You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1816 lines
63KB

  1. /*
  2. * RV30/40 decoder common data
  3. * Copyright (c) 2007 Mike Melanson, Konstantin Shishkov
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * RV30/40 decoder common data
  24. */
  25. #include "libavutil/internal.h"
  26. #include "avcodec.h"
  27. #include "error_resilience.h"
  28. #include "golomb_legacy.h"
  29. #include "mpegutils.h"
  30. #include "mpegvideo.h"
  31. #include "internal.h"
  32. #include "mathops.h"
  33. #include "mpeg_er.h"
  34. #include "qpeldsp.h"
  35. #include "rectangle.h"
  36. #include "thread.h"
  37. #include "rv34vlc.h"
  38. #include "rv34data.h"
  39. #include "rv34.h"
  40. static inline void ZERO8x2(void* dst, int stride)
  41. {
  42. fill_rectangle(dst, 1, 2, stride, 0, 4);
  43. fill_rectangle(((uint8_t*)(dst))+4, 1, 2, stride, 0, 4);
  44. }
  45. /** translation of RV30/40 macroblock types to lavc ones */
  46. static const int rv34_mb_type_to_lavc[12] = {
  47. MB_TYPE_INTRA,
  48. MB_TYPE_INTRA16x16 | MB_TYPE_SEPARATE_DC,
  49. MB_TYPE_16x16 | MB_TYPE_L0,
  50. MB_TYPE_8x8 | MB_TYPE_L0,
  51. MB_TYPE_16x16 | MB_TYPE_L0,
  52. MB_TYPE_16x16 | MB_TYPE_L1,
  53. MB_TYPE_SKIP,
  54. MB_TYPE_DIRECT2 | MB_TYPE_16x16,
  55. MB_TYPE_16x8 | MB_TYPE_L0,
  56. MB_TYPE_8x16 | MB_TYPE_L0,
  57. MB_TYPE_16x16 | MB_TYPE_L0L1,
  58. MB_TYPE_16x16 | MB_TYPE_L0 | MB_TYPE_SEPARATE_DC
  59. };
  60. static RV34VLC intra_vlcs[NUM_INTRA_TABLES], inter_vlcs[NUM_INTER_TABLES];
  61. static int rv34_decode_mv(RV34DecContext *r, int block_type);
  62. /**
  63. * @name RV30/40 VLC generating functions
  64. * @{
  65. */
  66. static const int table_offs[] = {
  67. 0, 1818, 3622, 4144, 4698, 5234, 5804, 5868, 5900, 5932,
  68. 5996, 6252, 6316, 6348, 6380, 7674, 8944, 10274, 11668, 12250,
  69. 14060, 15846, 16372, 16962, 17512, 18148, 18180, 18212, 18244, 18308,
  70. 18564, 18628, 18660, 18692, 20036, 21314, 22648, 23968, 24614, 26384,
  71. 28190, 28736, 29366, 29938, 30608, 30640, 30672, 30704, 30768, 31024,
  72. 31088, 31120, 31184, 32570, 33898, 35236, 36644, 37286, 39020, 40802,
  73. 41368, 42052, 42692, 43348, 43380, 43412, 43444, 43476, 43604, 43668,
  74. 43700, 43732, 45100, 46430, 47778, 49160, 49802, 51550, 53340, 53972,
  75. 54648, 55348, 55994, 56122, 56154, 56186, 56218, 56346, 56410, 56442,
  76. 56474, 57878, 59290, 60636, 62036, 62682, 64460, 64524, 64588, 64716,
  77. 64844, 66076, 67466, 67978, 68542, 69064, 69648, 70296, 72010, 72074,
  78. 72138, 72202, 72330, 73572, 74936, 75454, 76030, 76566, 77176, 77822,
  79. 79582, 79646, 79678, 79742, 79870, 81180, 82536, 83064, 83672, 84242,
  80. 84934, 85576, 87384, 87448, 87480, 87544, 87672, 88982, 90340, 90902,
  81. 91598, 92182, 92846, 93488, 95246, 95278, 95310, 95374, 95502, 96878,
  82. 98266, 98848, 99542, 100234, 100884, 101524, 103320, 103352, 103384, 103416,
  83. 103480, 104874, 106222, 106910, 107584, 108258, 108902, 109544, 111366, 111398,
  84. 111430, 111462, 111494, 112878, 114320, 114988, 115660, 116310, 116950, 117592
  85. };
  86. static VLC_TYPE table_data[117592][2];
  87. /**
  88. * Generate VLC from codeword lengths.
  89. * @param bits codeword lengths (zeroes are accepted)
  90. * @param size length of input data
  91. * @param vlc output VLC
  92. * @param insyms symbols for input codes (NULL for default ones)
  93. * @param num VLC table number (for static initialization)
  94. */
  95. static void rv34_gen_vlc(const uint8_t *bits, int size, VLC *vlc, const uint8_t *insyms,
  96. const int num)
  97. {
  98. int i;
  99. int counts[17] = {0}, codes[17];
  100. uint16_t cw[MAX_VLC_SIZE], syms[MAX_VLC_SIZE];
  101. uint8_t bits2[MAX_VLC_SIZE];
  102. int maxbits = 0, realsize = 0;
  103. for(i = 0; i < size; i++){
  104. if(bits[i]){
  105. bits2[realsize] = bits[i];
  106. syms[realsize] = insyms ? insyms[i] : i;
  107. realsize++;
  108. maxbits = FFMAX(maxbits, bits[i]);
  109. counts[bits[i]]++;
  110. }
  111. }
  112. codes[0] = 0;
  113. for(i = 0; i < 16; i++)
  114. codes[i+1] = (codes[i] + counts[i]) << 1;
  115. for(i = 0; i < realsize; i++)
  116. cw[i] = codes[bits2[i]]++;
  117. vlc->table = &table_data[table_offs[num]];
  118. vlc->table_allocated = table_offs[num + 1] - table_offs[num];
  119. ff_init_vlc_sparse(vlc, FFMIN(maxbits, 9), realsize,
  120. bits2, 1, 1,
  121. cw, 2, 2,
  122. syms, 2, 2, INIT_VLC_USE_NEW_STATIC);
  123. }
  124. /**
  125. * Initialize all tables.
  126. */
  127. static av_cold void rv34_init_tables(void)
  128. {
  129. int i, j, k;
  130. for(i = 0; i < NUM_INTRA_TABLES; i++){
  131. for(j = 0; j < 2; j++){
  132. rv34_gen_vlc(rv34_table_intra_cbppat [i][j], CBPPAT_VLC_SIZE, &intra_vlcs[i].cbppattern[j], NULL, 19*i + 0 + j);
  133. rv34_gen_vlc(rv34_table_intra_secondpat[i][j], OTHERBLK_VLC_SIZE, &intra_vlcs[i].second_pattern[j], NULL, 19*i + 2 + j);
  134. rv34_gen_vlc(rv34_table_intra_thirdpat [i][j], OTHERBLK_VLC_SIZE, &intra_vlcs[i].third_pattern[j], NULL, 19*i + 4 + j);
  135. for(k = 0; k < 4; k++){
  136. rv34_gen_vlc(rv34_table_intra_cbp[i][j+k*2], CBP_VLC_SIZE, &intra_vlcs[i].cbp[j][k], rv34_cbp_code, 19*i + 6 + j*4 + k);
  137. }
  138. }
  139. for(j = 0; j < 4; j++){
  140. rv34_gen_vlc(rv34_table_intra_firstpat[i][j], FIRSTBLK_VLC_SIZE, &intra_vlcs[i].first_pattern[j], NULL, 19*i + 14 + j);
  141. }
  142. rv34_gen_vlc(rv34_intra_coeff[i], COEFF_VLC_SIZE, &intra_vlcs[i].coefficient, NULL, 19*i + 18);
  143. }
  144. for(i = 0; i < NUM_INTER_TABLES; i++){
  145. rv34_gen_vlc(rv34_inter_cbppat[i], CBPPAT_VLC_SIZE, &inter_vlcs[i].cbppattern[0], NULL, i*12 + 95);
  146. for(j = 0; j < 4; j++){
  147. rv34_gen_vlc(rv34_inter_cbp[i][j], CBP_VLC_SIZE, &inter_vlcs[i].cbp[0][j], rv34_cbp_code, i*12 + 96 + j);
  148. }
  149. for(j = 0; j < 2; j++){
  150. rv34_gen_vlc(rv34_table_inter_firstpat [i][j], FIRSTBLK_VLC_SIZE, &inter_vlcs[i].first_pattern[j], NULL, i*12 + 100 + j);
  151. rv34_gen_vlc(rv34_table_inter_secondpat[i][j], OTHERBLK_VLC_SIZE, &inter_vlcs[i].second_pattern[j], NULL, i*12 + 102 + j);
  152. rv34_gen_vlc(rv34_table_inter_thirdpat [i][j], OTHERBLK_VLC_SIZE, &inter_vlcs[i].third_pattern[j], NULL, i*12 + 104 + j);
  153. }
  154. rv34_gen_vlc(rv34_inter_coeff[i], COEFF_VLC_SIZE, &inter_vlcs[i].coefficient, NULL, i*12 + 106);
  155. }
  156. }
  157. /** @} */ // vlc group
  158. /**
  159. * @name RV30/40 4x4 block decoding functions
  160. * @{
  161. */
  162. /**
  163. * Decode coded block pattern.
  164. */
  165. static int rv34_decode_cbp(GetBitContext *gb, RV34VLC *vlc, int table)
  166. {
  167. int pattern, code, cbp=0;
  168. int ones;
  169. static const int cbp_masks[3] = {0x100000, 0x010000, 0x110000};
  170. static const int shifts[4] = { 0, 2, 8, 10 };
  171. const int *curshift = shifts;
  172. int i, t, mask;
  173. code = get_vlc2(gb, vlc->cbppattern[table].table, 9, 2);
  174. pattern = code & 0xF;
  175. code >>= 4;
  176. ones = rv34_count_ones[pattern];
  177. for(mask = 8; mask; mask >>= 1, curshift++){
  178. if(pattern & mask)
  179. cbp |= get_vlc2(gb, vlc->cbp[table][ones].table, vlc->cbp[table][ones].bits, 1) << curshift[0];
  180. }
  181. for(i = 0; i < 4; i++){
  182. t = (modulo_three_table[code] >> (6 - 2*i)) & 3;
  183. if(t == 1)
  184. cbp |= cbp_masks[get_bits1(gb)] << i;
  185. if(t == 2)
  186. cbp |= cbp_masks[2] << i;
  187. }
  188. return cbp;
  189. }
  190. /**
  191. * Get one coefficient value from the bitstream and store it.
  192. */
  193. static inline void decode_coeff(int16_t *dst, int coef, int esc, GetBitContext *gb, VLC* vlc, int q)
  194. {
  195. if(coef){
  196. if(coef == esc){
  197. coef = get_vlc2(gb, vlc->table, 9, 2);
  198. if(coef > 23){
  199. coef -= 23;
  200. coef = 22 + ((1 << coef) | get_bits(gb, coef));
  201. }
  202. coef += esc;
  203. }
  204. if(get_bits1(gb))
  205. coef = -coef;
  206. *dst = (coef*q + 8) >> 4;
  207. }
  208. }
  209. /**
  210. * Decode 2x2 subblock of coefficients.
  211. */
  212. static inline void decode_subblock(int16_t *dst, int code, const int is_block2, GetBitContext *gb, VLC *vlc, int q)
  213. {
  214. int flags = modulo_three_table[code];
  215. decode_coeff( dst+0*4+0, (flags >> 6) , 3, gb, vlc, q);
  216. if(is_block2){
  217. decode_coeff(dst+1*4+0, (flags >> 4) & 3, 2, gb, vlc, q);
  218. decode_coeff(dst+0*4+1, (flags >> 2) & 3, 2, gb, vlc, q);
  219. }else{
  220. decode_coeff(dst+0*4+1, (flags >> 4) & 3, 2, gb, vlc, q);
  221. decode_coeff(dst+1*4+0, (flags >> 2) & 3, 2, gb, vlc, q);
  222. }
  223. decode_coeff( dst+1*4+1, (flags >> 0) & 3, 2, gb, vlc, q);
  224. }
  225. /**
  226. * Decode a single coefficient.
  227. */
  228. static inline void decode_subblock1(int16_t *dst, int code, GetBitContext *gb, VLC *vlc, int q)
  229. {
  230. int coeff = modulo_three_table[code] >> 6;
  231. decode_coeff(dst, coeff, 3, gb, vlc, q);
  232. }
  233. static inline void decode_subblock3(int16_t *dst, int code, GetBitContext *gb, VLC *vlc,
  234. int q_dc, int q_ac1, int q_ac2)
  235. {
  236. int flags = modulo_three_table[code];
  237. decode_coeff(dst+0*4+0, (flags >> 6) , 3, gb, vlc, q_dc);
  238. decode_coeff(dst+0*4+1, (flags >> 4) & 3, 2, gb, vlc, q_ac1);
  239. decode_coeff(dst+1*4+0, (flags >> 2) & 3, 2, gb, vlc, q_ac1);
  240. decode_coeff(dst+1*4+1, (flags >> 0) & 3, 2, gb, vlc, q_ac2);
  241. }
  242. /**
  243. * Decode coefficients for 4x4 block.
  244. *
  245. * This is done by filling 2x2 subblocks with decoded coefficients
  246. * in this order (the same for subblocks and subblock coefficients):
  247. * o--o
  248. * /
  249. * /
  250. * o--o
  251. */
  252. static int rv34_decode_block(int16_t *dst, GetBitContext *gb, RV34VLC *rvlc, int fc, int sc, int q_dc, int q_ac1, int q_ac2)
  253. {
  254. int code, pattern, has_ac = 1;
  255. code = get_vlc2(gb, rvlc->first_pattern[fc].table, 9, 2);
  256. pattern = code & 0x7;
  257. code >>= 3;
  258. if (modulo_three_table[code] & 0x3F) {
  259. decode_subblock3(dst, code, gb, &rvlc->coefficient, q_dc, q_ac1, q_ac2);
  260. } else {
  261. decode_subblock1(dst, code, gb, &rvlc->coefficient, q_dc);
  262. if (!pattern)
  263. return 0;
  264. has_ac = 0;
  265. }
  266. if(pattern & 4){
  267. code = get_vlc2(gb, rvlc->second_pattern[sc].table, 9, 2);
  268. decode_subblock(dst + 4*0+2, code, 0, gb, &rvlc->coefficient, q_ac2);
  269. }
  270. if(pattern & 2){ // Looks like coefficients 1 and 2 are swapped for this block
  271. code = get_vlc2(gb, rvlc->second_pattern[sc].table, 9, 2);
  272. decode_subblock(dst + 4*2+0, code, 1, gb, &rvlc->coefficient, q_ac2);
  273. }
  274. if(pattern & 1){
  275. code = get_vlc2(gb, rvlc->third_pattern[sc].table, 9, 2);
  276. decode_subblock(dst + 4*2+2, code, 0, gb, &rvlc->coefficient, q_ac2);
  277. }
  278. return has_ac | pattern;
  279. }
  280. /**
  281. * @name RV30/40 bitstream parsing
  282. * @{
  283. */
  284. /**
  285. * Decode starting slice position.
  286. * @todo Maybe replace with ff_h263_decode_mba() ?
  287. */
  288. int ff_rv34_get_start_offset(GetBitContext *gb, int mb_size)
  289. {
  290. int i;
  291. for(i = 0; i < 5; i++)
  292. if(rv34_mb_max_sizes[i] >= mb_size - 1)
  293. break;
  294. return rv34_mb_bits_sizes[i];
  295. }
  296. /**
  297. * Select VLC set for decoding from current quantizer, modifier and frame type.
  298. */
  299. static inline RV34VLC* choose_vlc_set(int quant, int mod, int type)
  300. {
  301. if(mod == 2 && quant < 19) quant += 10;
  302. else if(mod && quant < 26) quant += 5;
  303. return type ? &inter_vlcs[rv34_quant_to_vlc_set[1][av_clip(quant, 0, 30)]]
  304. : &intra_vlcs[rv34_quant_to_vlc_set[0][av_clip(quant, 0, 30)]];
  305. }
  306. /**
  307. * Decode intra macroblock header and return CBP in case of success, -1 otherwise.
  308. */
  309. static int rv34_decode_intra_mb_header(RV34DecContext *r, int8_t *intra_types)
  310. {
  311. MpegEncContext *s = &r->s;
  312. GetBitContext *gb = &s->gb;
  313. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  314. int t;
  315. r->is16 = get_bits1(gb);
  316. if(r->is16){
  317. s->current_picture_ptr->mb_type[mb_pos] = MB_TYPE_INTRA16x16;
  318. r->block_type = RV34_MB_TYPE_INTRA16x16;
  319. t = get_bits(gb, 2);
  320. fill_rectangle(intra_types, 4, 4, r->intra_types_stride, t, sizeof(intra_types[0]));
  321. r->luma_vlc = 2;
  322. }else{
  323. if(!r->rv30){
  324. if(!get_bits1(gb))
  325. av_log(s->avctx, AV_LOG_ERROR, "Need DQUANT\n");
  326. }
  327. s->current_picture_ptr->mb_type[mb_pos] = MB_TYPE_INTRA;
  328. r->block_type = RV34_MB_TYPE_INTRA;
  329. if(r->decode_intra_types(r, gb, intra_types) < 0)
  330. return -1;
  331. r->luma_vlc = 1;
  332. }
  333. r->chroma_vlc = 0;
  334. r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 0);
  335. return rv34_decode_cbp(gb, r->cur_vlcs, r->is16);
  336. }
  337. /**
  338. * Decode inter macroblock header and return CBP in case of success, -1 otherwise.
  339. */
  340. static int rv34_decode_inter_mb_header(RV34DecContext *r, int8_t *intra_types)
  341. {
  342. MpegEncContext *s = &r->s;
  343. GetBitContext *gb = &s->gb;
  344. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  345. int i, t;
  346. r->block_type = r->decode_mb_info(r);
  347. if(r->block_type == -1)
  348. return -1;
  349. s->current_picture_ptr->mb_type[mb_pos] = rv34_mb_type_to_lavc[r->block_type];
  350. r->mb_type[mb_pos] = r->block_type;
  351. if(r->block_type == RV34_MB_SKIP){
  352. if(s->pict_type == AV_PICTURE_TYPE_P)
  353. r->mb_type[mb_pos] = RV34_MB_P_16x16;
  354. if(s->pict_type == AV_PICTURE_TYPE_B)
  355. r->mb_type[mb_pos] = RV34_MB_B_DIRECT;
  356. }
  357. r->is16 = !!IS_INTRA16x16(s->current_picture_ptr->mb_type[mb_pos]);
  358. rv34_decode_mv(r, r->block_type);
  359. if(r->block_type == RV34_MB_SKIP){
  360. fill_rectangle(intra_types, 4, 4, r->intra_types_stride, 0, sizeof(intra_types[0]));
  361. return 0;
  362. }
  363. r->chroma_vlc = 1;
  364. r->luma_vlc = 0;
  365. if(IS_INTRA(s->current_picture_ptr->mb_type[mb_pos])){
  366. if(r->is16){
  367. t = get_bits(gb, 2);
  368. fill_rectangle(intra_types, 4, 4, r->intra_types_stride, t, sizeof(intra_types[0]));
  369. r->luma_vlc = 2;
  370. }else{
  371. if(r->decode_intra_types(r, gb, intra_types) < 0)
  372. return -1;
  373. r->luma_vlc = 1;
  374. }
  375. r->chroma_vlc = 0;
  376. r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 0);
  377. }else{
  378. for(i = 0; i < 16; i++)
  379. intra_types[(i & 3) + (i>>2) * r->intra_types_stride] = 0;
  380. r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 1);
  381. if(r->mb_type[mb_pos] == RV34_MB_P_MIX16x16){
  382. r->is16 = 1;
  383. r->chroma_vlc = 1;
  384. r->luma_vlc = 2;
  385. r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 0);
  386. }
  387. }
  388. return rv34_decode_cbp(gb, r->cur_vlcs, r->is16);
  389. }
  390. /** @} */ //bitstream functions
  391. /**
  392. * @name motion vector related code (prediction, reconstruction, motion compensation)
  393. * @{
  394. */
  395. /** macroblock partition width in 8x8 blocks */
  396. static const uint8_t part_sizes_w[RV34_MB_TYPES] = { 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2 };
  397. /** macroblock partition height in 8x8 blocks */
  398. static const uint8_t part_sizes_h[RV34_MB_TYPES] = { 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2 };
  399. /** availability index for subblocks */
  400. static const uint8_t avail_indexes[4] = { 6, 7, 10, 11 };
  401. /**
  402. * motion vector prediction
  403. *
  404. * Motion prediction performed for the block by using median prediction of
  405. * motion vectors from the left, top and right top blocks but in corner cases
  406. * some other vectors may be used instead.
  407. */
  408. static void rv34_pred_mv(RV34DecContext *r, int block_type, int subblock_no, int dmv_no)
  409. {
  410. MpegEncContext *s = &r->s;
  411. int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
  412. int A[2] = {0}, B[2], C[2];
  413. int i, j;
  414. int mx, my;
  415. int* avail = r->avail_cache + avail_indexes[subblock_no];
  416. int c_off = part_sizes_w[block_type];
  417. mv_pos += (subblock_no & 1) + (subblock_no >> 1)*s->b8_stride;
  418. if(subblock_no == 3)
  419. c_off = -1;
  420. if(avail[-1]){
  421. A[0] = s->current_picture_ptr->motion_val[0][mv_pos-1][0];
  422. A[1] = s->current_picture_ptr->motion_val[0][mv_pos-1][1];
  423. }
  424. if(avail[-4]){
  425. B[0] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride][0];
  426. B[1] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride][1];
  427. }else{
  428. B[0] = A[0];
  429. B[1] = A[1];
  430. }
  431. if(!avail[c_off-4]){
  432. if(avail[-4] && (avail[-1] || r->rv30)){
  433. C[0] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride-1][0];
  434. C[1] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride-1][1];
  435. }else{
  436. C[0] = A[0];
  437. C[1] = A[1];
  438. }
  439. }else{
  440. C[0] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride+c_off][0];
  441. C[1] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride+c_off][1];
  442. }
  443. mx = mid_pred(A[0], B[0], C[0]);
  444. my = mid_pred(A[1], B[1], C[1]);
  445. mx += r->dmv[dmv_no][0];
  446. my += r->dmv[dmv_no][1];
  447. for(j = 0; j < part_sizes_h[block_type]; j++){
  448. for(i = 0; i < part_sizes_w[block_type]; i++){
  449. s->current_picture_ptr->motion_val[0][mv_pos + i + j*s->b8_stride][0] = mx;
  450. s->current_picture_ptr->motion_val[0][mv_pos + i + j*s->b8_stride][1] = my;
  451. }
  452. }
  453. }
  454. #define GET_PTS_DIFF(a, b) ((a - b + 8192) & 0x1FFF)
  455. /**
  456. * Calculate motion vector component that should be added for direct blocks.
  457. */
  458. static int calc_add_mv(RV34DecContext *r, int dir, int val)
  459. {
  460. int mul = dir ? -r->mv_weight2 : r->mv_weight1;
  461. return (val * mul + 0x2000) >> 14;
  462. }
  463. /**
  464. * Predict motion vector for B-frame macroblock.
  465. */
  466. static inline void rv34_pred_b_vector(int A[2], int B[2], int C[2],
  467. int A_avail, int B_avail, int C_avail,
  468. int *mx, int *my)
  469. {
  470. if(A_avail + B_avail + C_avail != 3){
  471. *mx = A[0] + B[0] + C[0];
  472. *my = A[1] + B[1] + C[1];
  473. if(A_avail + B_avail + C_avail == 2){
  474. *mx /= 2;
  475. *my /= 2;
  476. }
  477. }else{
  478. *mx = mid_pred(A[0], B[0], C[0]);
  479. *my = mid_pred(A[1], B[1], C[1]);
  480. }
  481. }
  482. /**
  483. * motion vector prediction for B-frames
  484. */
  485. static void rv34_pred_mv_b(RV34DecContext *r, int block_type, int dir)
  486. {
  487. MpegEncContext *s = &r->s;
  488. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  489. int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
  490. int A[2] = { 0 }, B[2] = { 0 }, C[2] = { 0 };
  491. int has_A = 0, has_B = 0, has_C = 0;
  492. int mx, my;
  493. int i, j;
  494. Picture *cur_pic = s->current_picture_ptr;
  495. const int mask = dir ? MB_TYPE_L1 : MB_TYPE_L0;
  496. int type = cur_pic->mb_type[mb_pos];
  497. if((r->avail_cache[6-1] & type) & mask){
  498. A[0] = cur_pic->motion_val[dir][mv_pos - 1][0];
  499. A[1] = cur_pic->motion_val[dir][mv_pos - 1][1];
  500. has_A = 1;
  501. }
  502. if((r->avail_cache[6-4] & type) & mask){
  503. B[0] = cur_pic->motion_val[dir][mv_pos - s->b8_stride][0];
  504. B[1] = cur_pic->motion_val[dir][mv_pos - s->b8_stride][1];
  505. has_B = 1;
  506. }
  507. if(r->avail_cache[6-4] && (r->avail_cache[6-2] & type) & mask){
  508. C[0] = cur_pic->motion_val[dir][mv_pos - s->b8_stride + 2][0];
  509. C[1] = cur_pic->motion_val[dir][mv_pos - s->b8_stride + 2][1];
  510. has_C = 1;
  511. }else if((s->mb_x+1) == s->mb_width && (r->avail_cache[6-5] & type) & mask){
  512. C[0] = cur_pic->motion_val[dir][mv_pos - s->b8_stride - 1][0];
  513. C[1] = cur_pic->motion_val[dir][mv_pos - s->b8_stride - 1][1];
  514. has_C = 1;
  515. }
  516. rv34_pred_b_vector(A, B, C, has_A, has_B, has_C, &mx, &my);
  517. mx += r->dmv[dir][0];
  518. my += r->dmv[dir][1];
  519. for(j = 0; j < 2; j++){
  520. for(i = 0; i < 2; i++){
  521. cur_pic->motion_val[dir][mv_pos + i + j*s->b8_stride][0] = mx;
  522. cur_pic->motion_val[dir][mv_pos + i + j*s->b8_stride][1] = my;
  523. }
  524. }
  525. if(block_type == RV34_MB_B_BACKWARD || block_type == RV34_MB_B_FORWARD){
  526. ZERO8x2(cur_pic->motion_val[!dir][mv_pos], s->b8_stride);
  527. }
  528. }
  529. /**
  530. * motion vector prediction - RV3 version
  531. */
  532. static void rv34_pred_mv_rv3(RV34DecContext *r, int block_type, int dir)
  533. {
  534. MpegEncContext *s = &r->s;
  535. int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
  536. int A[2] = {0}, B[2], C[2];
  537. int i, j, k;
  538. int mx, my;
  539. int* avail = r->avail_cache + avail_indexes[0];
  540. if(avail[-1]){
  541. A[0] = s->current_picture_ptr->motion_val[0][mv_pos - 1][0];
  542. A[1] = s->current_picture_ptr->motion_val[0][mv_pos - 1][1];
  543. }
  544. if(avail[-4]){
  545. B[0] = s->current_picture_ptr->motion_val[0][mv_pos - s->b8_stride][0];
  546. B[1] = s->current_picture_ptr->motion_val[0][mv_pos - s->b8_stride][1];
  547. }else{
  548. B[0] = A[0];
  549. B[1] = A[1];
  550. }
  551. if(!avail[-4 + 2]){
  552. if(avail[-4] && (avail[-1])){
  553. C[0] = s->current_picture_ptr->motion_val[0][mv_pos - s->b8_stride - 1][0];
  554. C[1] = s->current_picture_ptr->motion_val[0][mv_pos - s->b8_stride - 1][1];
  555. }else{
  556. C[0] = A[0];
  557. C[1] = A[1];
  558. }
  559. }else{
  560. C[0] = s->current_picture_ptr->motion_val[0][mv_pos - s->b8_stride + 2][0];
  561. C[1] = s->current_picture_ptr->motion_val[0][mv_pos - s->b8_stride + 2][1];
  562. }
  563. mx = mid_pred(A[0], B[0], C[0]);
  564. my = mid_pred(A[1], B[1], C[1]);
  565. mx += r->dmv[0][0];
  566. my += r->dmv[0][1];
  567. for(j = 0; j < 2; j++){
  568. for(i = 0; i < 2; i++){
  569. for(k = 0; k < 2; k++){
  570. s->current_picture_ptr->motion_val[k][mv_pos + i + j*s->b8_stride][0] = mx;
  571. s->current_picture_ptr->motion_val[k][mv_pos + i + j*s->b8_stride][1] = my;
  572. }
  573. }
  574. }
  575. }
  576. static const int chroma_coeffs[3] = { 0, 3, 5 };
  577. /**
  578. * generic motion compensation function
  579. *
  580. * @param r decoder context
  581. * @param block_type type of the current block
  582. * @param xoff horizontal offset from the start of the current block
  583. * @param yoff vertical offset from the start of the current block
  584. * @param mv_off offset to the motion vector information
  585. * @param width width of the current partition in 8x8 blocks
  586. * @param height height of the current partition in 8x8 blocks
  587. * @param dir motion compensation direction (i.e. from the last or the next reference frame)
  588. * @param thirdpel motion vectors are specified in 1/3 of pixel
  589. * @param qpel_mc a set of functions used to perform luma motion compensation
  590. * @param chroma_mc a set of functions used to perform chroma motion compensation
  591. */
  592. static inline void rv34_mc(RV34DecContext *r, const int block_type,
  593. const int xoff, const int yoff, int mv_off,
  594. const int width, const int height, int dir,
  595. const int thirdpel, int weighted,
  596. qpel_mc_func (*qpel_mc)[16],
  597. h264_chroma_mc_func (*chroma_mc))
  598. {
  599. MpegEncContext *s = &r->s;
  600. uint8_t *Y, *U, *V, *srcY, *srcU, *srcV;
  601. int dxy, mx, my, umx, umy, lx, ly, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  602. int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride + mv_off;
  603. int is16x16 = 1;
  604. if(thirdpel){
  605. int chroma_mx, chroma_my;
  606. mx = (s->current_picture_ptr->motion_val[dir][mv_pos][0] + (3 << 24)) / 3 - (1 << 24);
  607. my = (s->current_picture_ptr->motion_val[dir][mv_pos][1] + (3 << 24)) / 3 - (1 << 24);
  608. lx = (s->current_picture_ptr->motion_val[dir][mv_pos][0] + (3 << 24)) % 3;
  609. ly = (s->current_picture_ptr->motion_val[dir][mv_pos][1] + (3 << 24)) % 3;
  610. chroma_mx = s->current_picture_ptr->motion_val[dir][mv_pos][0] / 2;
  611. chroma_my = s->current_picture_ptr->motion_val[dir][mv_pos][1] / 2;
  612. umx = (chroma_mx + (3 << 24)) / 3 - (1 << 24);
  613. umy = (chroma_my + (3 << 24)) / 3 - (1 << 24);
  614. uvmx = chroma_coeffs[(chroma_mx + (3 << 24)) % 3];
  615. uvmy = chroma_coeffs[(chroma_my + (3 << 24)) % 3];
  616. }else{
  617. int cx, cy;
  618. mx = s->current_picture_ptr->motion_val[dir][mv_pos][0] >> 2;
  619. my = s->current_picture_ptr->motion_val[dir][mv_pos][1] >> 2;
  620. lx = s->current_picture_ptr->motion_val[dir][mv_pos][0] & 3;
  621. ly = s->current_picture_ptr->motion_val[dir][mv_pos][1] & 3;
  622. cx = s->current_picture_ptr->motion_val[dir][mv_pos][0] / 2;
  623. cy = s->current_picture_ptr->motion_val[dir][mv_pos][1] / 2;
  624. umx = cx >> 2;
  625. umy = cy >> 2;
  626. uvmx = (cx & 3) << 1;
  627. uvmy = (cy & 3) << 1;
  628. //due to some flaw RV40 uses the same MC compensation routine for H2V2 and H3V3
  629. if(uvmx == 6 && uvmy == 6)
  630. uvmx = uvmy = 4;
  631. }
  632. if (HAVE_THREADS && (s->avctx->active_thread_type & FF_THREAD_FRAME)) {
  633. /* wait for the referenced mb row to be finished */
  634. int mb_row = s->mb_y + ((yoff + my + 5 + 8 * height) >> 4);
  635. ThreadFrame *f = dir ? &s->next_picture_ptr->tf : &s->last_picture_ptr->tf;
  636. ff_thread_await_progress(f, mb_row, 0);
  637. }
  638. dxy = ly*4 + lx;
  639. srcY = dir ? s->next_picture_ptr->f->data[0] : s->last_picture_ptr->f->data[0];
  640. srcU = dir ? s->next_picture_ptr->f->data[1] : s->last_picture_ptr->f->data[1];
  641. srcV = dir ? s->next_picture_ptr->f->data[2] : s->last_picture_ptr->f->data[2];
  642. src_x = s->mb_x * 16 + xoff + mx;
  643. src_y = s->mb_y * 16 + yoff + my;
  644. uvsrc_x = s->mb_x * 8 + (xoff >> 1) + umx;
  645. uvsrc_y = s->mb_y * 8 + (yoff >> 1) + umy;
  646. srcY += src_y * s->linesize + src_x;
  647. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  648. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  649. if(s->h_edge_pos - (width << 3) < 6 || s->v_edge_pos - (height << 3) < 6 ||
  650. (unsigned)(src_x - !!lx*2) > s->h_edge_pos - !!lx*2 - (width <<3) - 4 ||
  651. (unsigned)(src_y - !!ly*2) > s->v_edge_pos - !!ly*2 - (height<<3) - 4) {
  652. uint8_t *uvbuf = s->sc.edge_emu_buffer + 22 * s->linesize;
  653. srcY -= 2 + 2*s->linesize;
  654. s->vdsp.emulated_edge_mc(s->sc.edge_emu_buffer, srcY,
  655. s->linesize, s->linesize,
  656. (width << 3) + 6, (height << 3) + 6,
  657. src_x - 2, src_y - 2, s->h_edge_pos, s->v_edge_pos);
  658. srcY = s->sc.edge_emu_buffer + 2 + 2*s->linesize;
  659. s->vdsp.emulated_edge_mc(uvbuf, srcU,
  660. s->uvlinesize,s->uvlinesize,
  661. (width << 2) + 1, (height << 2) + 1,
  662. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  663. s->vdsp.emulated_edge_mc(uvbuf + 16, srcV,
  664. s->uvlinesize, s->uvlinesize,
  665. (width << 2) + 1, (height << 2) + 1,
  666. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  667. srcU = uvbuf;
  668. srcV = uvbuf + 16;
  669. }
  670. if(!weighted){
  671. Y = s->dest[0] + xoff + yoff *s->linesize;
  672. U = s->dest[1] + (xoff>>1) + (yoff>>1)*s->uvlinesize;
  673. V = s->dest[2] + (xoff>>1) + (yoff>>1)*s->uvlinesize;
  674. }else{
  675. Y = r->tmp_b_block_y [dir] + xoff + yoff *s->linesize;
  676. U = r->tmp_b_block_uv[dir*2] + (xoff>>1) + (yoff>>1)*s->uvlinesize;
  677. V = r->tmp_b_block_uv[dir*2+1] + (xoff>>1) + (yoff>>1)*s->uvlinesize;
  678. }
  679. if(block_type == RV34_MB_P_16x8){
  680. qpel_mc[1][dxy](Y, srcY, s->linesize);
  681. Y += 8;
  682. srcY += 8;
  683. }else if(block_type == RV34_MB_P_8x16){
  684. qpel_mc[1][dxy](Y, srcY, s->linesize);
  685. Y += 8 * s->linesize;
  686. srcY += 8 * s->linesize;
  687. }
  688. is16x16 = (block_type != RV34_MB_P_8x8) && (block_type != RV34_MB_P_16x8) && (block_type != RV34_MB_P_8x16);
  689. qpel_mc[!is16x16][dxy](Y, srcY, s->linesize);
  690. chroma_mc[2-width] (U, srcU, s->uvlinesize, height*4, uvmx, uvmy);
  691. chroma_mc[2-width] (V, srcV, s->uvlinesize, height*4, uvmx, uvmy);
  692. }
  693. static void rv34_mc_1mv(RV34DecContext *r, const int block_type,
  694. const int xoff, const int yoff, int mv_off,
  695. const int width, const int height, int dir)
  696. {
  697. rv34_mc(r, block_type, xoff, yoff, mv_off, width, height, dir, r->rv30, 0,
  698. r->rdsp.put_pixels_tab,
  699. r->rdsp.put_chroma_pixels_tab);
  700. }
  701. static void rv4_weight(RV34DecContext *r)
  702. {
  703. r->rdsp.rv40_weight_pixels_tab[r->scaled_weight][0](r->s.dest[0],
  704. r->tmp_b_block_y[0],
  705. r->tmp_b_block_y[1],
  706. r->weight1,
  707. r->weight2,
  708. r->s.linesize);
  709. r->rdsp.rv40_weight_pixels_tab[r->scaled_weight][1](r->s.dest[1],
  710. r->tmp_b_block_uv[0],
  711. r->tmp_b_block_uv[2],
  712. r->weight1,
  713. r->weight2,
  714. r->s.uvlinesize);
  715. r->rdsp.rv40_weight_pixels_tab[r->scaled_weight][1](r->s.dest[2],
  716. r->tmp_b_block_uv[1],
  717. r->tmp_b_block_uv[3],
  718. r->weight1,
  719. r->weight2,
  720. r->s.uvlinesize);
  721. }
  722. static void rv34_mc_2mv(RV34DecContext *r, const int block_type)
  723. {
  724. int weighted = !r->rv30 && block_type != RV34_MB_B_BIDIR && r->weight1 != 8192;
  725. rv34_mc(r, block_type, 0, 0, 0, 2, 2, 0, r->rv30, weighted,
  726. r->rdsp.put_pixels_tab,
  727. r->rdsp.put_chroma_pixels_tab);
  728. if(!weighted){
  729. rv34_mc(r, block_type, 0, 0, 0, 2, 2, 1, r->rv30, 0,
  730. r->rdsp.avg_pixels_tab,
  731. r->rdsp.avg_chroma_pixels_tab);
  732. }else{
  733. rv34_mc(r, block_type, 0, 0, 0, 2, 2, 1, r->rv30, 1,
  734. r->rdsp.put_pixels_tab,
  735. r->rdsp.put_chroma_pixels_tab);
  736. rv4_weight(r);
  737. }
  738. }
  739. static void rv34_mc_2mv_skip(RV34DecContext *r)
  740. {
  741. int i, j;
  742. int weighted = !r->rv30 && r->weight1 != 8192;
  743. for(j = 0; j < 2; j++)
  744. for(i = 0; i < 2; i++){
  745. rv34_mc(r, RV34_MB_P_8x8, i*8, j*8, i+j*r->s.b8_stride, 1, 1, 0, r->rv30,
  746. weighted,
  747. r->rdsp.put_pixels_tab,
  748. r->rdsp.put_chroma_pixels_tab);
  749. rv34_mc(r, RV34_MB_P_8x8, i*8, j*8, i+j*r->s.b8_stride, 1, 1, 1, r->rv30,
  750. weighted,
  751. weighted ? r->rdsp.put_pixels_tab : r->rdsp.avg_pixels_tab,
  752. weighted ? r->rdsp.put_chroma_pixels_tab : r->rdsp.avg_chroma_pixels_tab);
  753. }
  754. if(weighted)
  755. rv4_weight(r);
  756. }
  757. /** number of motion vectors in each macroblock type */
  758. static const int num_mvs[RV34_MB_TYPES] = { 0, 0, 1, 4, 1, 1, 0, 0, 2, 2, 2, 1 };
  759. /**
  760. * Decode motion vector differences
  761. * and perform motion vector reconstruction and motion compensation.
  762. */
  763. static int rv34_decode_mv(RV34DecContext *r, int block_type)
  764. {
  765. MpegEncContext *s = &r->s;
  766. GetBitContext *gb = &s->gb;
  767. int i, j, k, l;
  768. int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
  769. int next_bt;
  770. memset(r->dmv, 0, sizeof(r->dmv));
  771. for(i = 0; i < num_mvs[block_type]; i++){
  772. r->dmv[i][0] = get_interleaved_se_golomb(gb);
  773. r->dmv[i][1] = get_interleaved_se_golomb(gb);
  774. }
  775. switch(block_type){
  776. case RV34_MB_TYPE_INTRA:
  777. case RV34_MB_TYPE_INTRA16x16:
  778. ZERO8x2(s->current_picture_ptr->motion_val[0][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], s->b8_stride);
  779. return 0;
  780. case RV34_MB_SKIP:
  781. if(s->pict_type == AV_PICTURE_TYPE_P){
  782. ZERO8x2(s->current_picture_ptr->motion_val[0][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], s->b8_stride);
  783. rv34_mc_1mv (r, block_type, 0, 0, 0, 2, 2, 0);
  784. break;
  785. }
  786. case RV34_MB_B_DIRECT:
  787. //surprisingly, it uses motion scheme from next reference frame
  788. /* wait for the current mb row to be finished */
  789. if (HAVE_THREADS && (s->avctx->active_thread_type & FF_THREAD_FRAME))
  790. ff_thread_await_progress(&s->next_picture_ptr->tf, FFMAX(0, s->mb_y-1), 0);
  791. next_bt = s->next_picture_ptr->mb_type[s->mb_x + s->mb_y * s->mb_stride];
  792. if(IS_INTRA(next_bt) || IS_SKIP(next_bt)){
  793. ZERO8x2(s->current_picture_ptr->motion_val[0][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], s->b8_stride);
  794. ZERO8x2(s->current_picture_ptr->motion_val[1][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], s->b8_stride);
  795. }else
  796. for(j = 0; j < 2; j++)
  797. for(i = 0; i < 2; i++)
  798. for(k = 0; k < 2; k++)
  799. for(l = 0; l < 2; l++)
  800. s->current_picture_ptr->motion_val[l][mv_pos + i + j*s->b8_stride][k] = calc_add_mv(r, l, s->next_picture_ptr->motion_val[0][mv_pos + i + j*s->b8_stride][k]);
  801. if(!(IS_16X8(next_bt) || IS_8X16(next_bt) || IS_8X8(next_bt))) //we can use whole macroblock MC
  802. rv34_mc_2mv(r, block_type);
  803. else
  804. rv34_mc_2mv_skip(r);
  805. ZERO8x2(s->current_picture_ptr->motion_val[0][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], s->b8_stride);
  806. break;
  807. case RV34_MB_P_16x16:
  808. case RV34_MB_P_MIX16x16:
  809. rv34_pred_mv(r, block_type, 0, 0);
  810. rv34_mc_1mv (r, block_type, 0, 0, 0, 2, 2, 0);
  811. break;
  812. case RV34_MB_B_FORWARD:
  813. case RV34_MB_B_BACKWARD:
  814. r->dmv[1][0] = r->dmv[0][0];
  815. r->dmv[1][1] = r->dmv[0][1];
  816. if(r->rv30)
  817. rv34_pred_mv_rv3(r, block_type, block_type == RV34_MB_B_BACKWARD);
  818. else
  819. rv34_pred_mv_b (r, block_type, block_type == RV34_MB_B_BACKWARD);
  820. rv34_mc_1mv (r, block_type, 0, 0, 0, 2, 2, block_type == RV34_MB_B_BACKWARD);
  821. break;
  822. case RV34_MB_P_16x8:
  823. case RV34_MB_P_8x16:
  824. rv34_pred_mv(r, block_type, 0, 0);
  825. rv34_pred_mv(r, block_type, 1 + (block_type == RV34_MB_P_16x8), 1);
  826. if(block_type == RV34_MB_P_16x8){
  827. rv34_mc_1mv(r, block_type, 0, 0, 0, 2, 1, 0);
  828. rv34_mc_1mv(r, block_type, 0, 8, s->b8_stride, 2, 1, 0);
  829. }
  830. if(block_type == RV34_MB_P_8x16){
  831. rv34_mc_1mv(r, block_type, 0, 0, 0, 1, 2, 0);
  832. rv34_mc_1mv(r, block_type, 8, 0, 1, 1, 2, 0);
  833. }
  834. break;
  835. case RV34_MB_B_BIDIR:
  836. rv34_pred_mv_b (r, block_type, 0);
  837. rv34_pred_mv_b (r, block_type, 1);
  838. rv34_mc_2mv (r, block_type);
  839. break;
  840. case RV34_MB_P_8x8:
  841. for(i=0;i< 4;i++){
  842. rv34_pred_mv(r, block_type, i, i);
  843. rv34_mc_1mv (r, block_type, (i&1)<<3, (i&2)<<2, (i&1)+(i>>1)*s->b8_stride, 1, 1, 0);
  844. }
  845. break;
  846. }
  847. return 0;
  848. }
  849. /** @} */ // mv group
  850. /**
  851. * @name Macroblock reconstruction functions
  852. * @{
  853. */
  854. /** mapping of RV30/40 intra prediction types to standard H.264 types */
  855. static const int ittrans[9] = {
  856. DC_PRED, VERT_PRED, HOR_PRED, DIAG_DOWN_RIGHT_PRED, DIAG_DOWN_LEFT_PRED,
  857. VERT_RIGHT_PRED, VERT_LEFT_PRED, HOR_UP_PRED, HOR_DOWN_PRED,
  858. };
  859. /** mapping of RV30/40 intra 16x16 prediction types to standard H.264 types */
  860. static const int ittrans16[4] = {
  861. DC_PRED8x8, VERT_PRED8x8, HOR_PRED8x8, PLANE_PRED8x8,
  862. };
  863. /**
  864. * Perform 4x4 intra prediction.
  865. */
  866. static void rv34_pred_4x4_block(RV34DecContext *r, uint8_t *dst, int stride, int itype, int up, int left, int down, int right)
  867. {
  868. uint8_t *prev = dst - stride + 4;
  869. uint32_t topleft;
  870. if(!up && !left)
  871. itype = DC_128_PRED;
  872. else if(!up){
  873. if(itype == VERT_PRED) itype = HOR_PRED;
  874. if(itype == DC_PRED) itype = LEFT_DC_PRED;
  875. }else if(!left){
  876. if(itype == HOR_PRED) itype = VERT_PRED;
  877. if(itype == DC_PRED) itype = TOP_DC_PRED;
  878. if(itype == DIAG_DOWN_LEFT_PRED) itype = DIAG_DOWN_LEFT_PRED_RV40_NODOWN;
  879. }
  880. if(!down){
  881. if(itype == DIAG_DOWN_LEFT_PRED) itype = DIAG_DOWN_LEFT_PRED_RV40_NODOWN;
  882. if(itype == HOR_UP_PRED) itype = HOR_UP_PRED_RV40_NODOWN;
  883. if(itype == VERT_LEFT_PRED) itype = VERT_LEFT_PRED_RV40_NODOWN;
  884. }
  885. if(!right && up){
  886. topleft = dst[-stride + 3] * 0x01010101u;
  887. prev = (uint8_t*)&topleft;
  888. }
  889. r->h.pred4x4[itype](dst, prev, stride);
  890. }
  891. static inline int adjust_pred16(int itype, int up, int left)
  892. {
  893. if(!up && !left)
  894. itype = DC_128_PRED8x8;
  895. else if(!up){
  896. if(itype == PLANE_PRED8x8)itype = HOR_PRED8x8;
  897. if(itype == VERT_PRED8x8) itype = HOR_PRED8x8;
  898. if(itype == DC_PRED8x8) itype = LEFT_DC_PRED8x8;
  899. }else if(!left){
  900. if(itype == PLANE_PRED8x8)itype = VERT_PRED8x8;
  901. if(itype == HOR_PRED8x8) itype = VERT_PRED8x8;
  902. if(itype == DC_PRED8x8) itype = TOP_DC_PRED8x8;
  903. }
  904. return itype;
  905. }
  906. static inline void rv34_process_block(RV34DecContext *r,
  907. uint8_t *pdst, int stride,
  908. int fc, int sc, int q_dc, int q_ac)
  909. {
  910. MpegEncContext *s = &r->s;
  911. int16_t *ptr = s->block[0];
  912. int has_ac = rv34_decode_block(ptr, &s->gb, r->cur_vlcs,
  913. fc, sc, q_dc, q_ac, q_ac);
  914. if(has_ac){
  915. r->rdsp.rv34_idct_add(pdst, stride, ptr);
  916. }else{
  917. r->rdsp.rv34_idct_dc_add(pdst, stride, ptr[0]);
  918. ptr[0] = 0;
  919. }
  920. }
  921. static void rv34_output_i16x16(RV34DecContext *r, int8_t *intra_types, int cbp)
  922. {
  923. LOCAL_ALIGNED_16(int16_t, block16, [16]);
  924. MpegEncContext *s = &r->s;
  925. GetBitContext *gb = &s->gb;
  926. int q_dc = rv34_qscale_tab[ r->luma_dc_quant_i[s->qscale] ],
  927. q_ac = rv34_qscale_tab[s->qscale];
  928. uint8_t *dst = s->dest[0];
  929. int16_t *ptr = s->block[0];
  930. int i, j, itype, has_ac;
  931. memset(block16, 0, 16 * sizeof(*block16));
  932. has_ac = rv34_decode_block(block16, gb, r->cur_vlcs, 3, 0, q_dc, q_dc, q_ac);
  933. if(has_ac)
  934. r->rdsp.rv34_inv_transform(block16);
  935. else
  936. r->rdsp.rv34_inv_transform_dc(block16);
  937. itype = ittrans16[intra_types[0]];
  938. itype = adjust_pred16(itype, r->avail_cache[6-4], r->avail_cache[6-1]);
  939. r->h.pred16x16[itype](dst, s->linesize);
  940. for(j = 0; j < 4; j++){
  941. for(i = 0; i < 4; i++, cbp >>= 1){
  942. int dc = block16[i + j*4];
  943. if(cbp & 1){
  944. has_ac = rv34_decode_block(ptr, gb, r->cur_vlcs, r->luma_vlc, 0, q_ac, q_ac, q_ac);
  945. }else
  946. has_ac = 0;
  947. if(has_ac){
  948. ptr[0] = dc;
  949. r->rdsp.rv34_idct_add(dst+4*i, s->linesize, ptr);
  950. }else
  951. r->rdsp.rv34_idct_dc_add(dst+4*i, s->linesize, dc);
  952. }
  953. dst += 4*s->linesize;
  954. }
  955. itype = ittrans16[intra_types[0]];
  956. if(itype == PLANE_PRED8x8) itype = DC_PRED8x8;
  957. itype = adjust_pred16(itype, r->avail_cache[6-4], r->avail_cache[6-1]);
  958. q_dc = rv34_qscale_tab[rv34_chroma_quant[1][s->qscale]];
  959. q_ac = rv34_qscale_tab[rv34_chroma_quant[0][s->qscale]];
  960. for(j = 1; j < 3; j++){
  961. dst = s->dest[j];
  962. r->h.pred8x8[itype](dst, s->uvlinesize);
  963. for(i = 0; i < 4; i++, cbp >>= 1){
  964. uint8_t *pdst;
  965. if(!(cbp & 1)) continue;
  966. pdst = dst + (i&1)*4 + (i&2)*2*s->uvlinesize;
  967. rv34_process_block(r, pdst, s->uvlinesize,
  968. r->chroma_vlc, 1, q_dc, q_ac);
  969. }
  970. }
  971. }
  972. static void rv34_output_intra(RV34DecContext *r, int8_t *intra_types, int cbp)
  973. {
  974. MpegEncContext *s = &r->s;
  975. uint8_t *dst = s->dest[0];
  976. int avail[6*8] = {0};
  977. int i, j, k;
  978. int idx, q_ac, q_dc;
  979. // Set neighbour information.
  980. if(r->avail_cache[1])
  981. avail[0] = 1;
  982. if(r->avail_cache[2])
  983. avail[1] = avail[2] = 1;
  984. if(r->avail_cache[3])
  985. avail[3] = avail[4] = 1;
  986. if(r->avail_cache[4])
  987. avail[5] = 1;
  988. if(r->avail_cache[5])
  989. avail[8] = avail[16] = 1;
  990. if(r->avail_cache[9])
  991. avail[24] = avail[32] = 1;
  992. q_ac = rv34_qscale_tab[s->qscale];
  993. for(j = 0; j < 4; j++){
  994. idx = 9 + j*8;
  995. for(i = 0; i < 4; i++, cbp >>= 1, dst += 4, idx++){
  996. rv34_pred_4x4_block(r, dst, s->linesize, ittrans[intra_types[i]], avail[idx-8], avail[idx-1], avail[idx+7], avail[idx-7]);
  997. avail[idx] = 1;
  998. if(!(cbp & 1)) continue;
  999. rv34_process_block(r, dst, s->linesize,
  1000. r->luma_vlc, 0, q_ac, q_ac);
  1001. }
  1002. dst += s->linesize * 4 - 4*4;
  1003. intra_types += r->intra_types_stride;
  1004. }
  1005. intra_types -= r->intra_types_stride * 4;
  1006. q_dc = rv34_qscale_tab[rv34_chroma_quant[1][s->qscale]];
  1007. q_ac = rv34_qscale_tab[rv34_chroma_quant[0][s->qscale]];
  1008. for(k = 0; k < 2; k++){
  1009. dst = s->dest[1+k];
  1010. fill_rectangle(r->avail_cache + 6, 2, 2, 4, 0, 4);
  1011. for(j = 0; j < 2; j++){
  1012. int* acache = r->avail_cache + 6 + j*4;
  1013. for(i = 0; i < 2; i++, cbp >>= 1, acache++){
  1014. int itype = ittrans[intra_types[i*2+j*2*r->intra_types_stride]];
  1015. rv34_pred_4x4_block(r, dst+4*i, s->uvlinesize, itype, acache[-4], acache[-1], !i && !j, acache[-3]);
  1016. acache[0] = 1;
  1017. if(!(cbp&1)) continue;
  1018. rv34_process_block(r, dst + 4*i, s->uvlinesize,
  1019. r->chroma_vlc, 1, q_dc, q_ac);
  1020. }
  1021. dst += 4*s->uvlinesize;
  1022. }
  1023. }
  1024. }
  1025. static int is_mv_diff_gt_3(int16_t (*motion_val)[2], int step)
  1026. {
  1027. int d;
  1028. d = motion_val[0][0] - motion_val[-step][0];
  1029. if(d < -3 || d > 3)
  1030. return 1;
  1031. d = motion_val[0][1] - motion_val[-step][1];
  1032. if(d < -3 || d > 3)
  1033. return 1;
  1034. return 0;
  1035. }
  1036. static int rv34_set_deblock_coef(RV34DecContext *r)
  1037. {
  1038. MpegEncContext *s = &r->s;
  1039. int hmvmask = 0, vmvmask = 0, i, j;
  1040. int midx = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
  1041. int16_t (*motion_val)[2] = &s->current_picture_ptr->motion_val[0][midx];
  1042. for(j = 0; j < 16; j += 8){
  1043. for(i = 0; i < 2; i++){
  1044. if(is_mv_diff_gt_3(motion_val + i, 1))
  1045. vmvmask |= 0x11 << (j + i*2);
  1046. if((j || s->mb_y) && is_mv_diff_gt_3(motion_val + i, s->b8_stride))
  1047. hmvmask |= 0x03 << (j + i*2);
  1048. }
  1049. motion_val += s->b8_stride;
  1050. }
  1051. if(s->first_slice_line)
  1052. hmvmask &= ~0x000F;
  1053. if(!s->mb_x)
  1054. vmvmask &= ~0x1111;
  1055. if(r->rv30){ //RV30 marks both subblocks on the edge for filtering
  1056. vmvmask |= (vmvmask & 0x4444) >> 1;
  1057. hmvmask |= (hmvmask & 0x0F00) >> 4;
  1058. if(s->mb_x)
  1059. r->deblock_coefs[s->mb_x - 1 + s->mb_y*s->mb_stride] |= (vmvmask & 0x1111) << 3;
  1060. if(!s->first_slice_line)
  1061. r->deblock_coefs[s->mb_x + (s->mb_y - 1)*s->mb_stride] |= (hmvmask & 0xF) << 12;
  1062. }
  1063. return hmvmask | vmvmask;
  1064. }
  1065. static int rv34_decode_inter_macroblock(RV34DecContext *r, int8_t *intra_types)
  1066. {
  1067. MpegEncContext *s = &r->s;
  1068. GetBitContext *gb = &s->gb;
  1069. uint8_t *dst = s->dest[0];
  1070. int16_t *ptr = s->block[0];
  1071. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1072. int cbp, cbp2;
  1073. int q_dc, q_ac, has_ac;
  1074. int i, j;
  1075. int dist;
  1076. // Calculate which neighbours are available. Maybe it's worth optimizing too.
  1077. memset(r->avail_cache, 0, sizeof(r->avail_cache));
  1078. fill_rectangle(r->avail_cache + 6, 2, 2, 4, 1, 4);
  1079. dist = (s->mb_x - s->resync_mb_x) + (s->mb_y - s->resync_mb_y) * s->mb_width;
  1080. if(s->mb_x && dist)
  1081. r->avail_cache[5] =
  1082. r->avail_cache[9] = s->current_picture_ptr->mb_type[mb_pos - 1];
  1083. if(dist >= s->mb_width)
  1084. r->avail_cache[2] =
  1085. r->avail_cache[3] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride];
  1086. if(((s->mb_x+1) < s->mb_width) && dist >= s->mb_width - 1)
  1087. r->avail_cache[4] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride + 1];
  1088. if(s->mb_x && dist > s->mb_width)
  1089. r->avail_cache[1] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride - 1];
  1090. s->qscale = r->si.quant;
  1091. cbp = cbp2 = rv34_decode_inter_mb_header(r, intra_types);
  1092. r->cbp_luma [mb_pos] = cbp;
  1093. r->cbp_chroma[mb_pos] = cbp >> 16;
  1094. r->deblock_coefs[mb_pos] = rv34_set_deblock_coef(r) | r->cbp_luma[mb_pos];
  1095. s->current_picture_ptr->qscale_table[mb_pos] = s->qscale;
  1096. if(cbp == -1)
  1097. return -1;
  1098. if (IS_INTRA(s->current_picture_ptr->mb_type[mb_pos])){
  1099. if(r->is16) rv34_output_i16x16(r, intra_types, cbp);
  1100. else rv34_output_intra(r, intra_types, cbp);
  1101. return 0;
  1102. }
  1103. if(r->is16){
  1104. // Only for RV34_MB_P_MIX16x16
  1105. LOCAL_ALIGNED_16(int16_t, block16, [16]);
  1106. memset(block16, 0, 16 * sizeof(*block16));
  1107. q_dc = rv34_qscale_tab[ r->luma_dc_quant_p[s->qscale] ];
  1108. q_ac = rv34_qscale_tab[s->qscale];
  1109. if (rv34_decode_block(block16, gb, r->cur_vlcs, 3, 0, q_dc, q_dc, q_ac))
  1110. r->rdsp.rv34_inv_transform(block16);
  1111. else
  1112. r->rdsp.rv34_inv_transform_dc(block16);
  1113. q_ac = rv34_qscale_tab[s->qscale];
  1114. for(j = 0; j < 4; j++){
  1115. for(i = 0; i < 4; i++, cbp >>= 1){
  1116. int dc = block16[i + j*4];
  1117. if(cbp & 1){
  1118. has_ac = rv34_decode_block(ptr, gb, r->cur_vlcs, r->luma_vlc, 0, q_ac, q_ac, q_ac);
  1119. }else
  1120. has_ac = 0;
  1121. if(has_ac){
  1122. ptr[0] = dc;
  1123. r->rdsp.rv34_idct_add(dst+4*i, s->linesize, ptr);
  1124. }else
  1125. r->rdsp.rv34_idct_dc_add(dst+4*i, s->linesize, dc);
  1126. }
  1127. dst += 4*s->linesize;
  1128. }
  1129. r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 1);
  1130. }else{
  1131. q_ac = rv34_qscale_tab[s->qscale];
  1132. for(j = 0; j < 4; j++){
  1133. for(i = 0; i < 4; i++, cbp >>= 1){
  1134. if(!(cbp & 1)) continue;
  1135. rv34_process_block(r, dst + 4*i, s->linesize,
  1136. r->luma_vlc, 0, q_ac, q_ac);
  1137. }
  1138. dst += 4*s->linesize;
  1139. }
  1140. }
  1141. q_dc = rv34_qscale_tab[rv34_chroma_quant[1][s->qscale]];
  1142. q_ac = rv34_qscale_tab[rv34_chroma_quant[0][s->qscale]];
  1143. for(j = 1; j < 3; j++){
  1144. dst = s->dest[j];
  1145. for(i = 0; i < 4; i++, cbp >>= 1){
  1146. uint8_t *pdst;
  1147. if(!(cbp & 1)) continue;
  1148. pdst = dst + (i&1)*4 + (i&2)*2*s->uvlinesize;
  1149. rv34_process_block(r, pdst, s->uvlinesize,
  1150. r->chroma_vlc, 1, q_dc, q_ac);
  1151. }
  1152. }
  1153. return 0;
  1154. }
  1155. static int rv34_decode_intra_macroblock(RV34DecContext *r, int8_t *intra_types)
  1156. {
  1157. MpegEncContext *s = &r->s;
  1158. int cbp, dist;
  1159. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1160. // Calculate which neighbours are available. Maybe it's worth optimizing too.
  1161. memset(r->avail_cache, 0, sizeof(r->avail_cache));
  1162. fill_rectangle(r->avail_cache + 6, 2, 2, 4, 1, 4);
  1163. dist = (s->mb_x - s->resync_mb_x) + (s->mb_y - s->resync_mb_y) * s->mb_width;
  1164. if(s->mb_x && dist)
  1165. r->avail_cache[5] =
  1166. r->avail_cache[9] = s->current_picture_ptr->mb_type[mb_pos - 1];
  1167. if(dist >= s->mb_width)
  1168. r->avail_cache[2] =
  1169. r->avail_cache[3] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride];
  1170. if(((s->mb_x+1) < s->mb_width) && dist >= s->mb_width - 1)
  1171. r->avail_cache[4] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride + 1];
  1172. if(s->mb_x && dist > s->mb_width)
  1173. r->avail_cache[1] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride - 1];
  1174. s->qscale = r->si.quant;
  1175. cbp = rv34_decode_intra_mb_header(r, intra_types);
  1176. r->cbp_luma [mb_pos] = cbp;
  1177. r->cbp_chroma[mb_pos] = cbp >> 16;
  1178. r->deblock_coefs[mb_pos] = 0xFFFF;
  1179. s->current_picture_ptr->qscale_table[mb_pos] = s->qscale;
  1180. if(cbp == -1)
  1181. return -1;
  1182. if(r->is16){
  1183. rv34_output_i16x16(r, intra_types, cbp);
  1184. return 0;
  1185. }
  1186. rv34_output_intra(r, intra_types, cbp);
  1187. return 0;
  1188. }
  1189. static int check_slice_end(RV34DecContext *r, MpegEncContext *s)
  1190. {
  1191. int bits;
  1192. if(s->mb_y >= s->mb_height)
  1193. return 1;
  1194. if(!s->mb_num_left)
  1195. return 1;
  1196. if(r->s.mb_skip_run > 1)
  1197. return 0;
  1198. bits = get_bits_left(&s->gb);
  1199. if(bits < 0 || (bits < 8 && !show_bits(&s->gb, bits)))
  1200. return 1;
  1201. return 0;
  1202. }
  1203. static void rv34_decoder_free(RV34DecContext *r)
  1204. {
  1205. av_freep(&r->intra_types_hist);
  1206. r->intra_types = NULL;
  1207. av_freep(&r->tmp_b_block_base);
  1208. av_freep(&r->mb_type);
  1209. av_freep(&r->cbp_luma);
  1210. av_freep(&r->cbp_chroma);
  1211. av_freep(&r->deblock_coefs);
  1212. }
  1213. static int rv34_decoder_alloc(RV34DecContext *r)
  1214. {
  1215. r->intra_types_stride = r->s.mb_width * 4 + 4;
  1216. r->cbp_chroma = av_malloc(r->s.mb_stride * r->s.mb_height *
  1217. sizeof(*r->cbp_chroma));
  1218. r->cbp_luma = av_malloc(r->s.mb_stride * r->s.mb_height *
  1219. sizeof(*r->cbp_luma));
  1220. r->deblock_coefs = av_malloc(r->s.mb_stride * r->s.mb_height *
  1221. sizeof(*r->deblock_coefs));
  1222. r->intra_types_hist = av_malloc(r->intra_types_stride * 4 * 2 *
  1223. sizeof(*r->intra_types_hist));
  1224. r->mb_type = av_mallocz(r->s.mb_stride * r->s.mb_height *
  1225. sizeof(*r->mb_type));
  1226. if (!(r->cbp_chroma && r->cbp_luma && r->deblock_coefs &&
  1227. r->intra_types_hist && r->mb_type)) {
  1228. rv34_decoder_free(r);
  1229. return AVERROR(ENOMEM);
  1230. }
  1231. r->intra_types = r->intra_types_hist + r->intra_types_stride * 4;
  1232. return 0;
  1233. }
  1234. static int rv34_decoder_realloc(RV34DecContext *r)
  1235. {
  1236. rv34_decoder_free(r);
  1237. return rv34_decoder_alloc(r);
  1238. }
  1239. static int rv34_decode_slice(RV34DecContext *r, int end, const uint8_t* buf, int buf_size)
  1240. {
  1241. MpegEncContext *s = &r->s;
  1242. GetBitContext *gb = &s->gb;
  1243. int mb_pos, slice_type;
  1244. int res;
  1245. init_get_bits(&r->s.gb, buf, buf_size*8);
  1246. res = r->parse_slice_header(r, gb, &r->si);
  1247. if(res < 0){
  1248. av_log(s->avctx, AV_LOG_ERROR, "Incorrect or unknown slice header\n");
  1249. return -1;
  1250. }
  1251. slice_type = r->si.type ? r->si.type : AV_PICTURE_TYPE_I;
  1252. if (slice_type != s->pict_type) {
  1253. av_log(s->avctx, AV_LOG_ERROR, "Slice type mismatch\n");
  1254. return AVERROR_INVALIDDATA;
  1255. }
  1256. r->si.end = end;
  1257. s->qscale = r->si.quant;
  1258. s->mb_num_left = r->si.end - r->si.start;
  1259. r->s.mb_skip_run = 0;
  1260. mb_pos = s->mb_x + s->mb_y * s->mb_width;
  1261. if(r->si.start != mb_pos){
  1262. av_log(s->avctx, AV_LOG_ERROR, "Slice indicates MB offset %d, got %d\n", r->si.start, mb_pos);
  1263. s->mb_x = r->si.start % s->mb_width;
  1264. s->mb_y = r->si.start / s->mb_width;
  1265. }
  1266. memset(r->intra_types_hist, -1, r->intra_types_stride * 4 * 2 * sizeof(*r->intra_types_hist));
  1267. s->first_slice_line = 1;
  1268. s->resync_mb_x = s->mb_x;
  1269. s->resync_mb_y = s->mb_y;
  1270. ff_init_block_index(s);
  1271. while(!check_slice_end(r, s)) {
  1272. ff_update_block_index(s);
  1273. if(r->si.type)
  1274. res = rv34_decode_inter_macroblock(r, r->intra_types + s->mb_x * 4 + 4);
  1275. else
  1276. res = rv34_decode_intra_macroblock(r, r->intra_types + s->mb_x * 4 + 4);
  1277. if(res < 0){
  1278. ff_er_add_slice(&s->er, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, ER_MB_ERROR);
  1279. return -1;
  1280. }
  1281. if (++s->mb_x == s->mb_width) {
  1282. s->mb_x = 0;
  1283. s->mb_y++;
  1284. ff_init_block_index(s);
  1285. memmove(r->intra_types_hist, r->intra_types, r->intra_types_stride * 4 * sizeof(*r->intra_types_hist));
  1286. memset(r->intra_types, -1, r->intra_types_stride * 4 * sizeof(*r->intra_types_hist));
  1287. if(r->loop_filter && s->mb_y >= 2)
  1288. r->loop_filter(r, s->mb_y - 2);
  1289. if (HAVE_THREADS && (s->avctx->active_thread_type & FF_THREAD_FRAME))
  1290. ff_thread_report_progress(&s->current_picture_ptr->tf,
  1291. s->mb_y - 2, 0);
  1292. }
  1293. if(s->mb_x == s->resync_mb_x)
  1294. s->first_slice_line=0;
  1295. s->mb_num_left--;
  1296. }
  1297. ff_er_add_slice(&s->er, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, ER_MB_END);
  1298. return s->mb_y == s->mb_height;
  1299. }
  1300. /** @} */ // reconstruction group end
  1301. /**
  1302. * Initialize decoder.
  1303. */
  1304. av_cold int ff_rv34_decode_init(AVCodecContext *avctx)
  1305. {
  1306. RV34DecContext *r = avctx->priv_data;
  1307. MpegEncContext *s = &r->s;
  1308. int ret;
  1309. ff_mpv_decode_defaults(s);
  1310. s->avctx = avctx;
  1311. s->out_format = FMT_H263;
  1312. s->codec_id = avctx->codec_id;
  1313. s->width = avctx->width;
  1314. s->height = avctx->height;
  1315. r->s.avctx = avctx;
  1316. avctx->pix_fmt = AV_PIX_FMT_YUV420P;
  1317. avctx->has_b_frames = 1;
  1318. s->low_delay = 0;
  1319. ff_mpv_idct_init(s);
  1320. if ((ret = ff_mpv_common_init(s)) < 0)
  1321. return ret;
  1322. ff_h264_pred_init(&r->h, AV_CODEC_ID_RV40, 8, 1);
  1323. #if CONFIG_RV30_DECODER
  1324. if (avctx->codec_id == AV_CODEC_ID_RV30)
  1325. ff_rv30dsp_init(&r->rdsp);
  1326. #endif
  1327. #if CONFIG_RV40_DECODER
  1328. if (avctx->codec_id == AV_CODEC_ID_RV40)
  1329. ff_rv40dsp_init(&r->rdsp);
  1330. #endif
  1331. if ((ret = rv34_decoder_alloc(r)) < 0) {
  1332. ff_mpv_common_end(&r->s);
  1333. return ret;
  1334. }
  1335. if(!intra_vlcs[0].cbppattern[0].bits)
  1336. rv34_init_tables();
  1337. avctx->internal->allocate_progress = 1;
  1338. return 0;
  1339. }
  1340. int ff_rv34_decode_init_thread_copy(AVCodecContext *avctx)
  1341. {
  1342. int err;
  1343. RV34DecContext *r = avctx->priv_data;
  1344. r->s.avctx = avctx;
  1345. if (avctx->internal->is_copy) {
  1346. r->tmp_b_block_base = NULL;
  1347. ff_mpv_idct_init(&r->s);
  1348. if ((err = ff_mpv_common_init(&r->s)) < 0)
  1349. return err;
  1350. if ((err = rv34_decoder_alloc(r)) < 0) {
  1351. ff_mpv_common_end(&r->s);
  1352. return err;
  1353. }
  1354. }
  1355. return 0;
  1356. }
  1357. int ff_rv34_decode_update_thread_context(AVCodecContext *dst, const AVCodecContext *src)
  1358. {
  1359. RV34DecContext *r = dst->priv_data, *r1 = src->priv_data;
  1360. MpegEncContext * const s = &r->s, * const s1 = &r1->s;
  1361. int err;
  1362. if (dst == src || !s1->context_initialized)
  1363. return 0;
  1364. if (s->height != s1->height || s->width != s1->width) {
  1365. s->height = s1->height;
  1366. s->width = s1->width;
  1367. if ((err = ff_mpv_common_frame_size_change(s)) < 0)
  1368. return err;
  1369. if ((err = rv34_decoder_realloc(r)) < 0)
  1370. return err;
  1371. }
  1372. r->cur_pts = r1->cur_pts;
  1373. r->last_pts = r1->last_pts;
  1374. r->next_pts = r1->next_pts;
  1375. memset(&r->si, 0, sizeof(r->si));
  1376. // Do no call ff_mpeg_update_thread_context on a partially initialized
  1377. // decoder context.
  1378. if (!s1->linesize)
  1379. return 0;
  1380. return ff_mpeg_update_thread_context(dst, src);
  1381. }
  1382. static int get_slice_offset(AVCodecContext *avctx, const uint8_t *buf, int n)
  1383. {
  1384. if(avctx->slice_count) return avctx->slice_offset[n];
  1385. else return AV_RL32(buf + n*8 - 4) == 1 ? AV_RL32(buf + n*8) : AV_RB32(buf + n*8);
  1386. }
  1387. static int finish_frame(AVCodecContext *avctx, AVFrame *pict)
  1388. {
  1389. RV34DecContext *r = avctx->priv_data;
  1390. MpegEncContext *s = &r->s;
  1391. int got_picture = 0, ret;
  1392. ff_er_frame_end(&s->er);
  1393. ff_mpv_frame_end(s);
  1394. s->mb_num_left = 0;
  1395. if (HAVE_THREADS && (s->avctx->active_thread_type & FF_THREAD_FRAME))
  1396. ff_thread_report_progress(&s->current_picture_ptr->tf, INT_MAX, 0);
  1397. if (s->pict_type == AV_PICTURE_TYPE_B || s->low_delay) {
  1398. if ((ret = av_frame_ref(pict, s->current_picture_ptr->f)) < 0)
  1399. return ret;
  1400. ff_print_debug_info(s, s->current_picture_ptr);
  1401. got_picture = 1;
  1402. } else if (s->last_picture_ptr) {
  1403. if ((ret = av_frame_ref(pict, s->last_picture_ptr->f)) < 0)
  1404. return ret;
  1405. ff_print_debug_info(s, s->last_picture_ptr);
  1406. got_picture = 1;
  1407. }
  1408. return got_picture;
  1409. }
  1410. int ff_rv34_decode_frame(AVCodecContext *avctx,
  1411. void *data, int *got_picture_ptr,
  1412. AVPacket *avpkt)
  1413. {
  1414. const uint8_t *buf = avpkt->data;
  1415. int buf_size = avpkt->size;
  1416. RV34DecContext *r = avctx->priv_data;
  1417. MpegEncContext *s = &r->s;
  1418. AVFrame *pict = data;
  1419. SliceInfo si;
  1420. int i, ret;
  1421. int slice_count;
  1422. const uint8_t *slices_hdr = NULL;
  1423. int last = 0;
  1424. /* no supplementary picture */
  1425. if (buf_size == 0) {
  1426. /* special case for last picture */
  1427. if (s->low_delay==0 && s->next_picture_ptr) {
  1428. if ((ret = av_frame_ref(pict, s->next_picture_ptr->f)) < 0)
  1429. return ret;
  1430. s->next_picture_ptr = NULL;
  1431. *got_picture_ptr = 1;
  1432. }
  1433. return 0;
  1434. }
  1435. if(!avctx->slice_count){
  1436. slice_count = (*buf++) + 1;
  1437. slices_hdr = buf + 4;
  1438. buf += 8 * slice_count;
  1439. buf_size -= 1 + 8 * slice_count;
  1440. }else
  1441. slice_count = avctx->slice_count;
  1442. //parse first slice header to check whether this frame can be decoded
  1443. if(get_slice_offset(avctx, slices_hdr, 0) < 0 ||
  1444. get_slice_offset(avctx, slices_hdr, 0) > buf_size){
  1445. av_log(avctx, AV_LOG_ERROR, "Slice offset is invalid\n");
  1446. return AVERROR_INVALIDDATA;
  1447. }
  1448. init_get_bits(&s->gb, buf+get_slice_offset(avctx, slices_hdr, 0), (buf_size-get_slice_offset(avctx, slices_hdr, 0))*8);
  1449. if(r->parse_slice_header(r, &r->s.gb, &si) < 0 || si.start){
  1450. av_log(avctx, AV_LOG_ERROR, "First slice header is incorrect\n");
  1451. return AVERROR_INVALIDDATA;
  1452. }
  1453. if ((!s->last_picture_ptr || !s->last_picture_ptr->f->data[0]) &&
  1454. si.type == AV_PICTURE_TYPE_B) {
  1455. av_log(avctx, AV_LOG_ERROR, "Invalid decoder state: B-frame without "
  1456. "reference data.\n");
  1457. return AVERROR_INVALIDDATA;
  1458. }
  1459. if( (avctx->skip_frame >= AVDISCARD_NONREF && si.type==AV_PICTURE_TYPE_B)
  1460. || (avctx->skip_frame >= AVDISCARD_NONKEY && si.type!=AV_PICTURE_TYPE_I)
  1461. || avctx->skip_frame >= AVDISCARD_ALL)
  1462. return avpkt->size;
  1463. /* first slice */
  1464. if (si.start == 0) {
  1465. if (s->mb_num_left > 0) {
  1466. av_log(avctx, AV_LOG_ERROR, "New frame but still %d MB left.",
  1467. s->mb_num_left);
  1468. ff_er_frame_end(&s->er);
  1469. ff_mpv_frame_end(s);
  1470. }
  1471. if (s->width != si.width || s->height != si.height) {
  1472. int err;
  1473. av_log(s->avctx, AV_LOG_WARNING, "Changing dimensions to %dx%d\n",
  1474. si.width, si.height);
  1475. s->width = si.width;
  1476. s->height = si.height;
  1477. err = ff_set_dimensions(s->avctx, s->width, s->height);
  1478. if (err < 0)
  1479. return err;
  1480. if ((err = ff_mpv_common_frame_size_change(s)) < 0)
  1481. return err;
  1482. if ((err = rv34_decoder_realloc(r)) < 0)
  1483. return err;
  1484. }
  1485. s->pict_type = si.type ? si.type : AV_PICTURE_TYPE_I;
  1486. if (ff_mpv_frame_start(s, s->avctx) < 0)
  1487. return -1;
  1488. ff_mpeg_er_frame_start(s);
  1489. if (!r->tmp_b_block_base) {
  1490. int i;
  1491. r->tmp_b_block_base = av_malloc(s->linesize * 48);
  1492. for (i = 0; i < 2; i++)
  1493. r->tmp_b_block_y[i] = r->tmp_b_block_base
  1494. + i * 16 * s->linesize;
  1495. for (i = 0; i < 4; i++)
  1496. r->tmp_b_block_uv[i] = r->tmp_b_block_base + 32 * s->linesize
  1497. + (i >> 1) * 8 * s->uvlinesize
  1498. + (i & 1) * 16;
  1499. }
  1500. r->cur_pts = si.pts;
  1501. if (s->pict_type != AV_PICTURE_TYPE_B) {
  1502. r->last_pts = r->next_pts;
  1503. r->next_pts = r->cur_pts;
  1504. } else {
  1505. int refdist = GET_PTS_DIFF(r->next_pts, r->last_pts);
  1506. int dist0 = GET_PTS_DIFF(r->cur_pts, r->last_pts);
  1507. int dist1 = GET_PTS_DIFF(r->next_pts, r->cur_pts);
  1508. if(!refdist){
  1509. r->mv_weight1 = r->mv_weight2 = r->weight1 = r->weight2 = 8192;
  1510. r->scaled_weight = 0;
  1511. }else{
  1512. r->mv_weight1 = (dist0 << 14) / refdist;
  1513. r->mv_weight2 = (dist1 << 14) / refdist;
  1514. if((r->mv_weight1|r->mv_weight2) & 511){
  1515. r->weight1 = r->mv_weight1;
  1516. r->weight2 = r->mv_weight2;
  1517. r->scaled_weight = 0;
  1518. }else{
  1519. r->weight1 = r->mv_weight1 >> 9;
  1520. r->weight2 = r->mv_weight2 >> 9;
  1521. r->scaled_weight = 1;
  1522. }
  1523. }
  1524. }
  1525. s->mb_x = s->mb_y = 0;
  1526. ff_thread_finish_setup(s->avctx);
  1527. } else if (HAVE_THREADS &&
  1528. (s->avctx->active_thread_type & FF_THREAD_FRAME)) {
  1529. av_log(s->avctx, AV_LOG_ERROR, "Decoder needs full frames in frame "
  1530. "multithreading mode (start MB is %d).\n", si.start);
  1531. return AVERROR_INVALIDDATA;
  1532. }
  1533. for(i = 0; i < slice_count; i++){
  1534. int offset = get_slice_offset(avctx, slices_hdr, i);
  1535. int size;
  1536. if(i+1 == slice_count)
  1537. size = buf_size - offset;
  1538. else
  1539. size = get_slice_offset(avctx, slices_hdr, i+1) - offset;
  1540. if(offset < 0 || offset > buf_size){
  1541. av_log(avctx, AV_LOG_ERROR, "Slice offset is invalid\n");
  1542. break;
  1543. }
  1544. r->si.end = s->mb_width * s->mb_height;
  1545. s->mb_num_left = r->s.mb_x + r->s.mb_y*r->s.mb_width - r->si.start;
  1546. if(i+1 < slice_count){
  1547. if (get_slice_offset(avctx, slices_hdr, i+1) < 0 ||
  1548. get_slice_offset(avctx, slices_hdr, i+1) > buf_size) {
  1549. av_log(avctx, AV_LOG_ERROR, "Slice offset is invalid\n");
  1550. break;
  1551. }
  1552. init_get_bits(&s->gb, buf+get_slice_offset(avctx, slices_hdr, i+1), (buf_size-get_slice_offset(avctx, slices_hdr, i+1))*8);
  1553. if(r->parse_slice_header(r, &r->s.gb, &si) < 0){
  1554. if(i+2 < slice_count)
  1555. size = get_slice_offset(avctx, slices_hdr, i+2) - offset;
  1556. else
  1557. size = buf_size - offset;
  1558. }else
  1559. r->si.end = si.start;
  1560. }
  1561. if (size < 0 || size > buf_size - offset) {
  1562. av_log(avctx, AV_LOG_ERROR, "Slice size is invalid\n");
  1563. break;
  1564. }
  1565. last = rv34_decode_slice(r, r->si.end, buf + offset, size);
  1566. if(last)
  1567. break;
  1568. }
  1569. if (s->current_picture_ptr) {
  1570. if (last) {
  1571. if(r->loop_filter)
  1572. r->loop_filter(r, s->mb_height - 1);
  1573. ret = finish_frame(avctx, pict);
  1574. if (ret < 0)
  1575. return ret;
  1576. *got_picture_ptr = ret;
  1577. } else if (HAVE_THREADS &&
  1578. (s->avctx->active_thread_type & FF_THREAD_FRAME)) {
  1579. av_log(avctx, AV_LOG_INFO, "marking unfished frame as finished\n");
  1580. /* always mark the current frame as finished, frame-mt supports
  1581. * only complete frames */
  1582. ff_er_frame_end(&s->er);
  1583. ff_mpv_frame_end(s);
  1584. s->mb_num_left = 0;
  1585. ff_thread_report_progress(&s->current_picture_ptr->tf, INT_MAX, 0);
  1586. return AVERROR_INVALIDDATA;
  1587. }
  1588. }
  1589. return avpkt->size;
  1590. }
  1591. av_cold int ff_rv34_decode_end(AVCodecContext *avctx)
  1592. {
  1593. RV34DecContext *r = avctx->priv_data;
  1594. ff_mpv_common_end(&r->s);
  1595. rv34_decoder_free(r);
  1596. return 0;
  1597. }