You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

135 lines
4.2KB

  1. /*
  2. * (I)RDFT transforms
  3. * Copyright (c) 2009 Alex Converse <alex dot converse at gmail dot com>
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include <stdlib.h>
  22. #include <math.h>
  23. #include "libavutil/mathematics.h"
  24. #include "rdft.h"
  25. /**
  26. * @file
  27. * (Inverse) Real Discrete Fourier Transforms.
  28. */
  29. /* sin(2*pi*x/n) for 0<=x<n/4, followed by n/2<=x<3n/4 */
  30. #if !CONFIG_HARDCODED_TABLES
  31. SINTABLE(16);
  32. SINTABLE(32);
  33. SINTABLE(64);
  34. SINTABLE(128);
  35. SINTABLE(256);
  36. SINTABLE(512);
  37. SINTABLE(1024);
  38. SINTABLE(2048);
  39. SINTABLE(4096);
  40. SINTABLE(8192);
  41. SINTABLE(16384);
  42. SINTABLE(32768);
  43. SINTABLE(65536);
  44. #endif
  45. static SINTABLE_CONST FFTSample * const ff_sin_tabs[] = {
  46. NULL, NULL, NULL, NULL,
  47. ff_sin_16, ff_sin_32, ff_sin_64, ff_sin_128, ff_sin_256, ff_sin_512, ff_sin_1024,
  48. ff_sin_2048, ff_sin_4096, ff_sin_8192, ff_sin_16384, ff_sin_32768, ff_sin_65536,
  49. };
  50. /** Map one real FFT into two parallel real even and odd FFTs. Then interleave
  51. * the two real FFTs into one complex FFT. Unmangle the results.
  52. * ref: http://www.engineeringproductivitytools.com/stuff/T0001/PT10.HTM
  53. */
  54. static void rdft_calc_c(RDFTContext *s, FFTSample *data)
  55. {
  56. int i, i1, i2;
  57. FFTComplex ev, od;
  58. const int n = 1 << s->nbits;
  59. const float k1 = 0.5;
  60. const float k2 = 0.5 - s->inverse;
  61. const FFTSample *tcos = s->tcos;
  62. const FFTSample *tsin = s->tsin;
  63. if (!s->inverse) {
  64. s->fft.fft_permute(&s->fft, (FFTComplex*)data);
  65. s->fft.fft_calc(&s->fft, (FFTComplex*)data);
  66. }
  67. /* i=0 is a special case because of packing, the DC term is real, so we
  68. are going to throw the N/2 term (also real) in with it. */
  69. ev.re = data[0];
  70. data[0] = ev.re+data[1];
  71. data[1] = ev.re-data[1];
  72. for (i = 1; i < (n>>2); i++) {
  73. i1 = 2*i;
  74. i2 = n-i1;
  75. /* Separate even and odd FFTs */
  76. ev.re = k1*(data[i1 ]+data[i2 ]);
  77. od.im = -k2*(data[i1 ]-data[i2 ]);
  78. ev.im = k1*(data[i1+1]-data[i2+1]);
  79. od.re = k2*(data[i1+1]+data[i2+1]);
  80. /* Apply twiddle factors to the odd FFT and add to the even FFT */
  81. data[i1 ] = ev.re + od.re*tcos[i] - od.im*tsin[i];
  82. data[i1+1] = ev.im + od.im*tcos[i] + od.re*tsin[i];
  83. data[i2 ] = ev.re - od.re*tcos[i] + od.im*tsin[i];
  84. data[i2+1] = -ev.im + od.im*tcos[i] + od.re*tsin[i];
  85. }
  86. data[2*i+1]=s->sign_convention*data[2*i+1];
  87. if (s->inverse) {
  88. data[0] *= k1;
  89. data[1] *= k1;
  90. s->fft.fft_permute(&s->fft, (FFTComplex*)data);
  91. s->fft.fft_calc(&s->fft, (FFTComplex*)data);
  92. }
  93. }
  94. av_cold int ff_rdft_init(RDFTContext *s, int nbits, enum RDFTransformType trans)
  95. {
  96. int n = 1 << nbits;
  97. s->nbits = nbits;
  98. s->inverse = trans == IDFT_C2R || trans == DFT_C2R;
  99. s->sign_convention = trans == IDFT_R2C || trans == DFT_C2R ? 1 : -1;
  100. if (nbits < 4 || nbits > 16)
  101. return -1;
  102. if (ff_fft_init(&s->fft, nbits-1, trans == IDFT_C2R || trans == IDFT_R2C) < 0)
  103. return -1;
  104. ff_init_ff_cos_tabs(nbits);
  105. s->tcos = ff_cos_tabs[nbits];
  106. s->tsin = ff_sin_tabs[nbits]+(trans == DFT_R2C || trans == DFT_C2R)*(n>>2);
  107. #if !CONFIG_HARDCODED_TABLES
  108. {
  109. int i;
  110. const double theta = (trans == DFT_R2C || trans == DFT_C2R ? -1 : 1) * 2 * M_PI / n;
  111. for (i = 0; i < (n >> 2); i++)
  112. s->tsin[i] = sin(i * theta);
  113. }
  114. #endif
  115. s->rdft_calc = rdft_calc_c;
  116. if (ARCH_ARM) ff_rdft_init_arm(s);
  117. return 0;
  118. }
  119. av_cold void ff_rdft_end(RDFTContext *s)
  120. {
  121. ff_fft_end(&s->fft);
  122. }