You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2013 lines
69KB

  1. /*
  2. * QDM2 compatible decoder
  3. * Copyright (c) 2003 Ewald Snel
  4. * Copyright (c) 2005 Benjamin Larsson
  5. * Copyright (c) 2005 Alex Beregszaszi
  6. * Copyright (c) 2005 Roberto Togni
  7. *
  8. * This file is part of Libav.
  9. *
  10. * Libav is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU Lesser General Public
  12. * License as published by the Free Software Foundation; either
  13. * version 2.1 of the License, or (at your option) any later version.
  14. *
  15. * Libav is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  18. * Lesser General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU Lesser General Public
  21. * License along with Libav; if not, write to the Free Software
  22. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  23. */
  24. /**
  25. * @file
  26. * QDM2 decoder
  27. * @author Ewald Snel, Benjamin Larsson, Alex Beregszaszi, Roberto Togni
  28. *
  29. * The decoder is not perfect yet, there are still some distortions
  30. * especially on files encoded with 16 or 8 subbands.
  31. */
  32. #include <math.h>
  33. #include <stddef.h>
  34. #include <stdio.h>
  35. #include "libavutil/channel_layout.h"
  36. #define BITSTREAM_READER_LE
  37. #include "avcodec.h"
  38. #include "bitstream.h"
  39. #include "internal.h"
  40. #include "mpegaudio.h"
  41. #include "mpegaudiodsp.h"
  42. #include "rdft.h"
  43. #include "qdm2data.h"
  44. #include "qdm2_tablegen.h"
  45. #define QDM2_LIST_ADD(list, size, packet) \
  46. do { \
  47. if (size > 0) { \
  48. list[size - 1].next = &list[size]; \
  49. } \
  50. list[size].packet = packet; \
  51. list[size].next = NULL; \
  52. size++; \
  53. } while(0)
  54. // Result is 8, 16 or 30
  55. #define QDM2_SB_USED(sub_sampling) (((sub_sampling) >= 2) ? 30 : 8 << (sub_sampling))
  56. #define FIX_NOISE_IDX(noise_idx) \
  57. if ((noise_idx) >= 3840) \
  58. (noise_idx) -= 3840; \
  59. #define SB_DITHERING_NOISE(sb,noise_idx) (noise_table[(noise_idx)++] * sb_noise_attenuation[(sb)])
  60. #define SAMPLES_NEEDED \
  61. av_log (NULL,AV_LOG_INFO,"This file triggers some untested code. Please contact the developers.\n");
  62. #define SAMPLES_NEEDED_2(why) \
  63. av_log (NULL,AV_LOG_INFO,"This file triggers some missing code. Please contact the developers.\nPosition: %s\n",why);
  64. #define QDM2_MAX_FRAME_SIZE 512
  65. typedef int8_t sb_int8_array[2][30][64];
  66. /**
  67. * Subpacket
  68. */
  69. typedef struct QDM2SubPacket {
  70. int type; ///< subpacket type
  71. unsigned int size; ///< subpacket size
  72. const uint8_t *data; ///< pointer to subpacket data (points to input data buffer, it's not a private copy)
  73. } QDM2SubPacket;
  74. /**
  75. * A node in the subpacket list
  76. */
  77. typedef struct QDM2SubPNode {
  78. QDM2SubPacket *packet; ///< packet
  79. struct QDM2SubPNode *next; ///< pointer to next packet in the list, NULL if leaf node
  80. } QDM2SubPNode;
  81. typedef struct QDM2Complex {
  82. float re;
  83. float im;
  84. } QDM2Complex;
  85. typedef struct FFTTone {
  86. float level;
  87. QDM2Complex *complex;
  88. const float *table;
  89. int phase;
  90. int phase_shift;
  91. int duration;
  92. short time_index;
  93. short cutoff;
  94. } FFTTone;
  95. typedef struct FFTCoefficient {
  96. int16_t sub_packet;
  97. uint8_t channel;
  98. int16_t offset;
  99. int16_t exp;
  100. uint8_t phase;
  101. } FFTCoefficient;
  102. typedef struct QDM2FFT {
  103. DECLARE_ALIGNED(32, QDM2Complex, complex)[MPA_MAX_CHANNELS][256];
  104. } QDM2FFT;
  105. /**
  106. * QDM2 decoder context
  107. */
  108. typedef struct QDM2Context {
  109. /// Parameters from codec header, do not change during playback
  110. int nb_channels; ///< number of channels
  111. int channels; ///< number of channels
  112. int group_size; ///< size of frame group (16 frames per group)
  113. int fft_size; ///< size of FFT, in complex numbers
  114. int checksum_size; ///< size of data block, used also for checksum
  115. /// Parameters built from header parameters, do not change during playback
  116. int group_order; ///< order of frame group
  117. int fft_order; ///< order of FFT (actually fftorder+1)
  118. int frame_size; ///< size of data frame
  119. int frequency_range;
  120. int sub_sampling; ///< subsampling: 0=25%, 1=50%, 2=100% */
  121. int coeff_per_sb_select; ///< selector for "num. of coeffs. per subband" tables. Can be 0, 1, 2
  122. int cm_table_select; ///< selector for "coding method" tables. Can be 0, 1 (from init: 0-4)
  123. /// Packets and packet lists
  124. QDM2SubPacket sub_packets[16]; ///< the packets themselves
  125. QDM2SubPNode sub_packet_list_A[16]; ///< list of all packets
  126. QDM2SubPNode sub_packet_list_B[16]; ///< FFT packets B are on list
  127. int sub_packets_B; ///< number of packets on 'B' list
  128. QDM2SubPNode sub_packet_list_C[16]; ///< packets with errors?
  129. QDM2SubPNode sub_packet_list_D[16]; ///< DCT packets
  130. /// FFT and tones
  131. FFTTone fft_tones[1000];
  132. int fft_tone_start;
  133. int fft_tone_end;
  134. FFTCoefficient fft_coefs[1000];
  135. int fft_coefs_index;
  136. int fft_coefs_min_index[5];
  137. int fft_coefs_max_index[5];
  138. int fft_level_exp[6];
  139. RDFTContext rdft_ctx;
  140. QDM2FFT fft;
  141. /// I/O data
  142. const uint8_t *compressed_data;
  143. int compressed_size;
  144. float output_buffer[QDM2_MAX_FRAME_SIZE * 2];
  145. /// Synthesis filter
  146. MPADSPContext mpadsp;
  147. DECLARE_ALIGNED(32, float, synth_buf)[MPA_MAX_CHANNELS][512*2];
  148. int synth_buf_offset[MPA_MAX_CHANNELS];
  149. DECLARE_ALIGNED(32, float, sb_samples)[MPA_MAX_CHANNELS][128][SBLIMIT];
  150. DECLARE_ALIGNED(32, float, samples)[MPA_MAX_CHANNELS * MPA_FRAME_SIZE];
  151. /// Mixed temporary data used in decoding
  152. float tone_level[MPA_MAX_CHANNELS][30][64];
  153. int8_t coding_method[MPA_MAX_CHANNELS][30][64];
  154. int8_t quantized_coeffs[MPA_MAX_CHANNELS][10][8];
  155. int8_t tone_level_idx_base[MPA_MAX_CHANNELS][30][8];
  156. int8_t tone_level_idx_hi1[MPA_MAX_CHANNELS][3][8][8];
  157. int8_t tone_level_idx_mid[MPA_MAX_CHANNELS][26][8];
  158. int8_t tone_level_idx_hi2[MPA_MAX_CHANNELS][26];
  159. int8_t tone_level_idx[MPA_MAX_CHANNELS][30][64];
  160. int8_t tone_level_idx_temp[MPA_MAX_CHANNELS][30][64];
  161. // Flags
  162. int has_errors; ///< packet has errors
  163. int superblocktype_2_3; ///< select fft tables and some algorithm based on superblock type
  164. int do_synth_filter; ///< used to perform or skip synthesis filter
  165. int sub_packet;
  166. int noise_idx; ///< index for dithering noise table
  167. } QDM2Context;
  168. static VLC vlc_tab_level;
  169. static VLC vlc_tab_diff;
  170. static VLC vlc_tab_run;
  171. static VLC fft_level_exp_alt_vlc;
  172. static VLC fft_level_exp_vlc;
  173. static VLC fft_stereo_exp_vlc;
  174. static VLC fft_stereo_phase_vlc;
  175. static VLC vlc_tab_tone_level_idx_hi1;
  176. static VLC vlc_tab_tone_level_idx_mid;
  177. static VLC vlc_tab_tone_level_idx_hi2;
  178. static VLC vlc_tab_type30;
  179. static VLC vlc_tab_type34;
  180. static VLC vlc_tab_fft_tone_offset[5];
  181. static const uint16_t qdm2_vlc_offs[] = {
  182. 0,260,566,598,894,1166,1230,1294,1678,1950,2214,2278,2310,2570,2834,3124,3448,3838,
  183. };
  184. static const int switchtable[23] = {
  185. 0, 5, 1, 5, 5, 5, 5, 5, 2, 5, 5, 5, 5, 5, 5, 5, 3, 5, 5, 5, 5, 5, 4
  186. };
  187. static av_cold void qdm2_init_vlc(void)
  188. {
  189. static VLC_TYPE qdm2_table[3838][2];
  190. vlc_tab_level.table = &qdm2_table[qdm2_vlc_offs[0]];
  191. vlc_tab_level.table_allocated = qdm2_vlc_offs[1] - qdm2_vlc_offs[0];
  192. init_vlc(&vlc_tab_level, 8, 24,
  193. vlc_tab_level_huffbits, 1, 1,
  194. vlc_tab_level_huffcodes, 2, 2,
  195. INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  196. vlc_tab_diff.table = &qdm2_table[qdm2_vlc_offs[1]];
  197. vlc_tab_diff.table_allocated = qdm2_vlc_offs[2] - qdm2_vlc_offs[1];
  198. init_vlc(&vlc_tab_diff, 8, 37,
  199. vlc_tab_diff_huffbits, 1, 1,
  200. vlc_tab_diff_huffcodes, 2, 2,
  201. INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  202. vlc_tab_run.table = &qdm2_table[qdm2_vlc_offs[2]];
  203. vlc_tab_run.table_allocated = qdm2_vlc_offs[3] - qdm2_vlc_offs[2];
  204. init_vlc(&vlc_tab_run, 5, 6,
  205. vlc_tab_run_huffbits, 1, 1,
  206. vlc_tab_run_huffcodes, 1, 1,
  207. INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  208. fft_level_exp_alt_vlc.table = &qdm2_table[qdm2_vlc_offs[3]];
  209. fft_level_exp_alt_vlc.table_allocated = qdm2_vlc_offs[4] -
  210. qdm2_vlc_offs[3];
  211. init_vlc(&fft_level_exp_alt_vlc, 8, 28,
  212. fft_level_exp_alt_huffbits, 1, 1,
  213. fft_level_exp_alt_huffcodes, 2, 2,
  214. INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  215. fft_level_exp_vlc.table = &qdm2_table[qdm2_vlc_offs[4]];
  216. fft_level_exp_vlc.table_allocated = qdm2_vlc_offs[5] - qdm2_vlc_offs[4];
  217. init_vlc(&fft_level_exp_vlc, 8, 20,
  218. fft_level_exp_huffbits, 1, 1,
  219. fft_level_exp_huffcodes, 2, 2,
  220. INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  221. fft_stereo_exp_vlc.table = &qdm2_table[qdm2_vlc_offs[5]];
  222. fft_stereo_exp_vlc.table_allocated = qdm2_vlc_offs[6] -
  223. qdm2_vlc_offs[5];
  224. init_vlc(&fft_stereo_exp_vlc, 6, 7,
  225. fft_stereo_exp_huffbits, 1, 1,
  226. fft_stereo_exp_huffcodes, 1, 1,
  227. INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  228. fft_stereo_phase_vlc.table = &qdm2_table[qdm2_vlc_offs[6]];
  229. fft_stereo_phase_vlc.table_allocated = qdm2_vlc_offs[7] -
  230. qdm2_vlc_offs[6];
  231. init_vlc(&fft_stereo_phase_vlc, 6, 9,
  232. fft_stereo_phase_huffbits, 1, 1,
  233. fft_stereo_phase_huffcodes, 1, 1,
  234. INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  235. vlc_tab_tone_level_idx_hi1.table =
  236. &qdm2_table[qdm2_vlc_offs[7]];
  237. vlc_tab_tone_level_idx_hi1.table_allocated = qdm2_vlc_offs[8] -
  238. qdm2_vlc_offs[7];
  239. init_vlc(&vlc_tab_tone_level_idx_hi1, 8, 20,
  240. vlc_tab_tone_level_idx_hi1_huffbits, 1, 1,
  241. vlc_tab_tone_level_idx_hi1_huffcodes, 2, 2,
  242. INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  243. vlc_tab_tone_level_idx_mid.table =
  244. &qdm2_table[qdm2_vlc_offs[8]];
  245. vlc_tab_tone_level_idx_mid.table_allocated = qdm2_vlc_offs[9] -
  246. qdm2_vlc_offs[8];
  247. init_vlc(&vlc_tab_tone_level_idx_mid, 8, 24,
  248. vlc_tab_tone_level_idx_mid_huffbits, 1, 1,
  249. vlc_tab_tone_level_idx_mid_huffcodes, 2, 2,
  250. INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  251. vlc_tab_tone_level_idx_hi2.table =
  252. &qdm2_table[qdm2_vlc_offs[9]];
  253. vlc_tab_tone_level_idx_hi2.table_allocated = qdm2_vlc_offs[10] -
  254. qdm2_vlc_offs[9];
  255. init_vlc(&vlc_tab_tone_level_idx_hi2, 8, 24,
  256. vlc_tab_tone_level_idx_hi2_huffbits, 1, 1,
  257. vlc_tab_tone_level_idx_hi2_huffcodes, 2, 2,
  258. INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  259. vlc_tab_type30.table = &qdm2_table[qdm2_vlc_offs[10]];
  260. vlc_tab_type30.table_allocated = qdm2_vlc_offs[11] - qdm2_vlc_offs[10];
  261. init_vlc(&vlc_tab_type30, 6, 9,
  262. vlc_tab_type30_huffbits, 1, 1,
  263. vlc_tab_type30_huffcodes, 1, 1,
  264. INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  265. vlc_tab_type34.table = &qdm2_table[qdm2_vlc_offs[11]];
  266. vlc_tab_type34.table_allocated = qdm2_vlc_offs[12] - qdm2_vlc_offs[11];
  267. init_vlc(&vlc_tab_type34, 5, 10,
  268. vlc_tab_type34_huffbits, 1, 1,
  269. vlc_tab_type34_huffcodes, 1, 1,
  270. INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  271. vlc_tab_fft_tone_offset[0].table =
  272. &qdm2_table[qdm2_vlc_offs[12]];
  273. vlc_tab_fft_tone_offset[0].table_allocated = qdm2_vlc_offs[13] -
  274. qdm2_vlc_offs[12];
  275. init_vlc(&vlc_tab_fft_tone_offset[0], 8, 23,
  276. vlc_tab_fft_tone_offset_0_huffbits, 1, 1,
  277. vlc_tab_fft_tone_offset_0_huffcodes, 2, 2,
  278. INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  279. vlc_tab_fft_tone_offset[1].table =
  280. &qdm2_table[qdm2_vlc_offs[13]];
  281. vlc_tab_fft_tone_offset[1].table_allocated = qdm2_vlc_offs[14] -
  282. qdm2_vlc_offs[13];
  283. init_vlc(&vlc_tab_fft_tone_offset[1], 8, 28,
  284. vlc_tab_fft_tone_offset_1_huffbits, 1, 1,
  285. vlc_tab_fft_tone_offset_1_huffcodes, 2, 2,
  286. INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  287. vlc_tab_fft_tone_offset[2].table =
  288. &qdm2_table[qdm2_vlc_offs[14]];
  289. vlc_tab_fft_tone_offset[2].table_allocated = qdm2_vlc_offs[15] -
  290. qdm2_vlc_offs[14];
  291. init_vlc(&vlc_tab_fft_tone_offset[2], 8, 32,
  292. vlc_tab_fft_tone_offset_2_huffbits, 1, 1,
  293. vlc_tab_fft_tone_offset_2_huffcodes, 2, 2,
  294. INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  295. vlc_tab_fft_tone_offset[3].table =
  296. &qdm2_table[qdm2_vlc_offs[15]];
  297. vlc_tab_fft_tone_offset[3].table_allocated = qdm2_vlc_offs[16] -
  298. qdm2_vlc_offs[15];
  299. init_vlc(&vlc_tab_fft_tone_offset[3], 8, 35,
  300. vlc_tab_fft_tone_offset_3_huffbits, 1, 1,
  301. vlc_tab_fft_tone_offset_3_huffcodes, 2, 2,
  302. INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  303. vlc_tab_fft_tone_offset[4].table =
  304. &qdm2_table[qdm2_vlc_offs[16]];
  305. vlc_tab_fft_tone_offset[4].table_allocated = qdm2_vlc_offs[17] -
  306. qdm2_vlc_offs[16];
  307. init_vlc(&vlc_tab_fft_tone_offset[4], 8, 38,
  308. vlc_tab_fft_tone_offset_4_huffbits, 1, 1,
  309. vlc_tab_fft_tone_offset_4_huffcodes, 2, 2,
  310. INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  311. }
  312. static int qdm2_get_vlc(BitstreamContext *bc, VLC *vlc, int flag, int depth)
  313. {
  314. int value;
  315. value = bitstream_read_vlc(bc, vlc->table, vlc->bits, depth);
  316. /* stage-2, 3 bits exponent escape sequence */
  317. if (value-- == 0)
  318. value = bitstream_read(bc, bitstream_read(bc, 3) + 1);
  319. /* stage-3, optional */
  320. if (flag) {
  321. int tmp = vlc_stage3_values[value];
  322. if ((value & ~3) > 0)
  323. tmp += bitstream_read(bc, value >> 2);
  324. value = tmp;
  325. }
  326. return value;
  327. }
  328. static int qdm2_get_se_vlc(VLC *vlc, BitstreamContext *bc, int depth)
  329. {
  330. int value = qdm2_get_vlc(bc, vlc, 0, depth);
  331. return (value & 1) ? ((value + 1) >> 1) : -(value >> 1);
  332. }
  333. /**
  334. * QDM2 checksum
  335. *
  336. * @param data pointer to data to be checksummed
  337. * @param length data length
  338. * @param value checksum value
  339. *
  340. * @return 0 if checksum is OK
  341. */
  342. static uint16_t qdm2_packet_checksum(const uint8_t *data, int length, int value)
  343. {
  344. int i;
  345. for (i = 0; i < length; i++)
  346. value -= data[i];
  347. return (uint16_t)(value & 0xffff);
  348. }
  349. /**
  350. * Fill a QDM2SubPacket structure with packet type, size, and data pointer.
  351. *
  352. * @param bc bitreader context
  353. * @param sub_packet packet under analysis
  354. */
  355. static void qdm2_decode_sub_packet_header(BitstreamContext *bc,
  356. QDM2SubPacket *sub_packet)
  357. {
  358. sub_packet->type = bitstream_read(bc, 8);
  359. if (sub_packet->type == 0) {
  360. sub_packet->size = 0;
  361. sub_packet->data = NULL;
  362. } else {
  363. sub_packet->size = bitstream_read(bc, 8);
  364. if (sub_packet->type & 0x80) {
  365. sub_packet->size <<= 8;
  366. sub_packet->size |= bitstream_read(bc, 8);
  367. sub_packet->type &= 0x7f;
  368. }
  369. if (sub_packet->type == 0x7f)
  370. sub_packet->type |= bitstream_read(bc, 8) << 8;
  371. // FIXME: this depends on bitreader-internal data
  372. sub_packet->data = &bc->buffer[bitstream_tell(bc) / 8];
  373. }
  374. av_log(NULL, AV_LOG_DEBUG, "Subpacket: type=%d size=%d start_offs=%x\n",
  375. sub_packet->type, sub_packet->size, bitstream_tell(bc) / 8);
  376. }
  377. /**
  378. * Return node pointer to first packet of requested type in list.
  379. *
  380. * @param list list of subpackets to be scanned
  381. * @param type type of searched subpacket
  382. * @return node pointer for subpacket if found, else NULL
  383. */
  384. static QDM2SubPNode *qdm2_search_subpacket_type_in_list(QDM2SubPNode *list,
  385. int type)
  386. {
  387. while (list && list->packet) {
  388. if (list->packet->type == type)
  389. return list;
  390. list = list->next;
  391. }
  392. return NULL;
  393. }
  394. /**
  395. * Replace 8 elements with their average value.
  396. * Called by qdm2_decode_superblock before starting subblock decoding.
  397. *
  398. * @param q context
  399. */
  400. static void average_quantized_coeffs(QDM2Context *q)
  401. {
  402. int i, j, n, ch, sum;
  403. n = coeff_per_sb_for_avg[q->coeff_per_sb_select][QDM2_SB_USED(q->sub_sampling) - 1] + 1;
  404. for (ch = 0; ch < q->nb_channels; ch++)
  405. for (i = 0; i < n; i++) {
  406. sum = 0;
  407. for (j = 0; j < 8; j++)
  408. sum += q->quantized_coeffs[ch][i][j];
  409. sum /= 8;
  410. if (sum > 0)
  411. sum--;
  412. for (j = 0; j < 8; j++)
  413. q->quantized_coeffs[ch][i][j] = sum;
  414. }
  415. }
  416. /**
  417. * Build subband samples with noise weighted by q->tone_level.
  418. * Called by synthfilt_build_sb_samples.
  419. *
  420. * @param q context
  421. * @param sb subband index
  422. */
  423. static void build_sb_samples_from_noise(QDM2Context *q, int sb)
  424. {
  425. int ch, j;
  426. FIX_NOISE_IDX(q->noise_idx);
  427. if (!q->nb_channels)
  428. return;
  429. for (ch = 0; ch < q->nb_channels; ch++) {
  430. for (j = 0; j < 64; j++) {
  431. q->sb_samples[ch][j * 2][sb] =
  432. SB_DITHERING_NOISE(sb, q->noise_idx) * q->tone_level[ch][sb][j];
  433. q->sb_samples[ch][j * 2 + 1][sb] =
  434. SB_DITHERING_NOISE(sb, q->noise_idx) * q->tone_level[ch][sb][j];
  435. }
  436. }
  437. }
  438. /**
  439. * Called while processing data from subpackets 11 and 12.
  440. * Used after making changes to coding_method array.
  441. *
  442. * @param sb subband index
  443. * @param channels number of channels
  444. * @param coding_method q->coding_method[0][0][0]
  445. */
  446. static int fix_coding_method_array(int sb, int channels,
  447. sb_int8_array coding_method)
  448. {
  449. int j, k;
  450. int ch;
  451. int run, case_val;
  452. for (ch = 0; ch < channels; ch++) {
  453. for (j = 0; j < 64; ) {
  454. if (coding_method[ch][sb][j] < 8)
  455. return -1;
  456. if ((coding_method[ch][sb][j] - 8) > 22) {
  457. run = 1;
  458. case_val = 8;
  459. } else {
  460. switch (switchtable[coding_method[ch][sb][j] - 8]) {
  461. case 0: run = 10;
  462. case_val = 10;
  463. break;
  464. case 1: run = 1;
  465. case_val = 16;
  466. break;
  467. case 2: run = 5;
  468. case_val = 24;
  469. break;
  470. case 3: run = 3;
  471. case_val = 30;
  472. break;
  473. case 4: run = 1;
  474. case_val = 30;
  475. break;
  476. case 5: run = 1;
  477. case_val = 8;
  478. break;
  479. default: run = 1;
  480. case_val = 8;
  481. break;
  482. }
  483. }
  484. for (k = 0; k < run; k++) {
  485. if (j + k < 128) {
  486. if (coding_method[ch][sb + (j + k) / 64][(j + k) % 64] > coding_method[ch][sb][j]) {
  487. if (k > 0) {
  488. SAMPLES_NEEDED
  489. //not debugged, almost never used
  490. memset(&coding_method[ch][sb][j + k], case_val,
  491. k *sizeof(int8_t));
  492. memset(&coding_method[ch][sb][j + k], case_val,
  493. 3 * sizeof(int8_t));
  494. }
  495. }
  496. }
  497. }
  498. j += run;
  499. }
  500. }
  501. return 0;
  502. }
  503. /**
  504. * Related to synthesis filter
  505. * Called by process_subpacket_10
  506. *
  507. * @param q context
  508. * @param flag 1 if called after getting data from subpacket 10, 0 if no subpacket 10
  509. */
  510. static void fill_tone_level_array(QDM2Context *q, int flag)
  511. {
  512. int i, sb, ch, sb_used;
  513. int tmp, tab;
  514. for (ch = 0; ch < q->nb_channels; ch++)
  515. for (sb = 0; sb < 30; sb++)
  516. for (i = 0; i < 8; i++) {
  517. if ((tab=coeff_per_sb_for_dequant[q->coeff_per_sb_select][sb]) < (last_coeff[q->coeff_per_sb_select] - 1))
  518. tmp = q->quantized_coeffs[ch][tab + 1][i] * dequant_table[q->coeff_per_sb_select][tab + 1][sb]+
  519. q->quantized_coeffs[ch][tab][i] * dequant_table[q->coeff_per_sb_select][tab][sb];
  520. else
  521. tmp = q->quantized_coeffs[ch][tab][i] * dequant_table[q->coeff_per_sb_select][tab][sb];
  522. if(tmp < 0)
  523. tmp += 0xff;
  524. q->tone_level_idx_base[ch][sb][i] = (tmp / 256) & 0xff;
  525. }
  526. sb_used = QDM2_SB_USED(q->sub_sampling);
  527. if ((q->superblocktype_2_3 != 0) && !flag) {
  528. for (sb = 0; sb < sb_used; sb++)
  529. for (ch = 0; ch < q->nb_channels; ch++)
  530. for (i = 0; i < 64; i++) {
  531. q->tone_level_idx[ch][sb][i] = q->tone_level_idx_base[ch][sb][i / 8];
  532. if (q->tone_level_idx[ch][sb][i] < 0)
  533. q->tone_level[ch][sb][i] = 0;
  534. else
  535. q->tone_level[ch][sb][i] = fft_tone_level_table[0][q->tone_level_idx[ch][sb][i] & 0x3f];
  536. }
  537. } else {
  538. tab = q->superblocktype_2_3 ? 0 : 1;
  539. for (sb = 0; sb < sb_used; sb++) {
  540. if ((sb >= 4) && (sb <= 23)) {
  541. for (ch = 0; ch < q->nb_channels; ch++)
  542. for (i = 0; i < 64; i++) {
  543. tmp = q->tone_level_idx_base[ch][sb][i / 8] -
  544. q->tone_level_idx_hi1[ch][sb / 8][i / 8][i % 8] -
  545. q->tone_level_idx_mid[ch][sb - 4][i / 8] -
  546. q->tone_level_idx_hi2[ch][sb - 4];
  547. q->tone_level_idx[ch][sb][i] = tmp & 0xff;
  548. if ((tmp < 0) || (!q->superblocktype_2_3 && !tmp))
  549. q->tone_level[ch][sb][i] = 0;
  550. else
  551. q->tone_level[ch][sb][i] = fft_tone_level_table[tab][tmp & 0x3f];
  552. }
  553. } else {
  554. if (sb > 4) {
  555. for (ch = 0; ch < q->nb_channels; ch++)
  556. for (i = 0; i < 64; i++) {
  557. tmp = q->tone_level_idx_base[ch][sb][i / 8] -
  558. q->tone_level_idx_hi1[ch][2][i / 8][i % 8] -
  559. q->tone_level_idx_hi2[ch][sb - 4];
  560. q->tone_level_idx[ch][sb][i] = tmp & 0xff;
  561. if ((tmp < 0) || (!q->superblocktype_2_3 && !tmp))
  562. q->tone_level[ch][sb][i] = 0;
  563. else
  564. q->tone_level[ch][sb][i] = fft_tone_level_table[tab][tmp & 0x3f];
  565. }
  566. } else {
  567. for (ch = 0; ch < q->nb_channels; ch++)
  568. for (i = 0; i < 64; i++) {
  569. tmp = q->tone_level_idx[ch][sb][i] = q->tone_level_idx_base[ch][sb][i / 8];
  570. if ((tmp < 0) || (!q->superblocktype_2_3 && !tmp))
  571. q->tone_level[ch][sb][i] = 0;
  572. else
  573. q->tone_level[ch][sb][i] = fft_tone_level_table[tab][tmp & 0x3f];
  574. }
  575. }
  576. }
  577. }
  578. }
  579. }
  580. /**
  581. * Related to synthesis filter
  582. * Called by process_subpacket_11
  583. * c is built with data from subpacket 11
  584. * Most of this function is used only if superblock_type_2_3 == 0,
  585. * never seen it in samples.
  586. *
  587. * @param tone_level_idx
  588. * @param tone_level_idx_temp
  589. * @param coding_method q->coding_method[0][0][0]
  590. * @param nb_channels number of channels
  591. * @param c coming from subpacket 11, passed as 8*c
  592. * @param superblocktype_2_3 flag based on superblock packet type
  593. * @param cm_table_select q->cm_table_select
  594. */
  595. static void fill_coding_method_array(sb_int8_array tone_level_idx,
  596. sb_int8_array tone_level_idx_temp,
  597. sb_int8_array coding_method,
  598. int nb_channels,
  599. int c, int superblocktype_2_3,
  600. int cm_table_select)
  601. {
  602. int ch, sb, j;
  603. int tmp, acc, esp_40, comp;
  604. int add1, add2, add3, add4;
  605. int64_t multres;
  606. if (!superblocktype_2_3) {
  607. /* This case is untested, no samples available */
  608. SAMPLES_NEEDED
  609. for (ch = 0; ch < nb_channels; ch++)
  610. for (sb = 0; sb < 30; sb++) {
  611. for (j = 1; j < 63; j++) { // The loop only iterates to 63 so the code doesn't overflow the buffer
  612. add1 = tone_level_idx[ch][sb][j] - 10;
  613. if (add1 < 0)
  614. add1 = 0;
  615. add2 = add3 = add4 = 0;
  616. if (sb > 1) {
  617. add2 = tone_level_idx[ch][sb - 2][j] + tone_level_idx_offset_table[sb][0] - 6;
  618. if (add2 < 0)
  619. add2 = 0;
  620. }
  621. if (sb > 0) {
  622. add3 = tone_level_idx[ch][sb - 1][j] + tone_level_idx_offset_table[sb][1] - 6;
  623. if (add3 < 0)
  624. add3 = 0;
  625. }
  626. if (sb < 29) {
  627. add4 = tone_level_idx[ch][sb + 1][j] + tone_level_idx_offset_table[sb][3] - 6;
  628. if (add4 < 0)
  629. add4 = 0;
  630. }
  631. tmp = tone_level_idx[ch][sb][j + 1] * 2 - add4 - add3 - add2 - add1;
  632. if (tmp < 0)
  633. tmp = 0;
  634. tone_level_idx_temp[ch][sb][j + 1] = tmp & 0xff;
  635. }
  636. tone_level_idx_temp[ch][sb][0] = tone_level_idx_temp[ch][sb][1];
  637. }
  638. acc = 0;
  639. for (ch = 0; ch < nb_channels; ch++)
  640. for (sb = 0; sb < 30; sb++)
  641. for (j = 0; j < 64; j++)
  642. acc += tone_level_idx_temp[ch][sb][j];
  643. multres = 0x66666667LL * (acc * 10);
  644. esp_40 = (multres >> 32) / 8 + ((multres & 0xffffffff) >> 31);
  645. for (ch = 0; ch < nb_channels; ch++)
  646. for (sb = 0; sb < 30; sb++)
  647. for (j = 0; j < 64; j++) {
  648. comp = tone_level_idx_temp[ch][sb][j]* esp_40 * 10;
  649. if (comp < 0)
  650. comp += 0xff;
  651. comp /= 256; // signed shift
  652. switch(sb) {
  653. case 0:
  654. if (comp < 30)
  655. comp = 30;
  656. comp += 15;
  657. break;
  658. case 1:
  659. if (comp < 24)
  660. comp = 24;
  661. comp += 10;
  662. break;
  663. case 2:
  664. case 3:
  665. case 4:
  666. if (comp < 16)
  667. comp = 16;
  668. }
  669. if (comp <= 5)
  670. tmp = 0;
  671. else if (comp <= 10)
  672. tmp = 10;
  673. else if (comp <= 16)
  674. tmp = 16;
  675. else if (comp <= 24)
  676. tmp = -1;
  677. else
  678. tmp = 0;
  679. coding_method[ch][sb][j] = ((tmp & 0xfffa) + 30 )& 0xff;
  680. }
  681. for (sb = 0; sb < 30; sb++)
  682. fix_coding_method_array(sb, nb_channels, coding_method);
  683. for (ch = 0; ch < nb_channels; ch++)
  684. for (sb = 0; sb < 30; sb++)
  685. for (j = 0; j < 64; j++)
  686. if (sb >= 10) {
  687. if (coding_method[ch][sb][j] < 10)
  688. coding_method[ch][sb][j] = 10;
  689. } else {
  690. if (sb >= 2) {
  691. if (coding_method[ch][sb][j] < 16)
  692. coding_method[ch][sb][j] = 16;
  693. } else {
  694. if (coding_method[ch][sb][j] < 30)
  695. coding_method[ch][sb][j] = 30;
  696. }
  697. }
  698. } else { // superblocktype_2_3 != 0
  699. for (ch = 0; ch < nb_channels; ch++)
  700. for (sb = 0; sb < 30; sb++)
  701. for (j = 0; j < 64; j++)
  702. coding_method[ch][sb][j] = coding_method_table[cm_table_select][sb];
  703. }
  704. }
  705. /**
  706. * Called by process_subpacket_11 to process more data from subpacket 11
  707. * with sb 0-8.
  708. * Called by process_subpacket_12 to process data from subpacket 12 with
  709. * sb 8-sb_used.
  710. *
  711. * @param q context
  712. * @param bc bitreader context
  713. * @param length packet length in bits
  714. * @param sb_min lower subband processed (sb_min included)
  715. * @param sb_max higher subband processed (sb_max excluded)
  716. */
  717. static void synthfilt_build_sb_samples(QDM2Context *q, BitstreamContext *bc,
  718. int length, int sb_min, int sb_max)
  719. {
  720. int sb, j, k, n, ch, run, channels;
  721. int joined_stereo, zero_encoding;
  722. int type34_first;
  723. float type34_div = 0;
  724. float type34_predictor;
  725. float samples[10], sign_bits[16];
  726. if (length == 0) {
  727. // If no data use noise
  728. for (sb=sb_min; sb < sb_max; sb++)
  729. build_sb_samples_from_noise(q, sb);
  730. return;
  731. }
  732. for (sb = sb_min; sb < sb_max; sb++) {
  733. channels = q->nb_channels;
  734. if (q->nb_channels <= 1 || sb < 12)
  735. joined_stereo = 0;
  736. else if (sb >= 24)
  737. joined_stereo = 1;
  738. else
  739. joined_stereo = (bitstream_bits_left(bc) >= 1) ? bitstream_read_bit(bc) : 0;
  740. if (joined_stereo) {
  741. if (bitstream_bits_left(bc) >= 16)
  742. for (j = 0; j < 16; j++)
  743. sign_bits[j] = bitstream_read_bit(bc);
  744. for (j = 0; j < 64; j++)
  745. if (q->coding_method[1][sb][j] > q->coding_method[0][sb][j])
  746. q->coding_method[0][sb][j] = q->coding_method[1][sb][j];
  747. if (fix_coding_method_array(sb, q->nb_channels,
  748. q->coding_method)) {
  749. build_sb_samples_from_noise(q, sb);
  750. continue;
  751. }
  752. channels = 1;
  753. }
  754. for (ch = 0; ch < channels; ch++) {
  755. FIX_NOISE_IDX(q->noise_idx);
  756. zero_encoding = (bitstream_bits_left(bc) >= 1) ? bitstream_read_bit(bc) : 0;
  757. type34_predictor = 0.0;
  758. type34_first = 1;
  759. for (j = 0; j < 128; ) {
  760. switch (q->coding_method[ch][sb][j / 2]) {
  761. case 8:
  762. if (bitstream_bits_left(bc) >= 10) {
  763. if (zero_encoding) {
  764. for (k = 0; k < 5; k++) {
  765. if ((j + 2 * k) >= 128)
  766. break;
  767. samples[2 * k] = bitstream_read_bit(bc) ? dequant_1bit[joined_stereo][2 * bitstream_read_bit(bc)] : 0;
  768. }
  769. } else {
  770. n = bitstream_read(bc, 8);
  771. for (k = 0; k < 5; k++)
  772. samples[2 * k] = dequant_1bit[joined_stereo][random_dequant_index[n][k]];
  773. }
  774. for (k = 0; k < 5; k++)
  775. samples[2 * k + 1] = SB_DITHERING_NOISE(sb,q->noise_idx);
  776. } else {
  777. for (k = 0; k < 10; k++)
  778. samples[k] = SB_DITHERING_NOISE(sb,q->noise_idx);
  779. }
  780. run = 10;
  781. break;
  782. case 10:
  783. if (bitstream_bits_left(bc) >= 1) {
  784. float f = 0.81;
  785. if (bitstream_read_bit(bc))
  786. f = -f;
  787. f -= noise_samples[((sb + 1) * (j +5 * ch + 1)) & 127] * 9.0 / 40.0;
  788. samples[0] = f;
  789. } else {
  790. samples[0] = SB_DITHERING_NOISE(sb,q->noise_idx);
  791. }
  792. run = 1;
  793. break;
  794. case 16:
  795. if (bitstream_bits_left(bc) >= 10) {
  796. if (zero_encoding) {
  797. for (k = 0; k < 5; k++) {
  798. if ((j + k) >= 128)
  799. break;
  800. samples[k] = (bitstream_read_bit(bc) == 0) ? 0 : dequant_1bit[joined_stereo][2 * bitstream_read_bit(bc)];
  801. }
  802. } else {
  803. n = bitstream_read (bc, 8);
  804. for (k = 0; k < 5; k++)
  805. samples[k] = dequant_1bit[joined_stereo][random_dequant_index[n][k]];
  806. }
  807. } else {
  808. for (k = 0; k < 5; k++)
  809. samples[k] = SB_DITHERING_NOISE(sb,q->noise_idx);
  810. }
  811. run = 5;
  812. break;
  813. case 24:
  814. if (bitstream_bits_left(bc) >= 7) {
  815. n = bitstream_read(bc, 7);
  816. for (k = 0; k < 3; k++)
  817. samples[k] = (random_dequant_type24[n][k] - 2.0) * 0.5;
  818. } else {
  819. for (k = 0; k < 3; k++)
  820. samples[k] = SB_DITHERING_NOISE(sb,q->noise_idx);
  821. }
  822. run = 3;
  823. break;
  824. case 30:
  825. if (bitstream_bits_left(bc) >= 4) {
  826. unsigned index = qdm2_get_vlc(bc, &vlc_tab_type30, 0, 1);
  827. if (index < FF_ARRAY_ELEMS(type30_dequant)) {
  828. samples[0] = type30_dequant[index];
  829. } else
  830. samples[0] = SB_DITHERING_NOISE(sb,q->noise_idx);
  831. } else
  832. samples[0] = SB_DITHERING_NOISE(sb,q->noise_idx);
  833. run = 1;
  834. break;
  835. case 34:
  836. if (bitstream_bits_left(bc) >= 7) {
  837. if (type34_first) {
  838. type34_div = (float)(1 << bitstream_read(bc, 2));
  839. samples[0] = ((float)bitstream_read(bc, 5) - 16.0) / 15.0;
  840. type34_predictor = samples[0];
  841. type34_first = 0;
  842. } else {
  843. unsigned index = qdm2_get_vlc(bc, &vlc_tab_type34, 0, 1);
  844. if (index < FF_ARRAY_ELEMS(type34_delta)) {
  845. samples[0] = type34_delta[index] / type34_div + type34_predictor;
  846. type34_predictor = samples[0];
  847. } else
  848. samples[0] = SB_DITHERING_NOISE(sb,q->noise_idx);
  849. }
  850. } else {
  851. samples[0] = SB_DITHERING_NOISE(sb,q->noise_idx);
  852. }
  853. run = 1;
  854. break;
  855. default:
  856. samples[0] = SB_DITHERING_NOISE(sb,q->noise_idx);
  857. run = 1;
  858. break;
  859. }
  860. if (joined_stereo) {
  861. for (k = 0; k < run && j + k < 128; k++) {
  862. q->sb_samples[0][j + k][sb] =
  863. q->tone_level[0][sb][(j + k) / 2] * samples[k];
  864. if (q->nb_channels == 2) {
  865. if (sign_bits[(j + k) / 8])
  866. q->sb_samples[1][j + k][sb] =
  867. q->tone_level[1][sb][(j + k) / 2] * -samples[k];
  868. else
  869. q->sb_samples[1][j + k][sb] =
  870. q->tone_level[1][sb][(j + k) / 2] * samples[k];
  871. }
  872. }
  873. } else {
  874. for (k = 0; k < run; k++)
  875. if ((j + k) < 128)
  876. q->sb_samples[ch][j + k][sb] = q->tone_level[ch][sb][(j + k)/2] * samples[k];
  877. }
  878. j += run;
  879. } // j loop
  880. } // channel loop
  881. } // subband loop
  882. }
  883. /**
  884. * Init the first element of a channel in quantized_coeffs with data
  885. * from packet 10 (quantized_coeffs[ch][0]).
  886. * This is similar to process_subpacket_9, but for a single channel
  887. * and for element [0]
  888. * same VLC tables as process_subpacket_9 are used.
  889. *
  890. * @param quantized_coeffs pointer to quantized_coeffs[ch][0]
  891. * @param bc bitreader context
  892. */
  893. static void init_quantized_coeffs_elem0(int8_t *quantized_coeffs,
  894. BitstreamContext *bc)
  895. {
  896. int i, k, run, level, diff;
  897. if (bitstream_bits_left(bc) < 16)
  898. return;
  899. level = qdm2_get_vlc(bc, &vlc_tab_level, 0, 2);
  900. quantized_coeffs[0] = level;
  901. for (i = 0; i < 7; ) {
  902. if (bitstream_bits_left(bc) < 16)
  903. break;
  904. run = qdm2_get_vlc(bc, &vlc_tab_run, 0, 1) + 1;
  905. if (bitstream_bits_left(bc) < 16)
  906. break;
  907. diff = qdm2_get_se_vlc(&vlc_tab_diff, bc, 2);
  908. for (k = 1; k <= run; k++)
  909. quantized_coeffs[i + k] = (level + ((k * diff) / run));
  910. level += diff;
  911. i += run;
  912. }
  913. }
  914. /**
  915. * Related to synthesis filter, process data from packet 10
  916. * Init part of quantized_coeffs via function init_quantized_coeffs_elem0
  917. * Init tone_level_idx_hi1, tone_level_idx_hi2, tone_level_idx_mid with
  918. * data from packet 10
  919. *
  920. * @param q context
  921. * @param bc bitreader context
  922. */
  923. static void init_tone_level_dequantization(QDM2Context *q, BitstreamContext *bc)
  924. {
  925. int sb, j, k, n, ch;
  926. for (ch = 0; ch < q->nb_channels; ch++) {
  927. init_quantized_coeffs_elem0(q->quantized_coeffs[ch][0], bc);
  928. if (bitstream_bits_left(bc) < 16) {
  929. memset(q->quantized_coeffs[ch][0], 0, 8);
  930. break;
  931. }
  932. }
  933. n = q->sub_sampling + 1;
  934. for (sb = 0; sb < n; sb++)
  935. for (ch = 0; ch < q->nb_channels; ch++)
  936. for (j = 0; j < 8; j++) {
  937. if (bitstream_bits_left(bc) < 1)
  938. break;
  939. if (bitstream_read_bit(bc)) {
  940. for (k=0; k < 8; k++) {
  941. if (bitstream_bits_left(bc) < 16)
  942. break;
  943. q->tone_level_idx_hi1[ch][sb][j][k] = qdm2_get_vlc(bc, &vlc_tab_tone_level_idx_hi1, 0, 2);
  944. }
  945. } else {
  946. for (k=0; k < 8; k++)
  947. q->tone_level_idx_hi1[ch][sb][j][k] = 0;
  948. }
  949. }
  950. n = QDM2_SB_USED(q->sub_sampling) - 4;
  951. for (sb = 0; sb < n; sb++)
  952. for (ch = 0; ch < q->nb_channels; ch++) {
  953. if (bitstream_bits_left(bc) < 16)
  954. break;
  955. q->tone_level_idx_hi2[ch][sb] = qdm2_get_vlc(bc, &vlc_tab_tone_level_idx_hi2, 0, 2);
  956. if (sb > 19)
  957. q->tone_level_idx_hi2[ch][sb] -= 16;
  958. else
  959. for (j = 0; j < 8; j++)
  960. q->tone_level_idx_mid[ch][sb][j] = -16;
  961. }
  962. n = QDM2_SB_USED(q->sub_sampling) - 5;
  963. for (sb = 0; sb < n; sb++)
  964. for (ch = 0; ch < q->nb_channels; ch++)
  965. for (j = 0; j < 8; j++) {
  966. if (bitstream_bits_left(bc) < 16)
  967. break;
  968. q->tone_level_idx_mid[ch][sb][j] = qdm2_get_vlc(bc, &vlc_tab_tone_level_idx_mid, 0, 2) - 32;
  969. }
  970. }
  971. /**
  972. * Process subpacket 9, init quantized_coeffs with data from it
  973. *
  974. * @param q context
  975. * @param node pointer to node with packet
  976. */
  977. static void process_subpacket_9(QDM2Context *q, QDM2SubPNode *node)
  978. {
  979. BitstreamContext bc;
  980. int i, j, k, n, ch, run, level, diff;
  981. bitstream_init8(&bc, node->packet->data, node->packet->size);
  982. n = coeff_per_sb_for_avg[q->coeff_per_sb_select][QDM2_SB_USED(q->sub_sampling) - 1] + 1;
  983. for (i = 1; i < n; i++)
  984. for (ch = 0; ch < q->nb_channels; ch++) {
  985. level = qdm2_get_vlc(&bc, &vlc_tab_level, 0, 2);
  986. q->quantized_coeffs[ch][i][0] = level;
  987. for (j = 0; j < (8 - 1); ) {
  988. run = qdm2_get_vlc(&bc, &vlc_tab_run, 0, 1) + 1;
  989. diff = qdm2_get_se_vlc(&vlc_tab_diff, &bc, 2);
  990. for (k = 1; k <= run; k++)
  991. q->quantized_coeffs[ch][i][j + k] = (level + ((k * diff) / run));
  992. level += diff;
  993. j += run;
  994. }
  995. }
  996. for (ch = 0; ch < q->nb_channels; ch++)
  997. for (i = 0; i < 8; i++)
  998. q->quantized_coeffs[ch][0][i] = 0;
  999. }
  1000. /**
  1001. * Process subpacket 10 if not null, else
  1002. *
  1003. * @param q context
  1004. * @param node pointer to node with packet
  1005. */
  1006. static void process_subpacket_10(QDM2Context *q, QDM2SubPNode *node)
  1007. {
  1008. BitstreamContext bc;
  1009. if (node) {
  1010. bitstream_init8(&bc, node->packet->data, node->packet->size);
  1011. init_tone_level_dequantization(q, &bc);
  1012. fill_tone_level_array(q, 1);
  1013. } else {
  1014. fill_tone_level_array(q, 0);
  1015. }
  1016. }
  1017. /**
  1018. * Process subpacket 11
  1019. *
  1020. * @param q context
  1021. * @param node pointer to node with packet
  1022. */
  1023. static void process_subpacket_11(QDM2Context *q, QDM2SubPNode *node)
  1024. {
  1025. BitstreamContext bc;
  1026. int length = 0;
  1027. if (node) {
  1028. length = node->packet->size * 8;
  1029. bitstream_init(&bc, node->packet->data, length);
  1030. }
  1031. if (length >= 32) {
  1032. int c = bitstream_read(&bc, 13);
  1033. if (c > 3)
  1034. fill_coding_method_array(q->tone_level_idx,
  1035. q->tone_level_idx_temp, q->coding_method,
  1036. q->nb_channels, 8 * c,
  1037. q->superblocktype_2_3, q->cm_table_select);
  1038. }
  1039. synthfilt_build_sb_samples(q, &bc, length, 0, 8);
  1040. }
  1041. /**
  1042. * Process subpacket 12
  1043. *
  1044. * @param q context
  1045. * @param node pointer to node with packet
  1046. */
  1047. static void process_subpacket_12(QDM2Context *q, QDM2SubPNode *node)
  1048. {
  1049. BitstreamContext bc;
  1050. int length = 0;
  1051. if (node) {
  1052. length = node->packet->size * 8;
  1053. bitstream_init(&bc, node->packet->data, length);
  1054. }
  1055. synthfilt_build_sb_samples(q, &bc, length, 8, QDM2_SB_USED(q->sub_sampling));
  1056. }
  1057. /*
  1058. * Process new subpackets for synthesis filter
  1059. *
  1060. * @param q context
  1061. * @param list list with synthesis filter packets (list D)
  1062. */
  1063. static void process_synthesis_subpackets(QDM2Context *q, QDM2SubPNode *list)
  1064. {
  1065. QDM2SubPNode *nodes[4];
  1066. nodes[0] = qdm2_search_subpacket_type_in_list(list, 9);
  1067. if (nodes[0])
  1068. process_subpacket_9(q, nodes[0]);
  1069. nodes[1] = qdm2_search_subpacket_type_in_list(list, 10);
  1070. if (nodes[1])
  1071. process_subpacket_10(q, nodes[1]);
  1072. else
  1073. process_subpacket_10(q, NULL);
  1074. nodes[2] = qdm2_search_subpacket_type_in_list(list, 11);
  1075. if (nodes[0] && nodes[1] && nodes[2])
  1076. process_subpacket_11(q, nodes[2]);
  1077. else
  1078. process_subpacket_11(q, NULL);
  1079. nodes[3] = qdm2_search_subpacket_type_in_list(list, 12);
  1080. if (nodes[0] && nodes[1] && nodes[3])
  1081. process_subpacket_12(q, nodes[3]);
  1082. else
  1083. process_subpacket_12(q, NULL);
  1084. }
  1085. /*
  1086. * Decode superblock, fill packet lists.
  1087. *
  1088. * @param q context
  1089. */
  1090. static void qdm2_decode_super_block(QDM2Context *q)
  1091. {
  1092. BitstreamContext bc;
  1093. QDM2SubPacket header, *packet;
  1094. int i, packet_bytes, sub_packet_size, sub_packets_D;
  1095. unsigned int next_index = 0;
  1096. memset(q->tone_level_idx_hi1, 0, sizeof(q->tone_level_idx_hi1));
  1097. memset(q->tone_level_idx_mid, 0, sizeof(q->tone_level_idx_mid));
  1098. memset(q->tone_level_idx_hi2, 0, sizeof(q->tone_level_idx_hi2));
  1099. q->sub_packets_B = 0;
  1100. sub_packets_D = 0;
  1101. average_quantized_coeffs(q); // average elements in quantized_coeffs[max_ch][10][8]
  1102. bitstream_init8(&bc, q->compressed_data, q->compressed_size);
  1103. qdm2_decode_sub_packet_header(&bc, &header);
  1104. if (header.type < 2 || header.type >= 8) {
  1105. q->has_errors = 1;
  1106. av_log(NULL, AV_LOG_ERROR, "bad superblock type\n");
  1107. return;
  1108. }
  1109. q->superblocktype_2_3 = (header.type == 2 || header.type == 3);
  1110. packet_bytes = (q->compressed_size - bitstream_tell(&bc) / 8);
  1111. bitstream_init8(&bc, header.data, header.size);
  1112. if (header.type == 2 || header.type == 4 || header.type == 5) {
  1113. int csum = 257 * bitstream_read(&bc, 8);
  1114. csum += 2 * bitstream_read(&bc, 8);
  1115. csum = qdm2_packet_checksum(q->compressed_data, q->checksum_size, csum);
  1116. if (csum != 0) {
  1117. q->has_errors = 1;
  1118. av_log(NULL, AV_LOG_ERROR, "bad packet checksum\n");
  1119. return;
  1120. }
  1121. }
  1122. q->sub_packet_list_B[0].packet = NULL;
  1123. q->sub_packet_list_D[0].packet = NULL;
  1124. for (i = 0; i < 6; i++)
  1125. if (--q->fft_level_exp[i] < 0)
  1126. q->fft_level_exp[i] = 0;
  1127. for (i = 0; packet_bytes > 0; i++) {
  1128. int j;
  1129. if (i >= FF_ARRAY_ELEMS(q->sub_packet_list_A)) {
  1130. SAMPLES_NEEDED_2("too many packet bytes");
  1131. return;
  1132. }
  1133. q->sub_packet_list_A[i].next = NULL;
  1134. if (i > 0) {
  1135. q->sub_packet_list_A[i - 1].next = &q->sub_packet_list_A[i];
  1136. /* seek to next block */
  1137. bitstream_init8(&bc, header.data, header.size);
  1138. bitstream_skip(&bc, next_index * 8);
  1139. if (next_index >= header.size)
  1140. break;
  1141. }
  1142. /* decode subpacket */
  1143. packet = &q->sub_packets[i];
  1144. qdm2_decode_sub_packet_header(&bc, packet);
  1145. next_index = packet->size + bitstream_tell(&bc) / 8;
  1146. sub_packet_size = ((packet->size > 0xff) ? 1 : 0) + packet->size + 2;
  1147. if (packet->type == 0)
  1148. break;
  1149. if (sub_packet_size > packet_bytes) {
  1150. if (packet->type != 10 && packet->type != 11 && packet->type != 12)
  1151. break;
  1152. packet->size += packet_bytes - sub_packet_size;
  1153. }
  1154. packet_bytes -= sub_packet_size;
  1155. /* add subpacket to 'all subpackets' list */
  1156. q->sub_packet_list_A[i].packet = packet;
  1157. /* add subpacket to related list */
  1158. if (packet->type == 8) {
  1159. SAMPLES_NEEDED_2("packet type 8");
  1160. return;
  1161. } else if (packet->type >= 9 && packet->type <= 12) {
  1162. /* packets for MPEG Audio like Synthesis Filter */
  1163. QDM2_LIST_ADD(q->sub_packet_list_D, sub_packets_D, packet);
  1164. } else if (packet->type == 13) {
  1165. for (j = 0; j < 6; j++)
  1166. q->fft_level_exp[j] = bitstream_read(&bc, 6);
  1167. } else if (packet->type == 14) {
  1168. for (j = 0; j < 6; j++)
  1169. q->fft_level_exp[j] = qdm2_get_vlc(&bc, &fft_level_exp_vlc, 0, 2);
  1170. } else if (packet->type == 15) {
  1171. SAMPLES_NEEDED_2("packet type 15")
  1172. return;
  1173. } else if (packet->type >= 16 && packet->type < 48 &&
  1174. !fft_subpackets[packet->type - 16]) {
  1175. /* packets for FFT */
  1176. QDM2_LIST_ADD(q->sub_packet_list_B, q->sub_packets_B, packet);
  1177. }
  1178. } // Packet bytes loop
  1179. if (q->sub_packet_list_D[0].packet) {
  1180. process_synthesis_subpackets(q, q->sub_packet_list_D);
  1181. q->do_synth_filter = 1;
  1182. } else if (q->do_synth_filter) {
  1183. process_subpacket_10(q, NULL);
  1184. process_subpacket_11(q, NULL);
  1185. process_subpacket_12(q, NULL);
  1186. }
  1187. }
  1188. static void qdm2_fft_init_coefficient(QDM2Context *q, int sub_packet,
  1189. int offset, int duration, int channel,
  1190. int exp, int phase)
  1191. {
  1192. if (q->fft_coefs_min_index[duration] < 0)
  1193. q->fft_coefs_min_index[duration] = q->fft_coefs_index;
  1194. q->fft_coefs[q->fft_coefs_index].sub_packet =
  1195. ((sub_packet >= 16) ? (sub_packet - 16) : sub_packet);
  1196. q->fft_coefs[q->fft_coefs_index].channel = channel;
  1197. q->fft_coefs[q->fft_coefs_index].offset = offset;
  1198. q->fft_coefs[q->fft_coefs_index].exp = exp;
  1199. q->fft_coefs[q->fft_coefs_index].phase = phase;
  1200. q->fft_coefs_index++;
  1201. }
  1202. static void qdm2_fft_decode_tones(QDM2Context *q, int duration,
  1203. BitstreamContext *bc, int b)
  1204. {
  1205. int channel, stereo, phase, exp;
  1206. int local_int_4, local_int_8, stereo_phase, local_int_10;
  1207. int local_int_14, stereo_exp, local_int_20, local_int_28;
  1208. int n, offset;
  1209. local_int_4 = 0;
  1210. local_int_28 = 0;
  1211. local_int_20 = 2;
  1212. local_int_8 = (4 - duration);
  1213. local_int_10 = 1 << (q->group_order - duration - 1);
  1214. offset = 1;
  1215. while (1) {
  1216. if (q->superblocktype_2_3) {
  1217. while ((n = qdm2_get_vlc(bc, &vlc_tab_fft_tone_offset[local_int_8], 1, 2)) < 2) {
  1218. offset = 1;
  1219. if (n == 0) {
  1220. local_int_4 += local_int_10;
  1221. local_int_28 += (1 << local_int_8);
  1222. } else {
  1223. local_int_4 += 8 * local_int_10;
  1224. local_int_28 += (8 << local_int_8);
  1225. }
  1226. }
  1227. offset += (n - 2);
  1228. } else {
  1229. offset += qdm2_get_vlc(bc, &vlc_tab_fft_tone_offset[local_int_8], 1, 2);
  1230. while (offset >= (local_int_10 - 1)) {
  1231. offset += (1 - (local_int_10 - 1));
  1232. local_int_4 += local_int_10;
  1233. local_int_28 += (1 << local_int_8);
  1234. }
  1235. }
  1236. if (local_int_4 >= q->group_size)
  1237. return;
  1238. local_int_14 = (offset >> local_int_8);
  1239. if (local_int_14 >= FF_ARRAY_ELEMS(fft_level_index_table))
  1240. return;
  1241. if (q->nb_channels > 1) {
  1242. channel = bitstream_read_bit(bc);
  1243. stereo = bitstream_read_bit(bc);
  1244. } else {
  1245. channel = 0;
  1246. stereo = 0;
  1247. }
  1248. exp = qdm2_get_vlc(bc, (b ? &fft_level_exp_vlc : &fft_level_exp_alt_vlc), 0, 2);
  1249. exp += q->fft_level_exp[fft_level_index_table[local_int_14]];
  1250. exp = (exp < 0) ? 0 : exp;
  1251. phase = bitstream_read(bc, 3);
  1252. stereo_exp = 0;
  1253. stereo_phase = 0;
  1254. if (stereo) {
  1255. stereo_exp = (exp - qdm2_get_vlc(bc, &fft_stereo_exp_vlc, 0, 1));
  1256. stereo_phase = (phase - qdm2_get_vlc(bc, &fft_stereo_phase_vlc, 0, 1));
  1257. if (stereo_phase < 0)
  1258. stereo_phase += 8;
  1259. }
  1260. if (q->frequency_range > (local_int_14 + 1)) {
  1261. int sub_packet = (local_int_20 + local_int_28);
  1262. qdm2_fft_init_coefficient(q, sub_packet, offset, duration,
  1263. channel, exp, phase);
  1264. if (stereo)
  1265. qdm2_fft_init_coefficient(q, sub_packet, offset, duration,
  1266. 1 - channel,
  1267. stereo_exp, stereo_phase);
  1268. }
  1269. offset++;
  1270. }
  1271. }
  1272. static void qdm2_decode_fft_packets(QDM2Context *q)
  1273. {
  1274. int i, j, min, max, value, type, unknown_flag;
  1275. BitstreamContext bc;
  1276. if (!q->sub_packet_list_B[0].packet)
  1277. return;
  1278. /* reset minimum indexes for FFT coefficients */
  1279. q->fft_coefs_index = 0;
  1280. for (i = 0; i < 5; i++)
  1281. q->fft_coefs_min_index[i] = -1;
  1282. /* process subpackets ordered by type, largest type first */
  1283. for (i = 0, max = 256; i < q->sub_packets_B; i++) {
  1284. QDM2SubPacket *packet = NULL;
  1285. /* find subpacket with largest type less than max */
  1286. for (j = 0, min = 0; j < q->sub_packets_B; j++) {
  1287. value = q->sub_packet_list_B[j].packet->type;
  1288. if (value > min && value < max) {
  1289. min = value;
  1290. packet = q->sub_packet_list_B[j].packet;
  1291. }
  1292. }
  1293. max = min;
  1294. /* check for errors (?) */
  1295. if (!packet)
  1296. return;
  1297. if (i == 0 &&
  1298. (packet->type < 16 || packet->type >= 48 ||
  1299. fft_subpackets[packet->type - 16]))
  1300. return;
  1301. /* decode FFT tones */
  1302. bitstream_init8(&bc, packet->data, packet->size);
  1303. if (packet->type >= 32 && packet->type < 48 && !fft_subpackets[packet->type - 16])
  1304. unknown_flag = 1;
  1305. else
  1306. unknown_flag = 0;
  1307. type = packet->type;
  1308. if ((type >= 17 && type < 24) || (type >= 33 && type < 40)) {
  1309. int duration = q->sub_sampling + 5 - (type & 15);
  1310. if (duration >= 0 && duration < 4)
  1311. qdm2_fft_decode_tones(q, duration, &bc, unknown_flag);
  1312. } else if (type == 31) {
  1313. for (j = 0; j < 4; j++)
  1314. qdm2_fft_decode_tones(q, j, &bc, unknown_flag);
  1315. } else if (type == 46) {
  1316. for (j = 0; j < 6; j++)
  1317. q->fft_level_exp[j] = bitstream_read(&bc, 6);
  1318. for (j = 0; j < 4; j++)
  1319. qdm2_fft_decode_tones(q, j, &bc, unknown_flag);
  1320. }
  1321. } // Loop on B packets
  1322. /* calculate maximum indexes for FFT coefficients */
  1323. for (i = 0, j = -1; i < 5; i++)
  1324. if (q->fft_coefs_min_index[i] >= 0) {
  1325. if (j >= 0)
  1326. q->fft_coefs_max_index[j] = q->fft_coefs_min_index[i];
  1327. j = i;
  1328. }
  1329. if (j >= 0)
  1330. q->fft_coefs_max_index[j] = q->fft_coefs_index;
  1331. }
  1332. static void qdm2_fft_generate_tone(QDM2Context *q, FFTTone *tone)
  1333. {
  1334. float level, f[6];
  1335. int i;
  1336. QDM2Complex c;
  1337. const double iscale = 2.0 * M_PI / 512.0;
  1338. tone->phase += tone->phase_shift;
  1339. /* calculate current level (maximum amplitude) of tone */
  1340. level = fft_tone_envelope_table[tone->duration][tone->time_index] * tone->level;
  1341. c.im = level * sin(tone->phase * iscale);
  1342. c.re = level * cos(tone->phase * iscale);
  1343. /* generate FFT coefficients for tone */
  1344. if (tone->duration >= 3 || tone->cutoff >= 3) {
  1345. tone->complex[0].im += c.im;
  1346. tone->complex[0].re += c.re;
  1347. tone->complex[1].im -= c.im;
  1348. tone->complex[1].re -= c.re;
  1349. } else {
  1350. f[1] = -tone->table[4];
  1351. f[0] = tone->table[3] - tone->table[0];
  1352. f[2] = 1.0 - tone->table[2] - tone->table[3];
  1353. f[3] = tone->table[1] + tone->table[4] - 1.0;
  1354. f[4] = tone->table[0] - tone->table[1];
  1355. f[5] = tone->table[2];
  1356. for (i = 0; i < 2; i++) {
  1357. tone->complex[fft_cutoff_index_table[tone->cutoff][i]].re +=
  1358. c.re * f[i];
  1359. tone->complex[fft_cutoff_index_table[tone->cutoff][i]].im +=
  1360. c.im * ((tone->cutoff <= i) ? -f[i] : f[i]);
  1361. }
  1362. for (i = 0; i < 4; i++) {
  1363. tone->complex[i].re += c.re * f[i + 2];
  1364. tone->complex[i].im += c.im * f[i + 2];
  1365. }
  1366. }
  1367. /* copy the tone if it has not yet died out */
  1368. if (++tone->time_index < ((1 << (5 - tone->duration)) - 1)) {
  1369. memcpy(&q->fft_tones[q->fft_tone_end], tone, sizeof(FFTTone));
  1370. q->fft_tone_end = (q->fft_tone_end + 1) % 1000;
  1371. }
  1372. }
  1373. static void qdm2_fft_tone_synthesizer(QDM2Context *q, int sub_packet)
  1374. {
  1375. int i, j, ch;
  1376. const double iscale = 0.25 * M_PI;
  1377. for (ch = 0; ch < q->channels; ch++) {
  1378. memset(q->fft.complex[ch], 0, q->fft_size * sizeof(QDM2Complex));
  1379. }
  1380. /* apply FFT tones with duration 4 (1 FFT period) */
  1381. if (q->fft_coefs_min_index[4] >= 0)
  1382. for (i = q->fft_coefs_min_index[4]; i < q->fft_coefs_max_index[4]; i++) {
  1383. float level;
  1384. QDM2Complex c;
  1385. if (q->fft_coefs[i].sub_packet != sub_packet)
  1386. break;
  1387. ch = (q->channels == 1) ? 0 : q->fft_coefs[i].channel;
  1388. level = (q->fft_coefs[i].exp < 0) ? 0.0 : fft_tone_level_table[q->superblocktype_2_3 ? 0 : 1][q->fft_coefs[i].exp & 63];
  1389. c.re = level * cos(q->fft_coefs[i].phase * iscale);
  1390. c.im = level * sin(q->fft_coefs[i].phase * iscale);
  1391. q->fft.complex[ch][q->fft_coefs[i].offset + 0].re += c.re;
  1392. q->fft.complex[ch][q->fft_coefs[i].offset + 0].im += c.im;
  1393. q->fft.complex[ch][q->fft_coefs[i].offset + 1].re -= c.re;
  1394. q->fft.complex[ch][q->fft_coefs[i].offset + 1].im -= c.im;
  1395. }
  1396. /* generate existing FFT tones */
  1397. for (i = q->fft_tone_end; i != q->fft_tone_start; ) {
  1398. qdm2_fft_generate_tone(q, &q->fft_tones[q->fft_tone_start]);
  1399. q->fft_tone_start = (q->fft_tone_start + 1) % 1000;
  1400. }
  1401. /* create and generate new FFT tones with duration 0 (long) to 3 (short) */
  1402. for (i = 0; i < 4; i++)
  1403. if (q->fft_coefs_min_index[i] >= 0) {
  1404. for (j = q->fft_coefs_min_index[i]; j < q->fft_coefs_max_index[i]; j++) {
  1405. int offset, four_i;
  1406. FFTTone tone;
  1407. if (q->fft_coefs[j].sub_packet != sub_packet)
  1408. break;
  1409. four_i = (4 - i);
  1410. offset = q->fft_coefs[j].offset >> four_i;
  1411. ch = (q->channels == 1) ? 0 : q->fft_coefs[j].channel;
  1412. if (offset < q->frequency_range) {
  1413. if (offset < 2)
  1414. tone.cutoff = offset;
  1415. else
  1416. tone.cutoff = (offset >= 60) ? 3 : 2;
  1417. tone.level = (q->fft_coefs[j].exp < 0) ? 0.0 : fft_tone_level_table[q->superblocktype_2_3 ? 0 : 1][q->fft_coefs[j].exp & 63];
  1418. tone.complex = &q->fft.complex[ch][offset];
  1419. tone.table = fft_tone_sample_table[i][q->fft_coefs[j].offset - (offset << four_i)];
  1420. tone.phase = 64 * q->fft_coefs[j].phase - (offset << 8) - 128;
  1421. tone.phase_shift = (2 * q->fft_coefs[j].offset + 1) << (7 - four_i);
  1422. tone.duration = i;
  1423. tone.time_index = 0;
  1424. qdm2_fft_generate_tone(q, &tone);
  1425. }
  1426. }
  1427. q->fft_coefs_min_index[i] = j;
  1428. }
  1429. }
  1430. static void qdm2_calculate_fft(QDM2Context *q, int channel, int sub_packet)
  1431. {
  1432. const float gain = (q->channels == 1 && q->nb_channels == 2) ? 0.5f : 1.0f;
  1433. float *out = q->output_buffer + channel;
  1434. int i;
  1435. q->fft.complex[channel][0].re *= 2.0f;
  1436. q->fft.complex[channel][0].im = 0.0f;
  1437. q->rdft_ctx.rdft_calc(&q->rdft_ctx, (FFTSample *)q->fft.complex[channel]);
  1438. /* add samples to output buffer */
  1439. for (i = 0; i < FFALIGN(q->fft_size, 8); i++) {
  1440. out[0] += q->fft.complex[channel][i].re * gain;
  1441. out[q->channels] += q->fft.complex[channel][i].im * gain;
  1442. out += 2 * q->channels;
  1443. }
  1444. }
  1445. /**
  1446. * @param q context
  1447. * @param index subpacket number
  1448. */
  1449. static void qdm2_synthesis_filter(QDM2Context *q, int index)
  1450. {
  1451. int i, k, ch, sb_used, sub_sampling, dither_state = 0;
  1452. /* copy sb_samples */
  1453. sb_used = QDM2_SB_USED(q->sub_sampling);
  1454. for (ch = 0; ch < q->channels; ch++)
  1455. for (i = 0; i < 8; i++)
  1456. for (k = sb_used; k < SBLIMIT; k++)
  1457. q->sb_samples[ch][(8 * index) + i][k] = 0;
  1458. for (ch = 0; ch < q->nb_channels; ch++) {
  1459. float *samples_ptr = q->samples + ch;
  1460. for (i = 0; i < 8; i++) {
  1461. ff_mpa_synth_filter_float(&q->mpadsp,
  1462. q->synth_buf[ch], &(q->synth_buf_offset[ch]),
  1463. ff_mpa_synth_window_float, &dither_state,
  1464. samples_ptr, q->nb_channels,
  1465. q->sb_samples[ch][(8 * index) + i]);
  1466. samples_ptr += 32 * q->nb_channels;
  1467. }
  1468. }
  1469. /* add samples to output buffer */
  1470. sub_sampling = (4 >> q->sub_sampling);
  1471. for (ch = 0; ch < q->channels; ch++)
  1472. for (i = 0; i < q->frame_size; i++)
  1473. q->output_buffer[q->channels * i + ch] += (1 << 23) * q->samples[q->nb_channels * sub_sampling * i + ch];
  1474. }
  1475. /**
  1476. * Init static data (does not depend on specific file)
  1477. *
  1478. * @param q context
  1479. */
  1480. static av_cold void qdm2_init_static_data(AVCodec *codec) {
  1481. qdm2_init_vlc();
  1482. ff_mpa_synth_init_float(ff_mpa_synth_window_float);
  1483. softclip_table_init();
  1484. rnd_table_init();
  1485. init_noise_samples();
  1486. }
  1487. /**
  1488. * Init parameters from codec extradata
  1489. */
  1490. static av_cold int qdm2_decode_init(AVCodecContext *avctx)
  1491. {
  1492. QDM2Context *s = avctx->priv_data;
  1493. uint8_t *extradata;
  1494. int extradata_size;
  1495. int tmp_val, tmp, size;
  1496. /* extradata parsing
  1497. Structure:
  1498. wave {
  1499. frma (QDM2)
  1500. QDCA
  1501. QDCP
  1502. }
  1503. 32 size (including this field)
  1504. 32 tag (=frma)
  1505. 32 type (=QDM2 or QDMC)
  1506. 32 size (including this field, in bytes)
  1507. 32 tag (=QDCA) // maybe mandatory parameters
  1508. 32 unknown (=1)
  1509. 32 channels (=2)
  1510. 32 samplerate (=44100)
  1511. 32 bitrate (=96000)
  1512. 32 block size (=4096)
  1513. 32 frame size (=256) (for one channel)
  1514. 32 packet size (=1300)
  1515. 32 size (including this field, in bytes)
  1516. 32 tag (=QDCP) // maybe some tuneable parameters
  1517. 32 float1 (=1.0)
  1518. 32 zero ?
  1519. 32 float2 (=1.0)
  1520. 32 float3 (=1.0)
  1521. 32 unknown (27)
  1522. 32 unknown (8)
  1523. 32 zero ?
  1524. */
  1525. if (!avctx->extradata || (avctx->extradata_size < 48)) {
  1526. av_log(avctx, AV_LOG_ERROR, "extradata missing or truncated\n");
  1527. return AVERROR_INVALIDDATA;
  1528. }
  1529. extradata = avctx->extradata;
  1530. extradata_size = avctx->extradata_size;
  1531. while (extradata_size > 7) {
  1532. if (!memcmp(extradata, "frmaQDM", 7))
  1533. break;
  1534. extradata++;
  1535. extradata_size--;
  1536. }
  1537. if (extradata_size < 12) {
  1538. av_log(avctx, AV_LOG_ERROR, "not enough extradata (%i)\n",
  1539. extradata_size);
  1540. return AVERROR_INVALIDDATA;
  1541. }
  1542. if (memcmp(extradata, "frmaQDM", 7)) {
  1543. av_log(avctx, AV_LOG_ERROR, "invalid headers, QDM? not found\n");
  1544. return AVERROR_INVALIDDATA;
  1545. }
  1546. if (extradata[7] == 'C') {
  1547. // s->is_qdmc = 1;
  1548. avpriv_report_missing_feature(avctx, "QDMC version 1");
  1549. return AVERROR_PATCHWELCOME;
  1550. }
  1551. extradata += 8;
  1552. extradata_size -= 8;
  1553. size = AV_RB32(extradata);
  1554. if(size > extradata_size){
  1555. av_log(avctx, AV_LOG_ERROR, "extradata size too small, %i < %i\n",
  1556. extradata_size, size);
  1557. return AVERROR_INVALIDDATA;
  1558. }
  1559. extradata += 4;
  1560. av_log(avctx, AV_LOG_DEBUG, "size: %d\n", size);
  1561. if (AV_RB32(extradata) != MKBETAG('Q','D','C','A')) {
  1562. av_log(avctx, AV_LOG_ERROR, "invalid extradata, expecting QDCA\n");
  1563. return AVERROR_INVALIDDATA;
  1564. }
  1565. extradata += 8;
  1566. avctx->channels = s->nb_channels = s->channels = AV_RB32(extradata);
  1567. extradata += 4;
  1568. if (s->channels <= 0 || s->channels > MPA_MAX_CHANNELS)
  1569. return AVERROR_INVALIDDATA;
  1570. avctx->channel_layout = avctx->channels == 2 ? AV_CH_LAYOUT_STEREO :
  1571. AV_CH_LAYOUT_MONO;
  1572. avctx->sample_rate = AV_RB32(extradata);
  1573. extradata += 4;
  1574. avctx->bit_rate = AV_RB32(extradata);
  1575. extradata += 4;
  1576. s->group_size = AV_RB32(extradata);
  1577. extradata += 4;
  1578. s->fft_size = AV_RB32(extradata);
  1579. extradata += 4;
  1580. s->checksum_size = AV_RB32(extradata);
  1581. if (s->checksum_size >= 1U << 28) {
  1582. av_log(avctx, AV_LOG_ERROR, "data block size too large (%u)\n", s->checksum_size);
  1583. return AVERROR_INVALIDDATA;
  1584. }
  1585. s->fft_order = av_log2(s->fft_size) + 1;
  1586. // something like max decodable tones
  1587. s->group_order = av_log2(s->group_size) + 1;
  1588. s->frame_size = s->group_size / 16; // 16 iterations per super block
  1589. if (s->frame_size > QDM2_MAX_FRAME_SIZE)
  1590. return AVERROR_INVALIDDATA;
  1591. s->sub_sampling = s->fft_order - 7;
  1592. s->frequency_range = 255 / (1 << (2 - s->sub_sampling));
  1593. switch ((s->sub_sampling * 2 + s->channels - 1)) {
  1594. case 0: tmp = 40; break;
  1595. case 1: tmp = 48; break;
  1596. case 2: tmp = 56; break;
  1597. case 3: tmp = 72; break;
  1598. case 4: tmp = 80; break;
  1599. case 5: tmp = 100;break;
  1600. default: tmp=s->sub_sampling; break;
  1601. }
  1602. tmp_val = 0;
  1603. if ((tmp * 1000) < avctx->bit_rate) tmp_val = 1;
  1604. if ((tmp * 1440) < avctx->bit_rate) tmp_val = 2;
  1605. if ((tmp * 1760) < avctx->bit_rate) tmp_val = 3;
  1606. if ((tmp * 2240) < avctx->bit_rate) tmp_val = 4;
  1607. s->cm_table_select = tmp_val;
  1608. if (s->sub_sampling == 0)
  1609. tmp = 7999;
  1610. else
  1611. tmp = ((-(s->sub_sampling -1)) & 8000) + 20000;
  1612. /*
  1613. 0: 7999 -> 0
  1614. 1: 20000 -> 2
  1615. 2: 28000 -> 2
  1616. */
  1617. if (tmp < 8000)
  1618. s->coeff_per_sb_select = 0;
  1619. else if (tmp <= 16000)
  1620. s->coeff_per_sb_select = 1;
  1621. else
  1622. s->coeff_per_sb_select = 2;
  1623. // Fail on unknown fft order
  1624. if ((s->fft_order < 7) || (s->fft_order > 9)) {
  1625. avpriv_request_sample(avctx, "Unknown FFT order %d", s->fft_order);
  1626. return AVERROR_PATCHWELCOME;
  1627. }
  1628. if (s->fft_size != (1 << (s->fft_order - 1))) {
  1629. av_log(avctx, AV_LOG_ERROR, "FFT size %d not power of 2.\n", s->fft_size);
  1630. return AVERROR_INVALIDDATA;
  1631. }
  1632. ff_rdft_init(&s->rdft_ctx, s->fft_order, IDFT_C2R);
  1633. ff_mpadsp_init(&s->mpadsp);
  1634. avctx->sample_fmt = AV_SAMPLE_FMT_S16;
  1635. return 0;
  1636. }
  1637. static av_cold int qdm2_decode_close(AVCodecContext *avctx)
  1638. {
  1639. QDM2Context *s = avctx->priv_data;
  1640. ff_rdft_end(&s->rdft_ctx);
  1641. return 0;
  1642. }
  1643. static int qdm2_decode(QDM2Context *q, const uint8_t *in, int16_t *out)
  1644. {
  1645. int ch, i;
  1646. const int frame_size = (q->frame_size * q->channels);
  1647. /* select input buffer */
  1648. q->compressed_data = in;
  1649. q->compressed_size = q->checksum_size;
  1650. /* copy old block, clear new block of output samples */
  1651. memmove(q->output_buffer, &q->output_buffer[frame_size], frame_size * sizeof(float));
  1652. memset(&q->output_buffer[frame_size], 0, frame_size * sizeof(float));
  1653. /* decode block of QDM2 compressed data */
  1654. if (q->sub_packet == 0) {
  1655. q->has_errors = 0; // zero it for a new super block
  1656. av_log(NULL,AV_LOG_DEBUG,"Superblock follows\n");
  1657. qdm2_decode_super_block(q);
  1658. }
  1659. /* parse subpackets */
  1660. if (!q->has_errors) {
  1661. if (q->sub_packet == 2)
  1662. qdm2_decode_fft_packets(q);
  1663. qdm2_fft_tone_synthesizer(q, q->sub_packet);
  1664. }
  1665. /* sound synthesis stage 1 (FFT) */
  1666. for (ch = 0; ch < q->channels; ch++) {
  1667. qdm2_calculate_fft(q, ch, q->sub_packet);
  1668. if (!q->has_errors && q->sub_packet_list_C[0].packet) {
  1669. SAMPLES_NEEDED_2("has errors, and C list is not empty")
  1670. return -1;
  1671. }
  1672. }
  1673. /* sound synthesis stage 2 (MPEG audio like synthesis filter) */
  1674. if (!q->has_errors && q->do_synth_filter)
  1675. qdm2_synthesis_filter(q, q->sub_packet);
  1676. q->sub_packet = (q->sub_packet + 1) % 16;
  1677. /* clip and convert output float[] to 16-bit signed samples */
  1678. for (i = 0; i < frame_size; i++) {
  1679. int value = (int)q->output_buffer[i];
  1680. if (value > SOFTCLIP_THRESHOLD)
  1681. value = (value > HARDCLIP_THRESHOLD) ? 32767 : softclip_table[ value - SOFTCLIP_THRESHOLD];
  1682. else if (value < -SOFTCLIP_THRESHOLD)
  1683. value = (value < -HARDCLIP_THRESHOLD) ? -32767 : -softclip_table[-value - SOFTCLIP_THRESHOLD];
  1684. out[i] = value;
  1685. }
  1686. return 0;
  1687. }
  1688. static int qdm2_decode_frame(AVCodecContext *avctx, void *data,
  1689. int *got_frame_ptr, AVPacket *avpkt)
  1690. {
  1691. AVFrame *frame = data;
  1692. const uint8_t *buf = avpkt->data;
  1693. int buf_size = avpkt->size;
  1694. QDM2Context *s = avctx->priv_data;
  1695. int16_t *out;
  1696. int i, ret;
  1697. if(!buf)
  1698. return 0;
  1699. if(buf_size < s->checksum_size)
  1700. return -1;
  1701. /* get output buffer */
  1702. frame->nb_samples = 16 * s->frame_size;
  1703. if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) {
  1704. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  1705. return ret;
  1706. }
  1707. out = (int16_t *)frame->data[0];
  1708. for (i = 0; i < 16; i++) {
  1709. if ((ret = qdm2_decode(s, buf, out)) < 0)
  1710. return ret;
  1711. out += s->channels * s->frame_size;
  1712. }
  1713. *got_frame_ptr = 1;
  1714. return s->checksum_size;
  1715. }
  1716. AVCodec ff_qdm2_decoder = {
  1717. .name = "qdm2",
  1718. .long_name = NULL_IF_CONFIG_SMALL("QDesign Music Codec 2"),
  1719. .type = AVMEDIA_TYPE_AUDIO,
  1720. .id = AV_CODEC_ID_QDM2,
  1721. .priv_data_size = sizeof(QDM2Context),
  1722. .init = qdm2_decode_init,
  1723. .init_static_data = qdm2_init_static_data,
  1724. .close = qdm2_decode_close,
  1725. .decode = qdm2_decode_frame,
  1726. .capabilities = AV_CODEC_CAP_DR1,
  1727. };