You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

987 lines
33KB

  1. /*
  2. * Rate control for video encoders
  3. *
  4. * Copyright (c) 2002-2004 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This file is part of Libav.
  7. *
  8. * Libav is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * Libav is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with Libav; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * Rate control for video encoders.
  25. */
  26. #include "libavutil/attributes.h"
  27. #include "libavutil/internal.h"
  28. #include "avcodec.h"
  29. #include "internal.h"
  30. #include "ratecontrol.h"
  31. #include "mpegutils.h"
  32. #include "mpegvideo.h"
  33. #include "libavutil/eval.h"
  34. #undef NDEBUG // Always check asserts, the speed effect is far too small to disable them.
  35. #include <assert.h>
  36. #ifndef M_E
  37. #define M_E 2.718281828
  38. #endif
  39. static inline double qp2bits(RateControlEntry *rce, double qp)
  40. {
  41. if (qp <= 0.0) {
  42. av_log(NULL, AV_LOG_ERROR, "qp<=0.0\n");
  43. }
  44. return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits + 1) / qp;
  45. }
  46. static inline double bits2qp(RateControlEntry *rce, double bits)
  47. {
  48. if (bits < 0.9) {
  49. av_log(NULL, AV_LOG_ERROR, "bits<0.9\n");
  50. }
  51. return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits + 1) / bits;
  52. }
  53. static double get_diff_limited_q(MpegEncContext *s, RateControlEntry *rce, double q)
  54. {
  55. RateControlContext *rcc = &s->rc_context;
  56. AVCodecContext *a = s->avctx;
  57. const int pict_type = rce->new_pict_type;
  58. const double last_p_q = rcc->last_qscale_for[AV_PICTURE_TYPE_P];
  59. const double last_non_b_q = rcc->last_qscale_for[rcc->last_non_b_pict_type];
  60. if (pict_type == AV_PICTURE_TYPE_I &&
  61. (a->i_quant_factor > 0.0 || rcc->last_non_b_pict_type == AV_PICTURE_TYPE_P))
  62. q = last_p_q * FFABS(a->i_quant_factor) + a->i_quant_offset;
  63. else if (pict_type == AV_PICTURE_TYPE_B &&
  64. a->b_quant_factor > 0.0)
  65. q = last_non_b_q * a->b_quant_factor + a->b_quant_offset;
  66. if (q < 1)
  67. q = 1;
  68. /* last qscale / qdiff stuff */
  69. if (rcc->last_non_b_pict_type == pict_type || pict_type != AV_PICTURE_TYPE_I) {
  70. double last_q = rcc->last_qscale_for[pict_type];
  71. const int maxdiff = FF_QP2LAMBDA * a->max_qdiff;
  72. if (q > last_q + maxdiff)
  73. q = last_q + maxdiff;
  74. else if (q < last_q - maxdiff)
  75. q = last_q - maxdiff;
  76. }
  77. rcc->last_qscale_for[pict_type] = q; // Note we cannot do that after blurring
  78. if (pict_type != AV_PICTURE_TYPE_B)
  79. rcc->last_non_b_pict_type = pict_type;
  80. return q;
  81. }
  82. /**
  83. * Get the qmin & qmax for pict_type.
  84. */
  85. static void get_qminmax(int *qmin_ret, int *qmax_ret, MpegEncContext *s, int pict_type)
  86. {
  87. int qmin = s->lmin;
  88. int qmax = s->lmax;
  89. assert(qmin <= qmax);
  90. switch (pict_type) {
  91. case AV_PICTURE_TYPE_B:
  92. qmin = (int)(qmin * FFABS(s->avctx->b_quant_factor) + s->avctx->b_quant_offset + 0.5);
  93. qmax = (int)(qmax * FFABS(s->avctx->b_quant_factor) + s->avctx->b_quant_offset + 0.5);
  94. break;
  95. case AV_PICTURE_TYPE_I:
  96. qmin = (int)(qmin * FFABS(s->avctx->i_quant_factor) + s->avctx->i_quant_offset + 0.5);
  97. qmax = (int)(qmax * FFABS(s->avctx->i_quant_factor) + s->avctx->i_quant_offset + 0.5);
  98. break;
  99. }
  100. qmin = av_clip(qmin, 1, FF_LAMBDA_MAX);
  101. qmax = av_clip(qmax, 1, FF_LAMBDA_MAX);
  102. if (qmax < qmin)
  103. qmax = qmin;
  104. *qmin_ret = qmin;
  105. *qmax_ret = qmax;
  106. }
  107. static double modify_qscale(MpegEncContext *s, RateControlEntry *rce,
  108. double q, int frame_num)
  109. {
  110. RateControlContext *rcc = &s->rc_context;
  111. const double buffer_size = s->avctx->rc_buffer_size;
  112. const double fps = 1 / av_q2d(s->avctx->time_base);
  113. const double min_rate = s->avctx->rc_min_rate / fps;
  114. const double max_rate = s->avctx->rc_max_rate / fps;
  115. const int pict_type = rce->new_pict_type;
  116. int qmin, qmax;
  117. get_qminmax(&qmin, &qmax, s, pict_type);
  118. /* modulation */
  119. if (s->rc_qmod_freq &&
  120. frame_num % s->rc_qmod_freq == 0 &&
  121. pict_type == AV_PICTURE_TYPE_P)
  122. q *= s->rc_qmod_amp;
  123. /* buffer overflow/underflow protection */
  124. if (buffer_size) {
  125. double expected_size = rcc->buffer_index;
  126. double q_limit;
  127. if (min_rate) {
  128. double d = 2 * (buffer_size - expected_size) / buffer_size;
  129. if (d > 1.0)
  130. d = 1.0;
  131. else if (d < 0.0001)
  132. d = 0.0001;
  133. q *= pow(d, 1.0 / s->rc_buffer_aggressivity);
  134. q_limit = bits2qp(rce,
  135. FFMAX((min_rate - buffer_size + rcc->buffer_index) *
  136. s->avctx->rc_min_vbv_overflow_use, 1));
  137. if (q > q_limit) {
  138. if (s->avctx->debug & FF_DEBUG_RC)
  139. av_log(s->avctx, AV_LOG_DEBUG,
  140. "limiting QP %f -> %f\n", q, q_limit);
  141. q = q_limit;
  142. }
  143. }
  144. if (max_rate) {
  145. double d = 2 * expected_size / buffer_size;
  146. if (d > 1.0)
  147. d = 1.0;
  148. else if (d < 0.0001)
  149. d = 0.0001;
  150. q /= pow(d, 1.0 / s->rc_buffer_aggressivity);
  151. q_limit = bits2qp(rce,
  152. FFMAX(rcc->buffer_index *
  153. s->avctx->rc_max_available_vbv_use,
  154. 1));
  155. if (q < q_limit) {
  156. if (s->avctx->debug & FF_DEBUG_RC)
  157. av_log(s->avctx, AV_LOG_DEBUG,
  158. "limiting QP %f -> %f\n", q, q_limit);
  159. q = q_limit;
  160. }
  161. }
  162. }
  163. ff_dlog(s, "q:%f max:%f min:%f size:%f index:%f agr:%f\n",
  164. q, max_rate, min_rate, buffer_size, rcc->buffer_index,
  165. s->rc_buffer_aggressivity);
  166. if (s->rc_qsquish == 0.0 || qmin == qmax) {
  167. if (q < qmin)
  168. q = qmin;
  169. else if (q > qmax)
  170. q = qmax;
  171. } else {
  172. double min2 = log(qmin);
  173. double max2 = log(qmax);
  174. q = log(q);
  175. q = (q - min2) / (max2 - min2) - 0.5;
  176. q *= -4.0;
  177. q = 1.0 / (1.0 + exp(q));
  178. q = q * (max2 - min2) + min2;
  179. q = exp(q);
  180. }
  181. return q;
  182. }
  183. /**
  184. * Modify the bitrate curve from pass1 for one frame.
  185. */
  186. static double get_qscale(MpegEncContext *s, RateControlEntry *rce,
  187. double rate_factor, int frame_num)
  188. {
  189. RateControlContext *rcc = &s->rc_context;
  190. AVCodecContext *a = s->avctx;
  191. const int pict_type = rce->new_pict_type;
  192. const double mb_num = s->mb_num;
  193. double q, bits;
  194. int i;
  195. double const_values[] = {
  196. M_PI,
  197. M_E,
  198. rce->i_tex_bits * rce->qscale,
  199. rce->p_tex_bits * rce->qscale,
  200. (rce->i_tex_bits + rce->p_tex_bits) * (double)rce->qscale,
  201. rce->mv_bits / mb_num,
  202. rce->pict_type == AV_PICTURE_TYPE_B ? (rce->f_code + rce->b_code) * 0.5 : rce->f_code,
  203. rce->i_count / mb_num,
  204. rce->mc_mb_var_sum / mb_num,
  205. rce->mb_var_sum / mb_num,
  206. rce->pict_type == AV_PICTURE_TYPE_I,
  207. rce->pict_type == AV_PICTURE_TYPE_P,
  208. rce->pict_type == AV_PICTURE_TYPE_B,
  209. rcc->qscale_sum[pict_type] / (double)rcc->frame_count[pict_type],
  210. a->qcompress,
  211. rcc->i_cplx_sum[AV_PICTURE_TYPE_I] / (double)rcc->frame_count[AV_PICTURE_TYPE_I],
  212. rcc->i_cplx_sum[AV_PICTURE_TYPE_P] / (double)rcc->frame_count[AV_PICTURE_TYPE_P],
  213. rcc->p_cplx_sum[AV_PICTURE_TYPE_P] / (double)rcc->frame_count[AV_PICTURE_TYPE_P],
  214. rcc->p_cplx_sum[AV_PICTURE_TYPE_B] / (double)rcc->frame_count[AV_PICTURE_TYPE_B],
  215. (rcc->i_cplx_sum[pict_type] + rcc->p_cplx_sum[pict_type]) / (double)rcc->frame_count[pict_type],
  216. 0
  217. };
  218. bits = av_expr_eval(rcc->rc_eq_eval, const_values, rce);
  219. if (isnan(bits)) {
  220. av_log(s->avctx, AV_LOG_ERROR, "Error evaluating rc_eq \"%s\"\n", s->rc_eq);
  221. return -1;
  222. }
  223. rcc->pass1_rc_eq_output_sum += bits;
  224. bits *= rate_factor;
  225. if (bits < 0.0)
  226. bits = 0.0;
  227. bits += 1.0; // avoid 1/0 issues
  228. /* user override */
  229. for (i = 0; i < s->avctx->rc_override_count; i++) {
  230. RcOverride *rco = s->avctx->rc_override;
  231. if (rco[i].start_frame > frame_num)
  232. continue;
  233. if (rco[i].end_frame < frame_num)
  234. continue;
  235. if (rco[i].qscale)
  236. bits = qp2bits(rce, rco[i].qscale); // FIXME move at end to really force it?
  237. else
  238. bits *= rco[i].quality_factor;
  239. }
  240. q = bits2qp(rce, bits);
  241. /* I/B difference */
  242. if (pict_type == AV_PICTURE_TYPE_I && s->avctx->i_quant_factor < 0.0)
  243. q = -q * s->avctx->i_quant_factor + s->avctx->i_quant_offset;
  244. else if (pict_type == AV_PICTURE_TYPE_B && s->avctx->b_quant_factor < 0.0)
  245. q = -q * s->avctx->b_quant_factor + s->avctx->b_quant_offset;
  246. if (q < 1)
  247. q = 1;
  248. return q;
  249. }
  250. static int init_pass2(MpegEncContext *s)
  251. {
  252. RateControlContext *rcc = &s->rc_context;
  253. AVCodecContext *a = s->avctx;
  254. int i, toobig;
  255. double fps = 1 / av_q2d(s->avctx->time_base);
  256. double complexity[5] = { 0 }; // approximate bits at quant=1
  257. uint64_t const_bits[5] = { 0 }; // quantizer independent bits
  258. uint64_t all_const_bits;
  259. uint64_t all_available_bits = (uint64_t)(s->bit_rate *
  260. (double)rcc->num_entries / fps);
  261. double rate_factor = 0;
  262. double step;
  263. const int filter_size = (int)(a->qblur * 4) | 1;
  264. double expected_bits;
  265. double *qscale, *blurred_qscale, qscale_sum;
  266. /* find complexity & const_bits & decide the pict_types */
  267. for (i = 0; i < rcc->num_entries; i++) {
  268. RateControlEntry *rce = &rcc->entry[i];
  269. rce->new_pict_type = rce->pict_type;
  270. rcc->i_cplx_sum[rce->pict_type] += rce->i_tex_bits * rce->qscale;
  271. rcc->p_cplx_sum[rce->pict_type] += rce->p_tex_bits * rce->qscale;
  272. rcc->mv_bits_sum[rce->pict_type] += rce->mv_bits;
  273. rcc->frame_count[rce->pict_type]++;
  274. complexity[rce->new_pict_type] += (rce->i_tex_bits + rce->p_tex_bits) *
  275. (double)rce->qscale;
  276. const_bits[rce->new_pict_type] += rce->mv_bits + rce->misc_bits;
  277. }
  278. all_const_bits = const_bits[AV_PICTURE_TYPE_I] +
  279. const_bits[AV_PICTURE_TYPE_P] +
  280. const_bits[AV_PICTURE_TYPE_B];
  281. if (all_available_bits < all_const_bits) {
  282. av_log(s->avctx, AV_LOG_ERROR, "requested bitrate is too low\n");
  283. return -1;
  284. }
  285. qscale = av_malloc(sizeof(double) * rcc->num_entries);
  286. blurred_qscale = av_malloc(sizeof(double) * rcc->num_entries);
  287. if (!qscale || !blurred_qscale) {
  288. av_free(qscale);
  289. av_free(blurred_qscale);
  290. return AVERROR(ENOMEM);
  291. }
  292. toobig = 0;
  293. for (step = 256 * 256; step > 0.0000001; step *= 0.5) {
  294. expected_bits = 0;
  295. rate_factor += step;
  296. rcc->buffer_index = s->avctx->rc_buffer_size / 2;
  297. /* find qscale */
  298. for (i = 0; i < rcc->num_entries; i++) {
  299. RateControlEntry *rce = &rcc->entry[i];
  300. qscale[i] = get_qscale(s, &rcc->entry[i], rate_factor, i);
  301. rcc->last_qscale_for[rce->pict_type] = qscale[i];
  302. }
  303. assert(filter_size % 2 == 1);
  304. /* fixed I/B QP relative to P mode */
  305. for (i = rcc->num_entries - 1; i >= 0; i--) {
  306. RateControlEntry *rce = &rcc->entry[i];
  307. qscale[i] = get_diff_limited_q(s, rce, qscale[i]);
  308. }
  309. /* smooth curve */
  310. for (i = 0; i < rcc->num_entries; i++) {
  311. RateControlEntry *rce = &rcc->entry[i];
  312. const int pict_type = rce->new_pict_type;
  313. int j;
  314. double q = 0.0, sum = 0.0;
  315. for (j = 0; j < filter_size; j++) {
  316. int index = i + j - filter_size / 2;
  317. double d = index - i;
  318. double coeff = a->qblur == 0 ? 1.0 : exp(-d * d / (a->qblur * a->qblur));
  319. if (index < 0 || index >= rcc->num_entries)
  320. continue;
  321. if (pict_type != rcc->entry[index].new_pict_type)
  322. continue;
  323. q += qscale[index] * coeff;
  324. sum += coeff;
  325. }
  326. blurred_qscale[i] = q / sum;
  327. }
  328. /* find expected bits */
  329. for (i = 0; i < rcc->num_entries; i++) {
  330. RateControlEntry *rce = &rcc->entry[i];
  331. double bits;
  332. rce->new_qscale = modify_qscale(s, rce, blurred_qscale[i], i);
  333. bits = qp2bits(rce, rce->new_qscale) + rce->mv_bits + rce->misc_bits;
  334. bits += 8 * ff_vbv_update(s, bits);
  335. rce->expected_bits = expected_bits;
  336. expected_bits += bits;
  337. }
  338. ff_dlog(s->avctx,
  339. "expected_bits: %f all_available_bits: %d rate_factor: %f\n",
  340. expected_bits, (int)all_available_bits, rate_factor);
  341. if (expected_bits > all_available_bits) {
  342. rate_factor -= step;
  343. ++toobig;
  344. }
  345. }
  346. av_free(qscale);
  347. av_free(blurred_qscale);
  348. /* check bitrate calculations and print info */
  349. qscale_sum = 0.0;
  350. for (i = 0; i < rcc->num_entries; i++) {
  351. ff_dlog(s, "[lavc rc] entry[%d].new_qscale = %.3f qp = %.3f\n",
  352. i,
  353. rcc->entry[i].new_qscale,
  354. rcc->entry[i].new_qscale / FF_QP2LAMBDA);
  355. qscale_sum += av_clip(rcc->entry[i].new_qscale / FF_QP2LAMBDA,
  356. s->avctx->qmin, s->avctx->qmax);
  357. }
  358. assert(toobig <= 40);
  359. av_log(s->avctx, AV_LOG_DEBUG,
  360. "[lavc rc] requested bitrate: %d bps expected bitrate: %d bps\n",
  361. s->bit_rate,
  362. (int)(expected_bits / ((double)all_available_bits / s->bit_rate)));
  363. av_log(s->avctx, AV_LOG_DEBUG,
  364. "[lavc rc] estimated target average qp: %.3f\n",
  365. (float)qscale_sum / rcc->num_entries);
  366. if (toobig == 0) {
  367. av_log(s->avctx, AV_LOG_INFO,
  368. "[lavc rc] Using all of requested bitrate is not "
  369. "necessary for this video with these parameters.\n");
  370. } else if (toobig == 40) {
  371. av_log(s->avctx, AV_LOG_ERROR,
  372. "[lavc rc] Error: bitrate too low for this video "
  373. "with these parameters.\n");
  374. return -1;
  375. } else if (fabs(expected_bits / all_available_bits - 1.0) > 0.01) {
  376. av_log(s->avctx, AV_LOG_ERROR,
  377. "[lavc rc] Error: 2pass curve failed to converge\n");
  378. return -1;
  379. }
  380. return 0;
  381. }
  382. av_cold int ff_rate_control_init(MpegEncContext *s)
  383. {
  384. RateControlContext *rcc = &s->rc_context;
  385. int i, res;
  386. static const char * const const_names[] = {
  387. "PI",
  388. "E",
  389. "iTex",
  390. "pTex",
  391. "tex",
  392. "mv",
  393. "fCode",
  394. "iCount",
  395. "mcVar",
  396. "var",
  397. "isI",
  398. "isP",
  399. "isB",
  400. "avgQP",
  401. "qComp",
  402. "avgIITex",
  403. "avgPITex",
  404. "avgPPTex",
  405. "avgBPTex",
  406. "avgTex",
  407. NULL
  408. };
  409. static double (* const func1[])(void *, double) = {
  410. (double (*)(void *, double)) bits2qp,
  411. (double (*)(void *, double)) qp2bits,
  412. NULL
  413. };
  414. static const char * const func1_names[] = {
  415. "bits2qp",
  416. "qp2bits",
  417. NULL
  418. };
  419. emms_c();
  420. res = av_expr_parse(&rcc->rc_eq_eval,
  421. s->rc_eq ? s->rc_eq : "tex^qComp",
  422. const_names, func1_names, func1,
  423. NULL, NULL, 0, s->avctx);
  424. if (res < 0) {
  425. av_log(s->avctx, AV_LOG_ERROR, "Error parsing rc_eq \"%s\"\n", s->rc_eq);
  426. return res;
  427. }
  428. for (i = 0; i < 5; i++) {
  429. rcc->pred[i].coeff = FF_QP2LAMBDA * 7.0;
  430. rcc->pred[i].count = 1.0;
  431. rcc->pred[i].decay = 0.4;
  432. rcc->i_cplx_sum [i] =
  433. rcc->p_cplx_sum [i] =
  434. rcc->mv_bits_sum[i] =
  435. rcc->qscale_sum [i] =
  436. rcc->frame_count[i] = 1; // 1 is better because of 1/0 and such
  437. rcc->last_qscale_for[i] = FF_QP2LAMBDA * 5;
  438. }
  439. rcc->buffer_index = s->avctx->rc_initial_buffer_occupancy;
  440. if (s->avctx->flags & AV_CODEC_FLAG_PASS2) {
  441. int i;
  442. char *p;
  443. /* find number of pics */
  444. p = s->avctx->stats_in;
  445. for (i = -1; p; i++)
  446. p = strchr(p + 1, ';');
  447. i += s->max_b_frames;
  448. if (i <= 0 || i >= INT_MAX / sizeof(RateControlEntry))
  449. return -1;
  450. rcc->entry = av_mallocz(i * sizeof(RateControlEntry));
  451. rcc->num_entries = i;
  452. if (!rcc->entry)
  453. return AVERROR(ENOMEM);
  454. /* init all to skipped P-frames
  455. * (with B-frames we might have a not encoded frame at the end FIXME) */
  456. for (i = 0; i < rcc->num_entries; i++) {
  457. RateControlEntry *rce = &rcc->entry[i];
  458. rce->pict_type = rce->new_pict_type = AV_PICTURE_TYPE_P;
  459. rce->qscale = rce->new_qscale = FF_QP2LAMBDA * 2;
  460. rce->misc_bits = s->mb_num + 10;
  461. rce->mb_var_sum = s->mb_num * 100;
  462. }
  463. /* read stats */
  464. p = s->avctx->stats_in;
  465. for (i = 0; i < rcc->num_entries - s->max_b_frames; i++) {
  466. RateControlEntry *rce;
  467. int picture_number;
  468. int e;
  469. char *next;
  470. next = strchr(p, ';');
  471. if (next) {
  472. (*next) = 0; // sscanf is unbelievably slow on looong strings // FIXME copy / do not write
  473. next++;
  474. }
  475. e = sscanf(p, " in:%d ", &picture_number);
  476. assert(picture_number >= 0);
  477. assert(picture_number < rcc->num_entries);
  478. rce = &rcc->entry[picture_number];
  479. e += sscanf(p, " in:%*d out:%*d type:%d q:%f itex:%d ptex:%d mv:%d misc:%d fcode:%d bcode:%d mc-var:%d var:%d icount:%d skipcount:%d hbits:%d",
  480. &rce->pict_type, &rce->qscale, &rce->i_tex_bits, &rce->p_tex_bits,
  481. &rce->mv_bits, &rce->misc_bits,
  482. &rce->f_code, &rce->b_code,
  483. &rce->mc_mb_var_sum, &rce->mb_var_sum,
  484. &rce->i_count, &rce->skip_count, &rce->header_bits);
  485. if (e != 14) {
  486. av_log(s->avctx, AV_LOG_ERROR,
  487. "statistics are damaged at line %d, parser out=%d\n",
  488. i, e);
  489. return -1;
  490. }
  491. p = next;
  492. }
  493. if (init_pass2(s) < 0) {
  494. ff_rate_control_uninit(s);
  495. return -1;
  496. }
  497. }
  498. if (!(s->avctx->flags & AV_CODEC_FLAG_PASS2)) {
  499. rcc->short_term_qsum = 0.001;
  500. rcc->short_term_qcount = 0.001;
  501. rcc->pass1_rc_eq_output_sum = 0.001;
  502. rcc->pass1_wanted_bits = 0.001;
  503. if (s->avctx->qblur > 1.0) {
  504. av_log(s->avctx, AV_LOG_ERROR, "qblur too large\n");
  505. return -1;
  506. }
  507. /* init stuff with the user specified complexity */
  508. if (s->rc_initial_cplx) {
  509. for (i = 0; i < 60 * 30; i++) {
  510. double bits = s->rc_initial_cplx * (i / 10000.0 + 1.0) * s->mb_num;
  511. RateControlEntry rce;
  512. if (i % ((s->gop_size + 3) / 4) == 0)
  513. rce.pict_type = AV_PICTURE_TYPE_I;
  514. else if (i % (s->max_b_frames + 1))
  515. rce.pict_type = AV_PICTURE_TYPE_B;
  516. else
  517. rce.pict_type = AV_PICTURE_TYPE_P;
  518. rce.new_pict_type = rce.pict_type;
  519. rce.mc_mb_var_sum = bits * s->mb_num / 100000;
  520. rce.mb_var_sum = s->mb_num;
  521. rce.qscale = FF_QP2LAMBDA * 2;
  522. rce.f_code = 2;
  523. rce.b_code = 1;
  524. rce.misc_bits = 1;
  525. if (s->pict_type == AV_PICTURE_TYPE_I) {
  526. rce.i_count = s->mb_num;
  527. rce.i_tex_bits = bits;
  528. rce.p_tex_bits = 0;
  529. rce.mv_bits = 0;
  530. } else {
  531. rce.i_count = 0; // FIXME we do know this approx
  532. rce.i_tex_bits = 0;
  533. rce.p_tex_bits = bits * 0.9;
  534. rce.mv_bits = bits * 0.1;
  535. }
  536. rcc->i_cplx_sum[rce.pict_type] += rce.i_tex_bits * rce.qscale;
  537. rcc->p_cplx_sum[rce.pict_type] += rce.p_tex_bits * rce.qscale;
  538. rcc->mv_bits_sum[rce.pict_type] += rce.mv_bits;
  539. rcc->frame_count[rce.pict_type]++;
  540. get_qscale(s, &rce, rcc->pass1_wanted_bits / rcc->pass1_rc_eq_output_sum, i);
  541. // FIXME misbehaves a little for variable fps
  542. rcc->pass1_wanted_bits += s->bit_rate / (1 / av_q2d(s->avctx->time_base));
  543. }
  544. }
  545. }
  546. return 0;
  547. }
  548. av_cold void ff_rate_control_uninit(MpegEncContext *s)
  549. {
  550. RateControlContext *rcc = &s->rc_context;
  551. emms_c();
  552. av_expr_free(rcc->rc_eq_eval);
  553. av_freep(&rcc->entry);
  554. }
  555. int ff_vbv_update(MpegEncContext *s, int frame_size)
  556. {
  557. RateControlContext *rcc = &s->rc_context;
  558. const double fps = 1 / av_q2d(s->avctx->time_base);
  559. const int buffer_size = s->avctx->rc_buffer_size;
  560. const double min_rate = s->avctx->rc_min_rate / fps;
  561. const double max_rate = s->avctx->rc_max_rate / fps;
  562. ff_dlog(s, "%d %f %d %f %f\n",
  563. buffer_size, rcc->buffer_index, frame_size, min_rate, max_rate);
  564. if (buffer_size) {
  565. int left;
  566. rcc->buffer_index -= frame_size;
  567. if (rcc->buffer_index < 0) {
  568. av_log(s->avctx, AV_LOG_ERROR, "rc buffer underflow\n");
  569. rcc->buffer_index = 0;
  570. }
  571. left = buffer_size - rcc->buffer_index - 1;
  572. rcc->buffer_index += av_clip(left, min_rate, max_rate);
  573. if (rcc->buffer_index > buffer_size) {
  574. int stuffing = ceil((rcc->buffer_index - buffer_size) / 8);
  575. if (stuffing < 4 && s->codec_id == AV_CODEC_ID_MPEG4)
  576. stuffing = 4;
  577. rcc->buffer_index -= 8 * stuffing;
  578. if (s->avctx->debug & FF_DEBUG_RC)
  579. av_log(s->avctx, AV_LOG_DEBUG, "stuffing %d bytes\n", stuffing);
  580. return stuffing;
  581. }
  582. }
  583. return 0;
  584. }
  585. static double predict_size(Predictor *p, double q, double var)
  586. {
  587. return p->coeff * var / (q * p->count);
  588. }
  589. static void update_predictor(Predictor *p, double q, double var, double size)
  590. {
  591. double new_coeff = size * q / (var + 1);
  592. if (var < 10)
  593. return;
  594. p->count *= p->decay;
  595. p->coeff *= p->decay;
  596. p->count++;
  597. p->coeff += new_coeff;
  598. }
  599. static void adaptive_quantization(MpegEncContext *s, double q)
  600. {
  601. int i;
  602. const float lumi_masking = s->avctx->lumi_masking / (128.0 * 128.0);
  603. const float dark_masking = s->avctx->dark_masking / (128.0 * 128.0);
  604. const float temp_cplx_masking = s->avctx->temporal_cplx_masking;
  605. const float spatial_cplx_masking = s->avctx->spatial_cplx_masking;
  606. const float p_masking = s->avctx->p_masking;
  607. const float border_masking = s->border_masking;
  608. float bits_sum = 0.0;
  609. float cplx_sum = 0.0;
  610. float *cplx_tab = s->cplx_tab;
  611. float *bits_tab = s->bits_tab;
  612. const int qmin = s->avctx->mb_lmin;
  613. const int qmax = s->avctx->mb_lmax;
  614. Picture *const pic = &s->current_picture;
  615. const int mb_width = s->mb_width;
  616. const int mb_height = s->mb_height;
  617. for (i = 0; i < s->mb_num; i++) {
  618. const int mb_xy = s->mb_index2xy[i];
  619. float temp_cplx = sqrt(pic->mc_mb_var[mb_xy]); // FIXME merge in pow()
  620. float spat_cplx = sqrt(pic->mb_var[mb_xy]);
  621. const int lumi = pic->mb_mean[mb_xy];
  622. float bits, cplx, factor;
  623. int mb_x = mb_xy % s->mb_stride;
  624. int mb_y = mb_xy / s->mb_stride;
  625. int mb_distance;
  626. float mb_factor = 0.0;
  627. if (spat_cplx < 4)
  628. spat_cplx = 4; // FIXME fine-tune
  629. if (temp_cplx < 4)
  630. temp_cplx = 4; // FIXME fine-tune
  631. if ((s->mb_type[mb_xy] & CANDIDATE_MB_TYPE_INTRA)) { // FIXME hq mode
  632. cplx = spat_cplx;
  633. factor = 1.0 + p_masking;
  634. } else {
  635. cplx = temp_cplx;
  636. factor = pow(temp_cplx, -temp_cplx_masking);
  637. }
  638. factor *= pow(spat_cplx, -spatial_cplx_masking);
  639. if (lumi > 127)
  640. factor *= (1.0 - (lumi - 128) * (lumi - 128) * lumi_masking);
  641. else
  642. factor *= (1.0 - (lumi - 128) * (lumi - 128) * dark_masking);
  643. if (mb_x < mb_width / 5) {
  644. mb_distance = mb_width / 5 - mb_x;
  645. mb_factor = (float)mb_distance / (float)(mb_width / 5);
  646. } else if (mb_x > 4 * mb_width / 5) {
  647. mb_distance = mb_x - 4 * mb_width / 5;
  648. mb_factor = (float)mb_distance / (float)(mb_width / 5);
  649. }
  650. if (mb_y < mb_height / 5) {
  651. mb_distance = mb_height / 5 - mb_y;
  652. mb_factor = FFMAX(mb_factor,
  653. (float)mb_distance / (float)(mb_height / 5));
  654. } else if (mb_y > 4 * mb_height / 5) {
  655. mb_distance = mb_y - 4 * mb_height / 5;
  656. mb_factor = FFMAX(mb_factor,
  657. (float)mb_distance / (float)(mb_height / 5));
  658. }
  659. factor *= 1.0 - border_masking * mb_factor;
  660. if (factor < 0.00001)
  661. factor = 0.00001;
  662. bits = cplx * factor;
  663. cplx_sum += cplx;
  664. bits_sum += bits;
  665. cplx_tab[i] = cplx;
  666. bits_tab[i] = bits;
  667. }
  668. /* handle qmin/qmax clipping */
  669. if (s->mpv_flags & FF_MPV_FLAG_NAQ) {
  670. float factor = bits_sum / cplx_sum;
  671. for (i = 0; i < s->mb_num; i++) {
  672. float newq = q * cplx_tab[i] / bits_tab[i];
  673. newq *= factor;
  674. if (newq > qmax) {
  675. bits_sum -= bits_tab[i];
  676. cplx_sum -= cplx_tab[i] * q / qmax;
  677. } else if (newq < qmin) {
  678. bits_sum -= bits_tab[i];
  679. cplx_sum -= cplx_tab[i] * q / qmin;
  680. }
  681. }
  682. if (bits_sum < 0.001)
  683. bits_sum = 0.001;
  684. if (cplx_sum < 0.001)
  685. cplx_sum = 0.001;
  686. }
  687. for (i = 0; i < s->mb_num; i++) {
  688. const int mb_xy = s->mb_index2xy[i];
  689. float newq = q * cplx_tab[i] / bits_tab[i];
  690. int intq;
  691. if (s->mpv_flags & FF_MPV_FLAG_NAQ) {
  692. newq *= bits_sum / cplx_sum;
  693. }
  694. intq = (int)(newq + 0.5);
  695. if (intq > qmax)
  696. intq = qmax;
  697. else if (intq < qmin)
  698. intq = qmin;
  699. s->lambda_table[mb_xy] = intq;
  700. }
  701. }
  702. void ff_get_2pass_fcode(MpegEncContext *s)
  703. {
  704. RateControlContext *rcc = &s->rc_context;
  705. RateControlEntry *rce = &rcc->entry[s->picture_number];
  706. s->f_code = rce->f_code;
  707. s->b_code = rce->b_code;
  708. }
  709. // FIXME rd or at least approx for dquant
  710. float ff_rate_estimate_qscale(MpegEncContext *s, int dry_run)
  711. {
  712. float q;
  713. int qmin, qmax;
  714. float br_compensation;
  715. double diff;
  716. double short_term_q;
  717. double fps;
  718. int picture_number = s->picture_number;
  719. int64_t wanted_bits;
  720. RateControlContext *rcc = &s->rc_context;
  721. AVCodecContext *a = s->avctx;
  722. RateControlEntry local_rce, *rce;
  723. double bits;
  724. double rate_factor;
  725. int var;
  726. const int pict_type = s->pict_type;
  727. Picture * const pic = &s->current_picture;
  728. emms_c();
  729. get_qminmax(&qmin, &qmax, s, pict_type);
  730. fps = 1 / av_q2d(s->avctx->time_base);
  731. /* update predictors */
  732. if (picture_number > 2 && !dry_run) {
  733. const int last_var = s->last_pict_type == AV_PICTURE_TYPE_I ? rcc->last_mb_var_sum
  734. : rcc->last_mc_mb_var_sum;
  735. update_predictor(&rcc->pred[s->last_pict_type],
  736. rcc->last_qscale,
  737. sqrt(last_var), s->frame_bits);
  738. }
  739. if (s->avctx->flags & AV_CODEC_FLAG_PASS2) {
  740. assert(picture_number >= 0);
  741. assert(picture_number < rcc->num_entries);
  742. rce = &rcc->entry[picture_number];
  743. wanted_bits = rce->expected_bits;
  744. } else {
  745. Picture *dts_pic;
  746. rce = &local_rce;
  747. /* FIXME add a dts field to AVFrame and ensure it is set and use it
  748. * here instead of reordering but the reordering is simpler for now
  749. * until H.264 B-pyramid must be handled. */
  750. if (s->pict_type == AV_PICTURE_TYPE_B || s->low_delay)
  751. dts_pic = s->current_picture_ptr;
  752. else
  753. dts_pic = s->last_picture_ptr;
  754. if (!dts_pic || dts_pic->f->pts == AV_NOPTS_VALUE)
  755. wanted_bits = (uint64_t)(s->bit_rate * (double)picture_number / fps);
  756. else
  757. wanted_bits = (uint64_t)(s->bit_rate * (double)dts_pic->f->pts / fps);
  758. }
  759. diff = s->total_bits - wanted_bits;
  760. br_compensation = (a->bit_rate_tolerance - diff) / a->bit_rate_tolerance;
  761. if (br_compensation <= 0.0)
  762. br_compensation = 0.001;
  763. var = pict_type == AV_PICTURE_TYPE_I ? pic->mb_var_sum : pic->mc_mb_var_sum;
  764. short_term_q = 0; /* avoid warning */
  765. if (s->avctx->flags & AV_CODEC_FLAG_PASS2) {
  766. if (pict_type != AV_PICTURE_TYPE_I)
  767. assert(pict_type == rce->new_pict_type);
  768. q = rce->new_qscale / br_compensation;
  769. ff_dlog(s, "%f %f %f last:%d var:%d type:%d//\n", q, rce->new_qscale,
  770. br_compensation, s->frame_bits, var, pict_type);
  771. } else {
  772. rce->pict_type =
  773. rce->new_pict_type = pict_type;
  774. rce->mc_mb_var_sum = pic->mc_mb_var_sum;
  775. rce->mb_var_sum = pic->mb_var_sum;
  776. rce->qscale = FF_QP2LAMBDA * 2;
  777. rce->f_code = s->f_code;
  778. rce->b_code = s->b_code;
  779. rce->misc_bits = 1;
  780. bits = predict_size(&rcc->pred[pict_type], rce->qscale, sqrt(var));
  781. if (pict_type == AV_PICTURE_TYPE_I) {
  782. rce->i_count = s->mb_num;
  783. rce->i_tex_bits = bits;
  784. rce->p_tex_bits = 0;
  785. rce->mv_bits = 0;
  786. } else {
  787. rce->i_count = 0; // FIXME we do know this approx
  788. rce->i_tex_bits = 0;
  789. rce->p_tex_bits = bits * 0.9;
  790. rce->mv_bits = bits * 0.1;
  791. }
  792. rcc->i_cplx_sum[pict_type] += rce->i_tex_bits * rce->qscale;
  793. rcc->p_cplx_sum[pict_type] += rce->p_tex_bits * rce->qscale;
  794. rcc->mv_bits_sum[pict_type] += rce->mv_bits;
  795. rcc->frame_count[pict_type]++;
  796. bits = rce->i_tex_bits + rce->p_tex_bits;
  797. rate_factor = rcc->pass1_wanted_bits /
  798. rcc->pass1_rc_eq_output_sum * br_compensation;
  799. q = get_qscale(s, rce, rate_factor, picture_number);
  800. if (q < 0)
  801. return -1;
  802. assert(q > 0.0);
  803. q = get_diff_limited_q(s, rce, q);
  804. assert(q > 0.0);
  805. // FIXME type dependent blur like in 2-pass
  806. if (pict_type == AV_PICTURE_TYPE_P || s->intra_only) {
  807. rcc->short_term_qsum *= a->qblur;
  808. rcc->short_term_qcount *= a->qblur;
  809. rcc->short_term_qsum += q;
  810. rcc->short_term_qcount++;
  811. q = short_term_q = rcc->short_term_qsum / rcc->short_term_qcount;
  812. }
  813. assert(q > 0.0);
  814. q = modify_qscale(s, rce, q, picture_number);
  815. rcc->pass1_wanted_bits += s->bit_rate / fps;
  816. assert(q > 0.0);
  817. }
  818. if (s->avctx->debug & FF_DEBUG_RC) {
  819. av_log(s->avctx, AV_LOG_DEBUG,
  820. "%c qp:%d<%2.1f<%d %d want:%d total:%d comp:%f st_q:%2.2f "
  821. "size:%d var:%d/%d br:%d fps:%d\n",
  822. av_get_picture_type_char(pict_type),
  823. qmin, q, qmax, picture_number,
  824. (int)wanted_bits / 1000, (int)s->total_bits / 1000,
  825. br_compensation, short_term_q, s->frame_bits,
  826. pic->mb_var_sum, pic->mc_mb_var_sum,
  827. s->bit_rate / 1000, (int)fps);
  828. }
  829. if (q < qmin)
  830. q = qmin;
  831. else if (q > qmax)
  832. q = qmax;
  833. if (s->adaptive_quant)
  834. adaptive_quantization(s, q);
  835. else
  836. q = (int)(q + 0.5);
  837. if (!dry_run) {
  838. rcc->last_qscale = q;
  839. rcc->last_mc_mb_var_sum = pic->mc_mb_var_sum;
  840. rcc->last_mb_var_sum = pic->mb_var_sum;
  841. }
  842. return q;
  843. }