You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

584 lines
23KB

  1. /*
  2. * RV40 decoder
  3. * Copyright (c) 2007 Konstantin Shishkov
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * RV40 decoder
  24. */
  25. #include "libavutil/imgutils.h"
  26. #include "avcodec.h"
  27. #include "golomb_legacy.h"
  28. #include "mpegutils.h"
  29. #include "mpegvideo.h"
  30. #include "rv34.h"
  31. #include "rv40vlc2.h"
  32. #include "rv40data.h"
  33. static VLC aic_top_vlc;
  34. static VLC aic_mode1_vlc[AIC_MODE1_NUM], aic_mode2_vlc[AIC_MODE2_NUM];
  35. static VLC ptype_vlc[NUM_PTYPE_VLCS], btype_vlc[NUM_BTYPE_VLCS];
  36. static const int16_t mode2_offs[] = {
  37. 0, 614, 1222, 1794, 2410, 3014, 3586, 4202, 4792, 5382, 5966, 6542,
  38. 7138, 7716, 8292, 8864, 9444, 10030, 10642, 11212, 11814
  39. };
  40. /**
  41. * Initialize all tables.
  42. */
  43. static av_cold void rv40_init_tables(void)
  44. {
  45. int i;
  46. static VLC_TYPE aic_table[1 << AIC_TOP_BITS][2];
  47. static VLC_TYPE aic_mode1_table[AIC_MODE1_NUM << AIC_MODE1_BITS][2];
  48. static VLC_TYPE aic_mode2_table[11814][2];
  49. static VLC_TYPE ptype_table[NUM_PTYPE_VLCS << PTYPE_VLC_BITS][2];
  50. static VLC_TYPE btype_table[NUM_BTYPE_VLCS << BTYPE_VLC_BITS][2];
  51. aic_top_vlc.table = aic_table;
  52. aic_top_vlc.table_allocated = 1 << AIC_TOP_BITS;
  53. init_vlc(&aic_top_vlc, AIC_TOP_BITS, AIC_TOP_SIZE,
  54. rv40_aic_top_vlc_bits, 1, 1,
  55. rv40_aic_top_vlc_codes, 1, 1, INIT_VLC_USE_NEW_STATIC);
  56. for(i = 0; i < AIC_MODE1_NUM; i++){
  57. // Every tenth VLC table is empty
  58. if((i % 10) == 9) continue;
  59. aic_mode1_vlc[i].table = &aic_mode1_table[i << AIC_MODE1_BITS];
  60. aic_mode1_vlc[i].table_allocated = 1 << AIC_MODE1_BITS;
  61. init_vlc(&aic_mode1_vlc[i], AIC_MODE1_BITS, AIC_MODE1_SIZE,
  62. aic_mode1_vlc_bits[i], 1, 1,
  63. aic_mode1_vlc_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
  64. }
  65. for(i = 0; i < AIC_MODE2_NUM; i++){
  66. aic_mode2_vlc[i].table = &aic_mode2_table[mode2_offs[i]];
  67. aic_mode2_vlc[i].table_allocated = mode2_offs[i + 1] - mode2_offs[i];
  68. init_vlc(&aic_mode2_vlc[i], AIC_MODE2_BITS, AIC_MODE2_SIZE,
  69. aic_mode2_vlc_bits[i], 1, 1,
  70. aic_mode2_vlc_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  71. }
  72. for(i = 0; i < NUM_PTYPE_VLCS; i++){
  73. ptype_vlc[i].table = &ptype_table[i << PTYPE_VLC_BITS];
  74. ptype_vlc[i].table_allocated = 1 << PTYPE_VLC_BITS;
  75. ff_init_vlc_sparse(&ptype_vlc[i], PTYPE_VLC_BITS, PTYPE_VLC_SIZE,
  76. ptype_vlc_bits[i], 1, 1,
  77. ptype_vlc_codes[i], 1, 1,
  78. ptype_vlc_syms, 1, 1, INIT_VLC_USE_NEW_STATIC);
  79. }
  80. for(i = 0; i < NUM_BTYPE_VLCS; i++){
  81. btype_vlc[i].table = &btype_table[i << BTYPE_VLC_BITS];
  82. btype_vlc[i].table_allocated = 1 << BTYPE_VLC_BITS;
  83. ff_init_vlc_sparse(&btype_vlc[i], BTYPE_VLC_BITS, BTYPE_VLC_SIZE,
  84. btype_vlc_bits[i], 1, 1,
  85. btype_vlc_codes[i], 1, 1,
  86. btype_vlc_syms, 1, 1, INIT_VLC_USE_NEW_STATIC);
  87. }
  88. }
  89. /**
  90. * Get stored dimension from bitstream.
  91. *
  92. * If the width/height is the standard one then it's coded as a 3-bit index.
  93. * Otherwise it is coded as escaped 8-bit portions.
  94. */
  95. static int get_dimension(GetBitContext *gb, const int *dim)
  96. {
  97. int t = get_bits(gb, 3);
  98. int val = dim[t];
  99. if(val < 0)
  100. val = dim[get_bits1(gb) - val];
  101. if(!val){
  102. do{
  103. t = get_bits(gb, 8);
  104. val += t << 2;
  105. }while(t == 0xFF);
  106. }
  107. return val;
  108. }
  109. /**
  110. * Get encoded picture size - usually this is called from rv40_parse_slice_header.
  111. */
  112. static void rv40_parse_picture_size(GetBitContext *gb, int *w, int *h)
  113. {
  114. *w = get_dimension(gb, rv40_standard_widths);
  115. *h = get_dimension(gb, rv40_standard_heights);
  116. }
  117. static int rv40_parse_slice_header(RV34DecContext *r, GetBitContext *gb, SliceInfo *si)
  118. {
  119. int mb_bits;
  120. int w = r->s.width, h = r->s.height;
  121. int mb_size;
  122. int ret;
  123. memset(si, 0, sizeof(SliceInfo));
  124. if(get_bits1(gb))
  125. return AVERROR_INVALIDDATA;
  126. si->type = get_bits(gb, 2);
  127. if(si->type == 1) si->type = 0;
  128. si->quant = get_bits(gb, 5);
  129. if(get_bits(gb, 2))
  130. return AVERROR_INVALIDDATA;
  131. si->vlc_set = get_bits(gb, 2);
  132. skip_bits1(gb);
  133. si->pts = get_bits(gb, 13);
  134. if(!si->type || !get_bits1(gb))
  135. rv40_parse_picture_size(gb, &w, &h);
  136. if ((ret = av_image_check_size(w, h, 0, r->s.avctx)) < 0)
  137. return ret;
  138. si->width = w;
  139. si->height = h;
  140. mb_size = ((w + 15) >> 4) * ((h + 15) >> 4);
  141. mb_bits = ff_rv34_get_start_offset(gb, mb_size);
  142. si->start = get_bits(gb, mb_bits);
  143. return 0;
  144. }
  145. /**
  146. * Decode 4x4 intra types array.
  147. */
  148. static int rv40_decode_intra_types(RV34DecContext *r, GetBitContext *gb, int8_t *dst)
  149. {
  150. MpegEncContext *s = &r->s;
  151. int i, j, k, v;
  152. int A, B, C;
  153. int pattern;
  154. int8_t *ptr;
  155. for(i = 0; i < 4; i++, dst += r->intra_types_stride){
  156. if(!i && s->first_slice_line){
  157. pattern = get_vlc2(gb, aic_top_vlc.table, AIC_TOP_BITS, 1);
  158. dst[0] = (pattern >> 2) & 2;
  159. dst[1] = (pattern >> 1) & 2;
  160. dst[2] = pattern & 2;
  161. dst[3] = (pattern << 1) & 2;
  162. continue;
  163. }
  164. ptr = dst;
  165. for(j = 0; j < 4; j++){
  166. /* Coefficients are read using VLC chosen by the prediction pattern
  167. * The first one (used for retrieving a pair of coefficients) is
  168. * constructed from the top, top right and left coefficients
  169. * The second one (used for retrieving only one coefficient) is
  170. * top + 10 * left.
  171. */
  172. A = ptr[-r->intra_types_stride + 1]; // it won't be used for the last coefficient in a row
  173. B = ptr[-r->intra_types_stride];
  174. C = ptr[-1];
  175. pattern = A + (B << 4) + (C << 8);
  176. for(k = 0; k < MODE2_PATTERNS_NUM; k++)
  177. if(pattern == rv40_aic_table_index[k])
  178. break;
  179. if(j < 3 && k < MODE2_PATTERNS_NUM){ //pattern is found, decoding 2 coefficients
  180. v = get_vlc2(gb, aic_mode2_vlc[k].table, AIC_MODE2_BITS, 2);
  181. *ptr++ = v/9;
  182. *ptr++ = v%9;
  183. j++;
  184. }else{
  185. if(B != -1 && C != -1)
  186. v = get_vlc2(gb, aic_mode1_vlc[B + C*10].table, AIC_MODE1_BITS, 1);
  187. else{ // tricky decoding
  188. v = 0;
  189. switch(C){
  190. case -1: // code 0 -> 1, 1 -> 0
  191. if(B < 2)
  192. v = get_bits1(gb) ^ 1;
  193. break;
  194. case 0:
  195. case 2: // code 0 -> 2, 1 -> 0
  196. v = (get_bits1(gb) ^ 1) << 1;
  197. break;
  198. }
  199. }
  200. *ptr++ = v;
  201. }
  202. }
  203. }
  204. return 0;
  205. }
  206. /**
  207. * Decode macroblock information.
  208. */
  209. static int rv40_decode_mb_info(RV34DecContext *r)
  210. {
  211. MpegEncContext *s = &r->s;
  212. GetBitContext *gb = &s->gb;
  213. int q, i;
  214. int prev_type = 0;
  215. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  216. if(!r->s.mb_skip_run)
  217. r->s.mb_skip_run = get_interleaved_ue_golomb(gb) + 1;
  218. if(--r->s.mb_skip_run)
  219. return RV34_MB_SKIP;
  220. if(r->avail_cache[6-4]){
  221. int blocks[RV34_MB_TYPES] = {0};
  222. int count = 0;
  223. if(r->avail_cache[6-1])
  224. blocks[r->mb_type[mb_pos - 1]]++;
  225. blocks[r->mb_type[mb_pos - s->mb_stride]]++;
  226. if(r->avail_cache[6-2])
  227. blocks[r->mb_type[mb_pos - s->mb_stride + 1]]++;
  228. if(r->avail_cache[6-5])
  229. blocks[r->mb_type[mb_pos - s->mb_stride - 1]]++;
  230. for(i = 0; i < RV34_MB_TYPES; i++){
  231. if(blocks[i] > count){
  232. count = blocks[i];
  233. prev_type = i;
  234. if(count>1)
  235. break;
  236. }
  237. }
  238. } else if (r->avail_cache[6-1])
  239. prev_type = r->mb_type[mb_pos - 1];
  240. if(s->pict_type == AV_PICTURE_TYPE_P){
  241. prev_type = block_num_to_ptype_vlc_num[prev_type];
  242. q = get_vlc2(gb, ptype_vlc[prev_type].table, PTYPE_VLC_BITS, 1);
  243. if(q < PBTYPE_ESCAPE)
  244. return q;
  245. q = get_vlc2(gb, ptype_vlc[prev_type].table, PTYPE_VLC_BITS, 1);
  246. av_log(s->avctx, AV_LOG_ERROR, "Dquant for P-frame\n");
  247. }else{
  248. prev_type = block_num_to_btype_vlc_num[prev_type];
  249. q = get_vlc2(gb, btype_vlc[prev_type].table, BTYPE_VLC_BITS, 1);
  250. if(q < PBTYPE_ESCAPE)
  251. return q;
  252. q = get_vlc2(gb, btype_vlc[prev_type].table, BTYPE_VLC_BITS, 1);
  253. av_log(s->avctx, AV_LOG_ERROR, "Dquant for B-frame\n");
  254. }
  255. return 0;
  256. }
  257. enum RV40BlockPos{
  258. POS_CUR,
  259. POS_TOP,
  260. POS_LEFT,
  261. POS_BOTTOM,
  262. };
  263. #define MASK_CUR 0x0001
  264. #define MASK_RIGHT 0x0008
  265. #define MASK_BOTTOM 0x0010
  266. #define MASK_TOP 0x1000
  267. #define MASK_Y_TOP_ROW 0x000F
  268. #define MASK_Y_LAST_ROW 0xF000
  269. #define MASK_Y_LEFT_COL 0x1111
  270. #define MASK_Y_RIGHT_COL 0x8888
  271. #define MASK_C_TOP_ROW 0x0003
  272. #define MASK_C_LAST_ROW 0x000C
  273. #define MASK_C_LEFT_COL 0x0005
  274. #define MASK_C_RIGHT_COL 0x000A
  275. static const int neighbour_offs_x[4] = { 0, 0, -1, 0 };
  276. static const int neighbour_offs_y[4] = { 0, -1, 0, 1 };
  277. static void rv40_adaptive_loop_filter(RV34DSPContext *rdsp,
  278. uint8_t *src, int stride, int dmode,
  279. int lim_q1, int lim_p1,
  280. int alpha, int beta, int beta2,
  281. int chroma, int edge, int dir)
  282. {
  283. int filter_p1, filter_q1;
  284. int strong;
  285. int lims;
  286. strong = rdsp->rv40_loop_filter_strength[dir](src, stride, beta, beta2,
  287. edge, &filter_p1, &filter_q1);
  288. lims = filter_p1 + filter_q1 + ((lim_q1 + lim_p1) >> 1) + 1;
  289. if (strong) {
  290. rdsp->rv40_strong_loop_filter[dir](src, stride, alpha,
  291. lims, dmode, chroma);
  292. } else if (filter_p1 & filter_q1) {
  293. rdsp->rv40_weak_loop_filter[dir](src, stride, 1, 1, alpha, beta,
  294. lims, lim_q1, lim_p1);
  295. } else if (filter_p1 | filter_q1) {
  296. rdsp->rv40_weak_loop_filter[dir](src, stride, filter_p1, filter_q1,
  297. alpha, beta, lims >> 1, lim_q1 >> 1,
  298. lim_p1 >> 1);
  299. }
  300. }
  301. /**
  302. * RV40 loop filtering function
  303. */
  304. static void rv40_loop_filter(RV34DecContext *r, int row)
  305. {
  306. MpegEncContext *s = &r->s;
  307. int mb_pos, mb_x;
  308. int i, j, k;
  309. uint8_t *Y, *C;
  310. int alpha, beta, betaY, betaC;
  311. int q;
  312. int mbtype[4]; ///< current macroblock and its neighbours types
  313. /**
  314. * flags indicating that macroblock can be filtered with strong filter
  315. * it is set only for intra coded MB and MB with DCs coded separately
  316. */
  317. int mb_strong[4];
  318. int clip[4]; ///< MB filter clipping value calculated from filtering strength
  319. /**
  320. * coded block patterns for luma part of current macroblock and its neighbours
  321. * Format:
  322. * LSB corresponds to the top left block,
  323. * each nibble represents one row of subblocks.
  324. */
  325. int cbp[4];
  326. /**
  327. * coded block patterns for chroma part of current macroblock and its neighbours
  328. * Format is the same as for luma with two subblocks in a row.
  329. */
  330. int uvcbp[4][2];
  331. /**
  332. * This mask represents the pattern of luma subblocks that should be filtered
  333. * in addition to the coded ones because because they lie at the edge of
  334. * 8x8 block with different enough motion vectors
  335. */
  336. unsigned mvmasks[4];
  337. mb_pos = row * s->mb_stride;
  338. for(mb_x = 0; mb_x < s->mb_width; mb_x++, mb_pos++){
  339. int mbtype = s->current_picture_ptr->mb_type[mb_pos];
  340. if(IS_INTRA(mbtype) || IS_SEPARATE_DC(mbtype))
  341. r->cbp_luma [mb_pos] = r->deblock_coefs[mb_pos] = 0xFFFF;
  342. if(IS_INTRA(mbtype))
  343. r->cbp_chroma[mb_pos] = 0xFF;
  344. }
  345. mb_pos = row * s->mb_stride;
  346. for(mb_x = 0; mb_x < s->mb_width; mb_x++, mb_pos++){
  347. int y_h_deblock, y_v_deblock;
  348. int c_v_deblock[2], c_h_deblock[2];
  349. int clip_left;
  350. int avail[4];
  351. unsigned y_to_deblock;
  352. int c_to_deblock[2];
  353. q = s->current_picture_ptr->qscale_table[mb_pos];
  354. alpha = rv40_alpha_tab[q];
  355. beta = rv40_beta_tab [q];
  356. betaY = betaC = beta * 3;
  357. if(s->width * s->height <= 176*144)
  358. betaY += beta;
  359. avail[0] = 1;
  360. avail[1] = row;
  361. avail[2] = mb_x;
  362. avail[3] = row < s->mb_height - 1;
  363. for(i = 0; i < 4; i++){
  364. if(avail[i]){
  365. int pos = mb_pos + neighbour_offs_x[i] + neighbour_offs_y[i]*s->mb_stride;
  366. mvmasks[i] = r->deblock_coefs[pos];
  367. mbtype [i] = s->current_picture_ptr->mb_type[pos];
  368. cbp [i] = r->cbp_luma[pos];
  369. uvcbp[i][0] = r->cbp_chroma[pos] & 0xF;
  370. uvcbp[i][1] = r->cbp_chroma[pos] >> 4;
  371. }else{
  372. mvmasks[i] = 0;
  373. mbtype [i] = mbtype[0];
  374. cbp [i] = 0;
  375. uvcbp[i][0] = uvcbp[i][1] = 0;
  376. }
  377. mb_strong[i] = IS_INTRA(mbtype[i]) || IS_SEPARATE_DC(mbtype[i]);
  378. clip[i] = rv40_filter_clip_tbl[mb_strong[i] + 1][q];
  379. }
  380. y_to_deblock = mvmasks[POS_CUR]
  381. | (mvmasks[POS_BOTTOM] << 16);
  382. /* This pattern contains bits signalling that horizontal edges of
  383. * the current block can be filtered.
  384. * That happens when either of adjacent subblocks is coded or lies on
  385. * the edge of 8x8 blocks with motion vectors differing by more than
  386. * 3/4 pel in any component (any edge orientation for some reason).
  387. */
  388. y_h_deblock = y_to_deblock
  389. | ((cbp[POS_CUR] << 4) & ~MASK_Y_TOP_ROW)
  390. | ((cbp[POS_TOP] & MASK_Y_LAST_ROW) >> 12);
  391. /* This pattern contains bits signalling that vertical edges of
  392. * the current block can be filtered.
  393. * That happens when either of adjacent subblocks is coded or lies on
  394. * the edge of 8x8 blocks with motion vectors differing by more than
  395. * 3/4 pel in any component (any edge orientation for some reason).
  396. */
  397. y_v_deblock = y_to_deblock
  398. | ((cbp[POS_CUR] << 1) & ~MASK_Y_LEFT_COL)
  399. | ((cbp[POS_LEFT] & MASK_Y_RIGHT_COL) >> 3);
  400. if(!mb_x)
  401. y_v_deblock &= ~MASK_Y_LEFT_COL;
  402. if(!row)
  403. y_h_deblock &= ~MASK_Y_TOP_ROW;
  404. if(row == s->mb_height - 1 || (mb_strong[POS_CUR] | mb_strong[POS_BOTTOM]))
  405. y_h_deblock &= ~(MASK_Y_TOP_ROW << 16);
  406. /* Calculating chroma patterns is similar and easier since there is
  407. * no motion vector pattern for them.
  408. */
  409. for(i = 0; i < 2; i++){
  410. c_to_deblock[i] = (uvcbp[POS_BOTTOM][i] << 4) | uvcbp[POS_CUR][i];
  411. c_v_deblock[i] = c_to_deblock[i]
  412. | ((uvcbp[POS_CUR] [i] << 1) & ~MASK_C_LEFT_COL)
  413. | ((uvcbp[POS_LEFT][i] & MASK_C_RIGHT_COL) >> 1);
  414. c_h_deblock[i] = c_to_deblock[i]
  415. | ((uvcbp[POS_TOP][i] & MASK_C_LAST_ROW) >> 2)
  416. | (uvcbp[POS_CUR][i] << 2);
  417. if(!mb_x)
  418. c_v_deblock[i] &= ~MASK_C_LEFT_COL;
  419. if(!row)
  420. c_h_deblock[i] &= ~MASK_C_TOP_ROW;
  421. if(row == s->mb_height - 1 || (mb_strong[POS_CUR] | mb_strong[POS_BOTTOM]))
  422. c_h_deblock[i] &= ~(MASK_C_TOP_ROW << 4);
  423. }
  424. for(j = 0; j < 16; j += 4){
  425. Y = s->current_picture_ptr->f->data[0] + mb_x*16 + (row*16 + j) * s->linesize;
  426. for(i = 0; i < 4; i++, Y += 4){
  427. int ij = i + j;
  428. int clip_cur = y_to_deblock & (MASK_CUR << ij) ? clip[POS_CUR] : 0;
  429. int dither = j ? ij : i*4;
  430. // if bottom block is coded then we can filter its top edge
  431. // (or bottom edge of this block, which is the same)
  432. if(y_h_deblock & (MASK_BOTTOM << ij)){
  433. rv40_adaptive_loop_filter(&r->rdsp, Y+4*s->linesize,
  434. s->linesize, dither,
  435. y_to_deblock & (MASK_BOTTOM << ij) ? clip[POS_CUR] : 0,
  436. clip_cur, alpha, beta, betaY,
  437. 0, 0, 0);
  438. }
  439. // filter left block edge in ordinary mode (with low filtering strength)
  440. if(y_v_deblock & (MASK_CUR << ij) && (i || !(mb_strong[POS_CUR] | mb_strong[POS_LEFT]))){
  441. if(!i)
  442. clip_left = mvmasks[POS_LEFT] & (MASK_RIGHT << j) ? clip[POS_LEFT] : 0;
  443. else
  444. clip_left = y_to_deblock & (MASK_CUR << (ij-1)) ? clip[POS_CUR] : 0;
  445. rv40_adaptive_loop_filter(&r->rdsp, Y, s->linesize, dither,
  446. clip_cur,
  447. clip_left,
  448. alpha, beta, betaY, 0, 0, 1);
  449. }
  450. // filter top edge of the current macroblock when filtering strength is high
  451. if(!j && y_h_deblock & (MASK_CUR << i) && (mb_strong[POS_CUR] | mb_strong[POS_TOP])){
  452. rv40_adaptive_loop_filter(&r->rdsp, Y, s->linesize, dither,
  453. clip_cur,
  454. mvmasks[POS_TOP] & (MASK_TOP << i) ? clip[POS_TOP] : 0,
  455. alpha, beta, betaY, 0, 1, 0);
  456. }
  457. // filter left block edge in edge mode (with high filtering strength)
  458. if(y_v_deblock & (MASK_CUR << ij) && !i && (mb_strong[POS_CUR] | mb_strong[POS_LEFT])){
  459. clip_left = mvmasks[POS_LEFT] & (MASK_RIGHT << j) ? clip[POS_LEFT] : 0;
  460. rv40_adaptive_loop_filter(&r->rdsp, Y, s->linesize, dither,
  461. clip_cur,
  462. clip_left,
  463. alpha, beta, betaY, 0, 1, 1);
  464. }
  465. }
  466. }
  467. for(k = 0; k < 2; k++){
  468. for(j = 0; j < 2; j++){
  469. C = s->current_picture_ptr->f->data[k + 1] + mb_x*8 + (row*8 + j*4) * s->uvlinesize;
  470. for(i = 0; i < 2; i++, C += 4){
  471. int ij = i + j*2;
  472. int clip_cur = c_to_deblock[k] & (MASK_CUR << ij) ? clip[POS_CUR] : 0;
  473. if(c_h_deblock[k] & (MASK_CUR << (ij+2))){
  474. int clip_bot = c_to_deblock[k] & (MASK_CUR << (ij+2)) ? clip[POS_CUR] : 0;
  475. rv40_adaptive_loop_filter(&r->rdsp, C+4*s->uvlinesize, s->uvlinesize, i*8,
  476. clip_bot,
  477. clip_cur,
  478. alpha, beta, betaC, 1, 0, 0);
  479. }
  480. if((c_v_deblock[k] & (MASK_CUR << ij)) && (i || !(mb_strong[POS_CUR] | mb_strong[POS_LEFT]))){
  481. if(!i)
  482. clip_left = uvcbp[POS_LEFT][k] & (MASK_CUR << (2*j+1)) ? clip[POS_LEFT] : 0;
  483. else
  484. clip_left = c_to_deblock[k] & (MASK_CUR << (ij-1)) ? clip[POS_CUR] : 0;
  485. rv40_adaptive_loop_filter(&r->rdsp, C, s->uvlinesize, j*8,
  486. clip_cur,
  487. clip_left,
  488. alpha, beta, betaC, 1, 0, 1);
  489. }
  490. if(!j && c_h_deblock[k] & (MASK_CUR << ij) && (mb_strong[POS_CUR] | mb_strong[POS_TOP])){
  491. int clip_top = uvcbp[POS_TOP][k] & (MASK_CUR << (ij+2)) ? clip[POS_TOP] : 0;
  492. rv40_adaptive_loop_filter(&r->rdsp, C, s->uvlinesize, i*8,
  493. clip_cur,
  494. clip_top,
  495. alpha, beta, betaC, 1, 1, 0);
  496. }
  497. if(c_v_deblock[k] & (MASK_CUR << ij) && !i && (mb_strong[POS_CUR] | mb_strong[POS_LEFT])){
  498. clip_left = uvcbp[POS_LEFT][k] & (MASK_CUR << (2*j+1)) ? clip[POS_LEFT] : 0;
  499. rv40_adaptive_loop_filter(&r->rdsp, C, s->uvlinesize, j*8,
  500. clip_cur,
  501. clip_left,
  502. alpha, beta, betaC, 1, 1, 1);
  503. }
  504. }
  505. }
  506. }
  507. }
  508. }
  509. /**
  510. * Initialize decoder.
  511. */
  512. static av_cold int rv40_decode_init(AVCodecContext *avctx)
  513. {
  514. RV34DecContext *r = avctx->priv_data;
  515. int ret;
  516. r->rv30 = 0;
  517. if ((ret = ff_rv34_decode_init(avctx)) < 0)
  518. return ret;
  519. if(!aic_top_vlc.bits)
  520. rv40_init_tables();
  521. r->parse_slice_header = rv40_parse_slice_header;
  522. r->decode_intra_types = rv40_decode_intra_types;
  523. r->decode_mb_info = rv40_decode_mb_info;
  524. r->loop_filter = rv40_loop_filter;
  525. r->luma_dc_quant_i = rv40_luma_dc_quant[0];
  526. r->luma_dc_quant_p = rv40_luma_dc_quant[1];
  527. return 0;
  528. }
  529. AVCodec ff_rv40_decoder = {
  530. .name = "rv40",
  531. .long_name = NULL_IF_CONFIG_SMALL("RealVideo 4.0"),
  532. .type = AVMEDIA_TYPE_VIDEO,
  533. .id = AV_CODEC_ID_RV40,
  534. .priv_data_size = sizeof(RV34DecContext),
  535. .init = rv40_decode_init,
  536. .close = ff_rv34_decode_end,
  537. .decode = ff_rv34_decode_frame,
  538. .capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DELAY |
  539. AV_CODEC_CAP_FRAME_THREADS,
  540. .flush = ff_mpeg_flush,
  541. .pix_fmts = (const enum AVPixelFormat[]) {
  542. AV_PIX_FMT_YUV420P,
  543. AV_PIX_FMT_NONE
  544. },
  545. .init_thread_copy = ONLY_IF_THREADS_ENABLED(ff_rv34_decode_init_thread_copy),
  546. .update_thread_context = ONLY_IF_THREADS_ENABLED(ff_rv34_decode_update_thread_context),
  547. };