsf_decode_fp_16k(float* lsf_history, float* isp_new,
  56. const int* parm, int ma_pred)
  57. {
  58. int i;
  59. float isp_q[LP_FILTER_ORDER_16k];
  60. dequant(isp_q, parm, lsf_codebooks_16k);
  61. for (i = 0; i < LP_FILTER_ORDER_16k; i++) {
  62. isp_new[i] = (1 - qu[ma_pred]) * isp_q[i]
  63. + qu[ma_pred] * lsf_history[i]
  64. + mean_lsf_16k[i];
  65. }
  66. memcpy(lsf_history, isp_q, LP_FILTER_ORDER_16k * sizeof(float));
  67. }
  68. static int dec_delay3_1st(int index)
  69. {
  70. if (index < 390) {
  71. return index + 88;
  72. } else
  73. return 3 * index - 690;
  74. }
  75. static int dec_delay3_2nd(int index, int pit_min, int pit_max,
  76. int pitch_lag_prev)
  77. {
  78. if (index < 62) {
  79. int pitch_delay_min = av_clip(pitch_lag_prev - 10,
  80. pit_min, pit_max - 19);
  81. return 3 * pitch_delay_min + index - 2;
  82. } else
  83. return 3 * pitch_lag_prev;
  84. }
  85. static void postfilter(float *out_data, float* synth, float* iir_mem,
  86. float* filt_mem[2], float* mem_preemph)
  87. {
  88. float buf[30 + LP_FILTER_ORDER_16k];
  89. float *tmpbuf = buf + LP_FILTER_ORDER_16k;
  90. float s;
  91. int i;
  92. for (i = 0; i < LP_FILTER_ORDER_16k; i++)
  93. filt_mem[0][i] = iir_mem[i] * ff_pow_0_5[i];
  94. memcpy(tmpbuf - LP_FILTER_ORDER_16k, mem_preemph,
  95. LP_FILTER_ORDER_16k*sizeof(*buf));
  96. ff_celp_lp_synthesis_filterf(tmpbuf, filt_mem[1], synth, 30,
  97. LP_FILTER_ORDER_16k);
  98. memcpy(synth - LP_FILTER_ORDER_16k, mem_preemph,
  99. LP_FILTER_ORDER_16k * sizeof(*synth));
  100. ff_celp_lp_synthesis_filterf(synth, filt_mem[0], synth, 30,
  101. LP_FILTER_ORDER_16k);
  102. memcpy(out_data + 30 - LP_FILTER_ORDER_16k,
  103. synth + 30 - LP_FILTER_ORDER_16k,
  104. LP_FILTER_ORDER_16k * sizeof(*synth));
  105. ff_celp_lp_synthesis_filterf(out_data + 30, filt_mem[0],
  106. synth + 30, 2 * L_SUBFR_16k - 30,
  107. LP_FILTER_ORDER_16k);
  108. memcpy(mem_preemph, out_data + 2*L_SUBFR_16k - LP_FILTER_ORDER_16k,
  109. LP_FILTER_ORDER_16k * sizeof(*synth));
  110. FFSWAP(float *, filt_mem[0], filt_mem[1]);
  111. for (i = 0, s = 0; i < 30; i++, s += 1.0/30)
  112. out_data[i] = tmpbuf[i] + s * (synth[i] - tmpbuf[i]);
  113. }
  114. /**
  115. * Floating point version of ff_acelp_lp_decode().
  116. */
  117. static void acelp_lp_decodef(float *lp_1st, float *lp_2nd,
  118. const double *lsp_2nd, const double *lsp_prev)
  119. {
  120. double lsp_1st[LP_FILTER_ORDER_16k];
  121. int i;
  122. /* LSP values for first subframe (3.2.5 of G.729, Equation 24) */
  123. for (i = 0; i < LP_FILTER_ORDER_16k; i++)
  124. lsp_1st[i] = (lsp_2nd[i] + lsp_prev[i]) * 0.5;
  125. ff_acelp_lspd2lpc(lsp_1st, lp_1st, LP_FILTER_ORDER_16k >> 1);
  126. /* LSP values for second subframe (3.2.5 of G.729) */
  127. ff_acelp_lspd2lpc(lsp_2nd, lp_2nd, LP_FILTER_ORDER_16k >> 1);
  128. }
  129. /**
  130. * Floating point version of ff_acelp_decode_gain_code().
  131. */
  132. static float acelp_decode_gain_codef(float gain_corr_factor, const float *fc_v,
  133. float mr_energy, const float *quant_energy,
  134. const float *ma_prediction_coeff,
  135. int subframe_size, int ma_pred_order)
  136. {
  137. mr_energy += avpriv_scalarproduct_float_c(quant_energy, ma_prediction_coeff,
  138. ma_pred_order);
  139. mr_energy = gain_corr_factor * exp(M_LN10 / 20. * mr_energy) /
  140. sqrt((0.01 + avpriv_scalarproduct_float_c(fc_v, fc_v, subframe_size)));
  141. return mr_energy;
  142. }
  143. #define DIVIDE_BY_3(x) ((x) * 10923 >> 15)
  144. void ff_sipr_decode_frame_16k(SiprContext *ctx, SiprParameters *params,
  145. float *out_data)
  146. {
  147. int frame_size = SUBFRAME_COUNT_16k * L_SUBFR_16k;
  148. float *synth = ctx->synth_buf + LP_FILTER_ORDER_16k;
  149. float lsf_new[LP_FILTER_ORDER_16k];
  150. double lsp_new[LP_FILTER_ORDER_16k];
  151. float Az[2][LP_FILTER_ORDER_16k];
  152. float fixed_vector[L_SUBFR_16k];
  153. float pitch_fac, gain_code;
  154. int i;
  155. int pitch_delay_3x;
  156. float *excitation = ctx->excitation + 292;
  157. lsf_decode_fp_16k(ctx->lsf_history, lsf_new, params->vq_indexes,
  158. params->ma_pred_switch);
  159. ff_set_min_dist_lsf(lsf_new, LSFQ_DIFF_MIN / 2, LP_FILTER_ORDER_16k);
  160. lsf2lsp(lsf_new, lsp_new);
  161. acelp_lp_decodef(Az[0], Az[1], lsp_new, ctx->lsp_history_16k);
  162. memcpy(ctx->lsp_history_16k, lsp_new, LP_FILTER_ORDER_16k * sizeof(double));
  163. memcpy(synth - LP_FILTER_ORDER_16k, ctx->synth,
  164. LP_FILTER_ORDER_16k * sizeof(*synth));
  165. for (i = 0; i < SUBFRAME_COUNT_16k; i++) {
  166. int i_subfr = i * L_SUBFR_16k;
  167. AMRFixed f;
  168. float gain_corr_factor;
  169. int pitch_delay_int;
  170. int pitch_delay_frac;
  171. if (!i) {
  172. pitch_delay_3x = dec_delay3_1st(params->pitch_delay[i]);
  173. } else
  174. pitch_delay_3x = dec_delay3_2nd(params->pitch_delay[i],
  175. PITCH_MIN, PITCH_MAX,
  176. ctx->pitch_lag_prev);
  177. pitch_fac = gain_pitch_cb_16k[params->gp_index[i]];
  178. f.pitch_fac = FFMIN(pitch_fac, 1.0);
  179. f.pitch_lag = DIVIDE_BY_3(pitch_delay_3x+1);
  180. ctx->pitch_lag_prev = f.pitch_lag;
  181. pitch_delay_int = DIVIDE_BY_3(pitch_delay_3x + 2);
  182. pitch_delay_frac = pitch_delay_3x + 2 - 3*pitch_delay_int;
  183. ff_acelp_interpolatef(&excitation[i_subfr],
  184. &excitation[i_subfr] - pitch_delay_int + 1,
  185. sinc_win, 3, pitch_delay_frac + 1,
  186. LP_FILTER_ORDER, L_SUBFR_16k);
  187. memset(fixed_vector, 0, sizeof(fixed_vector));
  188. ff_decode_10_pulses_35bits(params->fc_indexes[i], &f,
  189. ff_fc_4pulses_8bits_tracks_13, 5, 4);
  190. ff_set_fixed_vector(fixed_vector, &f, 1.0, L_SUBFR_16k);
  191. gain_corr_factor = gain_cb_16k[params->gc_index[i]];
  192. gain_code = gain_corr_factor *
  193. acelp_decode_gain_codef(sqrt(L_SUBFR_16k), fixed_vector,
  194. 19.0 - 15.0/(0.05*M_LN10/M_LN2),
  195. pred_16k, ctx->energy_history,
  196. L_SUBFR_16k, 2);
  197. ctx->energy_history[1] = ctx->energy_history[0];
  198. ctx->energy_history[0] = 20.0 * log10f(gain_corr_factor);
  199. ff_weighted_vector_sumf(&excitation[i_subfr], &excitation[i_subfr],
  200. fixed_vector, pitch_fac,
  201. gain_code, L_SUBFR_16k);
  202. ff_celp_lp_synthesis_filterf(synth + i_subfr, Az[i],
  203. &excitation[i_subfr], L_SUBFR_16k,
  204. LP_FILTER_ORDER_16k);
  205. }
  206. memcpy(ctx->synth, synth + frame_size - LP_FILTER_ORDER_16k,
  207. LP_FILTER_ORDER_16k * sizeof(*synth));
  208. memmove(ctx->excitation, ctx->excitation + 2 * L_SUBFR_16k,
  209. (L_INTERPOL+PITCH_MAX) * sizeof(float));
  210. postfilter(out_data, synth, ctx->iir_mem, ctx->filt_mem, ctx->mem_preemph);
  211. memcpy(ctx->iir_mem, Az[1], LP_FILTER_ORDER_16k * sizeof(float));
  212. }
  213. av_cold void ff_sipr_init_16k(SiprContext *ctx)
  214. {
  215. int i;
  216. for (i = 0; i < LP_FILTER_ORDER_16k; i++)
  217. ctx->lsp_history_16k[i] = cos((i + 1) * M_PI/(LP_FILTER_ORDER_16k + 1));
  218. ctx->filt_mem[0] = ctx->filt_buf[0];
  219. ctx->filt_mem[1] = ctx->filt_buf[1];
  220. ctx->pitch_lag_prev = 180;
  221. }